1
|
Toxopeus J, Dowle EJ, Andaloori L, Ragland GJ. Variation in Thermal Sensitivity of Diapause Development among Individuals and over Time Predicts Life History Timing in a Univoltine Insect. Am Nat 2024; 203:E200-E217. [PMID: 38781522 DOI: 10.1086/729515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractPhysiological time is important for understanding the development and seasonal timing of ectothermic animals but has largely been applied to developmental processes that occur during spring and summer, such as morphogenesis. There is a substantial knowledge gap in the relationship between temperature and development during winter, a season that is increasingly impacted by climate change. Most temperate insects overwinter in diapause, a developmental process with little obvious morphological change. We used principles from the physiological time literature to measure and model the thermal sensitivity of diapause development rate in the apple maggot fly Rhagoletis pomonella, a univoltine fly whose diapause duration varies substantially within and among populations. We show that diapause duration can be predicted by modeling a relationship between temperature and development rate that is shifted toward lower temperatures compared with typical models of morphogenic, nondiapause development. However, incorporating interindividual variation and ontogenetic variation in the temperature-to-development rate relationship was critical for accurately predicting fly emergence, as diapause development proceeded more quickly at high temperatures later in diapause. We conclude that the conceptual framework may be flexibly applied to other insects and discuss possible mechanisms of diapause timers and implications for phenology with warming winters.
Collapse
|
2
|
Harbach RE, Wilkerson RC. The insupportable validity of mosquito subspecies (Diptera: Culicidae) and their exclusion from culicid classification. Zootaxa 2023; 5303:1-184. [PMID: 37518540 DOI: 10.11646/zootaxa.5303.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Beginning about 80 years ago, the recognition of morphological varieties of mosquitoes was gradually replaced by the recognition of subspecies. As an examination of revisionary and detailed taxonomic studies of mosquitoes clearly shows, subspecies are untenable concepts which have been synonymized with nominotypical forms or recognized as distinct species. Thus, from our perspective, subspecies is not a functional or practical taxonomic rank. Consequently, in this study we critically assessed the taxonomic status of the 120 nominal taxa distinguished as subspecies before now to determine whether they should be recognized as separate species or synonymous names. As a result, 96 subspecies are formally elevated to specific rank, 22 are relegated to synonymy with nominotypical forms, one is considered a nomen dubium, one a species inquirenda and the names of four nominal species regarded as synonyms are revalidated. The subspecies and their new status are listed in a conspectus. The revalidated species include Anopheles argentinus (Brèthes, 1912), from synonymy with An. pseudopunctipennis Theobald, 1901c; An. peruvianus Tamayo, 1907, from synonymy with An. pseudopunctipennis as nomen dubium; Culex major Edwards, 1935, from synonymy with Cx. annulioris consimilis Newstead, 1907; and Trichoprosopon trichorryes (Dyar & Knab, 1907), from synonymy with Tr. compressum Lutz, 1905. Additionally, the type locality of Anopheles sergentii Theobald, 1907 is restricted to El Outaya, Biskra Province, Algeria. A complete list of species to be retained, added to or removed from the Encyclopedia of Life, with a few corrections, is provided.
Collapse
Affiliation(s)
- Ralph E Harbach
- Department of Science; Natural History Museum; Cromwell Road; London SW7 5BD; UK.
| | - Richard C Wilkerson
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; Washington DC 20013; USA; Walter Reed Biosystematics Unit; Museum Support Center; Smithsonian Institution; Suitland; MD 20746; USA; One Health Branch; Walter Reed Army Institute of Research; Silver Spring; MD 20910; USA.
| |
Collapse
|
3
|
Lee IH, Duvall LB. Maternally Instigated Diapause in Aedes albopictus: Coordinating Experience and Internal State for Survival in Variable Environments. Front Behav Neurosci 2022; 16:778264. [PMID: 35548691 PMCID: PMC9082357 DOI: 10.3389/fnbeh.2022.778264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is one of the most dangerous invasive species in the world. Females bite mammalian hosts, including humans, to obtain blood for egg development. The ancestral range of Ae. albopictus likely spanned from India to Japan and this species has since invaded a substantial portion of the globe. Ae. albopictus can be broadly categorized into temperate and tropical populations. One key to their ability to invade diverse ecological spaces is the capacity of females to detect seasonal changes and produce stress-resistant eggs that survive harsh winters. Females living in temperate regions respond to cues that predict the onset of unfavorable environmental conditions by producing eggs that enter maternally instigated embryonic diapause, a developmentally arrested state, which allows species survival by protecting the embryos until favorable conditions return. To appropriately produce diapause eggs, the female must integrate environmental cues and internal physiological state (blood feeding and reproductive status) to allocate nutrients and regulate reproduction. There is variation in reproductive responses to environmental cues between interfertile tropical and temperate populations depending on whether females are actively producing diapause vs. non-diapause eggs and whether they originate from populations that are capable of diapause. Although diapause-inducing environmental cues and diapause eggs have been extensively characterized, little is known about how the female detects gradual environmental changes and coordinates her reproductive status with seasonal dynamics to lay diapause eggs in order to maximize offspring survival. Previous studies suggest that the circadian system is involved in detecting daylength as a critical cue. However, it is unknown which clock network components are important, how these connect to reproductive physiology, and how they may differ between behavioral states or across populations with variable diapause competence. In this review, we showcase Ae. albopictus as an emerging species for neurogenetics to study how the nervous system combines environmental conditions and internal state to optimize reproductive behavior. We review environmental cues for diapause induction, downstream pathways that control female metabolic changes and reproductive capacity, as well as diapause heterogeneity between populations with different evolutionary histories. We highlight genetic tools that can be implemented in Ae. albopictus to identify signaling molecules and cellular circuits that control diapause. The tools and discoveries made in this species could translate to a broader understanding of how environmental cues are interpreted to alter reproductive physiology in other species and how populations with similar genetic and circuit organizations diversify behavioral patterns. These approaches may yield new targets to interfere with mosquito reproductive capacity, which could be exploited to reduce mosquito populations and the burden of the pathogens they transmit.
Collapse
Affiliation(s)
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University in the City of New York, New York, NY, United States
| |
Collapse
|
4
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
5
|
Bernhardt JR, O'Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190454. [PMID: 33131443 PMCID: PMC7662201 DOI: 10.1098/rstb.2019.0454] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Variability in the environment defines the structure and dynamics of all living systems, from organisms to ecosystems. Species have evolved traits and strategies that allow them to detect, exploit and predict the changing environment. These traits allow organisms to maintain steady internal conditions required for physiological functioning through feedback mechanisms that allow internal conditions to remain at or near a set-point despite a fluctuating environment. In addition to feedback, many organisms have evolved feedforward processes, which allow them to adjust in anticipation of an expected future state of the environment. Here we provide a framework describing how feedback and feedforward mechanisms operating within organisms can generate effects across scales of organization, and how they allow living systems to persist in fluctuating environments. Daily, seasonal and multi-year cycles provide cues that organisms use to anticipate changes in physiologically relevant environmental conditions. Using feedforward mechanisms, organisms can exploit correlations in environmental variables to prepare for anticipated future changes. Strategies to obtain, store and act on information about the conditional nature of future events are advantageous and are evidenced in widespread phenotypes such as circadian clocks, social behaviour, diapause and migrations. Humans are altering the ways in which the environment fluctuates, causing correlations between environmental variables to become decoupled, decreasing the reliability of cues. Human-induced environmental change is also altering sensory environments and the ability of organisms to detect cues. Recognizing that living systems combine feedback and feedforward processes is essential to understanding their responses to current and future regimes of environmental fluctuations. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Joey R Bernhardt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, Canada V6T 1Z4
| | - Jennifer M Sunday
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| |
Collapse
|
6
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
7
|
Hale RE, Powell E, Beikmohamadi L, Alexander ML. Effects of arthropod inquilines on growth and reproductive effort among metacommunities of the purple pitcher plant (Sarracenia purpurea var. montana). PLoS One 2020; 15:e0232835. [PMID: 32384101 PMCID: PMC7209241 DOI: 10.1371/journal.pone.0232835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
Many plant species harbor communities of symbionts that release nutrients used by their host plants. However, the importance of these nutrients to plant growth and reproductive effort is not well understood. Here, we evaluate the relationship between the communities that colonize pitcher plant phytotelmata and the pitcher plants’ vegetative growth and flower production to better understand the symbiotic role played by phytotelma communities. We focus on the mountain variety purple pitcher plant (Sarracenia purpurea var. montana), which occurs in small and isolated populations in Western North Carolina. We found that greater symbiont community diversity is associated with higher flower production the following season. We then examined geographic variation in communities and found that smaller plant populations supported less diverse symbiont communities. We relate our observations to patterns of community diversity predicted by community ecology theory.
Collapse
Affiliation(s)
- Rebecca E. Hale
- Biology Department, The University of North Carolina Asheville, One University Heights, Asheville, North Carolina, United States of America
- * E-mail:
| | - Elise Powell
- Biology Department, The University of North Carolina Asheville, One University Heights, Asheville, North Carolina, United States of America
| | - Leila Beikmohamadi
- Biology Department, The University of North Carolina Asheville, One University Heights, Asheville, North Carolina, United States of America
| | - Mara L. Alexander
- Asheville Ecological Services Office, United States Fish and Wildlife Service, Asheville, North Carolina, United States of America
| |
Collapse
|
8
|
Borah BK, Renthlei Z, Trivedi AK. Hypothalamus but not liver retains daily expression of clock genes during hibernation in terai tree frog (Polypedates teraiensis). Chronobiol Int 2020; 37:485-492. [DOI: 10.1080/07420528.2020.1726373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Ragland GJ, Armbruster PA, Meuti ME. Evolutionary and functional genetics of insect diapause: a call for greater integration. CURRENT OPINION IN INSECT SCIENCE 2019; 36:74-81. [PMID: 31539788 PMCID: PMC7212789 DOI: 10.1016/j.cois.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is highly genetically variable, and experiences strong natural selection. Forward genetic methods using various genomic and transcriptomic approaches have begun to characterize the genetic architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse genetic studies have identified functional roles for candidate genes that may or may not be genetically variable. We illustrate the disconnect between the evolutionary and physiological literature using a suite of studies of the role of the circadian clock in diapause regulation. These extensive studies in two different disciplines provide excellent opportunities for integration, which should facilitate rapid progress in understanding both the regulation and evolution of diapause.
Collapse
Affiliation(s)
- Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, 1151 Arapahoe St., SI 2071, Denver, CO 80204, USA.
| | - Peter A Armbruster
- Department of Biology, Georgetown University, Reiss Science Building, Room 406 37th and O Streets, NW Washington DC 20057, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 216 Kottman Hall 2021 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Reyes Corral WD, Aguirre WE. Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei: Characidae). PLoS One 2019; 14:e0219677. [PMID: 31356643 PMCID: PMC6663064 DOI: 10.1371/journal.pone.0219677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/29/2019] [Indexed: 11/22/2022] Open
Abstract
Environmental changes can modify the phenotypic characteristics of populations, which in turn can influence their evolutionary trajectories. In ectotherms like fishes, temperature is a particularly important environmental variable that is known to have significant impacts on the phenotype. Here, we raised specimens of the surface ecomorph of Astyanax mexicanus at temperatures of 20°C, 23°C, 25°C, and 28°C to examine how temperature influenced vertebral number and body shape. To increase biological realism, specimens were also subjected to two water turbulence regimes. Vertebral number was counted from x-rays and body shape variation was analysed using geometric morphometric methods. Temperature significantly impacted mean total vertebral number, which increased at the lowest and highest temperatures. Fish reared at lower temperatures had relatively more precaudal vertebrae while fish reared at higher temperatures had relatively more caudal vertebrae. Vertebral anomalies, especially vertebral fusions, were most frequent at the extreme temperature treatments. Temperature significantly impacted body shape as well, with fish reared at 20°C being particularly divergent. Water turbulence also impacted body shape in a generally predictable manner, with specimens reared in high turbulence environments being more streamlined and having extended dorsal and anal fin bases. Variation in environmental variables thus resulted in significant changes in morphological traits known to impact fish fitness, indicating that A. mexicanus has the capacity to exhibit a range of phenotypic plasticity when challenged by environmental change. Understanding the biochemical mechanisms underlying this plasticity and whether adaptive plasticity has influenced the evolutionary radiation of the Characidae, are major directions for future research.
Collapse
Affiliation(s)
| | - Windsor E. Aguirre
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Yamaguchi K, Goto SG. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly. J Biol Rhythms 2019; 34:293-306. [PMID: 30966851 DOI: 10.1177/0748730419841931] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many temperate insects enter diapause (dormancy) for overwintering in response to short days (long nights). A latitudinal cline in the critical day lengths for the photoperiodic induction of diapause has been reported in various insect species. However, the physiological mechanisms underlying this cline have remained elusive. We approached this issue in the flesh fly Sarcophaga similis, in which the photoperiodic time measurement system meets the "external coincidence model." In this model, measuring day lengths depends on whether the photoinducible phase (φi), determined by a circadian clock, is exposed to light or not. First, we detected a clear latitudinal cline in the critical day lengths of flies collected from 4 localities at different latitudes. The phase positions of the φi, which can be verified by night interruption photoperiods, also showed a clear latitudinal cline. This result supports the hypothesis that the latitudinal cline in the critical day length is produced by the difference in the phase positions of the φi among different strains. A sexual difference in the critical day length for photoperiodic induction has also been detected in various species. In this study, a sexual difference in the critical day length was observed in the southern strains but there was no sexual difference in the phase positions of the φi. This result indicates that both sexes measure photoperiods in the same manner. Males are less sensitive than females to the light pulse given at the φi, suggesting a quantitative difference in the photoperiodic time measurement and counter systems. This study clearly reveals that distinct mechanisms induce latitudinal and sexual differences in the critical day length for the photoperiodic induction of diapause in a fly.
Collapse
Affiliation(s)
- Koki Yamaguchi
- Graduate School of Science, Osaka City University, Japan
| | - Shin G Goto
- Graduate School of Science, Osaka City University, Japan
| |
Collapse
|
12
|
Meuti ME, Short SM. Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects. INSECTS 2019; 10:E74. [PMID: 30875967 PMCID: PMC6468485 DOI: 10.3390/insects10030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/02/2023]
Abstract
In addition to transferring sperm, male mosquitoes deliver several proteins, hormones and other factors to females in their seminal fluid that inhibit remating, alter host-seeking behaviors and stimulate oviposition. Recently, bioinformatics, transcriptomics and proteomics have been used to characterize the genes transcribed in male reproductive tissues and the individual proteins that are delivered to females. Thanks to these foundational studies, we now understand the complexity of the ejaculate in several mosquito species. Building on this work, researchers have begun to identify the functions of various proteins and hormones in the male ejaculate, and how they mediate their effects on female mosquitoes. Here, we present an overview of these studies, followed by a discussion of an under-studied aspect of male reproductive physiology: the effects of biotic and abiotic factors on the composition of the ejaculate. We argue that future research in this area would improve our understanding of male reproductive biology from a physiological and ecological perspective, and that researchers may be able to leverage this information to study key components of the ejaculate. Furthermore, this work has the potential to improve mosquito control by allowing us to account for relevant factors when implementing vector control strategies involving male reproductive biology.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| | - Sarah M Short
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Juliano SA, Yee DA, Alto BW, Reiskind MH. Papers From a Workshop on Mosquito Ecology and Evolution Inspired by the Career of L. Philip Lounibos. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:299-302. [PMID: 30668777 DOI: 10.1093/jme/tjy146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Donald A Yee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS
| | - Barry W Alto
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL
| | - Michael H Reiskind
- Department of Plant Pathology and Entomology, North Carolina State University, Raleigh, NC
| |
Collapse
|
14
|
Kauranen H, Kinnunen J, Hiillos AL, Lankinen P, Hopkins D, Wiberg RAW, Ritchie MG, Hoikkala A. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. J Exp Biol 2019; 222:jeb.205831. [DOI: 10.1242/jeb.205831] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022]
Abstract
The incidence of reproductive diapause is a critical aspect of life history in overwintering insects from temperate regions. Much has been learned about the timing, physiology and genetics of diapause in a range of insects, but how the multiple changes involved in this and other photoperiodically regulated traits are interrelated is not well understood. We performed quasinatural selection on reproduction under short photoperiods in a northern fly species, Drosophila montana, to trace the effects of photoperiodic selection on traits regulated by the photoperiodic timer and / or by a circadian clock system. Selection changed several traits associated with reproductive diapause, including the critical day length for diapause (CDL), the frequency of diapausing females under photoperiods that deviate from daily 24 h cycles and cold tolerance, towards the phenotypes typical of lower latitudes. However, selection had no effect on the period of free-running locomotor activity rhythm regulated by the circadian clock in fly brain. At a genomic level, selection induced extensive divergence between the selection and control line replicates in 16 gene clusters involved in signal transduction, membrane properties, immunologlobulins and development. These changes resembled ones detected between latitudinally divergent D. montana populations in the wild and involved SNP divergence associated with several genes linked with diapause induction. Overall, our study shows that photoperiodic selection for reproduction under short photoperiods affects diapause-associated traits without disrupting the central clock network generating circadian rhythms in fly locomor activity.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Kinnunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anna-Lotta Hiillos
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Lankinen
- Department of Biology, University of Oulu, Oulu, Finland
| | - David Hopkins
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R. Axel W. Wiberg
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Michael G. Ritchie
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
Chen WJ. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed J 2018; 41:283-289. [PMID: 30580791 PMCID: PMC6306330 DOI: 10.1016/j.bj.2018.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Dengue fever is an important mosquito-borne viral infectious disease that mostly occurs in tropical and subtropical areas of the world. According to epidemiological data from the Center for Disease Control of Taiwan, more than 98.62% of outbreaks of indigenous total dengue cases were reported in the southern part of Taiwan. Southern Taiwan is an aggregate area encompassing Tainan, Kaohsiung, and Pingtung, all of which are located below the Tropic of Cancer (23º35'N). With a few exceptions, dengue outbreaks mainly occur in southern Taiwan which is highly associated or overlaps with the prevalence of Aedes aegypti. A.aegypti is presumed to be absent from the northern part of Taiwan, while Aedes albopictus breeds in areas throughout the island. According a collection of 20 years of epidemiological data from Taiwan, the inability of A. aegypti to survive the winter weather in northern Taiwan may account for its restricted geographical distribution and that of dengue outbreaks it transmits. A.aegypti, unlike temperate strains of A. albopictus, lacks embryonic diapause signaled by a short photoperiod which thus reduces its cold-hardiness. Therefore it is intolerant of low temperatures that frequently accompany rains and unable to survive during winter in the northern part of Taiwan.
Collapse
Affiliation(s)
- Wei-June Chen
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Field JM, Bonsall MB. The evolution of sleep is inevitable in a periodic world. PLoS One 2018; 13:e0201615. [PMID: 30080877 PMCID: PMC6078299 DOI: 10.1371/journal.pone.0201615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022] Open
Abstract
There are two contrasting explanations of sleep: as a proximate, essential physiological function or as a behavioral, adaptive state of inactivity and these hypotheses remain widely debated. To investigate the adaptive significance of sleep, we develop an evolutionary argument formulated as a tractable partial differential equation model. We allow demographic parameters such as birth and mortality rates to vary through time in both safe and vulnerable sleeping environments. From this model we analytically calculate population growth rate (fitness) for sleeping and non-sleeping strategies. We find that, in a temporally heterogeneous environment, sleep behavior always achieves a higher fitness than non-sleeping behavior. As organisms do not exist in constant environments, we conclude that the evolution of sleep is inevitable. Further, we suggest that the two contrasting theories need not be mutually exclusive.
Collapse
Affiliation(s)
- Jared M. Field
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Williams CM, Ragland GJ, Betini G, Buckley LB, Cheviron ZA, Donohue K, Hereford J, Humphries MM, Lisovski S, Marshall KE, Schmidt PS, Sheldon KS, Varpe Ø, Visser ME. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium. Integr Comp Biol 2018; 57:921-933. [PMID: 29045649 DOI: 10.1093/icb/icx122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building, Berkeley, CA 94705, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, CO, USA
| | - Gustavo Betini
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | | - Joe Hereford
- Department of Ecology and Evolution, University of California, Davis, CA, USA
| | - Murray M Humphries
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Simeon Lisovski
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | | | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Øystein Varpe
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway.,Akvaplan-niva, Fram Centre, Tromsø, Norway
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
18
|
Abstract
The evolutionary transformation from a blood-feeding to an obligate nonbiting lifestyle is occurring uniquely within the genetic background of a single species of mosquito, Wyeomyia smithii, as a product of selection in nature. Associated genetic changes in metabolic pathways indicate a high anticipatory metabolic investment prior to consuming blood, presumably balanced by the reproductive benefits from an imminent blood meal. This evolutionary transformation provides a starting point for determining pivotal upstream genetic changes between biters and nonbiters and for identifying universal nonbiting genes or pathways in mosquitoes. If there is no bite, there is no transmission of pathogens; hence W. smithii offers a different approach to investigate control of blood-feeding vectors of human diseases. The spread of blood-borne pathogens by mosquitoes relies on their taking a blood meal; if there is no bite, there is no disease transmission. Although many species of mosquitoes never take a blood meal, identifying genes that distinguish blood feeding from obligate nonbiting is hampered by the fact that these different lifestyles occur in separate, genetically incompatible species. There is, however, one unique extant species with populations that share a common genetic background but blood feed in one region and are obligate nonbiters in the rest of their range: Wyeomyia smithii. Contemporary blood-feeding and obligate nonbiting populations represent end points of divergence between fully interfertile southern and northern populations. This divergence has undoubtedly resulted in genetic changes that are unrelated to blood feeding, and the challenge is to winnow out the unrelated genetic factors to identify those related specifically to the evolutionary transition from blood feeding to obligate nonbiting. Herein, we determine differential gene expression resulting from directional selection on blood feeding within a polymorphic population to isolate genetic differences between blood feeding and obligate nonbiting. We show that the evolution of nonbiting has resulted in a greatly reduced metabolic investment compared with biting populations, a greater reliance on opportunistic metabolic pathways, and greater reliance on visual rather than olfactory sensory input. W. smithii provides a unique starting point to determine if there are universal nonbiting genes in mosquitoes that could be manipulated as a means to control vector-borne disease.
Collapse
|
19
|
Mogi M, Armbruster PA, Tuno N, Aranda C, Yong HS. The Climate Range Expansion of Aedes albopictus (Diptera: Culicidae) in Asia Inferred From the Distribution of Albopictus Subgroup Species of Aedes (Stegomyia). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1615-1625. [PMID: 28968769 DOI: 10.1093/jme/tjx156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research.
Collapse
Affiliation(s)
- M Mogi
- Division of Parasitology, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, 849-8501, Japan
| | - P A Armbruster
- Department of Biology, Georgetown University, 37th and O sts. NW, Washington, DC 20057
| | - N Tuno
- Laboratory of Ecology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - C Aranda
- Mosquito Control Service, Baix Llobregat Council, Barcelona, Spain
| | - H S Yong
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Bradshaw WE, Holzapfel CM. Natural Variation and Genetics of Photoperiodism in Wyeomyia smithii. ADVANCES IN GENETICS 2017; 99:39-71. [PMID: 29050554 DOI: 10.1016/bs.adgen.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seasonal change in the temperate and polar regions of Earth determines how the world looks around us and, in fact, how we live our day-to-day lives. For biological organisms, seasonal change typically involves complex physiological and metabolic reorganization, the majority of which is regulated by photoperiodism. Photoperiodism is the ability of animals and plants to use day length or night length, resulting in life-historical transformations, including seasonal development, migration, reproduction, and dormancy. Seasonal timing determines not only survival and reproductive success but also the structure and organization of complex communities and, ultimately, the biomes of Earth. Herein, a small mosquito, Wyeomyia smithii, that lives only in the water-filled leaves of a carnivorous plant over a wide geographic range, is used to explore the genetic and evolutionary basis of photoperiodism. Photoperiodism in W. smithii is considered in the context of its historical biogeography in nature to examine the startling finding that recent rapid climate change can drive genetic change in plants and animals at break-neck speed, and to challenge the ponderous 80+ year search for connections between daily and seasonal time-keeping mechanisms. Finally, a model is proposed that reconciles the seemingly disparate 24-h daily clock driven by the invariant rotation of Earth about its axis with the evolutionarily flexible seasonal timer orchestrated by variable seasonality driven by the rotation of Earth about the Sun.
Collapse
Affiliation(s)
- William E Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States.
| | | |
Collapse
|
21
|
Dupuy MM, Powell JA, Ramirez RA. Developing a Degree-Day Model to Predict Billbug (Coleoptera: Curculionidae) Seasonal Activity in Utah and Idaho Turfgrass. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2180-2189. [PMID: 28962029 DOI: 10.1093/jee/tox210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Billbugs are native pests of turfgrass throughout North America, primarily managed with preventive, calendar-based insecticide applications. An existing degree-day model (lower development threshold of 10°C, biofix 1 March) developed in the eastern United States for bluegrass billbug, Sphenophorus parvulus (Gyllenhal; Coleoptera: Curculionidae), may not accurately predict adult billbug activity in the western United States, where billbugs occur as a species complex. The objectives of this study were 1) to track billbug phenology and species composition in managed Utah and Idaho turfgrass and 2) to evaluate model parameters that best predict billbug activity, including those of the existing bluegrass billbug model. Tracking billbugs with linear pitfall traps at two sites each in Utah and Idaho, we confirmed a complex of three univoltine species damaging turfgrass consisting of (in descending order of abundance) bluegrass billbug, hunting billbug (Sphenophorus venatus vestitus Chittenden; Coleoptera: Curculionidae), and Rocky Mountain billbug (Sphenophorus cicatristriatus Fabraeus; Coleoptera: Curculionidae). This complex was active from February through mid-October, with peak activity in mid-June. Based on linear regression analysis, we found that the existing bluegrass billbug model was not robust in predicting billbug activity in Utah and Idaho. Instead, the model that best predicts adult activity of the billbug complex accumulates degree-days above 3°C after 13 January. This model predicts adult activity levels important for management within 11 d of observed activity at 77% of sites. In conjunction with outreach and cooperative networking, this predictive degree-day model may assist end users to better time monitoring efforts and insecticide applications against billbug pests in Utah and Idaho by predicting adult activity.
Collapse
Affiliation(s)
- Madeleine M Dupuy
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| | - James A Powell
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
- Department of Mathematics, Utah State University, 3900 Old Main Hill, Logan, UT 84322
| | - Ricardo A Ramirez
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322
| |
Collapse
|
22
|
Diniz DFA, de Albuquerque CMR, Oliva LO, de Melo-Santos MAV, Ayres CFJ. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit Vectors 2017. [PMID: 28651558 PMCID: PMC5485599 DOI: 10.1186/s13071-017-2235-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mosquitoes are insects belonging to the order Diptera and family Culicidae. They are distributed worldwide and include approximately 3500 species, of which about 300 have medical and veterinary importance. The evolutionary success of mosquitoes, in both tropical and temperate regions, is due to the various survival strategies these insects have developed throughout their life histories. Of the many adaptive mechanisms, diapause and quiescence, two different types of dormancy, likely contribute to the establishment, maintenance and spread of natural mosquito populations. This review seeks to objectively and coherently describe the terms diapause and quiescence, which can be confused in the literature because the phenotypic effects of these mechanisms are often similar.
Collapse
Affiliation(s)
- Diego Felipe Araujo Diniz
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, Brazil
| | | | - Luciana Oliveira Oliva
- Zoology Department, Federal University of Pernambuco, Av. Professor Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Brazil
| | - Maria Alice Varjal de Melo-Santos
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, Brazil
| | - Constância Flávia Junqueira Ayres
- Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, Brazil.
| |
Collapse
|
23
|
Dingle H, Alden BM, Blakley NR, Kopec D, Miller ER. VARIATION IN PHOTOPERIODIC RESPONSE WITHIN AND AMONG SPECIES OF MILKWEED BUGS (
ONCOPELTUS
). Evolution 2017; 34:356-370. [DOI: 10.1111/j.1558-5646.1980.tb04824.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/1979] [Revised: 10/10/1979] [Indexed: 11/30/2022]
Affiliation(s)
- Hugh Dingle
- Program in Evolutionary Ecology and Behavior, Department of Zoology University of Iowa Iowa City Iowa 52242
| | - Beth M. Alden
- Program in Evolutionary Ecology and Behavior, Department of Zoology University of Iowa Iowa City Iowa 52242
| | - Nigel R. Blakley
- Program in Evolutionary Ecology and Behavior, Department of Zoology University of Iowa Iowa City Iowa 52242
| | - Dianne Kopec
- Program in Evolutionary Ecology and Behavior, Department of Zoology University of Iowa Iowa City Iowa 52242
| | - Elizabeth Ruth Miller
- Program in Evolutionary Ecology and Behavior, Department of Zoology University of Iowa Iowa City Iowa 52242
| |
Collapse
|
24
|
Harrison RG. BARRIERS TO GENE EXCHANGE BETWEEN CLOSELY RELATED CRICKET SPECIES. II. LIFE CYCLE VARIATION AND TEMPORAL ISOLATION. Evolution 2017; 39:244-259. [DOI: 10.1111/j.1558-5646.1985.tb05664.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1983] [Accepted: 10/30/1984] [Indexed: 11/30/2022]
|
25
|
Bradshaw WE, Holzapfel CM. GENETIC CONSTRAINTS TO LIFE‐HISTORY EVOLUTION IN THE PITCHER‐PLANT MOSQUITO,
WYEOMYIA SMITHII. Evolution 2017; 50:1176-1181. [DOI: 10.1111/j.1558-5646.1996.tb02358.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/1995] [Accepted: 06/19/1995] [Indexed: 11/25/2022]
|
26
|
Armbruster P, Bradshaw WE, Holzapfel CM. EVOLUTION OF THE GENETIC ARCHITECTURE UNDERLYING FITNESS IN THE PITCHER‐PLANT MOSQUITO,
WYEOMYIA SMITHII. Evolution 2017; 51:451-458. [DOI: 10.1111/j.1558-5646.1997.tb02432.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1996] [Accepted: 11/01/1996] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Armbruster
- Department of Biology University of Oregon Eugene Oregon 97403‐1210
| | | | | |
Collapse
|
27
|
Peterson MA. PHENOLOGICAL ISOLATION, GENE FLOW AND DEVELOPMENTAL DIFFERENCES AMONG LOW‐ AND HIGH‐ELEVATION POPULATIONS OF
EUPHILOTES ENOPTES
(LEPIDOPTERA: LYCAENIDAE). Evolution 2017; 49:446-455. [DOI: 10.1111/j.1558-5646.1995.tb02277.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1993] [Accepted: 05/15/1994] [Indexed: 11/28/2022]
|
28
|
Armbruster P, Bradshaw WE, Holzapfel CM. EFFECTS OF POSTGLACIAL RANGE EXPANSION ON ALLOZYME AND QUANTITATIVE GENETIC VARIATION OF THE PITCHER-PLANT MOSQUITO, WYEOMYIA SMITHII. Evolution 2017; 52:1697-1704. [PMID: 28565309 DOI: 10.1111/j.1558-5646.1998.tb02249.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1997] [Accepted: 06/25/1998] [Indexed: 11/29/2022]
Abstract
We determined allozyme variability of 34 populations of the pitcher-plant mosquito, Wyeomyia smithii, from Florida (30°N) to northern Manitoba (54°N) and compared allozyme variability with the additive genetic variance for preadult development time and photoperiodic response determined previously for six populations over a similar range (30-50°N). Phylogenetic analysis of allozymes shows a well-defined split between Gulf Coast and lowland North Carolina populations, similar to previously observed phylogeographic patterns in a wide variety of taxa. A deeper split in the phylogeny of W. smithii coincides with the location of the maximum extent of the Laurentide Ice Sheet. Furthermore, both average heterozygosity and patterns of isolation-by-distance decline in populations north of the former glacial border. It is likely that northern populations are the result of a range expansion that occurred subsequent to the late-Wisconsin retreat of the Laurentide Ice Sheet and that these populations have not yet reached a drift-migration equilibrium. The northern decline in allozyme heterozygosity contrasts sharply with the northern increase in additive genetic variance of development time and photoperiodic response found in previous studies. These previous studies also showed that the genetic divergence of populations has involved stochastic variation in the contribution of dominance and epistasis to the genetic architecture underlying demographic traits, including preadult development time, and photoperiodic response. When taken together, the present and prior studies identify the genetic processes underlying the lack of concordance between geographic patterns of allozyme and quantitative genetic variation in natural populations of W. smithii. In the presence of nonadditive genetic variation, isolation and drift can result in opposite patterns of genetic variation for structural genes and quantitative traits.
Collapse
Affiliation(s)
- Peter Armbruster
- Department of Biology, University of Oregon, Eugene, Oregon, 97402-1210
| | | | | |
Collapse
|
29
|
Bradshaw WE. VARIABLE ITEROPARITY AS A LIFE-HISTORY TACTIC IN THE PITCHER-PLANT MOSQUITO WYEOMYIA SMITHII. Evolution 2017; 40:471-478. [PMID: 28556338 DOI: 10.1111/j.1558-5646.1986.tb00500.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/1985] [Accepted: 12/10/1985] [Indexed: 11/28/2022]
Abstract
Larval density, but not geographic origin (Florida to Ontario), affected female fecundity among 12 populations of W. smithii, regardless of whether or not they had opportunity to take blood meals. Neither the degree of iteroparity nor male longevity varied with density or geographic region of origin, but longevity was greater among southern, potentially blood-feeding females, than among northern, nonbiting females. Among the southern females, iteroparity, but not fecundity, increased with opportunity to take blood meals. Specifically, there was no increase in fecundity among females whose larvae were nutritionally deprived relative to females whose larvae were well fed. I interpret the retention of hematophagy and facultatively augmented iteroparity in W. smithii as a means for females developing under predictably impoverished but irregularly opportunistic conditions to reallocate and temporally diversify their reproductive effort.
Collapse
|
30
|
Mathias D, Reed LK, Bradshaw WE, Holzapfel CM. Evolutionary Divergence of Circadian and Photoperiodic Phenotypes in the Pitcher-Plant Mosquito, Wyeomyia smithii. J Biol Rhythms 2016; 21:132-9. [PMID: 16603677 DOI: 10.1177/0748730406286320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For decades, chronobiologists have investigated the relationship between the circadian clock that mediates daily activities and the photoperiodic timer that mediates seasonal activities. The main experiment used to infer a circadian basis for photoperiodic time measurement is the Nanda-Hamner protocol (NH). Herein, the authors compare additive and nonadditive (dominance and epistasis) genetic effects that lead to the divergence of populations of the pitcher-plant mosquito, Wyeomyia smithii, for critical photoperiod (CPP) and amplitude of the rhythmic response to NH for 3 temporal-geographic scales: 1) Over geological time between populations in northern and southern clades, 2) over millennial time between populations within the northern clade, and 3) over generational time between lines selected for long and short CPP from within a single population. The authors show that the pattern of additive, dominance, and epistatic effects depends on the time scale over which populations or lines have diverged. Patterns for genetic differences between populations for CPP and response to NH reveal similarities over geological and millennial time scales but differences over shorter periods of evolution. These results, and the observation that neither the period nor amplitude of the NH rhythm are significantly correlated with CPP among populations, lead the authors to conclude that the rhythmic response to NH has evolved independently of photoperiodic response in populations of W. smithii. The implication is that in this species, genetic modification of the circadian clock has not been the basis for the adaptive modification of photoperiodic time measurement over the climatic gradient of North America.
Collapse
Affiliation(s)
- Derrick Mathias
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | |
Collapse
|
31
|
Kang DS, Cotten MA, Denlinger DL, Sim C. Comparative Transcriptomics Reveals Key Gene Expression Differences between Diapausing and Non-Diapausing Adults of Culex pipiens. PLoS One 2016; 11:e0154892. [PMID: 27128578 PMCID: PMC4851316 DOI: 10.1371/journal.pone.0154892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/20/2016] [Indexed: 02/01/2023] Open
Abstract
Diapause is a critical eco-physiological adaptation for winter survival in the West Nile Virus vector, Culex pipiens, but little is known about the molecular mechanisms that distinguish diapause from non-diapause in this important mosquito species. We used Illumina RNA-seq to simultaneously identify and quantify relative transcript levels in diapausing and non-diapausing adult females. Among 65,623,095 read pairs, we identified 41 genes with significantly different transcript abundances between these two groups. Transcriptome divergences between these two phenotypes include genes related to juvenile hormone synthesis, anaerobic metabolism, innate immunity and cold tolerance.
Collapse
Affiliation(s)
- David S. Kang
- Department of Biology, Baylor University, Waco, TX, 76798, United States of America
| | - Michael A. Cotten
- Department of Biology, Baylor University, Waco, TX, 76798, United States of America
| | - David L. Denlinger
- Department of Evolution, Ecology, and Organismal Biology and Department of Entomology, Ohio State University, 318 West 12th Avenue, Columbus, OH, 43210, United States of America
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX, 76798, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bergland AO, Tobler R, González J, Schmidt P, Petrov D. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Mol Ecol 2016; 25:1157-74. [PMID: 26547394 DOI: 10.1111/mec.13455] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome-wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome-wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well-studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.
Collapse
Affiliation(s)
- Alan O Bergland
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA
| | - Ray Tobler
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA.,Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Josefa González
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA.,Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37-49, 0800, 3 Barcelona, Spain
| | - Paul Schmidt
- Department of Biology, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA
| |
Collapse
|
33
|
Tormey D, Colbourne JK, Mockaitis K, Choi JH, Lopez J, Burkhart J, Bradshaw W, Holzapfel C. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii. BMC Genomics 2015; 16:754. [PMID: 26444857 PMCID: PMC4594641 DOI: 10.1186/s12864-015-1937-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/19/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. METHODS We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. RESULTS Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. DISCUSSION The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. CONCLUSIONS The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.
Collapse
Affiliation(s)
- Duncan Tormey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.,Stowers Institute for Medical Research, Kansas City, MO, USA
| | - John K Colbourne
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,School of Biosciences, University of Birmingham, Birmingham, UK
| | - Keithanne Mockaitis
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,Pervasive Technology Institute, Indiana University, Bloomington, IN, USA
| | - Jeong-Hyeon Choi
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jacqueline Lopez
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,Department of Biological Sciences, Notre Dame University, Notre Dame, IN, USA
| | - Joshua Burkhart
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.,Burke E. Porter Machinery, Grand Rapids, MI, USA
| | - William Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| | | |
Collapse
|
34
|
Ecophysiology of Anopheles gambiae s.l.: persistence in the Sahel. INFECTION GENETICS AND EVOLUTION 2014; 28:648-61. [PMID: 24933461 DOI: 10.1016/j.meegid.2014.05.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the Sahel. In the process, we point out critical gaps in our knowledge that future studies can fill. We find compelling evidence that members of the An. gambiae s.l. complex undergo a form of aestivation during the Sahelian dry season by shifting energetic resources away from reproduction and towards increased longevity. Considering the differences between winter at temperate latitudes, which entails immobility of the insect and hence reliance on physiological solutions, as opposed to the Sahelian dry season, which restricts reproduction exclusively, we propose that behavioral changes play an important role in complementing physiological changes in this strategy.
Collapse
|
35
|
Merz C, Catchen JM, Hanson-Smith V, Emerson KJ, Bradshaw WE, Holzapfel CM. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America. PLoS One 2013; 8:e72262. [PMID: 24039746 PMCID: PMC3765167 DOI: 10.1371/journal.pone.0072262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/12/2013] [Indexed: 11/28/2022] Open
Abstract
Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.
Collapse
Affiliation(s)
- Clayton Merz
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Victor Hanson-Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Kevin J. Emerson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - William E. Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (WB); (CH)
| | - Christina M. Holzapfel
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (WB); (CH)
| |
Collapse
|
36
|
Meuti ME, Denlinger DL. Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr Comp Biol 2013; 53:131-43. [PMID: 23615363 DOI: 10.1093/icb/ict023] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we explore links between circadian clocks and the clock involved in photoperiodic regulation of diapause in insects. Classical resonance (Nanda-Hamner) and night interruption (Bünsow) experiments suggest a circadian basis for the diapause response in nearly all insects that have been studied. Neuroanatomical studies reveal physical connections between circadian clock cells and centers controlling the photoperiodic diapause response, and both mutations and knockdown of clock genes with RNA interference (RNAi) point to a connection between the clock genes and photoperiodic induction of diapause. We discuss the challenges of determining whether the clock, as a functioning module, or individual clock genes acting pleiotropically are responsible for the photoperiodic regulation of diapause, and how a stable, central circadian clock could be linked to plastic photoperiodic responses without compromising the clock's essential functions. Although we still lack an understanding of the exact mechanisms whereby insects measure day/night length, continued classical and neuroanatomical approaches, as well as forward and reverse genetic experiments, are highly complementary and should enable us to decipher the diverse ways in which circadian clocks have been involved in the evolution of photoperiodic induction of diapause in insects. The components of circadian clocks vary among insect species, and diapause appears to have evolved independently numerous times, thus, we anticipate that not all photoperiodic clocks of insects will interact with circadian clocks in the same fashion.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
37
|
Paolucci S, van de Zande L, Beukeboom LW. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J Evol Biol 2013; 26:705-18. [PMID: 23496837 DOI: 10.1111/jeb.12113] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/14/2012] [Indexed: 11/28/2022]
Abstract
Living in seasonally changing environments requires adaptation to seasonal cycles. Many insects use the change in day length as a reliable cue for upcoming winter and respond to shortened photoperiod through diapause. In this study, we report the clinal variation in photoperiodic diapause induction in populations of the parasitoid wasp Nasonia vitripennis collected along a latitudinal gradient in Europe. In this species, diapause occurs in the larval stage and is maternally induced. Adult Nasonia females were exposed to different photoperiodic cycles and lifetime production of diapausing offspring was scored. Females switched to the production of diapausing offspring after exposure to a threshold number of photoperiodic cycles. A latitudinal cline was found in the proportion of diapausing offspring, the switch point for diapause induction measured as the maternal age at which the female starts to produce diapausing larvae, and the critical photoperiod for diapause induction. Populations at northern latitudes show an earlier switch point, higher proportions of diapausing individuals and longer critical photoperiods. Since the photoperiodic response was measured under the same laboratory conditions, the observed differences between populations most likely reflect genetic differences in sensitivity to photoperiodic cues, resulting from local adaptation to environmental cycles. The observed variability in diapause response combined with the availability of genomic tools for N. vitripennis represent a good opportunity to further investigate the genetic basis of this adaptive trait.
Collapse
Affiliation(s)
- S Paolucci
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
38
|
Bradshaw WE, Emerson KJ, Catchen JM, Cresko WA, Holzapfel CM. Footprints in time: comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii. Proc Biol Sci 2012; 279:4551-8. [PMID: 23015622 DOI: 10.1098/rspb.2012.1917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Identifying regions of the genome contributing to phenotypic evolution often involves genetic mapping of quantitative traits. The focus then turns to identifying regions of 'major' effect, overlooking the observation that traits of ecological or evolutionary relevance usually involve many genes whose individual effects are small but whose cumulative effect is large. Herein, we use the power of fully interfertile natural populations of a single species of mosquito to develop three quantitative trait loci (QTL) maps: one between two post-glacially diverged populations and two between a more ancient and a post-glacial population. All demonstrate that photoperiodic response is genetically a highly complex trait. Furthermore, we show that marker regressions identify apparently 'non-significant' regions of the genome not identified by composite interval mapping, that the perception of the genetic basis of adaptive evolution is crucially dependent upon genetic background and that the genetic basis for adaptive evolution of photoperiodic response is highly variable within contemporary populations as well as between anciently diverged populations.
Collapse
Affiliation(s)
- William E Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | | | |
Collapse
|
39
|
Szűcs M, Eigenbrode SD, Schwarzländer M, Schaffner U. Hybrid vigor in the biological control agent, Longitarsus jacobaeae. Evol Appl 2012; 5:489-97. [PMID: 22949924 PMCID: PMC3407867 DOI: 10.1111/j.1752-4571.2012.00268.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022] Open
Abstract
Hybridization is an important evolutionary mechanism that can increase the fitness and adaptive potential of populations. A growing body of evidence supports its importance as a key factor contributing to rapid evolution in invasive species, but the effects of hybridization have rarely been assessed in intentionally introduced biological control agents. We investigated hybrids between a Swiss and an Italian population of the beetle, Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, by reciprocally crossing individuals in the laboratory. Phenological traits of F1 and F2 hybrid lineages showed intermediate values relative to their parental populations, with some maternal influence. Fitness of the F2 generation, measured as lifetime fecundity, was higher than that of the Italian parent in one of the lineages and higher than that of either parent in the other hybrid lineage. The increased fecundity of hybrids may benefit tansy ragwort biological control by increasing the establishment success and facilitating a more rapid population buildup in the early generations. Even though the long-term consequences of hybridization in this and other systems are hard to predict, intentional hybridization may be a useful tool in biological control strategies as it would promote similar microevolutionary processes operating in numerous targeted invasive species.
Collapse
Affiliation(s)
- Marianna Szűcs
- Department of Plant, Soil, and Entomological Sciences, University of IdahoMoscow, ID, USA
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
- *Correspondence Marianna Szűcs, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA. Tel.: 1-970-491-6945; fax: 1-970-491-3862; e-mail:
| | - Sanford D Eigenbrode
- Department of Plant, Soil, and Entomological Sciences, University of IdahoMoscow, ID, USA
| | - Mark Schwarzländer
- Department of Plant, Soil, and Entomological Sciences, University of IdahoMoscow, ID, USA
| | | |
Collapse
|
40
|
Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA. Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol 2011; 214:3948-59. [DOI: 10.1242/jeb.061085] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The timing of dormancy is a rapidly evolving life-history trait playing a crucial role in the synchronization of seasonal life cycles and adaptation to environmental change. But the physiological mechanisms regulating dormancy in animals remain poorly understood. In insects, dormancy (diapause) is a developmentally dynamic state, and the mechanisms that control diapause transitions affect seasonal timing. Here we used microarrays to examine patterns of gene expression during dormancy termination: a crucial life-history transition in the apple maggot fly Rhagoletis pomonella (Walsh). This species is a model system for host race formation and ecological speciation via changes in diapause regulation of seasonality. Our goal was to pinpoint the timing of the transition from diapause to post-diapause development and to identify candidate genes and pathways for regulation of diapause termination. Samples were taken at six metabolically defined developmental landmarks, and time-series analysis suggests that release from metabolic depression coincides with preparation for or resumption of active cell cycling and morphogenesis, defining the ‘end’ of diapause. However, marked changes in expression, including members of pathways such as Wnt and TOR signaling, also occur prior to the metabolic rate increase, electing these pathways as candidates for early regulation of diapause termination. We discuss these results with respect to generalities in insect diapause physiology and to our long-term goal of identifying mechanisms of diapause adaptation in the Rhagoletis system.
Collapse
Affiliation(s)
- Gregory J. Ragland
- Department of Entomology and Nematology, University of Florida, FL 32611, USA
| | - Scott P. Egan
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, IN 46556, USA
| | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
| | | | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, FL 32611, USA
| |
Collapse
|
41
|
Bradshaw WE, Emerson KJ, Holzapfel CM. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity (Edinb) 2011; 108:473-9. [PMID: 22072069 DOI: 10.1038/hdy.2011.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda-Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection.
Collapse
Affiliation(s)
- W E Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | |
Collapse
|
42
|
Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci U S A 2010; 107:16196-200. [PMID: 20798348 DOI: 10.1073/pnas.1006538107] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distinction between model and nonmodel organisms is becoming increasingly blurred. High-throughput, second-generation sequencing approaches are being applied to organisms based on their interesting ecological, physiological, developmental, or evolutionary properties and not on the depth of genetic information available for them. Here, we illustrate this point using a low-cost, efficient technique to determine the fine-scale phylogenetic relationships among recently diverged populations in a species. This application of restriction site-associated DNA tags (RAD tags) reveals previously unresolved genetic structure and direction of evolution in the pitcher plant mosquito, Wyeomyia smithii, from a southern Appalachian Mountain refugium following recession of the Laurentide Ice Sheet at 22,000-19,000 B.P. The RAD tag method can be used to identify detailed patterns of phylogeography in any organism regardless of existing genomic data, and, more broadly, to identify incipient speciation and genome-wide variation in natural populations in general.
Collapse
|
43
|
Emerson KJ, Bradshaw WE, Holzapfel CM. Microarrays reveal early transcriptional events during the termination of larval diapause in natural populations of the mosquito, Wyeomyia smithii. PLoS One 2010; 5:e9574. [PMID: 20221437 PMCID: PMC2832704 DOI: 10.1371/journal.pone.0009574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/14/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mosquito Wyeomyia smithii overwinters in a larval diapause that is initiated, maintained and terminated by day length (photoperiod). We use a forward genetic approach to investigate transcriptional events involved in the termination of diapause following exposure to long-days. METHODS/PRINCIPAL FINDINGS We incorporate a novel approach that compares two populations that differentially respond to a single day length. We identify 30 transcripts associated with differential response to day length. Most genes with a previously annotated function are consistent with their playing a role in the termination of diapause, in downstream developmental events, or in the transition from potentially oxygen-poor to oxygen-rich environments. One gene emerges from three separate forward genetic screens as a leading candidate for a gene contributing to the photoperiodic timing mechanism itself (photoperiodic switch). We name this gene photoperiodic response gene 1 (ppdrg1). WsPpdrg1 is up-regulated under long-day response conditions, is located under a QTL for critical photoperiod and is associated with critical photoperiod after 25 generations of recombination from a cross between extreme phenotypes. CONCLUSIONS Three independent forward genetic approaches identify WsPpdrg1 as a gene either involved in the photoperiodic switch mechanism or very tightly linked to a gene that is. We conclude that continued forward genetic approaches will be central to understanding not only the molecular basis of photoperiodism and diapause, but also the evolutionary potential of temperate and polar animal populations when confronted with rapid climate change.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America.
| | | | | |
Collapse
|
44
|
Emerson KJ, Uyemura AM, McDaniel KL, Schmidt PS, Bradshaw WE, Holzapfel CM. Environmental control of ovarian dormancy in natural populations of Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:825-9. [PMID: 19669646 DOI: 10.1007/s00359-009-0460-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/03/2009] [Accepted: 07/09/2009] [Indexed: 11/24/2022]
Abstract
Drosophila melanogaster from Australia, Europe and North America enter an adult ovarian dormancy in response to short days and low temperatures. The independent effects of temperature and day length in the determination of dormancy have been examined only in one long-established laboratory line (Canton-S). In all other studies of natural or laboratory populations, dormancy has been assessed at either a single short day or a single moderately low temperature. Herein, we determine the relative roles of temperature, photoperiod, and their interaction in the control of ovarian dormancy in D. melanogaster from two natural populations representing latitudinal extremes in eastern North America (Florida at 27 degrees N and Maine at 44 degrees N). In both natural populations, temperature is the main determinant of dormancy, alone explaining 67% of the total variation among replicate isofemale lines, whereas photoperiod has no significant effect. We conclude that ovarian dormancy in D. melanogaster is a temperature-initiated syndrome of winter-tolerant traits that represents an adaptive phenotypic plasticity in temperate seasonal environments.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Emerson KJ, Dake SJ, Bradshaw WE, Holzapfel CM. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:385-91. [PMID: 19190920 DOI: 10.1007/s00359-009-0416-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/22/2008] [Accepted: 01/10/2009] [Indexed: 01/22/2023]
Abstract
For over 70 years, researchers have debated whether the ability to use day length as a cue for the timing of seasonal events (photoperiodism) is related to the endogenous circadian clock that regulates the timing of daily events. Models of photoperiodism include two components: (1) a photoperiodic timer that measures the length of the day, and (2) a photoperiodic counter that elicits the downstream photoperiodic response after a threshold number of days has been counted. Herein, we show that there is no geographical pattern of genetic association between the expression of the circadian clock and the photoperiodic timer or counter. We conclude that the photoperiodic timer and counter have evolved independently of the circadian clock in the pitcher-plant mosquito Wyeomyia smithii and hence, the evolutionary modification of photoperiodism throughout the range of W. smithii has not been causally mediated by a corresponding evolution of the circadian clock.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | |
Collapse
|
46
|
Emerson KJ, Letaw AD, Bradshaw WE, Holzapfel CM. Extrinsic light:dark cycles, rather than endogenous circadian cycles, affect the photoperiodic counter in the pitcher-plant mosquito, Wyeomyia smithii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:611-5. [PMID: 18427810 DOI: 10.1007/s00359-008-0334-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/25/2008] [Accepted: 04/06/2008] [Indexed: 11/24/2022]
Abstract
A wide diversity of organisms use photoperiod (daylength) as an environmental cue to anticipate the changing seasons and to time various life-history events such as dormancy and migration. Photoperiodic time measurement consists of two main components, (1) the photoperiodic timer that discriminates between long and short days, and (2) the photoperiodic counter that accumulates and stores information from the timer and then induces the phenotypic output. Herein, we use extended night treatments to show that light is necessary to accumulate photoperiodic information across the geographic range of the mosquito, Wyeomyia smithii and that the photoperiodic counter counts extrinsic (external) light:dark cycles and not endogenous (internal) circadian cycles.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | |
Collapse
|
47
|
Emerson KJ, Bradshaw WE, Holzapfel CM. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 2008; 62:979-83. [PMID: 18194469 PMCID: PMC4288752 DOI: 10.1111/j.1558-5646.2008.00324.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquity of endogenous, circadian (daily) clocks among eukaryotes has long been held as evidence that they serve an adaptive function, usually cited as the ability to properly time biological events in concordance with the daily cycling of the environment. Herein we test directly whether fitness is a function of the matching of the period of an organism's circadian clock with that of its environment. We find that fitness, measured as the per capita expectation of future offspring, a composite measure of fitness incorporating both survivorship and reproduction, is maximized in environments that are integral multiples of the period of the organism's circadian clock. Hence, we show that organisms require temporal concordance between their internal circadian clocks and their external environment to maximize fitness and thus the long-held assumption is true that, having evolved in a 24-h world, circadian clocks are adaptive.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | |
Collapse
|
48
|
Abstract
The primary nonbiological result of recent rapid climate change is warming winter temperatures, particularly at northern latitudes, leading to longer growing seasons and new seasonal exigencies and opportunities. Biological responses reflect selection due to the earlier arrival of spring, the later arrival of fall, or the increasing length of the growing season. Animals from rotifers to rodents use the high reliability of day length to time the seasonal transitions in their life histories that are crucial to fitness in temperate and polar environments: when to begin developing in the spring, when to reproduce, when to enter dormancy or when to migrate, thereby exploiting favourable temperatures and avoiding unfavourable temperatures. In documented cases of evolutionary (genetic) response to recent, rapid climate change, the role of day length (photoperiodism) ranges from causal to inhibitory; in no case has there been demonstrated a genetic shift in thermal optima or thermal tolerance. More effort should be made to explore the role of photoperiodism in genetic responses to climate change and to rule out the role of photoperiod in the timing of seasonal life histories before thermal adaptation is assumed to be the major evolutionary response to climate change.
Collapse
Affiliation(s)
- W E Bradshaw
- Center for Ecology & Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA.
| | | |
Collapse
|
49
|
Mathias D, Jacky L, Bradshaw WE, Holzapfel CM. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 2007; 176:391-402. [PMID: 17339202 PMCID: PMC1893043 DOI: 10.1534/genetics.106.068726] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide variety of temperate animals rely on length of day (photoperiodism) to anticipate and prepare for changing seasons by regulating the timing of development, reproduction, dormancy, and migration. Although the molecular basis of circadian rhythms regulating daily activities is well defined, the molecular basis for the photoperiodic regulation of seasonal activities is largely unknown. We use geographic variation in the photoperiodic control of diapause in the pitcher-plant mosquito Wyeomyia smithii to create the first QTL map of photoperiodism in any animal. For critical photoperiod (CPP), we detect QTL that are unique, a QTL that is sex linked, QTL that overlap with QTL for stage of diapause (SOD), and a QTL that interacts epistatically with the circadian rhythm gene, timeless. Results presented here confirm earlier studies concluding that CPP is under directional selection over the climatic gradient of North America and that the evolution of CPP is genetically correlated with SOD. Despite epistasis between timeless and a QTL for CPP, timeless is not located within any detectable QTL, indicating that it plays an ancillary role in the evolution of photoperiodism in W. smithii. Finally, we highlight one region of the genome that includes loci contributing to CPP, SOD, and hormonal regulation of development.
Collapse
Affiliation(s)
- Derrick Mathias
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403-5289, USA
| | | | | | | |
Collapse
|
50
|
Gomi T. Seasonal adaptations of the fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) following its invasion of Japan. Ecol Res 2007. [DOI: 10.1007/s11284-006-0327-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|