1
|
Worthy SJ, Miller A, Ashlock SR, Ceviker E, Maloof JN, Strauss SY, Schmitt J, Gremer JR. Germination responses to changing rainfall timing reveal potential climate vulnerability in a clade of wildflowers. Ecology 2024:e4423. [PMID: 39344085 DOI: 10.1002/ecy.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions. Indeed, climate change is altering the timing of precipitation, and germination responses to such change can have consequences for individual fitness, population dynamics, and species distributions. Here, we assessed responses to the seasonal timing of germination-triggering rains for eleven species spanning the Streptanthus/Caulanthus clade (Brassicaceae). To do so, we experimentally manipulated the onset date of rainfall events, measured effects on germination fraction, and evaluated whether responses were constrained by evolutionary relationships across the phylogeny. We then explored the possible consequences of these responses to contemporary shifts in precipitation timing. Germination fractions decreased with later onset of rains and cooler temperatures for all but three Caulanthus species. Species' germination responses to the timing of rainfall and seasonal temperatures were phylogenetically constrained, with Caulanthus species appearing less responsive. Further, four species are likely already experiencing significant decreases in germination fractions with observed climate change, which has shifted the timing of rainfall towards the cooler, winter months in California. Overall, our findings emphasize the sensitivity of germination to seasonal conditions, underscore the importance of interacting environmental cues, and highlight vulnerability to shifting precipitation patterns with climate change, particularly in more northern, mesic species.
Collapse
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Arquel Miller
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Sarah R Ashlock
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Eda Ceviker
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, California, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Center for Population Biology, University of California, Davis, California, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Center for Population Biology, University of California, Davis, California, USA
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
2
|
Tataru D, Wheeler EC, Ferris KG. Spatially and temporally varying selection influence species boundaries in two sympatric Mimulus. Proc Biol Sci 2023; 290:20222279. [PMID: 36750191 PMCID: PMC9904950 DOI: 10.1098/rspb.2022.2279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Spatially and temporally varying selection can maintain genetic variation within and between populations, but it is less well known how these forces influence divergence between closely related species. We identify the interaction of temporal and spatial variation in selection and their role in either reinforcing or eroding divergence between two closely related Mimulus species. Using repeated reciprocal transplant experiments with advanced generation hybrids, we compare the strength of selection on quantitative traits involved in adaptation and reproductive isolation in Mimulus guttatus and Mimulus laciniatus between two years with dramatically different water availability. We found strong divergent habitat-mediated selection on traits in the direction of species differences during a drought in 2013, suggesting that spatially varying selection maintains species divergence. However, a relaxation in divergent selection on most traits in an unusually wet year (2019), including flowering time, which is involved in pre-zygotic isolation, suggests that temporal variation in selection may weaken species differences. Therefore, we find evidence that temporally and spatially varying selection may have opposing roles in mediating species boundaries. Given our changing climate, future growing seasons are expected to be more similar to the dry year, suggesting that in this system climate change may actually increase species divergence.
Collapse
Affiliation(s)
- Diana Tataru
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Emma C. Wheeler
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Kathleen G. Ferris
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| |
Collapse
|
3
|
Mazer SJ, Sakai AK, Weller SG, Larios E. What determines the evolutionary trajectories of wild plant species? Approaches to the study of quantitative fitness-related traits. AMERICAN JOURNAL OF BOTANY 2022; 109:1673-1682. [PMID: 36416487 DOI: 10.1002/ajb2.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Wild plant species provide excellent examples of qualitative traits that evolve in response to environmental challenges (e.g., flower color, heavy metal tolerance, cyanogenesis, and male sterility). In addition to such discrete characters, a dazzling array of continuously distributed, quantitative traits are expressed at every phase of the life cycle. These traits are known or suspected to have evolved by natural selection because they are heritable, differ among populations or closely related taxa occupying distinct habitats, and have individual phenotypes associated with survival and reproductive success. This special issue [American Journal of Botany 109(11)] focuses on the tools and approaches for detecting or inferring the ecological and genetic factors contributing to changes in genetically based variation of quantitative traits within or among populations, or causing their divergence among taxa. The assembled articles use one or more of three primary approaches to detect the process or outcome of natural selection on morphological, life history, reproductive, chemical, and physiological quantitative traits: the analysis of phenotypic or artificially imposed selection to detect direct and indirect selection on traits whose function is well-understood; common garden experiments, including reciprocal transplants and "resurrection" experiments; and quantitative genetic analyses designed to detect and to estimate the environmental and genetic sources of phenotypic variation or to forecast short-term evolutionary change. Together, these articles examine and reveal the adaptive capacity of quantitative traits and the genetically based constraints that may limit their directional evolutionary change, thereby informing and testing inferences, hypotheses, and predictions concerning the evolutionary trajectories of wild plant species.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ann K Sakai
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Stephen G Weller
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Eugenio Larios
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Wang S, Zhou D. Dynamic morphological plasticity in response to emergence timing in Abutilon theophrasti (Malvaceae). PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:118-129. [PMID: 37284429 PMCID: PMC10168065 DOI: 10.1002/pei3.10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/08/2023]
Abstract
Selections on emergence time might be conflicting, suggesting the existence of the optimal emergence time for plants. However, we know little about this and how morphological plasticity contributes to the strategies of plants in response to emergence timing. To better understand this issue from a dynamic perspective, we conducted a field experiment by subjecting plants of Abutilon theophrasti to four emergence treatments (ET1 ~ ET4) and measuring a number of mass and morphological traits on them at different growth stages (I ~ IV). On day 50, 70, and/or final harvest, among all ET treatments, plants germinated in late spring (ET2) performed the best in total mass, spring germinants (ET1) and ET2 performed better in stem allocation, stem, and root diameters than later germinants (ET3 and ET4); summer germinants (ET3) had the highest reproductive mass and allocation, while late-summer germinants (ET4) had the greatest leaf mass allocation, with greater or canalized leaf number, and root length traits than others. Plants that emerged in late spring can maximize their growth potential, while those with either advanced or delayed emergence are still capable of adaptation via allocation and morphological plasticity. Early germinants (ET1 and ET2) preferred stem growth to leaf and reproductive growth, due to sufficient time for reproduction in the growth season. With limited time for growth, plants that emerged late may prefer to quicken leaf growth (indicated by increased leaf mass allocation and leaf number) at the cost of stem or root growth for the complete life cycle, reflecting both positive and negative effects of delayed emergence.
Collapse
Affiliation(s)
- Shu Wang
- College of Forestry, Forest Ecology Research CenterGuizhou UniversityGuiyangChina
| | - Dao‐Wei Zhou
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchunChina
| |
Collapse
|
5
|
Gomaa NH, Picó FX. Depicting the phenotypic space of the annual plant Diplotaxis acris in hyperarid deserts. Ecol Evol 2021; 11:15708-15719. [PMID: 34824784 PMCID: PMC8601918 DOI: 10.1002/ece3.8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
The phenotypic space encompasses the assemblage of trait combinations yielding well-suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among- and within-population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among-population divergence but high among-individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among-individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine-tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed-related traits advancing flowering time.
Collapse
Affiliation(s)
- Nasr H. Gomaa
- Department of Botany and MicrobiologyFaculty of ScienceBeni‐Suef UniversityBeni‐SuefEgypt
- Biology DepartmentCollege of ScienceJouf UniversitySakakaSaudi Arabia
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD)Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| |
Collapse
|
6
|
Zettlemoyer MA, Lau JA. Warming during maternal generations delays offspring germination in native and nonnative species. OIKOS 2021. [DOI: 10.1111/oik.08345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meredith A. Zettlemoyer
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Plant Biology, Michigan State Univ. East Lansing MI USA
- Dept of Plant Biology, Univ. of Georgia Athens GA USA
| | - Jennifer A. Lau
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Plant Biology, Michigan State Univ. East Lansing MI USA
- Dept of Biology&Environmental Resilience Inst., Indiana Univ. Bloomington IN USA
| |
Collapse
|
7
|
Petipas RH, Geber MA, Lau JA. Microbe-mediated adaptation in plants. Ecol Lett 2021; 24:1302-1317. [PMID: 33913572 DOI: 10.1111/ele.13755] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Interactions with microbial symbionts have yielded great macroevolutionary innovations across the tree of life, like the origins of chloroplasts and the mitochondrial powerhouses of eukaryotic cells. There is also increasing evidence that host-associated microbiomes influence patterns of microevolutionary adaptation in plants and animals. Here we describe how microbes can facilitate adaptation in plants and how to test for and differentiate between the two main mechanisms by which microbes can produce adaptive responses in higher organisms: microbe-mediated local adaptation and microbe-mediated adaptive plasticity. Microbe-mediated local adaptation is when local plant genotypes have higher fitness than foreign genotypes because of a genotype-specific affiliation with locally beneficial microbes. Microbe-mediated adaptive plasticity occurs when local plant phenotypes, elicited by either the microbial community or the non-microbial environment, have higher fitness than foreign phenotypes as a result of interactions with locally beneficial microbes. These microbial effects on adaptation can be difficult to differentiate from traditional modes of adaptation but may be prevalent. Ignoring microbial effects may lead to erroneous conclusions about the traits and mechanisms underlying adaptation, hindering management decisions in conservation, restoration, and agriculture.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN, USA.,The Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
8
|
Waterton J, Cleland EE. Vertebrate herbivory weakens directional selection for earlier emergence in competition. Evol Lett 2021; 5:265-276. [PMID: 34136274 PMCID: PMC8190447 DOI: 10.1002/evl3.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
The timing of seedling emergence is strongly linked with fitness because it determines the biotic and abiotic environment experienced by plants in this vulnerable life stage. Experiments and observations consistently find that earlier-emerging plants have a competitive advantage over those emerging later. However, substantial genetic and phenotypic variation in emergence timing is harbored within and among plant populations, making it important to characterize the selective agents-including biotic interactions-that contribute to this variation. In seasonal herbaceous communities, we hypothesized that consumption of early-emerging individuals by vertebrates could weaken the strength of directional selection for earlier emergence in competitive environments. To investigate this, we carried out phenotypic selection analyses on emergence timing in two California grass species, the native Stipa pulchra and non-native Bromus diandrus, growing in intraspecific competitive neighborhoods with and without vertebrate herbivore exclusion. Vertebrate herbivores consistently weakened directional selection for earlier emergence. Our results demonstrate that vertebrate herbivores play an underappreciated selective role on phenology in plant populations, with implications for contemporary evolution, such as the potential of species to adapt to global environmental changes.
Collapse
Affiliation(s)
- Joseph Waterton
- Department of Ecology, Behavior, and Evolution Section University of California San Diego La Jolla California 92093.,Current Address: Department of Biology Indiana University Bloomington Indiana 47405
| | - Elsa E Cleland
- Department of Ecology, Behavior, and Evolution Section University of California San Diego La Jolla California 92093
| |
Collapse
|
9
|
Waterton J, Mazer SJ, Meyer JR, Cleland EE. Trade-off drives Pareto optimality of within- and among-year emergence timing in response to increasing aridity. Evol Appl 2021; 14:658-673. [PMID: 33767742 PMCID: PMC7980269 DOI: 10.1111/eva.13145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Adaptation to current and future climates can be constrained by trade-offs between fitness-related traits. Early seedling emergence often enhances plant fitness in seasonal environments, but if earlier emergence in response to seasonal cues is genetically correlated with lower potential to spread emergence among years (i.e., bet-hedging), then this functional trade-off could constrain adaptive evolution. Consequently, selection favoring both earlier within-year emergence and greater spread of emergence among years-as is expected in more arid environments-may constrain adaptive responses to trait value combinations at which a performance gain in either function (i.e., evolving earlier within- or greater among-year emergence) generates a performance loss in the other. All such trait value combinations that cannot be improved for both functions simultaneously are described as Pareto optimal and together constitute the Pareto front. To investigate how this potential emergence timing trade-off might constrain adaptation to increasing aridity, we sourced seeds of two grasses, Stipa pulchra and Bromus diandrus, from multiple maternal lines within populations across an aridity gradient in California and examined their performance in a greenhouse experiment. We monitored emergence and assayed ungerminated seeds for viability to determine seed persistence, a metric of potential among-year emergence spread. In both species, maternal lines with larger fractions of persistent seeds emerged later, indicating a trade-off between within-year emergence speed and potential among-year emergence spread. In both species, populations on the Pareto front for both earlier emergence and larger seed persistence fraction occupied significantly more arid sites than populations off the Pareto front, consistent with the hypothesis that more arid sites impose the strongest selection for earlier within-year emergence and greater among-year emergence spread. Our results provide an example of how evaluating genetically based correlations within populations and applying Pareto optimality among populations can be used to detect evolutionary constraints and adaptation across environmental gradients.
Collapse
Affiliation(s)
- Joseph Waterton
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Justin R. Meyer
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| | - Elsa E. Cleland
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
10
|
Zacchello G, Vinyeta M, Ågren J. Strong stabilizing selection on timing of germination in a Mediterranean population of Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2020; 107:1518-1526. [PMID: 33058187 PMCID: PMC7756891 DOI: 10.1002/ajb2.1549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/30/2020] [Indexed: 06/01/2023]
Abstract
PREMISE Timing of germination can strongly influence plant fitness by affecting seedling survival and by having cascading effects on later life-history traits. In seasonal environments, the period favorable for seedling establishment and growth is limited, and timing of germination is likely to be under stabilizing selection because of conflicting selection through survival and fecundity. Moreover, optimal germination time may vary among genotypes because of inherent differences in later life-history traits. METHODS To examine how germination time affects survival, fecundity, and the relative fitness of two genotypes differing in time to first flower, we conducted a field experiment in an Italian population of the winter annual Arabidopsis thaliana, in which seedling establishment occurs mainly in November. We transplanted seedlings of the local genotype and of a Swedish genotype monthly from August to December and monitored survival and fecundity. RESULTS Only seedlings transplanted in November and December survived until reproduction, and fitness of the November cohort was 35 times higher than that of the December cohort, indicating strong stabilizing selection on timing of germination. There was no evidence of conflicting selection: seedling survival, adult survival, and fecundity were all highest in the November cohort. Moreover, the relative fitness of the two genotypes did not differ significantly between cohorts. CONCLUSIONS The very narrow window of opportunity for seedling establishment was related to rapid seasonal changes in soil moisture and temperature, suggesting that rate of seasonal change is an important aspect to consider for understanding spatiotemporal variation in selection on phenological traits.
Collapse
Affiliation(s)
- Giulia Zacchello
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEBCUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| | - Mariona Vinyeta
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEBCUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| | - Jon Ågren
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEBCUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| |
Collapse
|
11
|
Magnoli SM. Rapid adaptation (or not) in restored plant populations. Evol Appl 2020; 13:2030-2037. [PMID: 32908602 PMCID: PMC7463322 DOI: 10.1111/eva.12959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 02/03/2023] Open
Abstract
Mismatches between the traits of a colonizing population and a novel habitat can generate strong selection, potentially resulting in rapid adaptation. However, for most colonization events, it can be difficult to detect rapid adaptation or distinguish it from nonadaptive evolutionary changes. Here, I take advantage of a replicated prairie restoration experiment to compare recently established plant populations in two closely located restored prairies to each other and to their shared source population to test for rapid adaptation. Using a reciprocal transplant experiment six years after the populations were established, I found that one restored plant population showed evidence of adaptation, outperforming the other restored population when grown at its home site. In contrast, I detected no evidence for adaptation at the other site. These findings demonstrate that while rapid adaptation can occur in colonizing plant populations, it may not be the rule. Better understanding of when adaptation may or may not occur in these contexts may help us use evolution to our advantage, potentially improving establishment of desirable species in restored habitats.
Collapse
Affiliation(s)
- Susan M. Magnoli
- W.K. Kellogg Biological Station and Department of Plant BiologyMichigan State UniversityHickory CornersMIUSA
| |
Collapse
|
12
|
Gremer JR, Chiono A, Suglia E, Bontrager M, Okafor L, Schmitt J. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. AMERICAN JOURNAL OF BOTANY 2020; 107:350-363. [PMID: 32056208 DOI: 10.1002/ajb2.1425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. METHODS Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. RESULTS Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low-elevation populations germinated in the fall without chilling, whereas high-elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate-change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high-elevation populations. CONCLUSIONS The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.
Collapse
Affiliation(s)
- Jennifer R Gremer
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Alec Chiono
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Department of Biology, University of San Francisco, 2310 Fulton Street, San Francisco, CA, 94117, USA
| | - Elena Suglia
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Population Biology Graduate Group, University of California-Davis, Davis, CA, 95616, USA
| | - Megan Bontrager
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Lauren Okafor
- Department of Biology, Howard University, 415 College St. NW, Washington, D.C., 20059, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
13
|
Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:2526-2534. [PMID: 31964817 PMCID: PMC7007534 DOI: 10.1073/pnas.1912451117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The seasonal timing of seed germination is critical for plant fitness in different climates. To germinate at the right time of year, seeds respond to seasonal environmental cues, such as cold temperatures. We characterized genetic variation in seed dormancy responses to cold across the geographic range of a widespread annual plant. Induction of secondary seed dormancy during winter conditions (which restricts germination to autumn) was positively correlated with flowering time, constructing winter and spring seasonal life-history strategies. Variation in seed chilling responses was strongly associated with functional variants of a known dormancy gene. These variants showed evidence of ancient diversification associated with Pleistocene glacial cycles, and were associated with climate gradients across the species’ geographical range. The seasonal timing of seed germination determines a plant’s realized environmental niche, and is important for adaptation to climate. The timing of seasonal germination depends on patterns of seed dormancy release or induction by cold and interacts with flowering-time variation to construct different seasonal life histories. To characterize the genetic basis and climatic associations of natural variation in seed chilling responses and associated life-history syndromes, we selected 559 fully sequenced accessions of the model annual species Arabidopsis thaliana from across a wide climate range and scored each for seed germination across a range of 13 cold stratification treatments, as well as the timing of flowering and senescence. Germination strategies varied continuously along 2 major axes: 1) Overall germination fraction and 2) induction vs. release of dormancy by cold. Natural variation in seed responses to chilling was correlated with flowering time and senescence to create a range of seasonal life-history syndromes. Genome-wide association identified several loci associated with natural variation in seed chilling responses, including a known functional polymorphism in the self-binding domain of the candidate gene DOG1. A phylogeny of DOG1 haplotypes revealed ancient divergence of these functional variants associated with periods of Pleistocene climate change, and Gradient Forest analysis showed that allele turnover of candidate SNPs was significantly associated with climate gradients. These results provide evidence that A. thaliana’s germination niche and correlated life-history syndromes are shaped by past climate cycles, as well as local adaptation to contemporary climate.
Collapse
|
14
|
Nashoba AR, Kono TJY. Selection and plasticity both account for interannual variation in life-history phenology in an annual prairie legume. Ecol Evol 2020; 10:940-951. [PMID: 32015856 PMCID: PMC6988531 DOI: 10.1002/ece3.5953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/28/2022] Open
Abstract
As the environment changes, so too must plant communities and populations if they are to persist. Life-history transitions and their timing are often the traits that are most responsive to changing environmental conditions. To compare the contributions of plasticity and natural selective response to variation in germination and flowering phenology, we performed a quantitative genetic study of phenotypic selection on Chamaecrista fasciculata (Fabaceae) across two consecutive years in a restored tallgrass prairie. The earliest dates of germination and flowering were recorded for two parental cohorts and one progeny cohort in an experimental garden. Environmental differences between years were the largest contributors to phenological variation in this population. In addition, there was substantial heritability for flowering time and statistically significant selection for advancement of flowering. Comparison between a progeny cohort and its preselection parental cohort indicated a change in mean flowering time consistent with the direction of selection. Selection on germination time was weaker than that on flowering time, while environmental effects on germination time were stronger. The response to selection on flowering time was detectable when accounting for the effect of the environment on phenotypic differences, highlighting the importance of controlling for year-to-year environmental variation in quantitative genetic studies.
Collapse
Affiliation(s)
- Amber R. Nashoba
- Department of Biological SciencesUniversity of AlaskaAnchorageAlaska
| | | |
Collapse
|
15
|
Friedman J, Middleton TE, Rubin MJ. Environmental heterogeneity generates intrapopulation variation in life-history traits in an annual plant. THE NEW PHYTOLOGIST 2019; 224:1171-1183. [PMID: 31400159 DOI: 10.1111/nph.16099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Environmental variation affects a plant's life cycle by influencing the timing of germination and flowering, and the duration of the growing season. Yet we know little information about how environmental heterogeneity generates variation in germination schedules and the consequences for growth and fecundity through genetic and plastic responses. We use an annual population of Mimulus guttatus in which, in nature, seeds germinate in both fall and spring. We investigate whether there is a genetic basis to the timing of germination, the effect of germination timing on fecundity, and if growth and flowering respond plastically to compensate for different season lengths. Using sibling families grown in simulated seasonal conditions, we find that families do not differ in their propensity to germinate between seasons. However, the germination season affects subsequent growth and flowering time, with significant genotype-by-environment interactions (G × E). Most G × E is due to unequal variance between seasons, because the spring cohort harbours little genetic variance. Despite their different season lengths, the cohorts do not differ in flower number (fecundity). Heterogeneous environments with unpredictable risks may maintain promiscuous germination, which then affects flowering time. Therefore, if selection at particular life stages changes with climate change, there may be consequences for the entire life cycle.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
16
|
D’Aguillo MC, Edwards BR, Donohue K. Can the Environment have a Genetic Basis? A Case Study of Seedling Establishment in Arabidopsis thaliana. J Hered 2019; 110:467-478. [DOI: 10.1093/jhered/esz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
AbstractThe timing of seed germination determines the environment experienced by a plant’s most vulnerable life stage—the seedling. Germination is environmentally cued, and genotypes can differ in their sensitivity to environmental cues. When genotypes differ in their response to cues, and when cues accurately predict the postgermination environment, the postgermination environment experienced by seedlings can itself have a genetic basis and potential to evolve. We tested for genetic differences in the postgermination environment using Arabidopsis thaliana genotypes that vary in seed dormancy, a trait known to alter germination time. We dispersed seeds into the field in 5 seasonal cohorts over 1.5 years, observed germination timing for 5297 individuals, and measured the soil temperature and moisture experienced by individuals throughout their life cycle. We found that genotypes differed in the environments they experienced during seedling establishment. This environmental variation occurred because genotypes differed in their environmental sensitivity to germination cues, and pregermination cues were correlated with postgermination environments. Seeds exhibited temporal habitat selection by germinating into a nonrandom subset of environmental conditions available, and seed dormancy increased the consistency of habitat selection. Strikingly, the postgermination environment affected fitness by altering the probability of seedling survival such that genotypes that engaged in stronger habitat selection were less likely to reach reproduction. Our results suggest that environmentally cued development may be a widespread mechanism by which genotypes can differ in the environment they experience, introducing the possibility that the environment itself can be inherited and can evolve.
Collapse
Affiliation(s)
| | - Brianne R Edwards
- Department of Biology, Duke University, Durham, NC
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
17
|
Cuello WS, Gremer JR, Trimmer PC, Sih A, Schreiber SJ. Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation. Proc Biol Sci 2019; 286:20182613. [PMID: 30963878 PMCID: PMC6367162 DOI: 10.1098/rspb.2018.2613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/18/2018] [Indexed: 11/12/2022] Open
Abstract
For many decades, researchers have studied how plants use bet-hedging strategies to insure against unpredictable, unfavourable conditions. We improve upon earlier analyses by explicitly accounting for how variable precipitation affects annual plant species' bet-hedging strategies. We consider how the survival rates of dormant seeds (in a 'seed bank') interact with precipitation responses to influence optimal germination strategies. Specifically, we incorporate how response to resource availability (i.e. the amount of offspring (seeds) generated per plant in response to variation in desert rainfall) influences the evolution of germination fractions. Using data from 10 Sonoran Desert annual plants, we develop models that explicitly include these responses to model fitness as a function of precipitation. For each of the species, we identify the predicted evolutionarily stable strategies (ESSs) for the fraction of seeds germinating each year and then compare our estimated ESS values to the observed germination fractions. We also explore the relative importance of seed survival and precipitation responses in shaping germination strategies by regressing ESS values and observed germination fractions against these traits. We find that germination fractions are lower for species with higher seed survival, with lower reproductive success in dry years, and with better yield responses in wet years. These results illuminate the evolution of bet-hedging strategies in an iconic system, and provide a framework for predicting how current and future environmental conditions may reshape those strategies.
Collapse
Affiliation(s)
- William S. Cuello
- PhD Program in Applied Mathematics, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Jennifer R. Gremer
- Department of Evolution and Ecology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Pete C. Trimmer
- Department of Environmental Science and Policy, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Sebastian J. Schreiber
- Department of Evolution and Ecology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
18
|
Kachi N, Hirose T. Optimal time of seedling emergence in a dune-population ofOenothera glazioviana. Ecol Res 2018. [DOI: 10.1007/bf02348469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Naoki Kachi
- ; Environmental Biology Division; National Institute for Environmental Studies; Tsukuba, Ibaraki 305 Japan
| | - Tadaki Hirose
- ; Department of Botany, Faculty of Science; University of Tokyo; Hongo Tokyo 113 Japan
- ; Biological Institute, Faculty of Science; Tohoku University; Sendai 980 Japan
| |
Collapse
|
19
|
Costa e Silva J, Harrison PA, Wiltshire R, Potts BM. Evidence that divergent selection shapes a developmental cline in a forest tree species complex. ANNALS OF BOTANY 2018; 122:181-194. [PMID: 29788049 PMCID: PMC6025196 DOI: 10.1093/aob/mcy064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/16/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Evolutionary change in developmental trajectories (heterochrony) is a major mechanism of adaptation in plants and animals. However, there are few detailed studies of the variation in the timing of developmental events among wild populations. We here aimed to identify the climatic drivers and measure selection shaping a genetic-based developmental cline among populations of an endemic tree species complex on the island of Tasmania. METHODS Seed lots from 38 native provenances encompassing the clinal transition from the heteroblastic Eucalyptus tenuiramis to the homoblastic Eucalyptus risdonii were grown in a common-garden field trial in southern Tasmania for 20 years. We used 27 climatic variables to model the provenance variation in vegetative juvenility as assessed at age 5 years. A phenotypic selection analysis was used to measure the fitness consequences of variation in vegetative juvenility based on its impact on the survival and reproductive capacity of survivors at age 20 years. KEY RESULTS Significant provenance divergence in vegetative juvenility was shown to be associated with home-site aridity, with the retention of juvenile foliage increasing with increasing aridity. Our results indicated that climate change may lead to different directions of selection across the geographic range of the complex, and in our mesic field site demonstrated that total directional selection within phenotypically variable provenances was in favour of reduced vegetative juvenility. CONCLUSIONS We provide evidence that heteroblasty is adaptive and argue that, in assessing the impacts of rapid global change, developmental plasticity and heterochrony are underappreciated processes which can contribute to populations of long-lived organisms, such as trees, persisting and ultimately adapting to environmental change.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Peter A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert Wiltshire
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Ferris KG, Willis JH. Differential adaptation to a harsh granite outcrop habitat between sympatric
Mimulus
species. Evolution 2018; 72:1225-1241. [DOI: 10.1111/evo.13476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kathleen G. Ferris
- Department of Biology Duke University 125 Science Drive Durham North Carolina 27705
- Current Address: Center for Population Biology, 2320 Storer Hall University of California Davis One Shields Avenue Davis California 95616
| | - John H. Willis
- Department of Biology Duke University 125 Science Drive Durham North Carolina 27705
| |
Collapse
|
21
|
Rubin MJ, Friedman J. The role of cold cues at different life stages on germination and flowering phenology. AMERICAN JOURNAL OF BOTANY 2018; 105:749-759. [PMID: 29683478 DOI: 10.1002/ajb2.1055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. METHODS We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. KEY RESULTS We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. CONCLUSIONS In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species.
Collapse
Affiliation(s)
- Matthew J Rubin
- Department of Biology, Syracuse University, 110 College Place, Syracuse, NY, 13244, USA
| | - Jannice Friedman
- Department of Biology, Syracuse University, 110 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
22
|
Austen EJ, Lin SY, Forrest JRK. On the ecological significance of pollen color: a case study in American trout lily (Erythronium americanum). Ecology 2018; 99:926-937. [PMID: 29380868 DOI: 10.1002/ecy.2164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022]
Abstract
Evolutionary ecologists seek to explain the processes that maintain variation within populations. In plants, petal color variation can affect pollinator visitation, environmental tolerance, and herbivore deterrence. Variation in sexual organs may similarly affect plant performance. Within-population variation in pollen color, as occurs in the eastern North American spring ephemeral Erythronium americanum, provides an excellent opportunity to investigate the maintenance of variation in this trait. Although the red/yellow pollen-color polymorphism of E. americanum is widely recognized, it has been poorly documented. Our goals were thus (1) to determine the geographic distribution of the color morphs and (2) to test the effects of pollen color on components of pollen performance. Data provided by citizen scientists indicated that populations range from monomorphic red, to polymorphic, to monomorphic yellow, but there was no detectable geographic pattern in morph distribution, suggesting morph occurrence cannot be explained by a broad-scale ecological cline. In field experiments, we found no effect of pollen color on the probability of predation by the pollen-feeding beetle Asclera ruficollis, on the ability of pollen to tolerate UV-B radiation, or on siring success (as measured by the fruit set of hand-pollinated flowers). Pollinators, however, exhibited site-specific pollen-color preferences, suggesting they may act as agents of selection on this trait, and, depending on the constancy of their preferences, could contribute to the maintenance of variation. Collectively, our results eliminate some hypothesized ecological effects of pollen color in E. americanum, and identify effects of pollen color on pollinator attraction as a promising direction for future investigation.
Collapse
Affiliation(s)
- Emily J Austen
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Biology Department, Mount Allison University, Sackville, New Brunswick , E4L 1E4, Canada
| | - Shang-Yao Lin
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
23
|
Taylor MA, Cooper MD, Sellamuthu R, Braun P, Migneault A, Browning A, Perry E, Schmitt J. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field. THE NEW PHYTOLOGIST 2017; 216:291-302. [PMID: 28752957 DOI: 10.1111/nph.14712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations.
Collapse
Affiliation(s)
- Mark A Taylor
- University of California at Davis, Davis, CA, 95616, USA
| | | | | | - Peter Braun
- Brown University, Providence, RI, 02912, USA
- California State University at San Bernardino, San Bernardino, CA, 92407, USA
| | | | | | - Emily Perry
- Brown University, Providence, RI, 02912, USA
| | - Johanna Schmitt
- University of California at Davis, Davis, CA, 95616, USA
- Brown University, Providence, RI, 02912, USA
| |
Collapse
|
24
|
Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat Ecol Evol 2017; 1:1551-1561. [DOI: 10.1038/s41559-017-0297-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/27/2017] [Indexed: 11/08/2022]
|
25
|
Abstract
A single plant can interact both positively and negatively with its neighbors through the processes of facilitation and competition, respectively. Much of the variation in the balance of facilitation and competition that individuals experience can be explained by the degree of physical stress and the sizes or ages of plants during the interaction. Germination phenology partly controls both of these factors, but its role in defining the facilitation-competition balance has not been explicitly considered. I performed an experiment in a population of the winter annual Arabidopsis thaliana (Brassicaceae) to test whether germinating during physically stressful periods leads to facilitation while germinating during periods that promote growth and reproduction leads to competition. I manipulated germination and neighbor presence across two years in order to quantify the effects of the local plant community on survival, fecundity, and total fitness as a function of germination phenology. Neighbors increased survival when germination occurred under conditions that were unsuitable for survival, but they reduced fecundity in germinants that were otherwise the most fecund. Later germination was associated with facilitation in the first year but competition in the second year. These episodes of facilitation and competition opposed each other, leading to no net effect of neighbors when averaged over all cohorts. These results indicate that variation in germination timing can explain some of the variation in the facilitation-competition balance in plant communities.
Collapse
Affiliation(s)
- Lindsay D Leverett
- Program in Ecology and Department of Biology, Duke University, Durham, North Carolina, 27705, USA
| |
Collapse
|
26
|
Miller TE. EVOLUTION OF
BRASSICA RAPA
L. (CRUCIFERAE) POPULATIONS IN INTRA‐ AND INTERSPECIFIC COMPETITION. Evolution 2017; 49:1125-1133. [DOI: 10.1111/j.1558-5646.1995.tb04439.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1992] [Accepted: 12/20/1994] [Indexed: 11/30/2022]
Affiliation(s)
- T. E. Miller
- Department of Biological Science Florida State University Tallahassee Florida 32306–2043
| |
Collapse
|
27
|
Mazer SJ, Schick CT. CONSTANCY OF POPULATION PARAMETERS FOR LIFE-HISTORY AND FLORAL TRAITS INRAPHANUS SATIVUSL. II. EFFECTS OF PLANTING DENSITY ON PHENOTYPE AND HERITABILITY ESTIMATES. Evolution 2017; 45:1888-1907. [PMID: 28563970 DOI: 10.1111/j.1558-5646.1991.tb02694.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1990] [Accepted: 05/21/1991] [Indexed: 11/30/2022]
Affiliation(s)
- Susan J. Mazer
- Department of Biological Sciences; University of California; Santa Barbara CA 93106 USA
| | - Charles T. Schick
- Department of Biological Sciences; University of California; Santa Barbara CA 93106 USA
| |
Collapse
|
28
|
Price T, Schluter D. ON THE LOW HERITABILITY OF LIFE-HISTORY TRAITS. Evolution 2017; 45:853-861. [DOI: 10.1111/j.1558-5646.1991.tb04354.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1989] [Accepted: 12/04/1990] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor Price
- Department of Biology C-016; University of California at San Diego; La Jolla CA 92093 USA
| | - Dolph Schluter
- The Ecology Group, Department of Zoology; University of British Columbia; Vancouver BC V6T 2A9 CANADA
| |
Collapse
|
29
|
Mitchell‐Olds T, Shaw RG. REGRESSION ANALYSIS OF NATURAL SELECTION: STATISTICAL INFERENCE AND BIOLOGICAL INTERPRETATION. Evolution 2017; 41:1149-1161. [PMID: 28563617 DOI: 10.1111/j.1558-5646.1987.tb02457.x] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1986] [Accepted: 06/01/1987] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ruth G. Shaw
- Department of Genetics, SK‐50 University of Washington Seattle WA 98195
| |
Collapse
|
30
|
McGregor R. PHENOTYPIC SELECTION BY PARASITOIDS ON THE TIMING OF LIFE HISTORY IN A LEAFMINING MOTH. Evolution 2017; 50:1579-1584. [DOI: 10.1111/j.1558-5646.1996.tb03930.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1995] [Accepted: 09/11/1995] [Indexed: 11/30/2022]
Affiliation(s)
- Robert McGregor
- Behavioural Ecology Research Group, Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
31
|
Shaw RG, Platenkamp GAJ. QUANTITATIVE GENETICS OF RESPONSE TO COMPETITORS IN
NEMOPHILA MENZIESII
: A GREENHOUSE STUDY. Evolution 2017; 47:801-812. [DOI: 10.1111/j.1558-5646.1993.tb01235.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1992] [Accepted: 08/24/1992] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth G. Shaw
- Department of Botany and Plant Sciences University of California Riverside California 92521
| | | |
Collapse
|
32
|
Platenkamp GAJ, Shaw RG. ENVIRONMENTAL AND GENETIC MATERNAL EFFECTS ON SEED CHARACTERS IN
NEMOPHILA MENZIESII. Evolution 2017; 47:540-555. [DOI: 10.1111/j.1558-5646.1993.tb02112.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1992] [Accepted: 08/08/1992] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ruth G. Shaw
- Department of Botany and Plant Sciences University of California Riverside CA 92521 USA
| |
Collapse
|
33
|
Stanton ML, Galen C, Shore J. POPULATION STRUCTURE ALONG A STEEP ENVIRONMENTAL GRADIENT: CONSEQUENCES OF FLOWERING TIME AND HABITAT VARIATION IN THE SNOW BUTTERCUP,
RANUNCULUS ADONEUS. Evolution 2017; 51:79-94. [DOI: 10.1111/j.1558-5646.1997.tb02390.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1995] [Accepted: 08/26/1996] [Indexed: 11/27/2022]
Affiliation(s)
- M. L. Stanton
- Section of Evolution and Ecology and Center for Population Biology University of California Davis California 95616
| | - C. Galen
- Division of Biological Sciences, 105 Tucker Hall University of Missouri Columbia Missouri 65211
| | - J. Shore
- Department of Biology York University 4700 Keele Street North York Ontario M3J 1P3 Canada
| |
Collapse
|
34
|
Stratton DA. LIFE‐CYCLE COMPONENTS OF SELECTION IN
ERIGERON ANNUUS
: I. PHENOTYPIC SELECTION. Evolution 2017; 46:92-106. [DOI: 10.1111/j.1558-5646.1992.tb01987.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1990] [Accepted: 06/28/1991] [Indexed: 11/29/2022]
Affiliation(s)
- Donald A. Stratton
- Department of Ecology and Evolution State University of New York Stony Brook NY 11794 USA
| |
Collapse
|
35
|
Stewart SC, Schoen DJ. PATTERN OF PHENOTYPIC VIABILITY AND FECUNDITY SELECTION IN A NATURAL POPULATION OF IMPATIENS PALLIDA. Evolution 2017; 41:1290-1301. [PMID: 28563599 DOI: 10.1111/j.1558-5646.1987.tb02467.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1986] [Accepted: 06/15/1987] [Indexed: 11/29/2022]
Abstract
Estimates of viability and fecundity selection of 13 phenotypic characters for 1,536 individuals of Impatiens pallida growing in 24 locations within a single natural population were compared. Directional viability selection of cotyledon area, day of initial leaf production, number of leaves, and stem length was detected throughout this population. Directional fecundity selection of cotyledon area, day of initial flower production, number of leaves present on day of initial flower production, stem length on day of initial flower production, number of leaves, and stem length was also detected. Phenotypic selection of these characters was strong in some cases, and the strength of selection was significantly heterogeneous among locations. For several of the characters, directional phenotypic selection within the population was significantly positive in some locations and significantly negative in others separated by only a few meters. Fecundity selection was stronger than viability selection for some characters, implying that fecundity selection was at least as important as viability selection within this population. Soil moisture levels and light intensities played a larger role than soil nutrient levels in determining the patterns of both viability and fecundity selection, and differences in directional viability selection were more strongly related to environmental variation than were differences in fecundity selection. The pattern of phenotypic selection could not be reliably inferred from the patterns of mortality and reproduction alone.
Collapse
Affiliation(s)
- Steven C Stewart
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, PQ H3A 1B1, Canada
| | - Daniel J Schoen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, PQ H3A 1B1, Canada
| |
Collapse
|
36
|
Conner J. FIELD MEASUREMENTS OF NATURAL AND SEXUAL SELECTION IN THE FUNGUS BEETLE, BOLITOTHERUS CORNUTUS. Evolution 2017; 42:736-749. [PMID: 28563860 DOI: 10.1111/j.1558-5646.1988.tb02492.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1986] [Accepted: 02/05/1988] [Indexed: 11/29/2022]
Abstract
Selection on three phenotypic traits was estimated in a natural population of a fungus beetle, Bolitotherus cornutus. Lifetime fitness of a group of males in this population was estimated, and partitioned into five components: lifespan, attendance at the mating area, number of females courted, number of copulations attempted, and number of females inseminated. Three phenotypic characters were measured-elytral length, horn length, and weight; there were strong positive correlations among the three characters. Selection was estimated by regressing each component of fitness on the phenotypic traits. Of the three traits, only horn length was under significant direct selection. This selection was for longer horns and was due mainly to differences in lifespan and access to females. The positive selection on horn length combined with the positive correlations between horn length and the other two characters resulted in positive total selection on all three characters.
Collapse
Affiliation(s)
- Jeffrey Conner
- Section of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
37
|
Landa K. SEASONAL DECLINES IN OFFSPRING FITNESS AND SELECTION FOR EARLY REPRODUCTION IN NYMPH-OVERWINTERING GRASSHOPPERS. Evolution 2017; 46:121-135. [PMID: 28564957 DOI: 10.1111/j.1558-5646.1992.tb01989.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1991] [Accepted: 06/28/1991] [Indexed: 11/29/2022]
Affiliation(s)
- Keith Landa
- Department of Biology; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
38
|
Bennington CC, McGraw JB. PHENOTYPIC SELECTION IN AN ARTIFICIAL POPULATION OF IMPATIENS PALLIDA: THE IMPORTANCE OF THE INVISIBLE FRACTION. Evolution 2017; 49:317-324. [PMID: 28564999 DOI: 10.1111/j.1558-5646.1995.tb02244.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1993] [Accepted: 04/27/1994] [Indexed: 11/30/2022]
Abstract
Multiple-regression techniques for measuring phenotypic selection have been used in a large number of recent field studies. One benefit of this technique is its ability to discern the direct action of selection on traits by removing effects of correlated traits. However, covariation among traits expressed at different stages in an organism's life history is often poorly estimated because individuals that die before reaching adulthood cannot be measured as adults. Accurate estimates of trait covariances are necessary for the correct interpretation of the direct action of selection on a trait. If phenotypic characters expressed at different life-history stages are of interest, and mortality occurs between stages, the components of the selection model will be biased by not including those individuals that died (the "invisible fraction").
Collapse
Affiliation(s)
- Cynthia C Bennington
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26506-6057
| | - James B McGraw
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26506-6057
| |
Collapse
|
39
|
Kalisz S. FITNESS CONSEQUENCES OF MATING SYSTEM, SEED WEIGHT, AND EMERGENCE DATE IN A WINTER ANNUAL,
COLLINSIA VERNA. Evolution 2017; 43:1263-1272. [DOI: 10.1111/j.1558-5646.1989.tb02573.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1988] [Accepted: 03/21/1989] [Indexed: 11/28/2022]
Affiliation(s)
- Susan Kalisz
- W. K. Kellogg Biological Station Michigan State University Hickory Corners MI 49060
- Department of Botany and Plant Pathology and Department of Zoology Michigan State University East Lansing MI 48824
| |
Collapse
|
40
|
Stratton DA. GENOTYPE‐BY‐ENVIRONMENT INTERACTIONS FOR FITNESS OF
ERIGERON ANNUUS
SHOW FINE‐SCALE SELECTIVE HETEROGENEITY. Evolution 2017; 48:1607-1618. [DOI: 10.1111/j.1558-5646.1994.tb02199.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/1993] [Accepted: 01/21/1994] [Indexed: 11/29/2022]
Affiliation(s)
- Donald A. Stratton
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey 08544
| |
Collapse
|
41
|
Abstract
A cornerstone of evolutionary theory is that the phenotypic variance of a population may be partitioned into genetic and environmental (nonheritable) components. The traditional motivation for this distinction is that the rate of evolution under natural selection depends on the (relative) magnitudes of certain genetic components of variance. The components of variation are also interesting from another perspective, as illustrated here. Phenotypic variation may be selectively maintained in a population according to its components: selection may favor the maintenance of only the environmental components, only the genetic components, or be indifferent to the composition of the variance. Even when selection is shown to favor phenotypic variation regardless of its components, the possibility exists that environmental variance will evolve to displace the genetic components or vice versa. Environmental and genetic factors may thus compete to produce a given selected level of phenotypic variance. A test of some of these models is provided from the example of seed dormancy: the prediction that variation in seed germination time should be purely environmental is supported by the demonstration of low heritability of germination time in the two available studies.
Collapse
Affiliation(s)
- J J Bull
- Department of Zoology, University of Texas, Austin, TX, 78712
| |
Collapse
|
42
|
Brodie ED. CORRELATIONAL SELECTION FOR COLOR PATTERN AND ANTIPREDATOR BEHAVIOR IN THE GARTER SNAKETHAMNOPHIS ORDINOIDES. Evolution 2017; 46:1284-1298. [DOI: 10.1111/j.1558-5646.1992.tb01124.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1991] [Accepted: 02/22/1992] [Indexed: 11/26/2022]
Affiliation(s)
- Edmund D. Brodie
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
| |
Collapse
|
43
|
Argyres AZ, Schmitt J. MICROGEOGRAPHIC GENETIC STRUCTURE OF MORPHOLOGICAL AND LIFE HISTORY TRAITS IN A NATURAL POPULATION OF
IMPATIENS CAPENSIS. Evolution 2017; 45:178-189. [DOI: 10.1111/j.1558-5646.1991.tb05276.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1989] [Accepted: 05/18/1990] [Indexed: 11/29/2022]
Affiliation(s)
- Anneta Z. Argyres
- Graduate Program in Ecology and Evolutionary Biology Brown University Box G‐W301 Providence RI 02912 USA
| | - Johanna Schmitt
- Graduate Program in Ecology and Evolutionary Biology Brown University Box G‐W301 Providence RI 02912 USA
| |
Collapse
|
44
|
Anholt BR. MEASURING SELECTION ON A POPULATION OF DAMSELFLIES WITH A MANIPULATED PHENOTYPE. Evolution 2017; 45:1091-1106. [DOI: 10.1111/j.1558-5646.1991.tb04377.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1990] [Accepted: 12/05/1990] [Indexed: 11/27/2022]
Affiliation(s)
- Bradley R. Anholt
- Ecology Group, Department of Zoology; University of British Columbia; Vancouver BC V6T 2A9 CANADA
| |
Collapse
|
45
|
Stratton DA. LIFE‐CYCLE COMPONENTS OF SELECTION IN
ERIGERON ANNUUS
: II. GENETIC VARIATION. Evolution 2017; 46:107-120. [DOI: 10.1111/j.1558-5646.1992.tb01988.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1990] [Accepted: 06/28/1991] [Indexed: 11/26/2022]
Affiliation(s)
- Donald A. Stratton
- Department of Ecology and Evolution State University of New York Stony Brook NY 11794 USA
| |
Collapse
|
46
|
Scheiner SM. VARIABLE SELECTION ALONG A SUCCESSIONAL GRADIENT. Evolution 2017; 43:548-562. [DOI: 10.1111/j.1558-5646.1989.tb04251.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1987] [Accepted: 10/16/1988] [Indexed: 11/30/2022]
Affiliation(s)
- Samuel M. Scheiner
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115
| |
Collapse
|
47
|
Thiede DA. MATERNAL INHERITANCE AND ITS EFFECT ON ADAPTIVE EVOLUTION: A QUANTITATIVE GENETIC ANALYSIS OF MATERNAL EFFECTS IN A NATURAL PLANT POPULATION. Evolution 2017; 52:998-1015. [PMID: 28565233 DOI: 10.1111/j.1558-5646.1998.tb01829.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1997] [Accepted: 04/08/1998] [Indexed: 11/28/2022]
Abstract
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive (σAo2) and environmental (σEo2) variances; maternal additive (σAm2) and environmental (σEm2) variances; and the direct-maternal additive (σApAm) and environmental (σEm2) covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial σAm2, a negative σAoAm, and a positive σEoEm. Subsequently, cotyledon diameter displays σAo2 and σAm2 of roughly the same magnitude and negative σAoAm. For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant σAo2 and σAm2 and a negative σAoAm. All maternally inherited traits show significant negative σAoAm. Predicted response to selection under maternal inheritance depends on σAo2 and σAm2 as well as σAoAm. Negative σAoAm results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.
Collapse
Affiliation(s)
- Denise A Thiede
- W. K. Kellogg Biological Station and Department of Botany and Plant Pathology, Michigan State University, Hickory Corners, Michigan, 49060
| |
Collapse
|
48
|
Sinervo B, Doughty P. INTERACTIVE EFFECTS OF OFFSPRING SIZE AND TIMING OF REPRODUCTION ON OFFSPRING REPRODUCTION: EXPERIMENTAL, MATERNAL, AND QUANTITATIVE GENETIC ASPECTS. Evolution 2017; 50:1314-1327. [PMID: 28565283 DOI: 10.1111/j.1558-5646.1996.tb02371.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1994] [Accepted: 08/04/1995] [Indexed: 11/30/2022]
Abstract
We demonstrate that egg size in side-blotched lizards is heritable (parent-offspring regressions) and thus will respond to natural selection. Because our estimate of heritability is derived from free-ranging lizards, it is useful for predicting evolutionary response to selection in wild populations. Moreover, our estimate for the heritability of egg size is not likely to be confounded by nongenetic maternal effects that might arise from egg size per se because we estimate a significant parent-offspring correlation for egg size in the face of dramatic experimental manipulation of yolk volume of the egg. Furthermore, we also demonstrate a significant correlation between egg size of the female parent and clutch size of her offspring. Because this correlation is not related to experimentally induced maternal effects, we suggest that it is indicative of a genetic correlation between egg size and clutch size. We synthesize our results from genetic analyses of the trade-off between egg size and clutch size with previously published experiments that document the mechanistic basis of this trade-off. Experimental manipulation of yolk volume has no effect on offspring reproductive traits such as egg size, clutch size, size at maturity, or oviposition date. However, egg size was related to offspring survival during adult phases of the life history. We partitioned survival of offspring during the adult phase of the life history into (1) survival of offspring from winter emergence to the production of the first clutch (i.e., the vitellogenic phase of the first clutch), and (2) survival of the offspring from the production of the first clutch to the end of the reproductive season. Offspring from the first clutch of the reproductive season in the previous year had higher survival during vitellogenesis of their first clutch if these offspring came from small eggs. We did not observe selection during these prelaying phases of adulthood for offspring from later clutches. However, we did find that later clutch offspring from large eggs had the highest survival over the first season of reproduction. The differences in selection on adult survival arising from maternal effects would reinforce previously documented selection that favors the production of small offspring early in the season and large offspring later in the season-a seasonal shift in maternal provisioning. We also report on a significant parent-offspring correlation in lay date and thus significant heritable variation in lay date. We can rule out the possibility of yolk volume as a confounding maternal effect-experimental manipulation of yolk volume has no effect on lay date of offspring. However, we cannot distinguish between genetic effects (i.e., heritable) and nongenetic maternal effects acting on lay date that arise from the maternal trait lay date per se (or other unidentified maternal traits). Nevertheless, we demonstrate how the timing of female reproduction (e.g., date of oviposition and date of hatching) affect reproductive attributes of offspring. Notably, we find that date of hatching has effects on body size at maturity and fecundity of offspring from later clutches. We did not detect comparable effects of lay date on offspring from the first clutch.
Collapse
Affiliation(s)
- Barry Sinervo
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Paul Doughty
- Graduate Program in Ethology, University of Tennessee, Knoxville, Tennessee, 37996-0900
| |
Collapse
|
49
|
Koenig WD, Albano SS. LIFETIME REPRODUCTIVE SUCCESS, SELECTION, AND THE OPPORTUNITY FOR SELECTION IN THE WHITE-TAILED SKIMMER PLATHEMIS LYDIA
(ODONATA: LIBELLULIDAE). Evolution 2017; 41:22-36. [DOI: 10.1111/j.1558-5646.1987.tb05768.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1985] [Revised: 12/16/1985] [Accepted: 09/23/1986] [Indexed: 11/29/2022]
Affiliation(s)
- Walter D. Koenig
- Hastings Reservation and Museum of Vertebrate Zoology; University of California; Carmel Valley CA 93924
| | - Stephen S. Albano
- Moore Laboratory of Zoology; Occidental College; Los Angeles CA 90041
| |
Collapse
|
50
|
Fleming IA, Gross MR. BREEDING COMPETITION IN A PACIFIC SALMON (COHO: ONCORHYNCHUS KISUTCH): MEASURES OF NATURAL AND SEXUAL SELECTION. Evolution 2017; 48:637-657. [PMID: 28568247 DOI: 10.1111/j.1558-5646.1994.tb01350.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1992] [Accepted: 09/07/1993] [Indexed: 10/19/2022]
Abstract
In the breeding system of Pacific salmon, females compete for oviposition territories, and males compete to fertilize eggs. The natural selection in females and sexual selection in males likely has been responsible for their elaborate breeding morphologies and the dimorphism between the sexes. We quantified direct-selection intensities during breeding on mature coho salmon (Oncorhynchus kisutch), measured for seven phenotypic characters, including three secondary sexual characters. Wild and sea-ranched hatchery coho were used to enhance the range of phenotypes over which selection could be examined. The fish were allowed to breed in experimental arenas where we could quantify components of breeding success as well as estimate overall breeding success. We found that without competition, natural selection acts only on female body size for increased egg production; there is no detectable selection on males for the phenotypic distribution we used. Under competition, the opportunity for selection increased sixfold among females. Natural selection favored female body size and caudal-peduncle (tail) depth. Increased body size meant increased egg production and access to nesting territories. The caudal peduncle, used in burst swimming and nest digging, influenced both successful egg deposition and nest survival. Increasing density increased competition among females, though it did not significantly intensify natural selection on their characters. In males, competition increased the opportunity for selection 52-fold, which was nine times greater than for females. Sexual selection favored male body size and hooked snout length, both characters directly influencing male access to spawning opportunities. Selection on male body size was also affected significantly by breeding density. The ability of large males to control access to spawning females decreased at higher densities reflecting an increase in the operational sex ratio. Further, the relative success of small males, which could sneak access to spawning females, appeared to increase as that of intermediate-sized males decreased. Such disruptive selection may be responsible for the evolution of alternative reproductive tactics in salmon.
Collapse
Affiliation(s)
- Ian A Fleming
- Department of Zoology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Mart R Gross
- Department of Zoology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| |
Collapse
|