1
|
Liow LH, Porto A, Di Martino E. Trait-Fitness Associations via Fecundity and Competition in a Two-Million-Year-Long Fossil Record. Am Nat 2024; 204:258-273. [PMID: 39179234 DOI: 10.1086/731332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractThe evolution of phenotypic traits is usually studied on generational timescales or across species on million-year timescales. We bridge this conceptual gap by using high-density sampling of a species lineage, Microporella agonistes (Bryozoa, Cheilostomatida), over 2 million years of its evolutionary history, to ask whether trait-fitness associations are consistent with evolutionary trait models often applied to phenotypic time series. We use average fecundity and competitive outcome as two different fitness components, where competitive outcome is a proxy for partial survival. Examining three quantitative traits in multivariate analyses, we present evidence that some traits experienced substantial selective pressures, in part controlled by past environments. A complex interplay of resource competition with an altering set of competitors and past temperatures has contributed to the changing patterns of phenotypes within the focal species. A comparison with congeneric species living in the same regional community suggests that size traits are more temporally variable and less constrained than shape traits. Our analyses also show that while controls on phenotypes are complex and varied in time, ecological and evolutionary processes that unfold on shorter timescales are not inconsistent with macroevolutionary patterns observed on longer timescales.
Collapse
|
2
|
Wilson CJ, Reitan T, Liow LH. Unveiling the underlying drivers of Phanerozoic marine diversification. Proc Biol Sci 2024; 291:20240165. [PMID: 38889777 DOI: 10.1098/rspb.2024.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 06/20/2024] Open
Abstract
In investigating global patterns of biodiversity through deep time, many large-scale drivers of diversification have been proposed, both biotic and abiotic. However, few robust conclusions about these hypothesized effectors or their roles have been drawn. Here, we use a linear stochastic differential equation (SDE) framework to test for the presence of underlying drivers of diversification patterns before examining specific hypothesized drivers. Using a global dataset of observations of skeletonized marine fossils, we infer origination, extinction and sampling rates (collectively called fossil time series) throughout the Phanerozoic using a capture-mark-recapture approach. Using linear SDEs, we then compare models including and excluding hidden (i.e. unmeasured) drivers of these fossil time series. We find evidence of large-scale underlying drivers of marine Phanerozoic diversification rates and present quantitative characterizations of these. We then test whether changing global temperature, sea-level, marine sediment area or continental fragmentation could act as drivers of the fossil time series. We show that it is unlikely any of these four abiotic factors are the hidden drivers we identified, though there is evidence for correlative links between sediment area and origination/extinction rates. Our characterization of the hidden drivers of Phanerozoic diversification and sampling will aid in the search for their ultimate identities.
Collapse
Affiliation(s)
- Connor J Wilson
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Trond Reitan
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Centre for Planetary Habitability, Department of Geosciences, University of Oslo, 0562 Oslo, Norway
| | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Centre for Planetary Habitability, Department of Geosciences, University of Oslo, 0562 Oslo, Norway
| |
Collapse
|
3
|
Siddiqui R, Swank S, Ozark A, Joaquin F, Travis MP, McMahan CD, Bell MA, Stuart YE. Inferring the evolution of reproductive isolation in a lineage of fossil threespine stickleback, Gasterosteus doryssus. Proc Biol Sci 2024; 291:20240337. [PMID: 38628124 PMCID: PMC11021931 DOI: 10.1098/rspb.2024.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions. Observing such divergence, however, could illustrate the tempo and mode of evolution during early speciation. Here, we investigate peripatric divergence in a Miocene stickleback fish, Gasterosteus doryssus. This lineage appeared and, over approximately 8000 generations, evolved significant reduction of 12 of 16 traits related to armour, swimming and diet, relative to its ancestral population. This was greater morphological divergence than we observed between reproductively isolated, benthic-limnetic ecotypes of extant Gasterosteus aculeatus. Therefore, we infer that reproductive isolation was evolving. However, local extinction of G. doryssus lineages shows how young, isolated, speciating populations often disappear, supporting Darwin's explanation for missing evidence and revealing a mechanism behind morphological stasis. Extinction may also account for limited sustained divergence within the stickleback species complex and help reconcile speciation rate variation observed across time scales.
Collapse
Affiliation(s)
- Raheyma Siddiqui
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samantha Swank
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Allison Ozark
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Franklin Joaquin
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Matthew P. Travis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Michael A. Bell
- University of California Museum of Paleontology, Berkeley, CA, USA
| | - Yoel E. Stuart
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Caetano DS, Quental TB. How Important Is Budding Speciation for Comparative Studies? Syst Biol 2023; 72:1443-1453. [PMID: 37586404 DOI: 10.1093/sysbio/syad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
The acknowledgment of evolutionary dependence among species has fundamentally changed how we ask biological questions. Phylogenetic models became the standard approach for studies with 3 or more lineages, in particular those using extant species. Most phylogenetic comparative methods (PCMs) translate relatedness into covariance, meaning that evolutionary changes before lineages split should be interpreted together whereas after the split lineages are expected to change independently. This clever realization has shaped decades of research. Here, we discuss one element of the comparative method often ignored or assumed as unimportant: if nodes of a phylogeny represent the dissolution of the ancestral lineage into two new ones or if the ancestral lineage can survive speciation events (i.e., budding). Budding speciation is often reported in paleontological studies, due to the nature of the evidence for budding in the fossil record, but it is surprisingly absent in comparative methods. Here, we show that many PCMs assume that divergence happens as a symmetric split, even if these methods do not explicitly mention this assumption. We discuss the properties of trait evolution models for continuous and discrete traits and their adequacy under a scenario of budding speciation. We discuss the effects of budding speciation under a series of plausible evolutionary scenarios and show when and how these can influence our estimates. We also propose that long-lived lineages that have survived through a series of budding speciation events and given birth to multiple new lineages can produce evolutionary patterns that challenge our intuition about the most parsimonious history of trait changes in a clade. We hope our discussion can help bridge comparative approaches in paleontology and neontology as well as foster awareness about the assumptions we make when we use phylogenetic trees.
Collapse
Affiliation(s)
- Daniel S Caetano
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA
- Department of Ecology, University of São Paulo, Rua do Matão, 321 - Trav. 14, São Paulo, SP, 05508-090, Brazil
| | - Tiago B Quental
- Department of Ecology, University of São Paulo, Rua do Matão, 321 - Trav. 14, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
5
|
Voje KL. Fitting and evaluating univariate and multivariate models of within-lineage evolution. PALEOBIOLOGY 2023; 49:747-764. [PMID: 37859727 PMCID: PMC7615219 DOI: 10.1017/pab.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The nature of phenotypic evolution within lineages is central to many unresolved questions in paleontology and evolutionary biology. Analyses of evolutionary time-series of ancestor-descendant populations in the fossil record are likely to make important contributions to many of these debates. However, the limited number of models that have been applied to these types of data may restrict our ability to interpret phenotypic evolution in the fossil record. Using uni- and multivariate models of trait evolution that make different assumptions regarding the dynamics of the adaptive landscape, I evaluate contrasting hypotheses to explain evolution of size in the radiolarian Eucyrtidium calvertense and armor in the stickleback Gaserosteus doryssus. Body size evolution in E. calvertense is best explained by a model where the lineage evolves as a consequence of a shift in the adaptive landscape that coincides with the initiation of neosympatry with its sister lineage. Multivariate evolution of armor traits in a stickleback lineage (Gasterosteus doryssus) show evidence of adaptation towards independent optima on the adaptive landscape at the same time as traits change in a correlated fashion. The fitted models are available in a the R package evoTS, which builds on the commonly used paleoTS framework.
Collapse
|
6
|
Cerasoni JN, O'Toole MC, Patel R, Stuart YE. Miocene phytolith and diatom dataset from 10.3Myo diatomite formation, Fernley, Nevada, USA. Data Brief 2023; 50:109519. [PMID: 37663765 PMCID: PMC10474315 DOI: 10.1016/j.dib.2023.109519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Phytoliths are opal silica particles formed within plant tissues. Diatoms are aquatic, single-celled photosynthetic algae with silica skeletons. Phytolith and diatom morphotypes vary depending on local environmental and climatic conditions and because their silicate structures preserve well, the study of phytolith and diatom morphotypes can be used to better understand paleoclimatic and paleoenvironmental dynamics and changes. This article presents original data from an 820cm-deep stratigraphy excavated at the Hazen diatomite deposits, a high-elevation desert paleolake in the Fernley District, Northern Nevada, USA. The site has been studied for an assemblage of fossilized threespine stickleback, Gasterosteus doryssus, that reveal adaptive evolution. For this study, a total of 157 samples were extracted at 20 cm intervals covering approximately 24,500 years. After extraction, the samples were mounted on slides and viewed under 400-1000x light microscopy, enabling classification of 14 phytolith and 45 diatom morphotypes. Our data support paleoenvironmental reconstructions of the Hazen Miocene paleolake.
Collapse
Affiliation(s)
- Jacopo Niccolò Cerasoni
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd., Chicago, IL 60626, USA
| | - Megan C. O'Toole
- Department of Chemistry, Loyola University Chicago, 1068 W. Sheridan Rd. Chicago, IL 60626, USA
| | - Richa Patel
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd., Chicago, IL 60626, USA
| | - Yoel E. Stuart
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd., Chicago, IL 60626, USA
| |
Collapse
|
7
|
Grabowski M, Pienaar J, Voje KL, Andersson S, Fuentes-González J, Kopperud BT, Moen DS, Tsuboi M, Uyeda J, Hansen TF. A Cautionary Note on "A Cautionary Note on the Use of Ornstein Uhlenbeck Models in Macroevolutionary Studies". Syst Biol 2023; 72:955-963. [PMID: 37229537 PMCID: PMC10405355 DOI: 10.1093/sysbio/syad012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/08/2023] [Accepted: 03/16/2023] [Indexed: 05/27/2023] Open
Abstract
Models based on the Ornstein-Uhlenbeck process have become standard for the comparative study of adaptation. Cooper et al. (2016) have cast doubt on this practice by claiming statistical problems with fitting Ornstein-Uhlenbeck models to comparative data. Specifically, they claim that statistical tests of Brownian motion may have too high Type I error rates and that such error rates are exacerbated by measurement error. In this note, we argue that these results have little relevance to the estimation of adaptation with Ornstein-Uhlenbeck models for three reasons. First, we point out that Cooper et al. (2016) did not consider the detection of distinct optima (e.g. for different environments), and therefore did not evaluate the standard test for adaptation. Second, we show that consideration of parameter estimates, and not just statistical significance, will usually lead to correct inferences about evolutionary dynamics. Third, we show that bias due to measurement error can be corrected for by standard methods. We conclude that Cooper et al. (2016) have not identified any statistical problems specific to Ornstein-Uhlenbeck models, and that their cautions against their use in comparative analyses are unfounded and misleading. [adaptation, Ornstein-Uhlenbeck model, phylogenetic comparative method.].
Collapse
Affiliation(s)
- Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Jason Pienaar
- Department of Biological Sciences and the Institutes of Environment, Florida International University Miami, Miami, FL, USA
| | - Kjetil L Voje
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Staffan Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Jesualdo Fuentes-González
- Department of Biological Sciences and the Institutes of Environment, Florida International University Miami, Miami, FL, USA
| | - Bjørn T Kopperud
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Josef Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Thomas F Hansen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Liow LH, Uyeda J, Hunt G. Cross-disciplinary information for understanding macroevolution. Trends Ecol Evol 2023; 38:250-260. [PMID: 36456381 DOI: 10.1016/j.tree.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Many different macroevolutionary models can produce the same observations. Despite efforts in building more complex and realistic models, it may still be difficult to distinguish the processes that have generated the biodiversity we observe. In this opinion we argue that we can make new progress by reaching out across disciplines, relying on independent data and theory to constrain macroevolutionary inference. Using mainly paleontological insights and data, we illustrate how we can eliminate less plausible or implausible models, and/or parts of parameter space, while applying comparative phylogenetic approaches. We emphasize that such cross-disciplinary insights and data can be drawn between many other disciplines relevant to macroevolution. We urge cross-disciplinary training, and collaboration using common-use databases as a platform for increasing our understanding.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo 0562, Norway.
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Gene Hunt
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
9
|
Gao Y, Wu M. Microbial genomic trait evolution is dominated by frequent and rare pulsed evolution. SCIENCE ADVANCES 2022; 8:eabn1916. [PMID: 35857501 PMCID: PMC9286504 DOI: 10.1126/sciadv.abn1916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
On the macroevolutionary time scale, does trait evolution proceed gradually or by rapid bursts (pulses) separated by prolonged periods of stasis or slow evolution? Although studies have shown that pulsed evolution is prevalent in animals, our knowledge about the tempo and mode of evolution across the tree of life is very limited. This long-standing debate calls for a test in bacteria and archaea, the most ancient and diverse forms of life with unique population genetic properties. Using a likelihood-based framework, we show that pulsed evolution is not only present but also prevalent and predominant in microbial genomic trait evolution. We detected two distinct types of pulsed evolution (small frequent and large rare jumps) that are predicted by the punctuated equilibrium and quantum evolution theories. Our findings suggest that major bacterial lineages could have originated in quick bursts and that pulsed evolution is a common theme across the tree of life.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| |
Collapse
|
10
|
Voje KL, Bell MA, Stuart YE. Evolution of static allometry and constraint on evolutionary allometry in a fossil stickleback. J Evol Biol 2022; 35:423-438. [PMID: 35073436 PMCID: PMC9303703 DOI: 10.1111/jeb.13984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Allometric scaling describes the relationship of trait size to body size within and among taxa. The slope of the population-level regression of trait size against body size (i.e. static allometry) is typically invariant among closely related populations and species. Such invariance is commonly interpreted to reflect a combination of developmental and selective constraints that delimit a phenotypic space into which evolution could proceed most easily. Thus, understanding how allometric relationships do eventually evolve is important to understanding phenotypic diversification. In a lineage of fossil Threespine Stickleback (Gasterosteus doryssus), we investigated the evolvability of static allometric slopes for nine traits (five armour and four non-armour) that evolved significant trait differences across 10 samples over 8500 years. The armour traits showed weak static allometric relationships and a mismatch between those slopes and observed evolution. This suggests that observed evolution in these traits was not constrained by relationships with body size, perhaps because prior, repeated adaptation to freshwater habitats by Threespine Stickleback had generated strong selection to break constraint. In contrast, for non-armour traits, we found stronger allometric relationships. Those allometric slopes did evolve on short time scales. However, those changes were small and fluctuating and the slopes remained strong predictors of the evolutionary trajectory of trait means over time (i.e. evolutionary allometry), supporting the hypothesis of allometry as constraint.
Collapse
Affiliation(s)
| | - Michael A. Bell
- University of California Museum of PaleontologyBerkeleyCaliforniaUSA
| | - Yoel E. Stuart
- Department of BiologyLoyola University ChicagoChicagoIllinoisUSA
| |
Collapse
|
11
|
Inferred genetic architecture underlying evolution in a fossil stickleback lineage. Nat Ecol Evol 2020; 4:1549-1557. [PMID: 32839544 DOI: 10.1038/s41559-020-01287-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022]
Abstract
Inferring the genetic architecture of evolution in the fossil record is difficult because genetic crosses are impossible, the acquisition of DNA is usually impossible and phenotype-genotype maps are rarely obvious. However, such inference is valuable because it reveals the genetic basis of microevolutionary change across many more generations than is possible in studies of extant taxa, thereby integrating microevolutionary process and macroevolutionary pattern. Here, we infer the genetic basis of pelvic skeleton reduction in Gasterosteus doryssus, a Miocene stickleback fish from a finely resolved stratigraphic sequence that spans nearly 17,000 years. Reduction in pelvic score, a categorical measure of pelvic structure, resulted primarily from reciprocal frequency changes of two discrete phenotypic classes. Pelvic vestiges also showed left-side larger asymmetry. These patterns implicate Pitx1, a large-effect gene whose deletion generates left-side larger asymmetry of pelvic vestiges in extant, closely related Gasterosteus aculeatus. In contrast, reductions in the length of the pelvic girdle and pelvic spines resulted from directional shifts of unimodal, continuous trait distributions, suggesting an additional suite of genes with minor, additive pelvic effects, again like G. aculeatus. Similar genetic architectures explain shared but phyletically independent patterns across 10 million years of stickleback evolution.
Collapse
|
12
|
Barua A, Mikheyev AS. Toxin expression in snake venom evolves rapidly with constant shifts in evolutionary rates. Proc Biol Sci 2020; 287:20200613. [PMID: 32345154 PMCID: PMC7282918 DOI: 10.1098/rspb.2020.0613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Key innovations provide ecological opportunity by enabling access to new resources, colonization of new environments, and are associated with adaptive radiation. The most well-known pattern associated with adaptive radiation is an early burst of phenotypic diversification. Venoms facilitate prey capture and are widely believed to be key innovations leading to adaptive radiation. However, few studies have estimated their evolutionary rate dynamics. Here, we test for patterns of adaptive evolution in venom gene expression data from 52 venomous snake species. By identifying shifts in tempo and mode of evolution along with models of phenotypic evolution, we show that snake venom exhibits the macroevolutionary dynamics expected of key innovations. Namely, all toxin families undergo shifts in their rates of evolution, likely in response to changes in adaptive optima. Furthermore, we show that rapid-pulsed evolution modelled as a Lévy process better fits snake venom evolution than conventional early burst or Ornstein-Uhlenbeck models. While our results support the idea of snake venom being a key innovation, the innovation of venom chemistry lacks clear mechanisms that would lead to reproductive isolation and thus adaptive radiation. Therefore, the extent to which venom directly influences the diversification process is still a matter of contention.
Collapse
Affiliation(s)
- Agneesh Barua
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
| | - Alexander S. Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
- Evolutionary genomics group, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
13
|
Abstract
Threespine stickleback populations provide a striking example of local adaptation to divergent habitats in populations that are connected by recurrent gene flow. These small fish occur in marine and freshwater habitats throughout the Northern Hemisphere, and in numerous cases the smaller freshwater populations have been established “de novo” from marine colonists. Independently evolved freshwater populations exhibit similar phenotypes that have been shown to derive largely from the same standing genetic variants. Geographic isolation prevents direct migration between the freshwater populations, strongly suggesting that these shared locally adaptive alleles are transported through the marine population. However it is still largely unknown how gene flow, recombination, and selection jointly impact the standing variation that might fuel this adaptation. Here we use individual-based, spatially explicit simulations to determine the levels of gene flow that best match observed patterns of allele sharing among habitats in stickleback. We aim to better understand how gene flow and local adaptation in large metapopulations determine the speed of adaptation and re-use of standing genetic variation. In our simulations we find that repeated adaptation uses a shared set of alleles that are maintained at low frequency by migration-selection balance in oceanic populations. This process occurs over a realistic range of intermediate levels of gene flow that match previous empirical population genomic studies in stickleback. Examining these simulations more deeply reveals how lower levels of gene flow leads to slow, independent adaptation to different habitats, whereas higher levels of gene flow leads to significant mutation load – but an increased probability of successful population genomic scans for locally adapted alleles. Surprisingly, we find that the genealogical origins of most freshwater adapted alleles can be traced back to the original generation of marine individuals that colonized the lakes, as opposed to subsequent migrants. These simulations provide deeper context for existing studies of stickleback evolutionary genomics, and guidance for future empirical studies in this model. More broadly, our results support existing theory of local adaptation but extend it by more completely documenting the genealogical history of adaptive alleles in a metapopulation.
Collapse
|
14
|
Stroud JT, Losos JB. Bridging the Process-Pattern Divide to Understand the Origins and Early Stages of Adaptive Radiation: A Review of Approaches With Insights From Studies of Anolis Lizards. J Hered 2019; 111:33-42. [DOI: 10.1093/jhered/esz055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractUnderstanding the origins and early stages of diversification is one of the most elusive tasks in adaptive radiation research. Classical approaches, which aim to infer past processes from present-day patterns of biological diversity, are fraught with difficulties and assumptions. An alternative approach has been to study young clades of relatively few species, which may represent the putative early stages of adaptive radiation. However, it is difficult to predict whether those groups will ever reach the ecological and morphological disparity observed in the sorts of clades usually referred to as adaptive radiations, thereby making their utility in informing the early stages of such radiations uncertain. Caribbean Anolis lizards are a textbook example of an adaptive radiation; anoles have diversified independently on each of the 4 islands in the Greater Antilles, producing replicated radiations of phenotypically diverse species. However, the underlying processes that drove these radiations occurred 30–65 million years ago and so are unobservable, rendering major questions about how these radiations came to be difficult to tackle. What did the ancestral species of the anole radiation look like? How did new species arise? What processes drove adaptive diversification? Here, we review what we have learned about the cryptic early stages of adaptive radiation from studies of Anolis lizards, and how these studies have attempted to bridge the process-pattern divide of adaptive radiation research. Despite decades of research, however, fundamental questions linking eco-evolutionary processes to macroevolutionary patterns in anoles remain difficult to answer.
Collapse
Affiliation(s)
- James T Stroud
- Department of Biology and Living Earth Collaborative, Washington University, St. Louis, MO
| | - Jonathan B Losos
- Department of Biology and Living Earth Collaborative, Washington University, St. Louis, MO
| |
Collapse
|
15
|
Cerca J, Meyer C, Stateczny D, Siemon D, Wegbrod J, Purschke G, Dimitrov D, Struck TH. Deceleration of morphological evolution in a cryptic species complex and its link to paleontological stasis. Evolution 2019; 74:116-131. [DOI: 10.1111/evo.13884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Affiliation(s)
- José Cerca
- Frontiers of Evolutionary Zoology Research Group, Natural History MuseumUniversity of Oslo Oslo 0562 Norway
| | - Christian Meyer
- Faculty of Biology and Chemistry, Department of Zoology and Developmental BiologyUniversity of Osnabrueck 49069 Osnabrueck Germany
| | - Dave Stateczny
- Faculty of Biology and Chemistry, Department of Zoology and Developmental BiologyUniversity of Osnabrueck 49069 Osnabrueck Germany
- Zoological Research Museum Alexander Koenig 53113 Bonn Germany
| | - Dominik Siemon
- Zoological Research Museum Alexander Koenig 53113 Bonn Germany
| | - Jana Wegbrod
- Zoological Research Museum Alexander Koenig 53113 Bonn Germany
| | - Gunter Purschke
- Faculty of Biology and Chemistry, Department of Zoology and Developmental BiologyUniversity of Osnabrueck 49069 Osnabrueck Germany
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of BergenUniversity of Bergen 5020 Bergen Norway
| | - Torsten H. Struck
- Frontiers of Evolutionary Zoology Research Group, Natural History MuseumUniversity of Oslo Oslo 0562 Norway
| |
Collapse
|
16
|
MARTIN CHRISTOPHERH, RICHARDS EMILIEJ. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:569-593. [PMID: 36237480 PMCID: PMC9555815 DOI: 10.1146/annurev-ecolsys-110617-062443] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes - species richness, phenotypic disparity, and ecological diversity - with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the 'transporter' hypothesis: introgression and the ancient origins of adaptive alleles, 2) the 'signal complexity' hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) 'diversity begets diversity', and 5) flexible stem/'plasticity first'. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation.
Collapse
Affiliation(s)
- CHRISTOPHER H. MARTIN
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - EMILIE J. RICHARDS
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
Jackson ISC. Developmental bias in the fossil record. Evol Dev 2019; 22:88-102. [PMID: 31475437 DOI: 10.1111/ede.12312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
The role of developmental bias and plasticity in evolution is a central research interest in evolutionary biology. Studies of these concepts and related processes are usually conducted on extant systems and have seen limited investigation in the fossil record. Here, I identify plasticity-led evolution (PLE) as a form of developmental bias accessible through scrutiny of paleontological material. I summarize the process of PLE and describe it in terms of the environmentally mediated accumulation and release of cryptic genetic variation. Given this structure, I then predict its manifestation in the fossil record, discuss its similarity to quantum evolution and punctuated equilibrium, and argue that these describe macroevolutionary patterns concordant with PLE. Finally, I suggest methods and directions towards providing evidence of PLE in the fossil record and conclude that such endeavors are likely to be highly rewarding.
Collapse
|
18
|
Liow LH, Taylor PD. Cope's Rule in a modular organism: Directional evolution without an overarching macroevolutionary trend. Evolution 2019; 73:1863-1872. [PMID: 31301184 PMCID: PMC6771556 DOI: 10.1111/evo.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/29/2022]
Abstract
Cope's Rule describes increasing body size in evolutionary lineages through geological time. This pattern has been documented in unitary organisms but does it also apply to module size in colonial organisms? We address this question using 1169 cheilostome bryozoans ranging through the entire 150 million years of their evolutionary history. The temporal pattern evident in cheilostomes as a whole shows no overall change in zooid (module) size. However, individual subclades show size increases: within a genus, younger species often have larger zooids than older species. Analyses of (paleo)latitudinal shifts show that this pattern cannot be explained by latitudinal effects (Bergmann's Rule) coupled with younger species occupying higher latitudes than older species (an "out of the tropics" hypothesis). While it is plausible that size increase was linked to the advantages of large zooids in feeding, competition for trophic resources and living space, other proposed mechanisms for Cope's Rule in unitary organisms are either inapplicable to cheilostome zooid size or cannot be evaluated. Patterns and mechanisms in colonial organisms cannot and should not be extrapolated from the better-studied unitary organisms. And even if macroevolution simply comprises repeated rounds of microevolution, evolutionary processes occurring within lineages are not always detectable from macroevolutionary patterns.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History MuseumUniversity of OsloOsloNorway
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | |
Collapse
|
19
|
Voje KL. Testing eco-evolutionary predictions using fossil data: Phyletic evolution following ecological opportunity. Evolution 2019; 74:188-200. [PMID: 31461158 DOI: 10.1111/evo.13838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Fossil sequences provide observations of phenotypes within a lineage over time and represent essential data for increasing our understanding of phyletic evolution beyond microevolutionary timescales. I investigate if fossil time series of the diatom Stephanodiscus niagarae/yellowstonensis follow evolutionary dynamics compatible with hypotheses for how the adaptive landscape changes when a population enters a new environment. The lineage-which has a remarkably detailed stratigraphic record-invaded Yellowstone Lake immediately after recession of ice from the basin 14,000 years ago. Several phyletic models portraying different types of evolutionary dynamics-both compatible and not compatible with changes in the adaptive landscape following ecological opportunity-were fitted to the fossil times-series of S. niagarae/yellowstonensis. Different models best describe the three analyzed traits. Two of the models (a new model of decelerated evolution and an Ornstein-Uhlenbeck model) capture trait dynamics compatible with an event of ecological opportunity, whereas the third model (random walk) does not. Entering a new environment may accordingly affect trait dynamics for thousands of years, but the effects can vary across phenotypes. However, tests of model adequacy reveal shortcomings in all three models explaining the trait dynamics, suggesting model development is needed to more fully understand the phyletic evolution in S. niagarae/yellowstonensis.
Collapse
Affiliation(s)
- Kjetil Lysne Voje
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Xie KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE, MacColl ADC, Schluter D, Bell MA, Vasquez KM, Kingsley DM. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 2019; 363:81-84. [PMID: 30606845 PMCID: PMC6677656 DOI: 10.1126/science.aan1425] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/18/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
Abstract
Evolution generates a remarkable breadth of living forms, but many traits evolve repeatedly, by mechanisms that are still poorly understood. A classic example of repeated evolution is the loss of pelvic hindfins in stickleback fish (Gasterosteus aculeatus). Repeated pelvic loss maps to recurrent deletions of a pelvic enhancer of the Pitx1 gene. Here, we identify molecular features contributing to these recurrent deletions. Pitx1 enhancer sequences form alternative DNA structures in vitro and increase double-strand breaks and deletions in vivo. Enhancer mutability depends on DNA replication direction and is caused by TG-dinucleotide repeats. Modeling shows that elevated mutation rates can influence evolution under demographic conditions relevant for sticklebacks and humans. DNA fragility may thus help explain why the same loci are often used repeatedly during parallel adaptive evolution.
Collapse
Affiliation(s)
- Kathleen T Xie
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Abbey C Thompson
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael A Bell
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
Affiliation(s)
- Kjetil Lysne Voje
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of Oslo Oslo Norway
- Department of Earth SciencesUppsala University Uppsala Sweden
| |
Collapse
|
22
|
Sætre CLC, Coleiro C, Austad M, Gauci M, Sætre GP, Voje KL, Eroukhmanoff F. Reply to 'Inconclusive evidence for rapid adaptive evolution'. Nat Commun 2018; 9:2664. [PMID: 29991749 PMCID: PMC6039529 DOI: 10.1038/s41467-018-05120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/11/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Camilla Lo Cascio Sætre
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Charles Coleiro
- BirdLife Malta, Xemxija Waterfront Apartments, Flat ½, Triq Is-Simar, Xemxija, SPB 9025, Malta
| | - Martin Austad
- BirdLife Malta, Xemxija Waterfront Apartments, Flat ½, Triq Is-Simar, Xemxija, SPB 9025, Malta
| | - Mark Gauci
- BirdLife Malta, Xemxija Waterfront Apartments, Flat ½, Triq Is-Simar, Xemxija, SPB 9025, Malta
| | - Glenn-Peter Sætre
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Kjetil Lysne Voje
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316, Oslo, Norway.
| |
Collapse
|
23
|
McEntee JP, Tobias JA, Sheard C, Burleigh JG. Tempo and timing of ecological trait divergence in bird speciation. Nat Ecol Evol 2018; 2:1120-1127. [DOI: 10.1038/s41559-018-0570-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/02/2018] [Indexed: 01/23/2023]
|
24
|
Webster M. Morphological homeostasis in the fossil record. Semin Cell Dev Biol 2018; 88:91-104. [PMID: 29787861 DOI: 10.1016/j.semcdb.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/31/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Morphological homeostasis limits the extent to which genetic and/or environmental variation is translated into phenotypic variation, providing generation-to-generation fitness advantage under a stabilizing selection regime. Depending on its lability, morphological homeostasis might also have a longer-term impact on evolution by restricting the variation-and thus the response to directional selection-of a trait. The fossil record offers an inviting opportunity to investigate whether and how morphological homeostasis constrained trait evolution in lineages or clades on long timescales (thousands to millions of years) that are not accessible to neontological studies. Fossils can also reveal insight into the nature of primitive developmental systems that might not be predictable from the study of modern organisms. The ability to study morphological homeostasis in fossils is strongly limited by taphonomic processes that can destroy, blur, or distort the original biological signal: genetic data are unavailable; phenotypic data can be modified by tectonic or compaction-related deformation; time-averaging limits temporal resolution; and environmental variation is hard to study and impossible to control. As a result of these processes, neither allelic sensitivity (and thus genetic canalization) nor macroenvironmental sensitivity (and thus environmental canalization) can be unambiguously assessed in the fossil record. However, homeorhesis-robustness against microenvironmental variation (developmental noise)-can be assessed in ancient developmental systems by measuring the level of fluctuating asymmetry (FA) in a nominally symmetric trait. This requires the analysis of multiple, minimally time-averaged samples of exquisite preservational quality. Studies of FA in fossils stand to make valuable contributions to our understanding of the deep-time significance of homeorhesis. Few empirical studies have been conducted to date, and future paleontological research focusing on how homeorhesis relates to evolutionary rate (including stasis), species survivorship, and purported macroevolutionary trends in evolvability would reap high reward.
Collapse
Affiliation(s)
- Mark Webster
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
25
|
Paccard A, Wasserman BA, Hanson D, Astorg L, Durston D, Kurland S, Apgar TM, El‐Sabaawi RW, Palkovacs EP, Hendry AP, Barrett RDH. Adaptation in temporally variable environments: stickleback armor in periodically breaching bar‐built estuaries. J Evol Biol 2018. [DOI: 10.1111/jeb.13264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Antoine Paccard
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| | - Ben A. Wasserman
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Dieta Hanson
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| | - Louis Astorg
- Pavillon des Sciences Biologiques Université du Québec à Montréal Montréal QC Canada
| | - Dan Durston
- Department of Biology University of Victoria Victoria BC Canada
| | - Sara Kurland
- Zoologiska Institutionen: Populations Genetik Stockholm University Stockholm Sweden
| | - Travis M. Apgar
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | | | - Eric P. Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Andrew P. Hendry
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| | - Rowan D. H. Barrett
- Redpath Museum and Department of Biology McGill University Montreal QC Canada
| |
Collapse
|
26
|
Abstract
Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ∼500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.
Collapse
|
27
|
Abstract
The diversity of forms found among animals on Earth is striking. Despite decades of study, it has been difficult to reconcile the patterns of diversity seen between closely related species with those observed when studying single species on ecological timescales. We propose a set of models, called Lévy processes, to attempt to reconcile rapid evolution between species with the relatively stable distributions of phenotypes seen within species. These models, which have been successfully used to model stock market data, allow for long periods of stasis followed by bursts of rapid change. We find that many vertebrate groups are well fitted by Lévy models compared with models for which traits evolve toward a stationary optimum or evolve in an incremental and wandering manner. The relative importance of different modes of evolution in shaping phenotypic diversity remains a hotly debated question. Fossil data suggest that stasis may be a common mode of evolution, while modern data suggest some lineages experience very fast rates of evolution. One way to reconcile these observations is to imagine that evolution proceeds in pulses, rather than in increments, on geological timescales. To test this hypothesis, we developed a maximum-likelihood framework for fitting Lévy processes to comparative morphological data. This class of stochastic processes includes both an incremental and a pulsed component. We found that a plurality of modern vertebrate clades examined are best fitted by pulsed processes over models of incremental change, stationarity, and adaptive radiation. When we compare our results to theoretical expectations of the rate and speed of regime shifts for models that detail fitness landscape dynamics, we find that our quantitative results are broadly compatible with both microevolutionary models and observations from the fossil record.
Collapse
|
28
|
Evolutionary Patterns Within Fossil Lineages: Model-Based Assessment of Modes, Rates, Punctuations and Process. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600001649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patterns of phenotypic change documented in the fossil record offer the only direct view scientists have of evolutionary transitions arrayed over significant durations of time. What lessons should be drawn from these data, however, has proven to be rather contentious. Although we as paleontologists have made great progress in documenting the geological record of phenotypic evolution with greater thoroughness and sophistication, these successes have been limited by the use of verbal models of how phenotypes change. Descriptive terms such as “gradual” have been understood differently by different authors, and this has led to completely incompatible summary statements about the fossil record of morphological evolution. Here I argue that the solution to this ambiguity lies in insisting that different evolutionary interpretations be represented as explicit, statistical models of evolution. With such an approach, the powerful machinery of likelihood-based inference can be help resolve long-standing paleontological questions.Here I first review this approach and some aspects of its implementation. Then, I show how this approach leads to new traction on important issues in evolutionary paleobiology, including: understanding modes of evolution and determining their relative importance, separating evolutionary mode from tempo, assessing the evidence for hypotheses of punctuated change, and detecting adaptive evolution in the fossil record.
Collapse
|
29
|
Abstract
In this chapter we discuss methods for analyzing continuous traits, with an emphasis on those approaches that rely on explicit statistical models of evolution and incorporate genealogical information (ancestor–descendant or phylogenetic relationships). After discussing the roles of models and genealogy in evolutionary inference, we summarize the properties of commonly used models including random walks (Brownian motion), directional evolution, and stasis. These models can be used to devise null-hypothesis tests about evolutionary patterns, but it is often better to fit and compare models equally using information criteria and related approaches. We apply these methods to a published data set of dental measurements in a sequence of ancestor–descendant populations in the early primateCantius, with the particular goal of determining the best-supported mode of evolutionary change in this lineage. We also assess a series of questions about the evolution of femoral dimensions in several clades of dinosaurs, including testing for a trend of increasing body size (Cope's Rule), testing for correlations among characters, and reconstructing ancestral states. Finally, we list briefly some additional models, approaches, and issues that arise in genealogically informed analyses of phenotypic evolution.
Collapse
|
30
|
Brocklehurst N, Brink KS. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Body size is one of the most important characteristics of an organism, impacting a great variety of ecological characteristics. The influence of diet on body size has received considerable attention, with previous studies suggesting a greater tendency towards increased body size in herbivores than macro-carnivores. The earliest known herbivorous and macro-carnivorous synapsids provide an ideal case study for examining body size evolution in different dietary regimes. Sphenacomorpha contains two lineages: Edaphosauridae (some of the most abundant terrestrial herbivores in the late Carboniferous and early Permian), and Sphenacodontia (the largest and most abundant carnivores of that time). Phylogenetic comparative analyses are used to compare trait evolution in sphenacomorphs, including a Bayesian method for identifying branches along which phenotypic selection occurred. Two branches show rapid increases in body size in the late Carboniferous. The first occurred in Edaphosauridae, along the branch leading to the herbivorous members. The later shift towards larger size occurred in Sphenacodontia, producing a clade of large carnivores. It is possible that the rapid appearance of large herbivorous synapsids in the Carboniferous provided the selective pressure for carnivores to increase their size. Following these two shifts, rates of evolution in edaphosaurids slowed significantly, but the carnivorous sphenacodontians showed further increases.
Collapse
Affiliation(s)
- Neil Brocklehurst
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Kirstin S. Brink
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
31
|
Rapid adaptive phenotypic change following colonization of a newly restored habitat. Nat Commun 2017; 8:14159. [PMID: 28106055 PMCID: PMC5263874 DOI: 10.1038/ncomms14159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 12/05/2016] [Indexed: 11/26/2022] Open
Abstract
Real-time observation of adaptive evolution in the wild is rare and limited to cases of marked, often anthropogenic, environmental change. Here we present the case of a small population of reed warblers (Acrocephalus scirpaceus) over a period of 19 years (1996–2014) after colonizing a restored wetland habitat in Malta. Our data show a population decrease in body mass, following a trajectory consistent with a population ascending an adaptive peak, a so-called Ornstein–Uhlenbeck process. We corroborate these findings with genetic and ecological data, revealing that individual survival is correlated with body mass, and more than half of the variation in mean population fitness is explained by variation in body mass. Despite a small effective population size, an adaptive response has taken place within a decade. A founder event from a large, genetically variable source population to the southern range margin of the reed warbler distribution likely facilitated this process. Rapid local adaptation could potentially facilitate the recolonization of restored habitats. Here, the authors show that reed warblers have undergone substantial adaptive change in body mass in only 19 years after colonizing a restored wetland in Malta.
Collapse
|
32
|
Voje KL. Tempo does not correlate with mode in the fossil record. Evolution 2016; 70:2678-2689. [DOI: 10.1111/evo.13090] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Kjetil Lysne Voje
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences; University of Oslo; Oslo Norway
| |
Collapse
|
33
|
Martínez AE, Gomez JP, Ponciano JM, Robinson SK. Functional Traits, Flocking Propensity, and Perceived Predation Risk in an Amazonian Understory Bird Community. Am Nat 2016; 187:607-19. [PMID: 27104993 DOI: 10.1086/685894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Within a community, different species might share similar predation risks, and, thus, the ability of species to signal and interpret heterospecific threat information may determine species' associations. We combined observational, experimental, and phylogenetic approaches to determine the extent to which evolutionary history and functional traits determined flocking propensity and perceived predation risk (response to heterospecific alarm calls) in a lowland Amazonian bird community. We predicted that small birds that feed myopically and out in the open would have higher flocking propensities and account for a higher proportion of positive responses to alarms. Using generalized linear models and the incorporation of phylogeny on data from 56 species, our results suggest that phylogenetic relationships alongside body size, foraging height, vegetation density, and response to alarm calls influence flocking propensity. Conversely, phylogenetic relationships did not influence response to heterospecific alarm calls. Among functional traits, however, foraging strategy, foraging density, and flocking propensity partially explained responses to alarm calls. Our results suggest that flocking propensity and perceived predation risk are positively related and that functional ecological traits and evolutionary history may explain certain species' associations.
Collapse
|
34
|
Khabbazian M, Kriebel R, Rohe K, Ané C. Fast and accurate detection of evolutionary shifts in Ornstein–Uhlenbeck models. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12534] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Khabbazian
- Department of Electrical and Computer Engineering University of Wisconsin 1415 Engineering Drive Madison WI USA
| | - Ricardo Kriebel
- Department of Botany University of Wisconsin 430 Lincoln Drive Madison WI USA
| | - Karl Rohe
- Department of Statistics University of Wisconsin 1300 University Avenue Madison WI 53706 USA
| | - Cécile Ané
- Department of Botany University of Wisconsin 430 Lincoln Drive Madison WI USA
- Department of Statistics University of Wisconsin 1300 University Avenue Madison WI 53706 USA
| |
Collapse
|
35
|
Clavel J, Escarguel G, Merceron G. mv
morph
: an
r
package for fitting multivariate evolutionary models to morphometric data. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12420] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Julien Clavel
- Ecole Normale Supérieure IBENS UMR 8197 CNRS 46 rue d'Ulm 75005 Paris France
- Laboratoire de Géologie de Lyon, UMR 5276 CNRS, UCB Lyon 1, ENS Lyon Campus de la Doua 2 rue Raphaël Dubois 69622 Villeurbanne Cedex France
| | - Gilles Escarguel
- Laboratoire de Géologie de Lyon, UMR 5276 CNRS, UCB Lyon 1, ENS Lyon Campus de la Doua 2 rue Raphaël Dubois 69622 Villeurbanne Cedex France
| | - Gildas Merceron
- IPHEP, UMR 7262 CNRS, Université de Poitiers Bat. B35 – TSA‐51106 – 6 rue M. Brunet 86073 Poitiers Cedex 9 France
| |
Collapse
|
36
|
Ho LST, Ané C. Intrinsic inference difficulties for trait evolution with Ornstein-Uhlenbeck models. Methods Ecol Evol 2014. [DOI: 10.1111/2041-210x.12285] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lam Si Tung Ho
- Department of Statistics; University of Wisconsin; 1300 University Ave. Madison WI 53706 USA
| | - Cécile Ané
- Department of Statistics; University of Wisconsin; 1300 University Ave. Madison WI 53706 USA
- Department of Botany; University of Wisconsin; Madison WI USA
| |
Collapse
|
37
|
Uyeda JC, Harmon LJ. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst Biol 2014; 63:902-18. [PMID: 25077513 DOI: 10.1093/sysbio/syu057] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of macroevolutionary patterns of adaptive evolution has greatly increased with the advent of large-scale phylogenetic comparative methods. Widely used Ornstein-Uhlenbeck (OU) models can describe an adaptive process of divergence and selection. However, inference of the dynamics of adaptive landscapes from comparative data is complicated by interpretational difficulties, lack of identifiability among parameter values and the common requirement that adaptive hypotheses must be assigned a priori. Here, we develop a reversible-jump Bayesian method of fitting multi-optima OU models to phylogenetic comparative data that estimates the placement and magnitude of adaptive shifts directly from the data. We show how biologically informed hypotheses can be tested against this inferred posterior of shift locations using Bayes Factors to establish whether our a priori models adequately describe the dynamics of adaptive peak shifts. Furthermore, we show how the inclusion of informative priors can be used to restrict models to biologically realistic parameter space and test particular biological interpretations of evolutionary models. We argue that Bayesian model fitting of OU models to comparative data provides a framework for integrating of multiple sources of biological data-such as microevolutionary estimates of selection parameters and paleontological timeseries-allowing inference of adaptive landscape dynamics with explicit, process-based biological interpretations.
Collapse
Affiliation(s)
- Josef C Uyeda
- Department of Biological Sciences, University of Idaho, Life Sciences South 252, 875 Perimeter Dr MS 3051, Moscow, ID., University of Idaho
| | - Luke J Harmon
- Department of Biological Sciences, University of Idaho, Life Sciences South 252, 875 Perimeter Dr MS 3051, Moscow, ID., University of Idaho
| |
Collapse
|
38
|
Miller CT, Glazer AM, Summers BR, Blackman BK, Norman AR, Shapiro MD, Cole BL, Peichel CL, Schluter D, Kingsley DM. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci. Genetics 2014; 197:405-20. [PMID: 24652999 PMCID: PMC4012497 DOI: 10.1534/genetics.114.162420] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/22/2014] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic architecture of evolutionary change remains a long-standing goal in biology. In vertebrates, skeletal evolution has contributed greatly to adaptation in body form and function in response to changing ecological variables like diet and predation. Here we use genome-wide linkage mapping in threespine stickleback fish to investigate the genetic architecture of evolved changes in many armor and trophic traits. We identify >100 quantitative trait loci (QTL) controlling the pattern of serially repeating skeletal elements, including gill rakers, teeth, branchial bones, jaws, median fin spines, and vertebrae. We use this large collection of QTL to address long-standing questions about the anatomical specificity, genetic dominance, and genomic clustering of loci controlling skeletal differences in evolving populations. We find that most QTL (76%) that influence serially repeating skeletal elements have anatomically regional effects. In addition, most QTL (71%) have at least partially additive effects, regardless of whether the QTL controls evolved loss or gain of skeletal elements. Finally, many QTL with high LOD scores cluster on chromosomes 4, 20, and 21. These results identify a modular system that can control highly specific aspects of skeletal form. Because of the general additivity and genomic clustering of major QTL, concerted changes in both protective armor and trophic traits may occur when sticklebacks inherit either marine or freshwater alleles at linked or possible "supergene" regions of the stickleback genome. Further study of these regions will help identify the molecular basis of both modular and coordinated changes in the vertebrate skeleton.
Collapse
Affiliation(s)
- Craig T. Miller
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Andrew M. Glazer
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720
| | - Brian R. Summers
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Benjamin K. Blackman
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Andrew R. Norman
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Michael D. Shapiro
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Bonnie L. Cole
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Catherine L. Peichel
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
39
|
Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 2014; 7:1-14. [PMID: 24454544 PMCID: PMC3894893 DOI: 10.1111/eva.12137] [Citation(s) in RCA: 670] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022] Open
Abstract
Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.
Collapse
Affiliation(s)
- Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki Helsinki, Finland
| | - Andrew P Hendry
- Redpath Museum & Department of Biology, McGill University Montreal, QC, Canada
| |
Collapse
|
40
|
Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 2014; 29:23-32. [DOI: 10.1016/j.tree.2013.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022]
|
41
|
Marshall CR. The evolution of morphogenetic fitness landscapes: conceptualising the interplay between the developmental and ecological drivers of morphological innovation. AUST J ZOOL 2014. [DOI: 10.1071/zo13052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here I show how fitness landscapes can be used to understand the relative importance of developmental and ecological change in initiating morphological innovation. Key is the use of morphogenetic ‘rules’ as the axes of the landscape, which enables explicit incorporation of the contribution that specific morphologies make to fitness. Four modes of fitness landscape evolution are identified: (1) change in the density of peaks on the landscape, driven by an increase in the number of selective pressures encountered; (2) change in the dimensionality of the landscape through the addition of morphogenetic rules; (3) change in the size of one or more dimensions of the landscape through elaboration of already existing morphogenetic rules; and, (4) shifting the position of peaks in the landscape. Morphological innovation is initiated by ecological change in Mode (1), for example the Cambrian explosion of animals, and Mode (4), for example, when taxa such as sticklebacks make a shift in environment, or during coevolutionary escalation. Morphological change is initiated by developmental innovation for Mode (2), typified by some macroevolutionary innovations, such as the emergence of jaws, and in Mode (3), for example, in the differentiation of flower morphology facilitated by gene duplication of the B-class developmental genes.
Collapse
|
42
|
Haller BC, Hendry AP. SOLVING THE PARADOX OF STASIS: SQUASHED STABILIZING SELECTION AND THE LIMITS OF DETECTION. Evolution 2013; 68:483-500. [PMID: 24102172 DOI: 10.1111/evo.12275] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin C. Haller
- Department of Biology and Redpath Museum; McGill University; 859 Sherbrooke Street West Montreal Quebec Canada H3A 0C4
| | - Andrew P. Hendry
- Department of Biology and Redpath Museum; McGill University; 859 Sherbrooke Street West Montreal Quebec Canada H3A 0C4
| |
Collapse
|
43
|
Voje KL, Mazzarella AB, Hansen TF, Østbye K, Klepaker T, Bass A, Herland A, Baerum KM, Gregersen F, Vøllestad LA. Adaptation and constraint in a stickleback radiation. J Evol Biol 2013; 26:2396-414. [DOI: 10.1111/jeb.12240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 07/23/2013] [Indexed: 01/29/2023]
Affiliation(s)
- K. L. Voje
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
| | - A. B. Mazzarella
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
| | - T. F. Hansen
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
| | - K. Østbye
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
- Faculty of Applied Ecology and Agricultural Sciences; Campus Evenstad; Hedmark University College; Koppang Norway
| | - T. Klepaker
- Department of Biology; University of Bergen; Bergen Norway
| | - A. Bass
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
| | - A. Herland
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
| | - K. M. Baerum
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
- Faculty of Applied Ecology and Agricultural Sciences; Campus Evenstad; Hedmark University College; Koppang Norway
| | | | - L. A. Vøllestad
- Department of Biology; Centre for Ecological and Evolutionary Synthesis; University of Oslo; Blindern Norway
| |
Collapse
|
44
|
Siepielski AM, Gotanda KM, Morrissey MB, Diamond SE, DiBattista JD, Carlson SM. The spatial patterns of directional phenotypic selection. Ecol Lett 2013; 16:1382-92. [DOI: 10.1111/ele.12174] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Adam M. Siepielski
- Department of Biology; University of San Diego; 5998 Alcala Park San Diego CA 92110 USA
| | - Kiyoko M. Gotanda
- Redpath Museum and Department of Biology; McGill University; 859 Sherbrooke Street West Montréal QC Canada H3A 0C4
| | - Michael B. Morrissey
- Dyers Brae House; School of Biology; University of St Andrews; St Andrews Fife KY16 9 TH UK
| | - Sarah E. Diamond
- Department of Biology; North Carolina State University; Campus Box 7617 Raleigh NC 27695 USA
| | - Joseph D. DiBattista
- Red Sea Research Center; King Abdullah University of Science and Technology; Bldg 2, Office 3216 Thuwal 23955-6900 Saudi Arabia
| | - Stephanie M. Carlson
- Department of Environmental Science, Policy, and Management; University of California; 130 Mulford Hall #3114 Berkeley CA 94720 USA
| |
Collapse
|
45
|
Abstract
Evolutionary processes leading to adaptive radiation regularly occur too fast to be accurately recorded in the fossil record but too slowly to be readily observed in living biota. The study of evolutionary radiations is thereby confronted with an epistemological gap between the timescales and approaches used by neontologists and paleontologists. Here we report on an ongoing radiation of extant Bellamya species (n = 4) from the African Rift Lake Malawi that provides an unusual opportunity to bridge this gap. The substantial molecular differentiation in this monophyletic Bellamya clade has arisen since Late Pleistocene megadroughts in the Malawi Basin caused by climate change. Morphological time-series analysis of a high-resolution, radiocarbon-dated sequence of 22 faunas spanning the Holocene documents stasis up to the middle Holocene in all traits studied (shell height, number of whorls, and two variables obtained from geometric morphometrics). Between deposition of the last fossil fauna (~5 ka) and the present day, a drastic increase in morphological disparity was observed (3.7-5.8 times) associated with an increase in species diversity. Comparison of the rates of morphological evolution obtained from the paleontological time-series with phylogenetic rates indicates that the divergence in two traits could be reconstructed with the slow rates documented in the fossils, that one trait required a rate reduction (stabilizing selection), and the other faster rates (divergent selection). The combined paleontological and comparative approach taken here allows recognition that morphological stasis can be the dominant evolutionary pattern within species lineages, even in very young and radiating clades.
Collapse
|
46
|
Back to bedrock for paleobiology. Trends Ecol Evol 2013. [DOI: 10.1016/j.tree.2013.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Reitan T, Schweder T, Henderiks J. Phenotypic evolution studied by layered stochastic differential equations. Ann Appl Stat 2012. [DOI: 10.1214/12-aoas559] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Leinonen T, McCairns RJS, Herczeg G, Merilä J. MULTIPLE EVOLUTIONARY PATHWAYS TO DECREASED LATERAL PLATE COVERAGE IN FRESHWATER THREESPINE STICKLEBACKS. Evolution 2012. [DOI: 10.1111/j.1558-5646.2012.01724.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
AGUIRRE WINDSORE, BELL MICHAELA. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01825.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Vasseur DA, Fox JW. Adaptive Dynamics of Competition for Nutritionally Complementary Resources: Character Convergence, Displacement, and Parallelism. Am Nat 2011; 178:501-14. [DOI: 10.1086/661896] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|