1
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Tang J, Li J, Wu B, Li R, Tang J, Kan H, Zhao P, Zhang Y, Wang W, Liu Y. Bioactivity-Guided Isolation of Secondary Metabolites from Camellia fascicularis: Antioxidative Antibacterial Activities and Anti-Inflammatory Hypoglycemic Molecular Docking. Foods 2024; 13:3435. [PMID: 39517219 PMCID: PMC11545720 DOI: 10.3390/foods13213435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Camellia fascicularis is a valuable ornamental, edible, and medicinal plant with promising prospects for bioactivity development. We screened the bioactivity of eight fractions (Fr. A-I) obtained from the ethyl acetate phase of C. fascicularis via silica gel column chromatography. The results indicated that the anti-inflammatory, antioxidative, and antimicrobial active components were mainly found in Fr. B*, E, A, and H; Fr. A-G; and Fr. D-I, respectively. Bioactivity-guided isolation identified 18 secondary metabolites. Compounds 1, 3-5, 7, and 15-18 were isolated from the genus Camellia for the first time in this study, whereas the other compounds were also isolated from this plant for the first time. The structures of these compounds were elucidated through comprehensive spectroscopic techniques. Compounds 1, 9-11, 28, 30, and 31 demonstrated antioxidative activities comparable to those of ascorbic acid, whereas the remaining compounds exhibited diminished antioxidative activity. In terms of antimicrobial activity, compounds 7, 18, 22, and 27 exerted inhibitory potency against Pseudomonas aeruginosa, similar to tetracycline (MIC: 125 µg/mL). Other compounds showed moderate to weak inhibitory effects against Staphylococcus aureus and Escherichia coli (MIC: 250-500 µg/mL). Molecular docking revealed that compounds 2, 36, 41, and 65 showed strong binding affinity for 8ET0, whereas compounds 2, 36, 38, 40, 63, and 65 showed strong binding affinity for 3A4A. This research further increased the diversity of the secondary metabolites of C. fascicularis, laying a foundation for the subsequent development and utilization of this species.
Collapse
Affiliation(s)
- Jiandong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Jingjing Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Boxiao Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Ruonan Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650224, China
| | - Weihua Wang
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.T.); (J.L.); (P.Z.)
| |
Collapse
|
3
|
Maslanka R, Bednarska S, Zadrag-Tecza R. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Arch Biochem Biophys 2024; 756:110021. [PMID: 38697344 DOI: 10.1016/j.abb.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
4
|
Elmetwally MA, Helmy A, Balboula A, Eladl M, Hamed B, Lashen S, Rezk S, Yaseen A, Sharawy H, Hussien M, Zabel S, Montaser A, Halawa A. Fructose improves titanium dioxide nanoparticles induced alterations in developmental competence of mouse oocytes. BMC Vet Res 2024; 20:135. [PMID: 38570796 PMCID: PMC10988840 DOI: 10.1186/s12917-024-03963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
AIMS We investigated the effects of intraperitoneal injections of titanium dioxide nanoparticles (TiO2 NPs, 100 mg/kg) for 5 consecutive days on the developmental competence of murine oocytes. Furthermore, study the effects of TiO2 NPs on antioxidant and oxidative stress biomarkers, as well as their effects on expression of apoptotic and hypoxia inducing factor-1α (HIF1A) protein translation. Moreover, the possible ameliorating effects of intraperitoneal injections of fructose (2.75 mM/ml) was examined. MATERIALS AND METHODS Thirty sexually mature (8-12 weeks old; ~ 25 g body weight) female mice were used for the current study. The female mice were assigned randomly to three treatment groups: Group1 (G1) mice were injected intraperitoneal (ip) with deionized water for 5 consecutive days; Group 2 (G2) mice were injected ip with TiO2 NPs (100 mg/kg BW) for 5 consecutive days; Group 3 (G3) mice were injected ip with TiO2 NPs (100 mg/kg BW + fructose (2.75 mM) for 5 consecutive days. RESULTS Nano-titanium significantly decreased expression of GSH, GPx, and NO, expression of MDA and TAC increased. The rates of MI, MII, GVBD and degenerated oocytes were significantly less for nano-titanium treated mice, but the rate of activated oocytes was significantly greater than those in control oocytes. TiO2 NPs significantly increased expression of apoptotic genes (BAX, Caspase 3 and P53) and HIF1A. Intraperitoneal injection of fructose (2.75 mM/kg) significantly alleviated the detrimental effects of TiO2 NPs. Transmission electron microscopy indicated that fructose mitigated adverse effects of TiO2 NPs to alter the cell surface of murine oocytes. CONCLUSION Results of this study suggest that the i/p infusion of fructose for consecutive 5 days enhances development of murine oocytes and decreases toxic effects of TiO2 NPs through positive effects on oxidative and antioxidant biomarkers in cumulus-oocyte complexes and effects to inhibit TiO2-induced increases in expression of apoptotic and hypoxia inducing factors.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Department of Theriogenology, Center for Reproductive Biotechnology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Amal Helmy
- Fertility care center, Obstetrics and Gynecology department, faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Balboula
- Department of animal science, University of Missouri, Columbia, MO, 65211, USA
- Center for Reproductive Biotechnology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Eladl
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Hamed
- Medical research center, faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Yaseen
- Fertility care center, Obstetrics and Gynecology department, faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Sharawy
- Department of Theriogenology, Center for Reproductive Biotechnology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mamdouh Hussien
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samy Zabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdelmonem Montaser
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amal Halawa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Cui N, Perré P, Michiels E, Pozzobon V. A Novel Strategy to Enhance Antioxidant Content in Saccharomyces Cerevisiae Based on Oxygen Pressure. Bioengineering (Basel) 2023; 10:bioengineering10020246. [PMID: 36829740 PMCID: PMC9952505 DOI: 10.3390/bioengineering10020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Antioxidant foods represent a potent lever to improve diets while creating value. Yet, their cultivation is often tied to a specific area and climate, limiting availability and increasing market cost. Therefore, microorganism-based antioxidant production emerges as a promising technology to solve these problems. In this view, a novel process was investigated for antioxidant accumulation in yeast culture. S. cerevisiae cells were exposed to various hyperbaric air conditions from 1 to 9 bar (A). Yeast cultures exhibited an increased reactive oxygen species content, which induced oxidative defense expression. After a few hours, reactive oxygen species levels decreased while antioxidant contents remained high, leading to a net increase in antioxidant power. At 6 bar (A), yeast achieved the highest net antioxidant power (phenolics content +48.3 ± 18.6 %, reducing power +120 ± 11.4 %) with an acceptable growth rate (0.27 h-1). Regarding time evolution, a 2 h exposure seems to be the optimum: cells have the lowest reactive oxygen species level while their antioxidant power is increased. From a biotechnological perspective, this finding highlights air pressure as an antioxidant-manipulating stress strategy. Moreover, the proposed process led to a patent that could potentially reduce energy and chemical consumption in such antioxidant accumulation processes.
Collapse
|
6
|
Analysis of Antioxidant Phytochemicals and Anti-Inflammatory Effect from Vitex rotundifolia L.f. Antioxidants (Basel) 2022; 11:antiox11030454. [PMID: 35326104 PMCID: PMC8944582 DOI: 10.3390/antiox11030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
An extraction method using 80% EtOH was selected and applied to obtain the total extracts from leaves, flowers, fruits, twigs, and roots of Vitex rotundifolia L.f. based on the antioxidant activity-guided experiments. Subsequently, total extract from each part of V. rotundifolia was successfully partitioned into fractions, which were evaluated for their antioxidant and anti-inflammatory properties via DPPH, ABTS, and NO assays, respectively. Among them, EtOAc (E) and n-butanol (B) fractions showed the potent antioxidant activity and the methylene chloride (MC) fractions of roots, leaves, and fruits that exhibited strong scavenging activity on DPPH and ABTS radicals. In the anti-inflammatory assay, n-hexane (H) and MC fractions of leaves potently inhibited NO production in LPS-stimulated RAW264.7 cells, followed by E fractions derived from fruits, flowers, twigs, and roots, along with B fractions from flowers and twigs. Additionally, a comprehensive HPLC-decoupled MS profiling was established and validated using seven isolated marker compounds (1–7), which were identified by analysis of their UV, NMR, and MS data. The established method was also applied for quantification of these marker compounds in each organ collected from different locations, and to assess their antioxidant capacity by a screening DPPH-HPLC method. Principal component analysis suggested the botanical organs from this plant correlated with the marker compound contents in association with bioactivity. The study results are a prelude to further studies involving the active fractions and provide a comprehensive insight into the functional products of this plant against oxidative diseases.
Collapse
|
7
|
Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells 2022; 11:cells11040599. [PMID: 35203251 PMCID: PMC8870193 DOI: 10.3390/cells11040599] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
Nelumbo nucifera is one of the most valuable medicinal species of the Nelumbonaceae family that has been consumed since the ancient historic period. Its stamen is an indispensable ingredient for many recipes of traditional medicines, and has been proved as a rich source of flavonoids that may provide an antiaging action for pharmaceutical or medicinal applications. However, there is no intense study on antiaging potential and molecular mechanisms. This present study was designed to fill in this important research gap by: (1) investigating the effects of sacred lotus stamen extract (LSE) on yeast lifespan extension; and (2) determining their effects on oxidative stress and metabolism to understand the potential antiaging action of its flavonoids. A validated ultrasound-assisted extraction method was also employed in this current work. The results confirmed that LSE is rich in flavonoids, and myricetin-3-O-glucose, quercetin-3-O-glucuronic acid, kaempferol-3-O-glucuronic acid, and isorhamnetin-3-O-glucose are the most abundant ones. In addition, LSE offers a high antioxidant capacity, as evidenced by different in vitro antioxidant assays. This present study also indicated that LSE delayed yeast (Saccharomyces cerevisiae, wild-type strain DBY746) chronological aging compared with untreated control yeast and a positive control (resveratrol) cells. Moreover, LSE acted on central metabolism, gene expressions (SIR2 and SOD2), and enzyme regulation (SIRT and SOD enzymatic activities). These findings are helpful to open the door for the pharmaceutical and medical sectors to employ this potential lotus raw material in their future pharmaceutical product development.
Collapse
|
8
|
Green Extraction of Antioxidant Flavonoids from Pigeon Pea ( Cajanus cajan (L.) Millsp.) Seeds and Its Antioxidant Potentials Using Ultrasound-Assisted Methodology. Molecules 2021; 26:molecules26247557. [PMID: 34946637 PMCID: PMC8703396 DOI: 10.3390/molecules26247557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Pigeon pea is an important pea species in the Fabaceae family that has long been used for food, cosmetic, and other phytopharmaceutical applications. Its seed is reported as a rich source of antioxidants and anti-inflammatory flavonoids, especially isoflavones, i.e., cajanin, cajanol, daidzein, and genistein. In today’s era of green chemistry and green cosmetic development, the development and optimization of extraction techniques is increasing employed by the industrial sectors to provide environmentally friendly products for their customers. Surprisingly, there is no research report on improving the extraction of these isoflavonoids from pigeon pea seeds. In this present study, ultrasound-assisted extraction (USAE) methodology, which is a green extraction that provides a shorter extraction time and consumes less solvent, was optimized and compared with the conventional methods. The multivariate strategy, the Behnken–Box design (BBD) combined with response surface methodology, was employed to determine the best extraction conditions for this USAE utilizing ethanol as green solvent. Not only in vitro but also cellular antioxidant activities were evaluated using different assays and approaches. The results indicated that USAE provided a substantial gain of ca 70% in the (iso)flavonoids extracted and the biological antioxidant activities were preserved, compared to the conventional method. The best extraction conditions were 39.19 min with a frequency of 29.96 kHz and 63.81% (v/v) aqueous ethanol. Both the antioxidant and anti-aging potentials of the extract were obtained under optimal USAE at a cellular level using yeast as a model, resulting in lower levels of malondialdehyde. These results demonstrated that the extract can act as an effective activator of the cell longevity protein (SIR2/SIRT1) and cell membrane protector against oxidative stress. This finding supports the potential of pigeon pea seeds and USAE methodology to gain potential antioxidant and anti-aging (iso)flavonoids-rich sources for the cosmetic and phytopharmaceutical sectors.
Collapse
|
9
|
Lin NX, He RZ, Xu Y, Yu XW. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast. Microb Cell Fact 2021; 20:131. [PMID: 34247591 PMCID: PMC8273976 DOI: 10.1186/s12934-021-01623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background Thermotolerant yeast has outstanding potential in industrial applications. Komagataella phaffii (Pichia pastoris) is a common cell factory for industrial production of heterologous proteins. Results Herein, we obtained a thermotolerant K. phaffii mutant G14 by mutagenesis and adaptive evolution. G14 exhibited oxidative and thermal stress cross-tolerance and high heterologous protein production efficiency. The reactive oxygen species (ROS) level and lipid peroxidation in G14 were reduced compared to the parent. Oxidative stress response (OSR) and heat shock response (HSR) are two major responses to thermal stress, but the activation of them was different in G14 and its parent. Compared with the parent, G14 acquired the better performance owing to its stronger OSR. Peroxisomes, as the main cellular site for cellular ROS generation and detoxification, had larger volume in G14 than the parent. And, the peroxisomal catalase activity and expression level in G14 was also higher than that of the parent. Excitingly, the gene knockdown of CAT encoding peroxisomal catalase by dCas9 severely reduced the oxidative and thermal stress cross-tolerance of G14. These results suggested that the augmented OSR was responsible for the oxidative and thermal stress cross-tolerance of G14. Nevertheless, OSR was not strong enough to protect the parent from thermal stress, even when HSR was initiated. Therefore, the parent cannot recover, thereby inducing the autophagy pathway and resulting in severe cell death. Conclusions Our findings indicate the importance of peroxisome and the significance of redox balance in thermotolerance of yeasts. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01623-1.
Collapse
Affiliation(s)
- Nai-Xin Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Rui-Zhen He
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, People's Republic of China.
| |
Collapse
|
10
|
Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch 2021; 473:723-734. [PMID: 33742308 DOI: 10.1007/s00424-021-02529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have linked carbonyl stress to many physiological processes. Increase in the levels of carbonyl compounds, derived from both endogenous and exogenous sources, is believed to accompany normal age-related decline as well as different pathologies. Reactive carbonyl species (RCS) are capable of damaging biomolecules via their involvement in a net of nonspecific reactions. In the advanced stages of RCS metabolism, variety of poorly degraded adducts and crosslinks, collectively named advanced glycoxidation end products (AGEs), arises. They are accumulated in an age-dependent manner in different tissues and organs and can contribute to inflammatory processes. In particular, detrimental effects of the end products are realized via activation of the specific receptor for AGEs (RAGE) and RAGE-dependent inflammatory signaling cascade. Although it is unclear, whether carbonyl stress is causal for age-associated impairments or it results from age- and disease-related cell damages, increased levels of RCS and AGEs are tightly related to inflammaging, and therefore, attenuation of the RAGE signaling is suggested as an effective approach for the treatment of inflammation and age-related disorders. The question raised in this review is whether specific metabolism in the aging brain related to carbonyl/RCS/AGE/RAGE stress.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
11
|
Suchodolski J, Krasowska A. Fructose Induces Fluconazole Resistance in Candida albicans through Activation of Mdr1 and Cdr1 Transporters. Int J Mol Sci 2021; 22:ijms22042127. [PMID: 33669913 PMCID: PMC7924610 DOI: 10.3390/ijms22042127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a pathogenic fungus that is increasingly developing multidrug resistance (MDR), including resistance to azole drugs such as fluconazole (FLC). This is partially a result of the increased synthesis of membrane efflux transporters Cdr1p, Cdr2p, and Mdr1p. Although all these proteins can export FLC, only Cdr1p is expressed constitutively. In this study, the effect of elevated fructose, as a carbon source, on the MDR was evaluated. It was shown that fructose, elevated in the serum of diabetics, promotes FLC resistance. Using C. albicans strains with green fluorescent protein (GFP) tagged MDR transporters, it was determined that the FLC-resistance phenotype occurs as a result of Mdr1p activation and via the increased induction of higher Cdr1p levels. It was observed that fructose-grown C. albicans cells displayed a high efflux activity of both transporters as opposed to glucose-grown cells, which synthesize Cdr1p but not Mdr1p. Additionally, it was concluded that elevated fructose serum levels induce the de novo production of Mdr1p after 60 min. In combination with glucose, however, fructose induces Mdr1p production as soon as after 30 min. It is proposed that fructose may be one of the biochemical factors responsible for Mdr1p production in C. albicans cells.
Collapse
|
12
|
Queiroz LG, do Prado CCA, de Almeida ÉC, Dörr FA, Pinto E, da Silva FT, de Paiva TCB. Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:437-449. [PMID: 33275184 DOI: 10.1007/s00244-020-00782-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil.
| | | | - Éryka Costa de Almeida
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Augusto Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flávio Teixeira da Silva
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil
| | - Teresa Cristina Brazil de Paiva
- Department of Basic and Environmental Sciences, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil
| |
Collapse
|
13
|
Tungmunnithum D, Drouet S, Kabra A, Hano C. Enrichment in Antioxidant Flavonoids of Stamen Extracts from Nymphaea lotus L. Using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption. Antioxidants (Basel) 2020; 9:E576. [PMID: 32630721 PMCID: PMC7402147 DOI: 10.3390/antiox9070576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Nymphaea lotus L. is the medicinal plant that has long been used for food, cosmetics and traditional medicines in Africa and Asia since ancient times. Its flavonoids and other interesting phytochemical compounds from rhizome, leaf and the whole flowers have been reported in the previous published research. However, stamens, which are essential for reproductive functions, may also represent new alternative sources of potential antioxidant flavonoids, as investigated in this study. The innovative green chemistry methods, i.e., ultrasound-assisted extraction (UAE) as well as a macroporous resin (MPR) purification procedure, were employed in this current research. Using a full factorial design coupled to three-dimensional (3D) surface plot methodology, the influence of three variables, namely aqEtOH concentration (ranging from 50 to 100% (v/v), US frequency (ranging from 0 (no US applied) to 45 kHz), and the extraction duration (ranging from 20 to 60 min), were evaluated. Five MPRs with different surface areas, average pore diameters, matrix types and polarities were also investigated for the purification of total flavonoids. The optimal UAE condition is 90% (v/v) aqEtOH with 34.65 khz ultrasonic frequency and 46 min of extraction duration. Compared with the conventional heat reflux extraction (HRE) method, a significant 1.35-fold increase in total flavonoids content was obtained using optimized UAE conditions (169.64 for HRE vs. 235.45 mg/g dry weight for UAE), causing a 2.80-fold increase when this UAE associated with MPR purification (475.42 mg/g dry weight). In vitro cell free antioxidant activity of N. lotus stamen extracts and in cellulo antioxidant investigation using yeast model showed the same trend, indicating that the best antioxidant flavonoid can be found in UAE coupled with MPR purification. Moreover, in the yeast model, the expression of key antioxidant genes such as SIR2 and SOD2 were expressed at the highest level in yeast cells treated with the extract from UAE together with MPR purification. Consequently, it can be seen that the UAE combined with MPR purification can help enhance the flavonoid antioxidant potential of the stamens extract from this medicinal species.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| | - Atul Kabra
- School of Pharmacy, Raffles University, Neemrana 301705, Alwar, Rajasthan, India;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| |
Collapse
|
14
|
Wu CC, Ohashi T, Misaki R, Limtong S, Fujiyama K. Ethanol and H2O2 stresses enhance lipid production in an oleaginous Rhodotorula toruloides thermotolerant mutant L1-1. FEMS Yeast Res 2020; 20:5859489. [DOI: 10.1093/femsyr/foaa030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023] Open
Abstract
Abstract
Stress tolerance is a desired characteristic of yeast strains for industrial applications. Stress tolerance has been well described in Saccharomyces yeasts but has not yet been characterized in oleaginous Rhodotorula yeasts even though they are considered promising platforms for lipid production owing to their outstanding lipogenicity. In a previous study, the thermotolerant strain L1–1 was isolated from R. toruloides DMKU3-TK16 (formerly Rhodosporidium toruloides). In this study, we aimed to further examine the ability of this strain to tolerate other stresses and its lipid productivity under various stress conditions. We found that the L1–1 strain could tolerate not only thermal stress but also oxidative stress (ethanol and H2O2), osmotic stress (glucose) and a cell membrane disturbing reagent (DMSO). Our results also showed that the L1–1 strain exhibited enhanced ability to maintain ROS homeostasis, stronger cell wall strength and increased levels of unsaturated membrane lipids under various stresses. Moreover, we also demonstrated that ethanol-induced stress significantly increased the lipid productivity of the thermotolerant L1–1. The thermotolerant L1–1 was also found to produce a higher lipid titer under the dual ethanol-H2O2 stress than under non-stress conditions. This is the first report to indicate that ethanol stress can induce lipid production in an R. toruloides thermotolerant strain.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Takao Ohashi
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Phaholyothin Road, Bangkok 10900, Bangkok 10900, Thailand
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Phaholyothin Road, Bangkok 10900, Bangkok 10900, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| |
Collapse
|
15
|
Tungmunnithum D, Abid M, Elamrani A, Drouet S, Addi M, Hano C. Almond Skin Extracts and Chlorogenic Acid Delay Chronological Aging and Enhanced Oxidative Stress Response in Yeast. Life (Basel) 2020; 10:E80. [PMID: 32481725 PMCID: PMC7345664 DOI: 10.3390/life10060080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Almond (Prunus dulcis (Mill.) D.A.Webb) is one of the largest nut crops in the world. Recently, phenolic compounds, mostly stored in almond skin, have been associated with much of the health-promoting behavior associated with their intake. The almond skin enriched fraction obtained from cold-pressed oil residues of the endemic Moroccan Beldi ecotypes is particularly rich in chlorogenic acid. In this study, both almond skin extract (AE) and chlorogenic acid (CHL) supplements, similar to traditional positive control resveratrol, significantly increased the chronological life-span of yeast compared to the untreated group. Our results showed that AE and CHL significantly reduced the production of reactive oxygen and nitrogen species (ROS/RNS), most likely due to their ability to maintain mitochondrial function during aging, as indicated by the maintenance of normal mitochondrial membrane potential in treated groups. This may be associated with the observed activation of the anti-oxidative stress response in treated yeast, which results in activation at both gene expression and enzymatic activity levels for SOD2 and SIR2, the latter being an upstream inducer of SOD2 expression. Interestingly, the differential gene expression induction of mitochondrial SOD2 gene at the expense of the cytosolic SOD1 gene confirms the key role of mitochondrial function in this regulation. Furthermore, AE and CHL have contributed to the survival of yeast under UV-C-induced oxidative stress, by reducing the development of ROS/RNS, resulting in a significant reduction in cellular oxidative damage, as evidenced by decreased membrane lipid peroxidation, protein carbonyl content and 8-oxo-guanine formation in DNA. Together, these results demonstrate the interest of AE and CHL as new regulators in the chronological life-span and control of the oxidative stress response of yeast.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, 45067 Orléans CEDEX 2, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711, 45067 Orléans CEDEX 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Malika Abid
- Laboratoire de Biologie des plantes et des micro-organismes, Faculté des Sciences, Université Mohamed Ier, Oujda 60000, Morocco; (M.A.); (A.E.)
| | - Ahmed Elamrani
- Laboratoire de Biologie des plantes et des micro-organismes, Faculté des Sciences, Université Mohamed Ier, Oujda 60000, Morocco; (M.A.); (A.E.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, 45067 Orléans CEDEX 2, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711, 45067 Orléans CEDEX 2, France
| | - Mohamed Addi
- Laboratoire de Biologie des plantes et des micro-organismes, Faculté des Sciences, Université Mohamed Ier, Oujda 60000, Morocco; (M.A.); (A.E.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, 45067 Orléans CEDEX 2, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711, 45067 Orléans CEDEX 2, France
| |
Collapse
|
16
|
Reactive Carbonyls Induce TOR- and Carbohydrate-Dependent Hormetic Response in Yeast. ScientificWorldJournal 2020; 2020:4275194. [PMID: 32231465 PMCID: PMC7091552 DOI: 10.1155/2020/4275194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
The induction of the beneficial and detrimental effects by reactive carbonyl species in yeast has been investigated. In this study, we have presented evidence that glyoxal and methylglyoxal at low concentrations were able to induce a hormetic adaptive response in glucose-grown but not fructose-grown yeast. The hormetic effect was also TOR-dependent. The mutation in genes encoding either TOR1 or TOR2 protein makes yeast highly sensitive to both α-dicarbonyls studied. Simultaneous disruption of TOR1 and TOR2 resulted in higher yeast sensitivity to the α-dicarbonyls as compared to parental cells, but double mutant survived better under carbonyl stress than its single mutant counterparts. The data obtained are consistent with the previous works which reported high toxicity of the α-dicarbonyls and extend them with the report on the beneficial TOR-dependent hormetic effect of glyoxal and methylglyoxal.
Collapse
|
17
|
Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 2018; 43:26-45. [PMID: 29452266 DOI: 10.1016/j.arr.2018.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Brains' high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains' redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals' life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains' adaptivity.
Collapse
Affiliation(s)
- O Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany.
| | - H M Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - V I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
18
|
Effects of Long-Term Cultivation on Medium with Alpha-Ketoglutarate Supplementation on Metabolic Processes of Saccharomyces cerevisiae. J Aging Res 2017; 2017:8754879. [PMID: 29181198 PMCID: PMC5664334 DOI: 10.1155/2017/8754879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 11/29/2022] Open
Abstract
During last years, alpha-ketoglutarate (AKG), an important intermediate in the Krebs cycle, has been intensively studied as a dietary supplement with stress-protective and potential antiaging effects. Here, we examined the effects of exogenous AKG on metabolic processes and survival of yeast Saccharomyces cerevisiae during long-term cultivation. Growth on AKG had no effect on the total cell number but increased the number of reproductively active cells at the late days of cultivation (from day 7 to day 15). A gradual increase in levels of total protein, glycogen, and trehalose was found over 7-day cultivation with more pronounced effects in AKG-grown cells. In control cells, metabolic activity and the activities of superoxide dismutase and catalase decreased, whereas levels of carbonyl proteins and low-molecular-mass thiols increased during 7-day cultivation. This suggests development of oxidative stress in stationary phase cells. Meanwhile, stationary phase cells cultured on AKG possessed higher levels of low-molecular-mass thiols and lower levels of carbonyl proteins and α-dicarbonyl compounds when compared to control ones. Collectively, higher levels of storage carbohydrates and an activation of antioxidant defense with diminishing oxidative protein damage can prevent a loss of reproductive ability in yeast cells during long-term cultivation on AKG-supplemented medium.
Collapse
|
19
|
Saini P, Beniwal A, Vij S. Comparative Analysis of Oxidative Stress During Aging of Kluyveromyces marxianus in Synthetic and Whey Media. Appl Biochem Biotechnol 2017; 183:348-361. [DOI: 10.1007/s12010-017-2449-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
|
20
|
Evans LW, Omaye ST. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress. Antioxidants (Basel) 2017; 6:E5. [PMID: 28085082 PMCID: PMC5384169 DOI: 10.3390/antiox6010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.
Collapse
Affiliation(s)
- Levi W Evans
- Nutrition Program, Agriculture, Nutrition and Veterinary Science Department, University of Nevada, Reno, NV 89557, USA.
| | - Stanley T Omaye
- Nutrition Program, Agriculture, Nutrition and Veterinary Science Department, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
21
|
Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae. Int J Microbiol 2017; 2017:5792192. [PMID: 28154578 PMCID: PMC5244014 DOI: 10.1155/2017/5792192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+) but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.
Collapse
|
22
|
Tyagi N, Srivastava SK, Arora S, Omar Y, Ijaz ZM, Al-Ghadhban A, Deshmukh SK, Carter JE, Singh AP, Singh S. Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis. Cancer Lett 2016; 383:53-61. [PMID: 27693632 PMCID: PMC5086276 DOI: 10.1016/j.canlet.2016.09.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023]
Abstract
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Yousef Omar
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - Zohaib Mohammad Ijaz
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688, USA
| | - Ahmed Al-Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sachin K Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
23
|
Semchyshyn HM, Valishkevych BV. Hormetic Effect of H2O2 in Saccharomyces cerevisiae: Involvement of TOR and Glutathione Reductase. Dose Response 2016; 14:1559325816636130. [PMID: 27099601 PMCID: PMC4822199 DOI: 10.1177/1559325816636130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the relationship between target of rapamycin (TOR) and H2O2-induced hormetic response in the budding yeast Saccharomyces cerevisiae grown on glucose or fructose. In general, our data suggest that: (1) hydrogen peroxide (H2O2) induces hormesis in a TOR-dependent manner; (2) the H2O2-induced hormetic dose-response in yeast depends on the type of carbohydrate in growth medium; (3) the concentration-dependent effect of H2O2 on yeast colony growth positively correlates with the activity of glutathione reductase that suggests the enzyme involvement in the H2O2-induced hormetic response; and (4) both TOR1 and TOR2 are involved in the reciprocal regulation of the activity of glucose-6-phosphate dehydrogenase and glyoxalase 1.
Collapse
Affiliation(s)
- Halyna M Semchyshyn
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Bohdana V Valishkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
24
|
Fructose-Induced Carbonyl/Oxidative Stress in S. cerevisiae: Involvement of TOR. Biochem Res Int 2016; 2016:8917270. [PMID: 27019749 PMCID: PMC4785243 DOI: 10.1155/2016/8917270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022] Open
Abstract
The TOR (target of rapamycin) signaling pathway first described in the budding yeast Saccharomyces cerevisiae is highly conserved in eukaryotes effector of cell growth, longevity, and stress response. TOR activation by nitrogen sources, in particular amino acids, is well studied; however its interplay with carbohydrates and carbonyl stress is poorly investigated. Fructose is a more potent glycoxidation agent capable of producing greater amounts of reactive carbonyl (RCS) and oxygen species (ROS) than glucose. The increased RCS/ROS production, as a result of glycoxidation in vivo, is supposed to be involved in carbonyl/oxidative stress, metabolic disorders, and lifespan shortening of eukaryotes. In this work we aim to expand our understanding of how TOR is involved in carbonyl/oxidative stress caused by reducing monosaccharides. It was found that in fructose-grown compared with glucose-grown cells the level of carbonyl/oxidative stress markers was higher. The defects in the TOR pathway inhibited metabolic rate and suppressed generation of glycoxidation products in fructose-grown yeast.
Collapse
|
25
|
Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype. Int J Microbiol 2015; 2015:697813. [PMID: 26843865 PMCID: PMC4710903 DOI: 10.1155/2015/697813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022] Open
Abstract
Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.
Collapse
|
26
|
Bayliak MM, Shmihel HV, Lylyk MP, Vytvytska OM, Storey JM, Storey KB, Lushchak VI. Alpha-ketoglutarate attenuates toxic effects of sodium nitroprusside and hydrogen peroxide in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:650-659. [PMID: 26363988 DOI: 10.1016/j.etap.2015.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
The protective effects of dietary alpha-ketoglutarate (AKG) are described that aid fruit flies, Drosophila melanogaster, to resist sodium nitroprusside (SNP) and hydrogen peroxide toxicity. Food supplementation with 10mM AKG alleviated toxic effects of 1mM SNP added to food and improved fly development. Dietary AKG also prevented the increase in levels of oxidative stress markers seen in SNP-reared adult flies. In vitro AKG did not affect the rate of SNP decomposition and did not bind iron and nitrite ions released in this process. Alpha-ketoglutarate also displayed high H2O2-scavenging activity in vitro and efficiently protected adult flies against this compound in combined treatments. Based on the observed antioxidant activity of AKG, it may be suggested that the antioxidant mode of AKG action (apart from its cyanide-binding capability) may be used to prevent the toxic effects of SNP and improve general physiological state of D. melanogaster and other animals and humans.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.
| | - Halyna V Shmihel
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria P Lylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Vytvytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
27
|
Glban AM, Vasiljević A, Veličković N, Nikolić-Kokić A, Blagojević D, Matić G, Nestorov J. The expression and activity of antioxidant enzymes in the liver of rats exposed to high-fructose diet in the period from weaning to adulthood. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2319-2324. [PMID: 25307280 DOI: 10.1002/jsfa.6953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/22/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Increased fructose consumption correlates with rising prevalence of various metabolic disorders, some of which were linked to oxidative stress. The relationship between fructose consumption and oxidative stress is complex and effects of a fructose-rich diet on the young population have not been fully elucidated. The aim of this study was to investigate whether high-fructose diet applied in the period from weaning to adulthood induces oxidative stress in the liver, thus contributing to induction or aggravation of metabolic disturbances in later adulthood. To that end we examined the effects of high-fructose diet on expression and activity of antioxidant enzymes, markers of lipid peroxidation and protein damage in the liver as the main fructose metabolizing tissue. RESULTS High-fructose diet increased only SOD2 (mitochondrial manganese superoxide dismutase) activity, with no effect on other antioxidant enzymes, lipid peroxidation or accumulation of damaged proteins in the liver. CONCLUSION The results show that fructose-induced metabolic disturbances could not be attributed to oxidative stress, at least not at young age. The absence of oxidative stress in the liver observed herein implies that young organisms are capable of maintaining redox homeostasis when challenged by fructose-derived energy overload.
Collapse
Affiliation(s)
- Alhadi M Glban
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| | - Ana Vasiljević
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| | - Jelena Nestorov
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, 11060, Belgrade, Serbia
| |
Collapse
|
28
|
Bayliak MM, Burdylyuk NI, Lushchak VI. Quercetin increases stress resistance in the yeast Saccharomyces cerevisiae not only as an antioxidant. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1136-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Rovenko BM, Kubrak OI, Gospodaryov DV, Yurkevych IS, Sanz A, Lushchak OV, Lushchak VI. Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:27-39. [PMID: 25941153 DOI: 10.1016/j.cbpa.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023]
Abstract
Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes.
Collapse
Affiliation(s)
- Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Olga I Kubrak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK; Newcastle University Institute for Ageing, Newcastle University, Newcastle-Upon-Tyne NE4 5PL, UK
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
30
|
Monitoring peroxides generation during model wine fermentation by FOX-1 assay. Food Chem 2014; 175:25-8. [PMID: 25577046 DOI: 10.1016/j.foodchem.2014.11.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022]
Abstract
The quality of wine is mainly determined during the alcoholic fermentation that gradually transforms the grape juice into wine. Along this process the yeast goes through several stressful stages which can affect its fermentative ability and industrial performance, affecting wine quality. Based on their actual application on industrial winemaking, commercial Saccharomyces cerevisiae strains (EC1118, QA23, VIN7 and VL3) were used. They were inoculated in batch laboratory fermentations in a model wine solution for evaluating the production of reactive oxygen species (ROS) during the yeast's alcoholic fermentation. For first time total hydroperoxides were determined by FOX-1 assay to follow ROS generation. The total hydroperoxides accumulated along the 10 days of fermentation peaked up to 10.0 μM in yeast EC1118, of which 1.3 μM was hydrogen peroxide (H2O2). The FOX-1 based analytical approach herein presented is a valuable tool for the quantification of ROS oxidative damage during winemaking.
Collapse
|
31
|
Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014; 224:164-75. [PMID: 25452175 DOI: 10.1016/j.cbi.2014.10.016] [Citation(s) in RCA: 958] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
32
|
Husak VV, Mosiichuk NM, Maksymiv IV, Sluchyk IY, Storey JM, Storey KB, Lushchak VI. Histopathological and biochemical changes in goldfish kidney due to exposure to the herbicide Sencor may be related to induction of oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:181-189. [PMID: 25036620 DOI: 10.1016/j.aquatox.2014.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Molecular mechanisms of toxicity by the metribuzin-containing herbicide Sencor to living organisms, particularly fish, have not yet been extensively investigated. In the present work, we studied the effects of 96 h exposure to 7.14, 35.7, or 71.4 mg L(-1) of Sencor (corresponding to 5, 25, or 50 mg L(-1) of its herbicidal component metribuzin) on goldfish (Carassius auratus L.), examining the histology, levels of oxidative stress markers, and activities of antioxidant and related enzymes in kidney as well as hematological parameters and leukocyte profiles in blood. The treatment induced various histopathological changes in goldfish kidney, such as hypertrophy of intertubular hematopoietic tissue, small and multiple hemorrhages, glomerular shrinkage, a decrease in space between glomerulus and Bowman's capsule, degeneration and necrosis of the tubular epithelium. Sencor exposure also decreased activities of selected enzymes in kidney; activities of catalase decreased by 31-34%, glutathione peroxidase by 14-33%, glutathione reductase by 17-25%, and acetylcholinesterase by 31%. However, glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities increased by 25-30% and 22% in kidney after treatment with 7.14 or 35.7 mg L(-1) and 71.4 mg L(-1) Sencor, respectively. Kidney levels of protein carbonyls increased by 177% after exposure to 35.7 mg L(-1) of Sencor indicating extensive damage to proteins. Lipid peroxide concentrations also increased by 25% after exposure to 7.14 mg L(-1) of Sencor, but levels were reduced by 42% in the 71.4 mg L(-1) exposure group. The data indicate that induction of oxidative stress is one of the mechanisms responsible for Sencor toxicity to fish.
Collapse
Affiliation(s)
- Viktor V Husak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Ivan V Maksymiv
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Iryna Y Sluchyk
- Department of Human and Animal Anatomy and Physiology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
33
|
Nestorov J, Glban AM, Mijušković A, Nikolić-Kokić A, Elaković I, Veličković N, Matić G. Long-term fructose-enriched diet introduced immediately after weaning does not induce oxidative stress in the rat liver. Nutr Res 2014; 34:646-52. [PMID: 25150124 DOI: 10.1016/j.nutres.2014.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/19/2023]
Abstract
Increased fructose consumption is correlated with the rising prevalence of obesity, metabolic syndrome, and type 2 diabetes. It is believed that reactive oxygen species contribute to the development and progression of metabolic disturbances, especially those associated with insulin resistance. Dietary fructose produces both pro-oxidative and antioxidative effects, depending upon the experimental conditions, dosage, duration of treatment, and pathophysiological milieu. The effects of fructose overconsumption on young populations, which have an increased risk of developing metabolic disorders in adulthood, have not been fully elucidated. We have previously shown that rats subjected to a long-term fructose-enriched diet immediately after weaning display impaired hepatic insulin sensitivity. In this study, we tested the hypothesis that long-term fructose consumption induces alterations in the redox setting of the liver. Starting from the 21st day after birth, male Wistar rats were maintained for 9 weeks on a standard diet (control) or a fructose-enriched diet that consisted of standard food and 10% fructose solution instead of drinking water. The expression and activity of antioxidant enzymes as well as lipid peroxidation and protein damage markers were measured. The results showed that a fructose-enriched diet led to an increased expression of mitochondrial manganese superoxide dismutase but did not affect antioxidant enzymes activity, lipid peroxidation, thiol content, and the level of protein oxidation. Therefore, our results suggest that the decrease in hepatic insulin sensitivity that was previously observed in rats that were kept on the same diet regime might be attributed to molecular mechanisms other than redox disbalance. A possible fructose-related micronutrient deficiency should be examined.
Collapse
Affiliation(s)
- Jelena Nestorov
- Department of Biochemistry Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia.
| | - Alhadi M Glban
- Department of Biochemistry Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Mijušković
- Department of Physiology, Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry Institute for Biological Research "Siniša Stanković," University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
34
|
Abstract
The relationship between the dose of an effector and the biological response frequently is not described by a linear function and, moreover, in some cases the dose-response relationship may change from positive/adverse to adverse/positive with increasing dose. This complicated relationship is called "hormesis". This paper provides a short analysis of the concept along with a description of used approaches to characterize hormetic relationships. The whole hormetic curve can be divided into three zones: I - a lag-zone where no changes are observed with increasing dose; II - a zone where beneficial/adverse effects are observed, and III - a zone where the effects are opposite to those seen in zone II. Some approaches are proposed to analyze the molecular components involved in the development of the hormetic character of dose-response relationships with the use of specific genetic lines or inhibitors of regulatory pathways. The discussion is then extended to suggest a new parameter (half-width of the hormetic curve at zone II) for quantitative characterization of the hormetic curve. The problems limiting progress in the development of the hormesis concept such as low reproducibility and predictability may be solved, at least partly, by deciphering the molecular mechanisms underlying the hormetic dose-effect relationship.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine
| |
Collapse
|
35
|
Rovenko BM, Lushchak VI, Lushchak OV. [Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster]. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 85:61-72. [PMID: 24479323 DOI: 10.15407/ubj85.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.
Collapse
|
36
|
Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal 2014; 2014:417842. [PMID: 24634611 PMCID: PMC3918703 DOI: 10.1155/2014/417842] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS.
Collapse
|
37
|
Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol 2014; 2014:485792. [PMID: 24669223 PMCID: PMC3942194 DOI: 10.1155/2014/485792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeast S. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance of S. cerevisiae to different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.
Collapse
|
38
|
Bayliak MM, Burdyliuk NI, Izers’ka LI, Lushchak VI. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins. Dose Response 2014; 12:93-109. [PMID: 24659935 PMCID: PMC3960956 DOI: 10.2203/dose-response.13-013.bayliak] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed.
Collapse
Affiliation(s)
- Maria M. Bayliak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ukraine
| | - Nadia I. Burdyliuk
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ukraine
| | - Lilia I. Izers’ka
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ukraine
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ukraine
| |
Collapse
|
39
|
Semchyshyn HM, Miedzobrodzki J, Bayliak MM, Lozinska LM, Homza BV. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Carbohydr Res 2013; 384:61-9. [PMID: 24361593 DOI: 10.1016/j.carres.2013.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
The contribution of carbohydrates to non-enzymatic processes such as glycation/autoxidation has been extensively investigated over the last decades. This may be attributed to either beneficial or detrimental effects of reducing carbohydrates, and most studies in the field of glycoxidation are focused on glucose. Non-enzymatic reactions of fructose have not been as thoroughly investigated as those of glucose. To compare glucose and fructose involvement in the generation of glycoxidation products under experimental conditions close to the physiological situation, we used intact Saccharomyces cerevisiae cells as in vivo model and cell-free extracts prepared from whole yeast cells as in vitro model. Both intact cells and cell-free extracts were incubated with glucose or fructose. It was shown that: (i) in vitro fructose was more reactive than glucose and produced higher level of autoxidation and glycation products; (ii) no substantive differences were observed for the effect of glucose and fructose on the intracellular level of glycoxidation products, when intact yeast cells were exposed to the high concentration of hexoses; (iii) the activity of defensive enzymes (superoxide dismutase, catalase, glyoxalases, and glutathione reductase) was increased in both glucose- and fructose-stressed yeasts, indicating the development of oxidative/carbonyl stress; (iv) glucose-6-phosphate dehydrogenase activity significantly dropped in yeast exposed to both hexoses, demonstrating its high sensitivity to reactive oxygen and carbonyl species; and (v) fructose more markedly activated glyoxalases than glucose. Involvement of glucose and fructose in the glycoxidation reactions as well as potential role of antioxidant and antiglycation enzymes in yeast protection against glycoxidation are discussed.
Collapse
Affiliation(s)
- Halyna M Semchyshyn
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76025 Ivano-Frankivsk, Ukraine.
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Str., 31309 Cracow, Poland
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76025 Ivano-Frankivsk, Ukraine
| | - Liudmyla M Lozinska
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76025 Ivano-Frankivsk, Ukraine
| | - Bohdana V Homza
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76025 Ivano-Frankivsk, Ukraine
| |
Collapse
|
40
|
Fructation in vivo: detrimental and protective effects of fructose. BIOMED RESEARCH INTERNATIONAL 2013; 2013:343914. [PMID: 23984346 PMCID: PMC3741926 DOI: 10.1155/2013/343914] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/20/2013] [Indexed: 12/12/2022]
Abstract
There is compelling evidence that long-term intake of excessive fructose can have deleterious side effects in different experimental models. However, the role of fructose in vivo remains controversial, since acute temporary application of fructose is found to protect yeast as well as animal tissues against exogenous oxidative stress. This review suggests the involvement of reactive carbonyl and oxygen species in both the cytotoxic and defensive effects of fructose. Potential mechanisms of the generation of reactive species by fructose in the nonenzymatic reactions, their implication in the detrimental and protective effects of fructose are discussed.
Collapse
|
41
|
Lopes M, Mota M, Belo I. Comparison of Yarrowia lipolytica and Pichia pastoris cellular response to different agents of oxidative stress. Appl Biochem Biotechnol 2013; 170:448-58. [PMID: 23546869 DOI: 10.1007/s12010-013-0205-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
Yeast cells exposed to adverse conditions employ a number of defense mechanisms in order to respond effectively to the stress effects of reactive oxygen species. In this work, the cellular response of Yarrowia lipolytica and Pichia pastoris to the exposure to the ROS-inducing agents' paraquat, hydrogen peroxide, and increased air pressure was analyzed. Yeast cells at exponential phase were exposed for 3 h to 1 mM paraquat, to 50 mM H2O2, or to increased air pressure of 3 or 5 bar. For both strains, the cellular viability loss and lipid peroxidation was lower for the cells exposed to increased air pressure than for those exposed to chemical oxidants. The glutathione induction occurred only in Y. lipolytica strain and reached the highest level as a response to PQ exposure. In general, antioxidant enzymes were more expressed in Y. lipolytica than in P. pastoris. The enzyme superoxide dismutase was induced in both strains under all the oxidant conditions but was dependent on the cellular growth phase, being undetectable in non-growing cells, whereas glutathione reductase was more induced in those conditions. Hydrogen peroxide was the most efficient inducer of catalase. Both yeast cultures underwent no cellular growth inhibition with increased air pressure, indicating that these yeast species were able to adapt to the oxidative stressful environment.
Collapse
Affiliation(s)
- Marlene Lopes
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | | | | |
Collapse
|