1
|
Janssen DJ, Rickli J, Wille M, Sepúlveda Steiner O, Vogel H, Dellwig O, Berg JS, Bouffard D, Lever MA, Hassler CS, Jaccard SL. Chromium Cycling in Redox-Stratified Basins Challenges δ 53Cr Paleoredox Proxy Applications. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL099154. [PMID: 36589775 PMCID: PMC9787902 DOI: 10.1029/2022gl099154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Chromium stable isotope composition (δ53Cr) is a promising tracer for redox conditions throughout Earth's history; however, the geochemical controls of δ53Cr have not been assessed in modern redox-stratified basins. We present new chromium (Cr) concentration and δ53Cr data in dissolved, sinking particulate, and sediment samples from the redox-stratified Lake Cadagno (Switzerland), a modern Proterozoic ocean analog. These data demonstrate isotope fractionation during incomplete (non-quantitative) reduction and removal of Cr above the chemocline, driving isotopically light Cr accumulation in euxinic deep waters. Sediment authigenic Cr is isotopically distinct from overlying waters but comparable to average continental crust. New and published data from other redox-stratified basins show analogous patterns. This challenges assumptions from δ53Cr paleoredox applications that quantitative Cr reduction and removal limits isotope fractionation. Instead, fractionation from non-quantitative Cr removal leads to sedimentary records offset from overlying waters and not reflecting high δ53Cr from oxidative continental weathering.
Collapse
Affiliation(s)
- David J. Janssen
- Institute of Geological SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
- Department Surface WatersEawag: Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Jörg Rickli
- Institute of Geological SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
- Institute of Geochemistry and PetrologyDepartment of Earth SciencesETH ZurichZurichSwitzerland
| | - Martin Wille
- Institute of Geological SciencesUniversity of BernBernSwitzerland
| | - Oscar Sepúlveda Steiner
- Department Surface WatersEawag: Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Hendrik Vogel
- Institute of Geological SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Olaf Dellwig
- Marine GeologyLeibniz Institute for Baltic Sea ResearchRostockGermany
| | - Jasmine S. Berg
- Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland
| | - Damien Bouffard
- Department Surface WatersEawag: Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland
| | - Mark A. Lever
- Department of Environmental Systems ScienceETH‐ZurichZurichSwitzerland
- Now at Marine Science InstituteUniversity of Texas at AustinTXPort AransasUSA
| | - Christel S. Hassler
- Department F.‐A. Forel for Environmental and Aquatic SciencesUniversity of GenevaGenevaSwitzerland
- Institute of Earth SciencesUniversity of LausanneLausanneSwitzerland
| | - Samuel L. Jaccard
- Institute of Geological SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
- Institute of Earth SciencesUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
2
|
Savvichev AS, Kulakova AA, Krasnova ED, Voronov DA, Kadnikov VV, Beletskii AV, Kozyaeva VV, Rusanov II, Letarova MA, Veslopolova EF, Belenkova VV, Demidenko NA, Gorlenko VM. Microbial Community of a Marine Meromictic Trough (Biofilter Bay) in the Kandalaksha Bay, White Sea. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Falih Hassan K, Aidan Al-Hussieny A, Al Deen Hassan ES, Abd Almunim R. Studying the efficiency of the multiple biofilters in the reduction of pollutants from wastewater. BIONATURA 2022; 7:1-7. [DOI: 10.21931/rb/2022.07.02.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The Microorganisms: yeast Sporobolomyces yunnanensis, Rhodotorula mucilaginosa and Kluyveromyces marxianusin growth of 184× 106 ± 15 cell\ml, and bacteria Pseudomonas aeruginosa and Bacillus cereus in the growth of 9 – 15× 108 ± 5 cell\ml, and algae Chlorella vulgaris in the growth of 45 × 105 ± 5 cell\ ml were selected as a bio filter to reduce organic and nonorganic pollutants from wastewater by COD, TOC, TN and TP concentrations of 455, 151, 9.5 and 31 ppm in treatment period 4, 6 and 18 hr. and pH of 7-8 in 25 Co as a Batch culture system. The yeasts showed ability to reduce COD concentration by 50-64% in 18 hr. treatment period, and the bacteria showed the ability to reduce COD, TOC, TN and TP concentrations by 59-69%, 57-66%, 53-63% and 40-55% in 18 hr. treatment period. At the same time, algae showed efficiency in reducing TN and TP by 81, 82%. The selective microorganisms showed high efficiency as a biofilter to reduce pollutants concentrations from wastewater in three serial steps by a treatment period of 6 hr in each step with a high ability to reduce COD, TOC, TN , and TP concentrations by 83, 91, 100, and 100% in 18 hr. treatment period. Ultimately, this study demonstrated the high efficiency of the multiple biofilters consisting of bacteria, yeasts, and algae in reducing the concentration of pollutants in sewage wastewater.
Keyword. Multiple biofilters, Bacteria, Yeast, Algae, COD, TOC, TN.
Collapse
Affiliation(s)
- Khalid Falih Hassan
- Water and Environment Directorate /Ministry of Science and Technology / Iraq
| | | | | | - Ruah Abd Almunim
- Water and Environment Directorate /Ministry of Science and Technology / Iraq
| |
Collapse
|
4
|
Exploring Viral Diversity in a Gypsum Karst Lake Ecosystem Using Targeted Single-Cell Genomics. Genes (Basel) 2021; 12:genes12060886. [PMID: 34201311 PMCID: PMC8226683 DOI: 10.3390/genes12060886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Little is known about the diversity and distribution of viruses infecting green sulfur bacteria (GSB) thriving in euxinic (sulfuric and anoxic) habitats, including gypsum karst lake ecosystems. In this study, we used targeted cell sorting combined with single-cell sequencing to gain insights into the gene content and genomic potential of viruses infecting sulfur-oxidizing bacteria Chlorobium clathratiforme, obtained from water samples collected during summer stratification in gypsum karst Lake Kirkilai (Lithuania). In total, 82 viral contigs were bioinformatically identified in 62 single amplified genomes (SAGs) of C. clathratiforme. The majority of viral gene and protein sequences showed little to no similarity with phage sequences in public databases, uncovering the vast diversity of previously undescribed GSB viruses. We observed a high level of lysogenization in the C. clathratiforme population, as 87% SAGs contained intact prophages. Among the thirty identified auxiliary metabolic genes (AMGs), two, thiosulfate sulfurtransferase (TST) and thioredoxin-dependent phosphoadenosine phosphosulfate (PAPS) reductase (cysH), were found to be involved in the oxidation of inorganic sulfur compounds, suggesting that viruses can influence the metabolism and cycling of this essential element. Finally, the analysis of CRISPR spacers retrieved from the consensus C. clathratiforme genome imply persistent and active virus–host interactions for several putative phages prevalent among C. clathratiforme SAGs. Overall, this study provides a glimpse into the diversity of phages associated with naturally occurring and highly abundant sulfur-oxidizing bacteria.
Collapse
|
5
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
6
|
Makri S, Wienhues G, Bigalke M, Gilli A, Rey F, Tinner W, Vogel H, Grosjean M. Variations of sedimentary Fe and Mn fractions under changing lake mixing regimes, oxygenation and land surface processes during Late-glacial and Holocene times. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143418. [PMID: 33229087 DOI: 10.1016/j.scitotenv.2020.143418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Global spread of anoxia in aquatic ecosystems has become a major issue that may potentially worsen due to global warming. The reconstruction of long-term hypolimnetic anoxia records can be challenging due to lack of valid and easily measurable proxies. The sedimentary Mn/Fe ratio measured by X-ray fluorescence (XRF) is often used as a proxy for past lake redox conditions. Yet the interpretation of this ratio can be problematic when Fe and Mn accumulation is not solely redox driven. We used the varved sediments of Lake Moossee (Switzerland) to examine the partitioning of Fe and Mn in seven fractions by sequential extraction under various oxygen conditions over the last 15,000 years. We combined this data with XRF scans and an independent diagnostic proxy for anoxia given by a hyperspectral imaging (HSI)-inferred record of bacteriopheophytin, to validate the use of the XRF-Mn/Fe ratio as redox proxy. In the 15,000-year long record, Fe was bound to humins and amorphous, crystalline, sulfide and residual forms. Mn was mainly present in carbonate and amorphous forms. Higher erosion, prolonged anoxia, diagenesis and humic matter input affected Fe and Mn accumulation. Under holomixis the XRF-Mn/Fe ratio successfully reflected lake redox conditions. Periods with higher detrital Fe input obscured the applicability of the ratio. During phases of permanent anoxia, intensified early diagenetic processes trapped Mn in the sediments in carbonate, crystalline oxide and humic forms. Our study shows that the single use of the XRF-Mn/Fe ratio is often not conclusive for inferring past lake redox conditions. The application of the XRF-Mn/Fe as a proxy for anoxia requires taking into account the individual lake characteristics and changes in lake environmental conditions, which affect the accumulation of Fe and Mn in the sediments.
Collapse
Affiliation(s)
- Stamatina Makri
- Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Giulia Wienhues
- Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Moritz Bigalke
- Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Adrian Gilli
- Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland.
| | - Fabian Rey
- Institute of Plant Sciences & Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Willy Tinner
- Institute of Plant Sciences & Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Hendrik Vogel
- Institute of Geological Sciences & Oeschger Centre for Climate Change Research, University of Bern, Baltzerstrasse 3, 3012 Bern, Switzerland.
| | - Martin Grosjean
- Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
Chan YF, Chiang PW, Tandon K, Rogozin D, Degermendzhi A, Zykov V, Tang SL. Spatiotemporal Changes in the Bacterial Community of the Meromictic Lake Uchum, Siberia. MICROBIAL ECOLOGY 2021; 81:357-369. [PMID: 32915303 DOI: 10.1007/s00248-020-01592-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Lake Uchum is a newly defined meromictic lake in Siberia with clear seasonal changes in its mixolimnion. This study characterized the temporal dynamics and vertical profile of bacterial communities in oxic and anoxic zones of the lake across all four seasons: October (autumn), March (winter), May (spring), and August (summer). Bacterial richness and diversity in the anoxic zone varied widely between time points. Proteobacteria was the dominant bacterial phylum throughout the oxic and anoxic zones across all four seasons. Alphaproteobacteria (Loktanella) and Gammaproteobacteria (Aliidiomarina) exhibited the highest abundance in the oxic and anoxic zone, respectively. Furthermore, there was a successional shift in sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria in the anoxic zone across the seasons. The most dominant SRB, Desulfonatronovibrio sp., is likely one of the main producers of hydrogen sulfide (H2S) and typically accumulates the most H2S in winter. The representative anoxygenic phototrophic bacterial group in Lake Uchum was purple sulfur bacteria (PSB). PSB were dominant (60.76%) in summer, but only had 0.2-1.5% relative abundance from autumn to spring. Multivariate analysis revealed that the abundance of these SRB and PSB correlated to the concentration of H2S in Lake Uchum. Taken together, this study provides insights into the relationships between changes in bacterial community and environmental features in Lake Uchum.
Collapse
Affiliation(s)
- Ya-Fan Chan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Denis Rogozin
- Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Siberia Federal University, Krasnoyarsk, 660041, Russia
| | - Andrey Degermendzhi
- Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Vladimir Zykov
- Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
8
|
Lau MP, Del Giorgio P. Reactivity, fate and functional roles of dissolved organic matter in anoxic inland waters. Biol Lett 2020; 16:20190694. [PMID: 32097596 DOI: 10.1098/rsbl.2019.0694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transit of organic matter (OM) through the aquatic compartment of its global cycle has been intensively studied, traditionally with a focus on the processing and degradation of its dissolved fraction (dissolved organic matter, DOM). Because this is so intimately related to oxidation, the notion tenaciously persists that where oxygen is absent, DOM turnover is markedly slowed. In this Opinion Piece, we outline how diverse processes shape, transform and degrade DOM also in anoxic aquatic environments, and we focus here on inland waters as a particular case study. A suite of biogeochemical DOM functions that have received comparatively little attention may only be expressed in anoxic conditions and may result in enhanced biogeochemical roles of these deoxygenated habitats on a network scale.
Collapse
Affiliation(s)
- Maximilian P Lau
- Département des sciences biologiques, Université du Québec à Montréal (UQAM), 141 Avenue du Président-Kennedy, Montréal, Quebec, Canada H2X 1Y4
| | - Paul Del Giorgio
- Département des sciences biologiques, Université du Québec à Montréal (UQAM), 141 Avenue du Président-Kennedy, Montréal, Quebec, Canada H2X 1Y4
| |
Collapse
|
9
|
Diao M, Huisman J, Muyzer G. Spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in a seasonally stratified lake. FEMS Microbiol Ecol 2019. [PMID: 29528404 PMCID: PMC5939864 DOI: 10.1093/femsec/fiy040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria drive major transformations in the sulfur cycle, and play vital roles in oxic--anoxic transitions in lakes and coastal waters. However, information on the succession of these sulfur bacteria in seasonally stratified lakes using molecular biological techniques is scarce. Here, we used 16S rRNA gene amplicon sequencing to study the spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in Lake Vechten. Oxygen and sulfate were mixed throughout the water column in winter and early spring. Meanwhile, SRB, green sulfur bacteria (GSB), purple sulfur bacteria (PSB), and colorless sulfur bacteria (CSB) exclusively inhabited the sediment. After the water column stratified, oxygen and nitrate concentrations decreased in the hypolimnion and various SRB species expanded into the anoxic hypolimnion. Consequently, sulfate was reduced to sulfide, stimulating the growth of PSB and GSB in the metalimnion and hypolimnion during summer stratification. When hypoxia spread throughout the water column during fall turnover, SRB and GSB vanished from the water column, whereas CSB (mainly Arcobacter) and PSB (Lamprocystis) became dominant and oxidized the accumulated sulfide under micro-aerobic conditions. Our results support the view that, once ecosystems have become anoxic and sulfidic, a large oxygen influx is needed to overcome the anaerobic sulfur cycle and bring the ecosystems back into their oxic state.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
10
|
Luedin SM, Liechti N, Cox RP, Danza F, Frigaard NU, Posth NR, Pothier JF, Roman S, Storelli N, Wittwer M, Tonolla M. Draft Genome Sequence of Chromatium okenii Isolated from the Stratified Alpine Lake Cadagno. Sci Rep 2019; 9:1936. [PMID: 30760771 PMCID: PMC6374484 DOI: 10.1038/s41598-018-38202-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023] Open
Abstract
Blooms of purple sulfur bacteria (PSB) are important drivers of the global sulfur cycling oxidizing reduced sulfur in intertidal flats and stagnant water bodies. Since the discovery of PSB Chromatium okenii in 1838, it has been found that this species is characteristic of for stratified, sulfidic environments worldwide and its autotrophic metabolism has been studied in depth since. We describe here the first high-quality draft genome of a large-celled, phototrophic, γ-proteobacteria of the genus Chromatium isolated from the stratified alpine Lake Cadagno, C. okenii strain LaCa. Long read technology was used to assemble the 3.78 Mb genome that encodes 3,016 protein-coding genes and 67 RNA genes. Our findings are discussed from an ecological perspective related to Lake Cadagno. Moreover, findings of previous studies on the phototrophic and the proposed chemoautotrophic metabolism of C. okenii were confirmed on a genomic level. We additionally compared the C. okenii genome with other genomes of sequenced, phototrophic sulfur bacteria from the same environment. We found that biological functions involved in chemotaxis, movement and S-layer-proteins were enriched in strain LaCa. We describe these features as possible adaptions of strain LaCa to rapidly changing environmental conditions within the chemocline and the protection against phage infection during blooms. The high quality draft genome of C. okenii strain LaCa thereby provides a basis for future functional research on bioconvection and phage infection dynamics of blooming PSB.
Collapse
Affiliation(s)
- Samuel M Luedin
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland.
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
| | - Nicole Liechti
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Raymond P Cox
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Francesco Danza
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | | | - Nicole R Posth
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Copenhagen, Denmark
| | - Joël F Pothier
- Environmental Genomics and System Biology Research Group, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Matthias Wittwer
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Mauro Tonolla
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland.
- Alpine Biology Center Foundation, Bellinzona, Switzerland.
| |
Collapse
|
11
|
Amrane C, Bouhidel KE. Analysis and speciation of heavy metals in the water, sediments, and drinking water plant sludge of a deep and sulfate-rich Algerian reservoir. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:73. [PMID: 30648219 DOI: 10.1007/s10661-019-7222-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
This research work aimed to assess the water quality, speciation of heavy metals in sediments and water, and the drinking water treatment plant in an important Algerian reservoir (Timgad dam, Batna). Algeria has invested billions of dollars in large seawater desalination plants and dams; however, the water quality remains a serious issue, hence this research. The high concentration (≥ 400 mg/l) of sulfate and the depth (44 m) of the studied reservoir leads to sulfate-reducing bacteria (SRB) activity and water stratification, influencing the sulfur S cycle and metal speciation. The total and sequential extractions, using the method of the European Community Bureau of Reference (BCR), were applied to characterize seven metals in sediments and coagulation sludge. It showed the absence of Zn and only trace levels of other metals in the water, whereas the sediment and the decanter sludge were highly contaminated, especially by Fe and Zn (2100 to 2800 mg/kg); the other metal concentrations were much lower. The absence of Zn in aqueous phases and its high concentration in the solid phases turned out to be a serious paradox and issue of this research work. The compositions of the reservoir sediments and coagulation sludge (decanter sludge) were similar, suggesting the metals travel through turbidity, from reservoir to treatment plant and the potential drinking water contamination. This metal characterization, combined with speciation predictive software, will allow a better understanding of heavy metal behavior and fate.
Collapse
Affiliation(s)
- C Amrane
- Laboratory of Chemistry and Environmental Chemistry LCCE (Team: Water Chemistry/Desalination & Environment), Department of Chemistry, Faculty of Matter Sciences, University Hadj Lakhdar, 05000, Batna 1, Algeria.
| | - K E Bouhidel
- Laboratory of Chemistry and Environmental Chemistry LCCE (Team: Water Chemistry/Desalination & Environment), Department of Chemistry, Faculty of Matter Sciences, University Hadj Lakhdar, 05000, Batna 1, Algeria
| |
Collapse
|
12
|
Bacterial diversity in the water column of meromictic Lake Cadagno and evidence for seasonal dynamics. PLoS One 2018; 13:e0209743. [PMID: 30586464 PMCID: PMC6306205 DOI: 10.1371/journal.pone.0209743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022] Open
Abstract
The meromictic Lake Cadagno is characterized by a compact chemocline with high concentrations of anoxygenic phototrophic purple and green sulfur bacteria. However, a complete picture of the bacterial diversity, and in particular of effects of seasonality and compartmentalization is missing. To characterize bacterial communities and elucidate relationships between them and their surrounding environment high-throughput 16S rRNA gene pyrosequencing was conducted. Proteobacteria, Chlorobi, Verrucomicrobia, and Actinobacteria were the dominant groups in Lake Cadagno water column. Moreover, bacterial interaction within the chemocline and between oxic and anoxic lake compartments were investigated through fluorescence in situ hybridization (FISH) and flow cytometry (FCM). The different populations of purple sulfur bacteria (PSB) and green sulfur bacteria (GSB) in the chemocline indicate seasonal dynamics of phototrophic sulfur bacteria composition. Interestingly, an exceptional bloom of a cyanobacteria population in the oxic-anoxic transition zone affected the common spatial distribution of phototrophic sulfur bacteria with consequence on chemocline location and water column stability. Our study suggests that both bacterial interactions between different lake compartments and within the chemocline can be a dynamic process influencing the stratification structure of Lake Cadagno water column.
Collapse
|
13
|
Rogozin DY, Zykov VV, Ivanova EA, Anufrieva TN, Barkhatov YV, Khromechek EB, Botvich IY. Meromixis and Seasonal Dynamics of Vertical Structure of Lake Uchum (South Siberia). CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518020117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Danza F, Storelli N, Roman S, Lüdin S, Tonolla M. Dynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. PLoS One 2017; 12:e0189510. [PMID: 29245157 PMCID: PMC5731995 DOI: 10.1371/journal.pone.0189510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
The meromictic Lake Cadagno is characterized by a compact chemocline with high concentrations of anoxygenic phototrophic purple sulfur bacteria (PSB) and green sulfur bacteria (GSB). The co-occurrence of phylogenetically distant bacterial groups such as PSB and GSB in the same ecological niche, makes the chemocline of Lake Cadagno an ideal system for studying the conditions and consequences of coexistence of photosynthetic bacteria populations. In this study, we applied flow cytometry (FCM) as a fast tool to identify metabolic changes due to the production and consumption of inclusion bodies such as sulfur globules (SGBs), and follow population dynamics of closely related anoxygenic photosynthetic sulfur bacteria in their natural environment. Large-celled PSB Chromatium okenii and GSB Chlorobium populations were reliably separated and identified due to differences in auto-fluorescence and cell size. Moreover, we showed that these dominant taxa share the same ecological niche over seasonal periods. Taking advantage of FCM detection of dynamic cellular complexity variation during phases of photosynthetic activity, we identified an unexpected alternation in PSB versus GSB metabolic activity, indicating dynamic interspecific interactions between these two populations.
Collapse
Affiliation(s)
- Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, Bellinzona, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, Bellinzona, Switzerland
- Alpine Biology Center Foundation, via Mirasole 22a, Bellinzona, Switzerland
| | - Samuel Lüdin
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Federal Office for Civil Protection, Spiez Laboratory, Biology Division, Spiez, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department for Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Alpine Biology Center Foundation, via Mirasole 22a, Bellinzona, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Comparative Study of the Stability of Stratification and the Food Web Structure in the Meromictic Lakes Shira and Shunet (South Siberia, Russia). ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-49143-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Zadereev ES, Gulati RD, Camacho A. Biological and Ecological Features, Trophic Structure and Energy Flow in Meromictic Lakes. ECOLOGY OF MEROMICTIC LAKES 2017. [DOI: 10.1007/978-3-319-49143-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Appl Environ Microbiol 2015; 81:7560-9. [PMID: 26296727 DOI: 10.1128/aem.02062-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min(-1) (mg protein(-1)). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone.
Collapse
|
18
|
Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, Musat N, Müller S, Meibom A, Ackermann M, Schreiber F. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol 2015; 6:243. [PMID: 25932020 PMCID: PMC4399338 DOI: 10.3389/fmicb.2015.00243] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022] Open
Abstract
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature.
Collapse
Affiliation(s)
- Matthias Zimmermann
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| | - Stéphane Escrig
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig Germany
| | - Mathias K Kirf
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Department of Surface Waters, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum Switzerland
| | - Andreas Brand
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Department of Surface Waters, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum Switzerland
| | - R Fredrik Inglis
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research, Leipzig Germany
| | - Susann Müller
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| | - Frank Schreiber
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| |
Collapse
|
19
|
Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Appl Environ Microbiol 2014; 81:298-308. [PMID: 25344237 DOI: 10.1128/aem.02435-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake.
Collapse
|
20
|
Drudge CN, Warren LA. Diurnal floc generation from neuston biofilms in two contrasting freshwater lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10107-10115. [PMID: 25111370 DOI: 10.1021/es503013w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Selective adaptation of biofilm-forming bacteria to the nutrient-rich but environmentally challenging conditions of the surface microlayer (SML) or neuston layer was evident in littoral regions of two physically and geochemically contrasting freshwater lakes. SML bacterial communities (bacterioneuston) in these systems were depleted in Actinobacteria, enriched in either Betaproteobacteria or Gammaproteobacteria, and either unicellular Cyanobacteria were absent or microbial mat forming Cyanobacteria enriched relative to communities in the underlying shallow water column (0.5 m depth). Consistent with the occurrence of biofilm-hosted, geochemically distinct microhabitats, As-, Fe-, and S-metabolizing bacteria including anaerobic taxa were detected only in the SML in both systems. Over diurnal time scales, higher wind speeds resulted in the generation of floc from SML biofilms, identifying a transport mechanism entraining SML accumulated microorganisms, nutrients, and contaminants into the underlying water column. The energy regime experienced by the SML was more important to floc generation as larger flocs were more abundant in the larger, oligotrophic lake (higher relative energy regime) compared to the sheltered, smaller lake, despite relatively higher concentrations of bacteria, organic carbon, Fe, and PO4(3-) in the latter system.
Collapse
Affiliation(s)
- Christopher N Drudge
- School of Geography and Earth Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
21
|
A low cost multi-level sampling device for synchronous aseptic collection of environmental water samples. J Microbiol Methods 2014; 105:51-3. [PMID: 25043843 DOI: 10.1016/j.mimet.2014.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/22/2022]
Abstract
We describe a simple device for the aseptic collection of environmental water samples at high spatial resolution to depths of 50m. To demonstrate the utility of this technique we present geochemical and archaeal community data from samples collected throughout the water column of a stratified lake.
Collapse
|
22
|
Strepparava N, Wahli T, Segner H, Petrini O. Detection and quantification of Flavobacterium psychrophilum in water and fish tissue samples by quantitative real time PCR. BMC Microbiol 2014; 14:105. [PMID: 24767577 PMCID: PMC4005812 DOI: 10.1186/1471-2180-14-105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. Results We describe a qPCR technique based on the single copy gene β’ DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. Conclusions This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak.
Collapse
Affiliation(s)
- Nicole Strepparava
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6500 Bellinzona, Switzerland.
| | | | | | | |
Collapse
|
23
|
Mori Y, Kataoka T, Okamura T, Kondo R. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis. Arch Microbiol 2013; 195:303-12. [PMID: 23455488 DOI: 10.1007/s00203-013-0879-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 10(6) copies ml(-1) in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.
Collapse
Affiliation(s)
- Yumi Mori
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan.
| | | | | | | |
Collapse
|
24
|
Storelli N, Peduzzi S, Saad MM, Frigaard NU, Perret X, Tonolla M. CO2assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria. FEMS Microbiol Ecol 2013; 84:421-32. [DOI: 10.1111/1574-6941.12074] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Maged M. Saad
- Department of Botany and Plant Biology, Microbiology Unit; University of Geneva, Sciences III; Geneva; Switzerland
| | - Niels-Ulrik Frigaard
- Section for Marine Biology, Department of Biology; University of Copenhagen; Helsingør; Denmark
| | - Xavier Perret
- Department of Botany and Plant Biology, Microbiology Unit; University of Geneva, Sciences III; Geneva; Switzerland
| | | |
Collapse
|
25
|
Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 2012; 45:29-37. [PMID: 19719604 DOI: 10.1016/s0168-6496(03)00107-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract In situ hybridization with specific oligonucleotide probes was used to monitor enrichment cultures of yet uncultured populations of sulfate-reducing and small-celled purple sulfur bacteria found to associate into aggregates in the chemocline of meromictic Lake Cadagno, Switzerland, and to select potential isolates. Enrichment and isolation conditions resembled those of their nearest cultured relatives, the sulfate-reducing bacterium Desulfocapsa thiozymogenes and small-celled purple sulfur bacteria belonging to the genus Lamprocystis, respectively. Based on comparative 16S rRNA analysis and physiological characterization, isolate Cad626 was found to resemble D. thiozymogenes although it differed from the type strain by its ability to grow on lactate and pyruvate. Like D. thiozymogenes, isolate Cad626 was able to disproportionate inorganic sulfur compounds (sulfur, thiosulfate, sulfite) and to grow, although growth on sulfur required a sulfide scavenger (FeOOH). Isolate Cad16 represented small-celled purple sulfur bacteria that belonged to a previously detected, but uncultured population designated F and was related to Lamprocystis purpurea as evidenced by comparative 16S rRNA analysis and the presence of bacteriochlorophyll a and the carotenoid okenone. Mixed cultures of isolates Cad626 and Cad16 resulted in their association in aggregates similar to those observed in the chemocline of Lake Cadagno. Concomitant growth enhancement of both isolates in mixed culture suggested synergistic interactions that presumably resemble a source-sink relationship for sulfide between the sulfate-reducing bacterium growing by sulfur disproportionation and the purple sulfur bacteria acting as biotic scavenger.
Collapse
|
26
|
Vogl K, Tank M, Orf GS, Blankenship RE, Bryant DA. Bacteriochlorophyll f: properties of chlorosomes containing the "forbidden chlorophyll". Front Microbiol 2012; 3:298. [PMID: 22908012 PMCID: PMC3415949 DOI: 10.3389/fmicb.2012.00298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 11/13/2022] Open
Abstract
The chlorosomes of green sulfur bacteria (GSB) are mainly assembled from one of three types of bacteriochlorophylls (BChls), BChls c, d, and e. By analogy to the relationship between BChl c and BChl d (20-desmethyl-BChl c), a fourth type of BChl, BChl f (20-desmethyl-BChl e), should exist but has not yet been observed in nature. The bchU gene (bacteriochlorophyllide C-20 methyltransferase) of the brown-colored green sulfur bacterium Chlorobaculum limnaeum was inactivated by conjugative transfer from Eshcerichia coli and homologous recombination of a suicide plasmid carrying a portion of the bchU. The resulting bchU mutant was greenish brown in color and synthesized BChl f(F). The chlorosomes of the bchU mutant had similar size and polypeptide composition as those of the wild type (WT), but the Q(y) absorption band of the BChl f aggregates was blue-shifted 16 nm (705 nm vs. 721 nm for the WT). Fluorescence spectroscopy showed that energy transfer to the baseplate was much less efficient in chlorosomes containing BChl f than in WT chlorosomes containing BChl e. When cells were grown at high irradiance with tungsten or fluorescent light, the WT and bchU mutant had identical growth rates. However, the WT grew about 40% faster than the bchU mutant at low irradiance (10 μmol photons m(-2) s(-1)). Less efficient energy transfer from BChl f aggregates to BChl a in the baseplate, the much slower growth of the strain producing BChl f relative to the WT, and competition from other phototrophs, may explain why BChl f is not observed naturally.
Collapse
Affiliation(s)
- Kajetan Vogl
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA
| | | | | | | | | |
Collapse
|
27
|
Klepac-Ceraj V, Hayes CA, Gilhooly WP, Lyons TW, Kolter R, Pearson A. Microbial diversity under extreme euxinia: Mahoney Lake, Canada. GEOBIOLOGY 2012; 10:223-235. [PMID: 22329601 DOI: 10.1111/j.1472-4669.2012.00317.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.
Collapse
MESH Headings
- Archaea/classification
- Archaea/isolation & purification
- Bacteria/classification
- Bacteria/isolation & purification
- Biota
- British Columbia
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fresh Water/microbiology
- Genes, rRNA
- Geologic Sediments/microbiology
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- V Klepac-Ceraj
- Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Ravasi DF, Peduzzi S, Guidi V, Peduzzi R, Wirth SB, Gilli A, Tonolla M. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno. GEOBIOLOGY 2012; 10:196-204. [PMID: 22433067 DOI: 10.1111/j.1472-4669.2012.00326.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past.
Collapse
Affiliation(s)
- D F Ravasi
- Piora Alpine Biology Centre Foundation, c/o Cantonal Institute of Microbiology, Bellinzona, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Behrens S, Kappler A, Obst M. Linking environmental processes to thein situfunctioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ Microbiol 2012; 14:2851-69. [DOI: 10.1111/j.1462-2920.2012.02724.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 2012; 36:486-511. [DOI: 10.1111/j.1574-6976.2011.00303.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022] Open
|
31
|
Fritz GB, Pfannkuchen M, Struck U, Hengherr S, Strohmeier S, Brümmer F. Characterizing an Anoxic Habitat: Sulfur Bacteria in a Meromictic Alpine Lake. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-1896-8_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
32
|
Habicht KS, Miller M, Cox RP, Frigaard NU, Tonolla M, Peduzzi S, Falkenby LG, Andersen JS. Comparative proteomics and activity of a green sulfur bacterium through the water column of Lake Cadagno, Switzerland. Environ Microbiol 2010; 13:203-215. [PMID: 20731699 DOI: 10.1111/j.1462-2920.2010.02321.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N(2) and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme.
Collapse
Affiliation(s)
- Kirsten S Habicht
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Mette Miller
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Raymond P Cox
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Niels-Ulrik Frigaard
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Mauro Tonolla
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Sandro Peduzzi
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Lasse G Falkenby
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| | - Jens S Andersen
- Department of Biology and Nordic Center for Earth EvolutionDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.Cantonal Institute of Microbiology, CH-6500 Bellinzona and Microbial Ecology and Microbiology Unit, Plant Biology Department, University of Geneva, CH-1211 Geneva, Switzerland.Alpine Biology Center Foundation Piora, Quinto, Switzerland
| |
Collapse
|
33
|
Gregersen LH, Habicht KS, Peduzzi S, Tonolla M, Canfield DE, Miller M, Cox RP, Frigaard NU. Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiol Ecol 2009; 70:30-41. [PMID: 19656193 DOI: 10.1111/j.1574-6941.2009.00737.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA]. All bacterial populations clearly stratified according to water column chemistry. The GSB population peaked in the chemocline (c. 8 x 10(6) GSB cells mL(-1)) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA, and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB Chlorobium clathratiforme strain BU-1 (DSM 5477). This ribotype was not detected in Lake Cadagno before the bloom of GSB. These observations suggest that the C. clathratiforme population that has stabilized in Lake Cadagno is clonal. We speculate that such a clonal bloom could be caused by environmental disturbance, mutational adaptation, or invasion.
Collapse
Affiliation(s)
- Lea H Gregersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Halm H, Musat N, Lam P, Langlois R, Musat F, Peduzzi S, Lavik G, Schubert CJ, Sinha B, Singha B, LaRoche J, Kuypers MMM. Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol 2009; 11:1945-58. [PMID: 19397681 DOI: 10.1111/j.1462-2920.2009.01917.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to approximately 3.4 microM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 microM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 x 10(7) cells ml(-1)). Incubation experiments with (15)N-nitrite revealed nitrogen loss occurring in the chemocline through denitrification (approximately 3 nM N h(-1)). At the same depth, incubations experiments with (15)N(2)- and (13)C(DIC)-labelled bicarbonate, indicated substantial N(2) fixation (31.7-42.1 pM h(-1)) and inorganic carbon assimilation (40-85 nM h(-1)). Catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N(2) fixers, with the highest expression levels right at the chemocline. The majority of N(2) fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS), we could for the first time directly link Chlorobium to N(2) fixation in the environment. Moreover, our results show that N(2) fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.
Collapse
Affiliation(s)
- Hannah Halm
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci U S A 2008; 105:17861-6. [PMID: 19004766 DOI: 10.1073/pnas.0809329105] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Quantitative information on the ecophysiology of individual microorganisms is generally limited because it is difficult to assign specific metabolic activities to identified single cells. Here, we develop and apply a method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS), and show that it allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. Using HISH-SIMS, individual cells of the anaerobic, phototropic bacteria Chromatium okenii, Lamprocystis purpurea, and Chlorobium clathratiforme inhabiting the oligotrophic, meromictic Lake Cadagno were analyzed with respect to H(13)CO(3)(-) and (15)NH(4)(+) assimilation. Metabolic rates were found to vary greatly between individual cells of the same species, showing that microbial populations in the environment are heterogeneous, being comprised of physiologically distinct individuals. Furthermore, C. okenii, the least abundant species representing approximately 0.3% of the total cell number, contributed more than 40% of the total uptake of ammonium and 70% of the total uptake of carbon in the system, thereby emphasizing that numerically inconspicuous microbes can play a significant role in the nitrogen and carbon cycles in the environment. By introducing this quantification method for the ecophysiological roles of individual cells, our study opens a variety of possibilities of research in environmental microbiology, especially by increasing the ability to examine the ecophysiological roles of individual cells, including those of less abundant and less active microbes, and by the capacity to track not only nitrogen and carbon but also phosphorus, sulfur, and other biological element flows within microbial communities.
Collapse
|
36
|
Tonolla M, Peduzzi R, Hahn D. Long-term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland. Appl Environ Microbiol 2005; 71:3544-50. [PMID: 16000760 PMCID: PMC1169024 DOI: 10.1128/aem.71.7.3544-3550.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland
| | | | | |
Collapse
|
37
|
Tonolla M, Bottinelli M, Demarta A, Peduzzi R, Hahn D. Molecular identification of an uncultured bacterium ("morphotype R") in meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 2005; 53:235-44. [PMID: 16329943 DOI: 10.1016/j.femsec.2004.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/20/2004] [Accepted: 12/22/2004] [Indexed: 11/28/2022] Open
Abstract
Comparative sequence analysis of almost complete 16S rRNA genes of members of the Desulfobacteriaceae retrieved from two gene clone libraries of uncultured bacteria of the chemocline of Lake Cadagno, Switzerland, resulted in the molecular identification of nine sequences, with a tight cluster of five sequences that represented at least three different populations of bacteria with homology values of 95% and 93% to their closest cultured relatives Desulfomonile tiedjei and Desulfomonile limimaris, respectively. In situ hybridization with probes DsmA455 targeting two subpopulations and DsmB455 targeting one subpopulation, detected bacteria with a peculiar morphology previously described as "morphotype R". The individual probes detected about the same number of cells in all samples and together added up to represent all cells of "morphotype R" suggesting that the basic ecophysiological requirements of the subpopulations might be similar. In the monimolimnion, "morphotype R" cells accounted for up to 29% of all Bacteria and entirely represented the Desulfobacteriaceae, the most prominent sulfate-reducing bacteria. In the sediment, "morphotype R" was similarly prominent in the upper cm only where it represented all Desulfobacteriaceae and up to 50% of all Bacteria. Numbers and importance within the Desulfobacteriaceae and Bacteria declined significantly with depth in sediments suggesting potential effects of changing environmental conditions on the fate of "morphotype R".
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 2004; 70:6230-9. [PMID: 15466570 PMCID: PMC522115 DOI: 10.1128/aem.70.10.6230-6239.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The occurrence and distribution of magnetotactic bacteria (MB) were studied as a function of the physical and chemical conditions in meromictic Salt Pond, Falmouth, Mass., throughout summer 2002. Three dominant MB morphotypes were observed to occur within the chemocline. Small microaerophilic magnetite-producing cocci were present at the top of the chemocline, while a greigite-producing packet-forming bacterium occurred at the base of the chemocline. The distributions of these groups displayed sharp changes in abundance over small length scales within the water column as well as strong seasonal fluctuations in population abundance. We identified a novel, greigite-producing rod in the sulfidic hypolimnion that was present in relatively constant abundance over the course of the season. This rod is the first MB that appears to belong to the gamma-Proteobacteria, which may suggest an iron- rather than sulfur-based respiratory metabolism. Its distribution and phylogenetic identity suggest that an alternative model for the ecological and physiological role of magnetotaxis is needed for greigite-producing MB.
Collapse
Affiliation(s)
- S L Simmons
- Geomirobiology Group, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | | | | | | |
Collapse
|
39
|
Maresca JA, Gomez Maqueo Chew A, Ponsatí MR, Frigaard NU, Ormerod JG, Bryant DA. The bchU gene of Chlorobium tepidum encodes the c-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 2004; 186:2558-66. [PMID: 15090495 PMCID: PMC387796 DOI: 10.1128/jb.186.9.2558-2566.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriochlorophylls (BChls) c and d, two of the major light-harvesting pigments in photosynthetic green sulfur bacteria, differ only by the presence of a methyl group at the C-20 methine bridge position in BChl c. A gene potentially encoding the C-20 methyltransferase, bchU, was identified by comparative analysis of the Chlorobium tepidum and Chloroflexus aurantiacus genome sequences. Homologs of this gene were amplified and sequenced from Chlorobium phaeobacteroides strain 1549, Chlorobium vibrioforme strain 8327d, and C. vibrioforme strain 8327c, which produce BChls e, d, and c, respectively. A single nucleotide insertion in the bchU gene of C. vibrioforme strain 8327d was found to cause a premature, in-frame stop codon and thus the formation of a truncated, nonfunctional gene product. The spontaneous mutant of this strain that produces BChl c (strain 8327c) has a second frameshift mutation that restores the correct reading frame in bchU. The bchU gene was inactivated in C. tepidum, a BChl c-producing species, and the resulting mutant produced only BChl d. Growth rate measurements showed that BChl c- and d-producing strains of the same organism (C. tepidum or C. vibrioforme) have similar growth rates at high and intermediate light intensities but that strains producing BChl c grow faster than those with BChl d at low light intensities. Thus, the bchU gene encodes the C-20 methyltransferase for BChl c biosynthesis in Chlorobium species, and methylation at the C-20 position to produce BChl c rather than BChl d confers a significant competitive advantage to green sulfur bacteria living at limiting red and near-infrared light intensities.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|