1
|
Ramos-Ramírez P, Malmhäll C, Tliba O, Rådinger M, Bossios A. Adiponectin/AdipoR1 Axis Promotes IL-10 Release by Human Regulatory T Cells. Front Immunol 2021; 12:677550. [PMID: 34084174 PMCID: PMC8167046 DOI: 10.3389/fimmu.2021.677550] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Adiponectin is an important immunomodulatory mediator in inflammatory conditions. While we previously showed that adiponectin receptor 1 (AdipoR1) is expressed in murine regulatory T cells (Tregs), its expression in human Tregs remain unknown. Here, we examined the expression of AdipoR1 in human Tregs and whether its ligand, globular adiponectin (gAd) affects the Treg ability to secrete IL-10 and the role of Type 2 (T2) inflammation in such process. Methods Human Tregs from peripheral blood were analyzed by flow cytometry for AdipoR1, Helios and IL-10 expression. CD4+ T cells enriched from peripheral blood mononuclear cells (PBMCs) were cultured in the presence or the absence of gAd or the chemical adiponectin receptor agonist, AdipoRon, or in a T2 cytokine milieu. Flow cytometry was then used to assess intracellular IL-10, IL-10 secreting cells, FOXP3 and Helios expression, and phosphorylated p38 MAP kinase (MAPK). IL-10 levels in CD4+ T cell supernatants were quantified by ELISA. Results We found that a subset of human Tregs expressed AdipoR1. Importantly, more Helios- cells expressed AdipoR1 than Helios+ cells. Likewise, there was a higher frequency of IL-10+ cells within Helios- AdipoR1+ Tregs compared to Helios+ AdipoR1+ Tregs. In contrast, the IL-10 mean fluorescence intensity (MFI) was higher in Helios+ AdipoR1+ Tregs compared to Helios-AdipoR1+ Tregs. When human CD4+ T cells were treated with gAd or AdipoRon, a significant increase in IL-10 secretion, FOXP3 expression, and p38 MAPK phosphorylation was observed in Helios- AdipoR1+ Tregs. Interestingly, gAd under T2 cytokine milieu significantly increased the intracellular levels of IL-10, mainly in Helios+ AdipoR1+ Tregs, and IL-10 levels in supernatants of CD4+ T cells. Conclusions Collectively, our findings suggest that adiponectin/AdipoR1 axis promotes IL-10 release by Tregs, mainly in Helios- Tregs, and the effect was amplified by T2 inflammation in Helios+ Tregs.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Apostolos Bossios
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge and Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Lewis JW, Edwards JR, Naylor AJ, McGettrick HM. Adiponectin signalling in bone homeostasis, with age and in disease. Bone Res 2021; 9:1. [PMID: 33414405 PMCID: PMC7790832 DOI: 10.1038/s41413-020-00122-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
Adiponectin is the most abundant circulating adipokine and is primarily involved in glucose metabolism and insulin resistance. Within the bone, osteoblasts and osteoclasts express the adiponectin receptors, however, there are conflicting reports on the effects of adiponectin on bone formation and turnover. Many studies have shown a pro-osteogenic role for adiponectin in in vivo murine models and in vitro: with increased osteoblast differentiation and activity, alongside lower levels of osteoclastogenesis. However, human studies often demonstrate an inverse relationship between adiponectin concentration and bone activity. Moreover, the presence of multiple isoforms of adiponectin and multiple receptor subtypes has the potential to lead to more complex signalling and functional consequences. As such, we still do not fully understand the importance of the adiponectin signalling pathway in regulating bone homeostasis and repair in health, with age and in disease. In this review, we explore our current understanding of adiponectin bioactivity in the bone; the significance of its different isoforms; and how adiponectin biology is altered in disease. Ultimately, furthering our understanding of adiponectin regulation of bone biology is key to developing pharmacological and non-pharmacological (lifestyle) interventions that target adiponectin signalling to boost bone growth and repair in healthy ageing, following injury or in disease.
Collapse
Affiliation(s)
- Jonathan W Lewis
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - James R Edwards
- Ageing & Regeneration Research Group, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Damanaki A, Nokhbehsaim M, Hiththetiya K, Memmert S, Gao J, Nguyen KA, Götz W, Jäger A, Wahl G, Deschner J. Characterization of a diet-induced obesity rat model for periodontal research. Clin Oral Investig 2018; 23:937-946. [PMID: 29907930 DOI: 10.1007/s00784-018-2514-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/04/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Obesity is associated with periodontitis, but the mechanisms underlying this association have yet to be unraveled. The present investigation was to evaluate a common rat model, in which obesity is induced by high-fat, high-sucrose diet (HFSD), for its applicability in periodontal research. MATERIALS AND METHODS Ten male Wistar rats were fed a 3-month HFSD along with a matching control group. Afterwards, the body weight, adipocyte morphology, leptin and adiponectin levels in adipose tissue, gingiva, and serum as well as the serum levels of triglyceride, cholesterol, and glucose were analyzed. For statistical analyses, parametric and non-parametric tests were applied (p < 0.05). RESULTS Body weight was significantly higher in the HFSD group after dieting as compared to control. HFSD caused a significant increase in serum triglyceride, low-density lipoprotein cholesterol, and leptin levels and a significant decrease in high-density lipoprotein cholesterol. Furthermore, adipose tissue from HFSD rats exhibited significantly larger adipocytes, displayed a significant upregulation of leptin and, surprisingly, elevated adiponectin levels, which is in contrast to chronic obesity in humans. Although leptin and adiponectin were also observed in gingival biopsies, no obvious differences between the groups were found. CONCLUSIONS Although this rat diet-induced obesity model is characterized by changes typical of obesity, it also has limitations, which have to be considered when data, especially with regard to adipokines, are extrapolated to humans. CLINICAL RELEVANCE The rodent diet-induced obesity model may be useful for unraveling pathomechanisms underlying the association between obesity and periodontal destruction but conclusions have to be drawn with caution.
Collapse
Affiliation(s)
- Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | | | - Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Jinlong Gao
- Westmead Institute for Medical Research and Faculty of Dentistry, University of Sydney, Sydney, Australia
| | - Ky-Anh Nguyen
- Westmead Institute for Medical Research and Faculty of Dentistry, University of Sydney, Sydney, Australia
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Gerhard Wahl
- Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany.
- Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia.
- Department of Periodontology and Operative Dentistry, University Medical Center, Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Australia.
| |
Collapse
|
4
|
Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: Involvement of autophagy and p21/Nrf2 axis. Sci Rep 2017; 7:393. [PMID: 28341848 PMCID: PMC5428427 DOI: 10.1038/s41598-017-00456-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Adiponectin possesses potent anti-inflammatory properties. p62, an adaptor protein composed of multi-functional domain, is known to play a role in controlling inflammatory responses. In the present study, we examined the role of p62 in suppressing inflammatory cytokines produced by globular adiponectin (gAcrp) and the potential underlying mechanisms in macrophages. We demonstrated that gAcrp significantly increased p62 expression. Knockdown of p62 abrogated the suppressive effects of gAcrp on LPS-stimulated TNF-α and IL-1β expression and TRAF6/p38 MAPK pathway, indicating that p62 signaling is critical for suppressing inflammatory cytokines production by gAcrp. We next examined the role of p62 in gAcrp-induced autophagy activation, because autophagy has been shown to play a pivotal role in suppressing TNF-α. Herein, we observed that gene silencing of p62 prevented gAcrp-induced increases in autophagy-related genes and autophagosome formation. In addition, we found that Nrf2 knockdown prevented gAcrp-induced p62 expression, and p21 knockdown prevented Nrf2 induction, suggesting the role of p21/Nrf2 axis in gAcrp-induced p62 expression. Taken together, these findings imply that p62 signaling plays a crucial role in suppressing inflammatory cytokine production by globular adiponectin in macrophages, at least in part, through autophagy induction. Furthermore, the p21/Nrf2 signaling cascade contributes to p62 induction by globular adiponectin.
Collapse
|
5
|
Xuan D, Han Q, Tu Q, Zhang L, Yu L, Murry D, Tu T, Lian J, Stein GS, Zhang J, Chen J. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages. J Cell Physiol 2016; 231:1090-6. [PMID: 26399931 PMCID: PMC5298882 DOI: 10.1002/jcp.25201] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/26/2023]
Abstract
Emerging evidence suggests an important role for epigenetic mechanisms in modulating signals during macrophage polarization and inflammation. JMJD3, a JmjC family histone demethylase necessary for M2 polarization is also required for effective induction of multiple M1 genes by lipopolysaccharide (LPS). However, the effects of JMJD3 to inflammation in the context of obesity remains unknown. To address this deficiency, we firstly examined the expression of JMJD3 in macrophage isolated from bone marrow and adipose tissue of diet induced obesity (DIO) mice. The results indicated that JMJD3 was down-regulated in obesity. Adiponectin (APN), a factor secreted by adipose tissue which is down-regulated in obesity, functions to switch macrophage polarization from M1 to M2, thereby attenuating chronic inflammation. Intriguingly, our results indicated that APN contributed to JMJD3 up-regulation, reduced macrophage infiltration in obese adipose tissue, and abolished the up-regulation of JMJD3 in peritoneal macrophages isolated from DIO mice when challenged with Porphyromonas gingivalis LPS (pg.lps). To elucidate the interaction of APN and JMJD3 involved in macrophage transformation in the context of inflammation, we designed the loss and gain-function experiments of APN in vivo with APN(-/-) mice with experimental periodontitis and in vitro with macrophage isolated from APN(-/-) mice. For the first time, we found that APN can help to reduce periodontitis-related bone loss, modulate JMJD3 and IRF4 expression, and macrophage infiltration. Therefore, it can be inferred that APN may contribute to anti-inflammation macrophage polarization by regulating JMJD3 expression, which provides a basis for macrophage-centered epigenetic therapeutic strategies.
Collapse
Affiliation(s)
- Dongying Xuan
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Qianqian Han
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Lan Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Liming Yu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Dana Murry
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Tianchi Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Jane Lian
- Department of Biochemistry, University of Vermont College of Medicine, C401 Given Building, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, C401 Given Building, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jincai Zhang
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| |
Collapse
|
6
|
Thanakun S, Izumi Y. Effect of Periodontitis on Adiponectin, C-Reactive Protein, and Immunoglobulin G Against Porphyromonas gingivalis in Thai People With Overweight or Obese Status. J Periodontol 2016; 87:566-76. [DOI: 10.1902/jop.2015.150583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Thanakun S, Watanabe H, Thaweboon S, Izumi Y. Association of Untreated Metabolic Syndrome With Moderate to Severe Periodontitis in Thai Population. J Periodontol 2014; 85:1502-14. [DOI: 10.1902/jop.2014.140105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Deschner J, Eick S, Damanaki A, Nokhbehsaim M. The role of adipokines in periodontal infection and healing. Mol Oral Microbiol 2014; 29:258-69. [PMID: 25052571 DOI: 10.1111/omi.12070] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
Abstract
Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.
Collapse
Affiliation(s)
- J Deschner
- Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany; Clinical Research Unit 208, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
9
|
Nokhbehsaim M, Keser S, Nogueira AVB, Cirelli JA, Jepsen S, Jäger A, Eick S, Deschner J. Beneficial effects of adiponectin on periodontal ligament cells under normal and regenerative conditions. J Diabetes Res 2014; 2014:796565. [PMID: 25121107 PMCID: PMC4120919 DOI: 10.1155/2014/796565] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/24/2023] Open
Abstract
Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-α expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.
Collapse
Affiliation(s)
- Marjan Nokhbehsaim
- Experimental Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
- Clinical Research Unit 208, University of Bonn, 53111 Bonn, Germany
| | - Sema Keser
- Clinical Research Unit 208, University of Bonn, 53111 Bonn, Germany
| | - Andressa Vilas Boas Nogueira
- Clinical Research Unit 208, University of Bonn, 53111 Bonn, Germany
- Department of Diagnosis and Surgery, School of Dentistry, UNESP, 14801-903 Araraquara, SP, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry, UNESP, 14801-903 Araraquara, SP, Brazil
| | - Søren Jepsen
- Clinical Research Unit 208, University of Bonn, 53111 Bonn, Germany
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, 53111 Bonn, Germany
| | - Andreas Jäger
- Clinical Research Unit 208, University of Bonn, 53111 Bonn, Germany
- Department of Orthodontics, University of Bonn, 53111 Bonn, Germany
| | - Sigrun Eick
- Department of Periodontology, Laboratory of Oral Microbiology, University of Bern, 3010 Bern, Switzerland
| | - James Deschner
- Experimental Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
- Clinical Research Unit 208, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
10
|
Obara S, Akifusa S, Ariyoshi W, Okinaga T, Usui M, Nakashima K, Nishihara T. Pyroglutamated Apelin-13 Inhibits Lipopolysaccharide-Induced Production of Pro-Inflammatory Cytokines in Murine Macrophage J774.1 Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/mri.2014.32007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Tullin S, Sams A, Brandt J, Dahl K, Gong W, Jeppesen CB, Krogh TN, Olsen GS, Liu Y, Pedersen AA, Petersen JM, Rolin B, Wahlund PO, Kalthoff C. Recombinant adiponectin does not lower plasma glucose in animal models of type 2 diabetes. PLoS One 2012; 7:e44270. [PMID: 23049674 PMCID: PMC3462199 DOI: 10.1371/journal.pone.0044270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/31/2012] [Indexed: 12/13/2022] Open
Abstract
Aims/Hypothesis Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats. Methods Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast. The purified protein was administered at 10–30 mg/kg i.p. b.i.d. to diabetic db/db mice for 2 weeks. Furthermore, high molecular weight human and globular mouse adiponectin batches were administered at 5–15 mg/kg i.p. b.i.d. to diabetic sand rats for 12 days. Results Surprisingly, none of our batches had any effect on blood glucose, HbA1c, plasma lipids or body weight in diabetic db/db mice or sand rats. In vitro biological, biochemical and biophysical data suggest that the protein was correctly folded and biologically active. Conclusions/Interpretation Recombinant adiponectin is ineffective at lowering blood glucose in diabetic db/db mice or sand rats.
Collapse
Affiliation(s)
- Søren Tullin
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kraus D, Winter J, Jepsen S, Jäger A, Meyer R, Deschner J. Interactions of adiponectin and lipopolysaccharide from Porphyromonas gingivalis on human oral epithelial cells. PLoS One 2012; 7:e30716. [PMID: 22319581 PMCID: PMC3271106 DOI: 10.1371/journal.pone.0030716] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periodontitis is an inflammatory disease caused by pathogenic microorganisms, such as Porphyromonas gingivalis, and characterized by the destruction of the periodontium. Obese individuals have an increased risk for periodontitis and show decreased serum levels of adiponectin. This in-vitro study was established to examine whether adiponectin modulates critical effects of lipopolysaccharide (LPS) from P. gingivalis on oral epithelial cells (OECs). METHODOLOGY/PRINCIPAL FINDINGS The presence of adiponectin and its receptors in human gingival tissue samples and OECs was analyzed by immunohistochemistry and PCR. Furthermore, OECs were treated with LPS and/or adiponectin for up to 72 h, and the gene expression and protein synthesis of pro- and anti-inflammatory mediators, matrix metalloproteinases (MMPs) and growth factors were analyzed by real-time PCR and ELISA. Additionally, cell proliferation, differentiation and in-vitro wound healing were studied. The nuclear translocation of NFκB was investigated by immunofluorescence. Gingival tissue sections showed a strong synthesis of adiponectin and its receptors in the epithelial layer. In cell cultures, LPS induced a significant up-regulation of interleukin (IL) 1β, IL6, IL8, MMP1 and MMP3. Adiponectin abrogated significantly the stimulatory effects of LPS on these molecules. Similarly, adiponectin inhibited significantly the LPS-induced decrease in cell viability and increase in cell proliferation and differentiation. Adiponectin led to a time-dependent induction of the anti-inflammatory mediators IL10 and heme oxygenase 1, and blocked the LPS-stimulated NFκB nuclear translocation. CONCLUSIONS/SIGNIFICANCE Adiponectin may counteract critical actions of P. gingivalis on oral epithelial cells. Low levels of adiponectin, as observed in obese individuals, may increase the risk for periodontal inflammation and destruction.
Collapse
Affiliation(s)
- Dominik Kraus
- Department of Prosthodontics, Preclinical Education, and Material Sciences, University of Bonn, Bonn, Germany
- Clinical Research Unit 208, University of Bonn, Bonn, Germany
| | - Jochen Winter
- Clinical Research Unit 208, University of Bonn, Bonn, Germany
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Clinical Research Unit 208, University of Bonn, Bonn, Germany
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Andreas Jäger
- Clinical Research Unit 208, University of Bonn, Bonn, Germany
- Department of Orthodontics, University of Bonn, Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - James Deschner
- Clinical Research Unit 208, University of Bonn, Bonn, Germany
- Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
13
|
Chedid P, Hurtado-Nedelec M, Marion-Gaber B, Bournier O, Hayem G, Gougerot-Pocidalo MA, Frystyk J, Flyvbjerg A, El Benna J, Marie JC. Adiponectin and its globular fragment differentially modulate the oxidative burst of primary human phagocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:682-92. [PMID: 22119038 DOI: 10.1016/j.ajpath.2011.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/05/2011] [Accepted: 10/11/2011] [Indexed: 02/06/2023]
Abstract
Adiponectin (Acrp30) belongs to the family of C1q/tumor necrosis factor α (TNFα)-related proteins. Acrp30 circulates as multimers of high, middle, and low molecular weight. In this study, we detected Acrp30 and its globular fragment (gAcrp30) in synovial fluid from rheumatoid arthritis patients. Intriguingly, the LMW form was more abundant in synovial fluid than in serum from both rheumatoid arthritis patients and healthy subjects. We also investigated the effects of Acrp30 and gAcrp30 on reactive oxygen species (ROS) production via the phagocytic NADPH oxidase. Acrp30 inhibited fMLF-induced ROS production by human phagocytes, whereas gAcrp30 enhanced it. gAcrp30's effect is additive with TNFα, whereas Acrp30 inhibited TNFα-induced priming. gAcrp30 enhanced NOX-2 expression at the plasma membrane, with a concomitant increase in p47(phox) phosphorylation. Selective inhibitors of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1 (ERK1)/2 abrogated p47(phox) phosphorylation by gAcrp30. In contrast, p47(phox) phosphorylation was inhibited by Acrp30 in association with increased AMP-activated protein kinase (AMPK) phosphorylation in phagocytes. These results suggest that human phagocyte ROS production is regulated by different mechanisms selective for Acrp30 versus gAcrp30. An imbalance between gAcrp30 and higher molecular weight isoforms of Acrp30 might contribute to chronic inflammation by regulating NADPH oxidase.
Collapse
|
14
|
Almer G, Saba-Lepek M, Haj-Yahya S, Rohde E, Strunk D, Fröhlich E, Prassl R, Mangge H. Globular domain of adiponectin: promising target molecule for detection of atherosclerotic lesions. Biologics 2011; 5:95-105. [PMID: 22022204 PMCID: PMC3195669 DOI: 10.2147/btt.s22863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adiponectin, an adipocyte-specific plasma protein, has been shown to accumulate in injured endothelial cells during development of atherosclerotic lesions. In this study, we investigated the potential of different adiponectin subfractions with special emphasis on globular adiponectin (gAd) to recognize and visualize atherosclerotic lesions. METHODS Recombinant mouse gAd and subfractions of full-length adiponectin (ie, trimeric, hexameric, and oligomeric forms) were fluorescence-labeled. Aortas of wild-type and apoprotein E-deficient mice fed a high cholesterol diet were dissected and incubated with the labeled biomarkers. Imaging was performed using confocal laser scanning microscopy. RESULTS Confocal laser scanning microscopic images showed that gAd binds more strongly to atherosclerotic plaques than full-length adiponectin subfractions. Further, we showed that gAd accumulates preferentially in endothelial cells and the fibrous cap area of plaques. Here we demonstrate for the first time that gAd recognizes atherosclerotic plaques on aortic sections of apoprotein E-deficient mice. CONCLUSION These results suggest that gAd, in addition to its physiological properties, is also suitable as a target molecule for prospective diagnostic strategies in imaging atherosclerotic lesions.
Collapse
Affiliation(s)
- Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Park HG, Bak EJ, Kim JH, Lee YS, Choi SH, Cha JH, Yoo YJ. Effect of globular adiponectin on interleukin-6 and interleukin-8 expression in periodontal ligament and gingival fibroblasts. J Periodontal Implant Sci 2011; 41:149-56. [PMID: 21811691 PMCID: PMC3139049 DOI: 10.5051/jpis.2011.41.3.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/21/2011] [Indexed: 11/25/2022] Open
Abstract
Purpose Globular adiponectin (gAd) is a type of adipocytokine, which is mainly produced by adipose tissue. It has been reported that gAd acts as a pro- as well as an anti-inflammatory factor. Interleukin (IL)-6 and IL-8 are pro-inflammatory cytokines. To investigate the role of gAd on periodontal tissues, the expression of adiponectin receptor 1 (AdipoR1) and the effect of gAd on the expression of IL-6 and IL-8 were investigated in periodontal ligament (PDL) and gingival fibroblasts. Methods PDL and gingival fibroblasts were cultured from human periodontal tissues. gAd derived from Escherichia coli and murine myeloma cells were used. The expression of AdipoR1 was estimated by reverse transcription-polymerase chain reaction and western blot. The expression of cytokines was measured by enzyme-linked immunosorbent assay. Results PDL and gingival fibroblasts expressed both mRNA and protein of AdipoR1. gAd derived from E. coli increased the production of IL-6 and IL-8, but polymyxin B, an inhibitor of lipopolysaccharide (LPS), inhibited IL-6 and IL-8 production induced by gAd in both types of cells. gAd derived from murine myeloma cells did not induce IL-6 and IL-8 production in those cells. gAd derived from E. coli contained higher levels of LPS than gAd derived from murine myeloma cells. LPS increased production of IL-6 and IL-8 in PDL and gingival fibroblasts, but pretreatment of cells with gAd derived from murine myeloma cells did not inhibit LPS-induced IL-6 and IL-8 expression. Conclusions Our results suggest that PDL and gingival fibroblasts express AdipoR1 and that gAd does not act as a modulator of IL-6 and IL-8 expression in PDL and gingival fibroblasts.
Collapse
Affiliation(s)
- Hong Gyu Park
- Department of Oral Biology, BK21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Davies RC, Jaedicke KM, Barksby HE, Jitprasertwong P, Al-Shahwani RM, Taylor JJ, Preshaw PM. Do patients with aggressive periodontitis have evidence of diabetes? A pilot study. J Periodontal Res 2011; 46:663-72. [DOI: 10.1111/j.1600-0765.2011.01388.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Kamio N, Akifusa S, Yamashita Y. Diacylglycerol kinase alpha regulates globular adiponectin-induced reactive oxygen species. Free Radic Res 2010; 45:336-41. [PMID: 21034360 DOI: 10.3109/10715762.2010.532495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has previously been reported that the globular form of adiponectin (gAd), mature adipocyte-derived cytokine, induced generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. This study investigated whether diacylglycerol kinases (DGKs), enzymes functioning in sub-cellular signalling pathways, had a role on gAd-induced ROS generation in RAW 264 cells. Administration of R59022, a specific inhibitor for DGK, reduced gAd-induced ROS generation and NO release. RAW 264 cell expressed DGKα mRNA. Depression of DGKα mRNA by RNA interference significantly reduced the ROS generation in response to gAd treatment. Interestingly, transfection with the DGKα-specific small interfering RNA attenuated the expression level of Nox1 mRNA in gAd-treated RAW 264 cells. In addition, the DGKα knockdown with siRNA suppressed gAd-induced NO release.
Collapse
Affiliation(s)
- Noriaki Kamio
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
18
|
Abstract
Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4), involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide) and endogenous ligands (e.g., free fatty acids) which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS) on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.
Collapse
|
19
|
|
20
|
Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Nonaka K, Yamashita Y. Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 2010; 111:597-606. [DOI: 10.1002/jcb.22745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|