1
|
De Luca V, Giovannuzzi S, Supuran CT, Capasso C. A comprehensive investigation of the anion inhibition profile of a β-carbonic anhydrase from Acinetobacter baumannii for crafting innovative antimicrobial treatments. J Enzyme Inhib Med Chem 2024; 39:2372731. [PMID: 39012078 PMCID: PMC467105 DOI: 10.1080/14756366.2024.2372731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the β-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
2
|
Jiang Y, Zhang XY, Li S, Xie YC, Luo XM, Yang Y, Pu Z, Zhang L, Lu JB, Huang HJ, Zhang CX, He SY. Rapid intracellular acidification is a plant defense response countered by the brown planthopper. Curr Biol 2024:S0960-9822(24)01280-6. [PMID: 39406243 DOI: 10.1016/j.cub.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.
Collapse
Affiliation(s)
- Yanjuan Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Sheng Yang He
- DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Lee SA, Henard JM, Alba RAC, Benedict CA, Mayes TA, Henard CA. Overexpression of native carbonic anhydrases increases carbon conversion efficiency in the methanotrophic biocatalyst Methylococcus capsulatus Bath. mSphere 2024; 9:e0049624. [PMID: 39191392 PMCID: PMC11423575 DOI: 10.1128/msphere.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Methanotrophic bacteria play a vital role in the biogeochemical carbon cycle due to their unique ability to use CH4 as a carbon and energy source. Evidence suggests that some methanotrophs, including Methylococcus capsulatus, can also use CO2 as a carbon source, making these bacteria promising candidates for developing biotechnologies targeting greenhouse gas capture and mitigation. However, a deeper understanding of the dual CH4 and CO2 metabolism is needed to guide methanotroph strain improvements and realize their industrial utility. In this study, we show that M. capsulatus expresses five carbonic anhydrase (CA) isoforms, one α-CA, one γ-CA, and three β-CAs, that play a role in its inorganic carbon metabolism and CO2-dependent growth. The CA isoforms are differentially expressed, and transcription of all isoform genes is induced in response to CO2 limitation. CA null mutant strains exhibited markedly impaired growth compared to an isogenic wild-type control, suggesting that the CA isoforms have independent, non-redundant roles in M. capsulatus metabolism and physiology. Overexpression of some, but not all, CA isoforms improved bacterial growth kinetics and decreased CO2 evolution from CH4-consuming cultures. Notably, we developed an engineered methanotrophic biocatalyst overexpressing the native α-CA and β-CA with a 2.5-fold improvement in the conversion of CH4 to biomass. Given that product yield is a significant cost driver of methanotroph-based bioprocesses, the engineered strain developed here could improve the economics of CH4 biocatalysis, including the production of single-cell protein from natural gas or anaerobic digestion-derived biogas.IMPORTANCEMethanotrophs transform CH4 into CO2 and multi-carbon compounds, so they play a critical role in the global carbon cycle and are of interest for biotechnology applications. Some methanotrophs, including Methylococcus capsulatus, can also use CO2 as a carbon source, but this dual one-carbon metabolism is incompletely understood. In this study, we show that M. capsulatus carbonic anhydrases are critical for this bacterium to optimally utilize CO2. We developed an engineered strain with improved CO2 utilization capacity that increased the overall carbon conversion to cell biomass. The improvements to methanotroph-based product yields observed here are expected to reduce costs associated with CH4 conversion bioprocesses.
Collapse
Affiliation(s)
- Spencer A Lee
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Jessica M Henard
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Robyn A C Alba
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Chance A Benedict
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Tyler A Mayes
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Calvin A Henard
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
4
|
Ferraroni M. Bacterial β-carbonic anhydrases. Enzymes 2024; 55:65-91. [PMID: 39222999 DOI: 10.1016/bs.enz.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
β-Carbonic anhydrases (β-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. β-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. β-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the β-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II β-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Firenze, Italia.
| |
Collapse
|
5
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
6
|
Wei H, Lunin VV, Alahuhta M, Himmel ME, Huang S, Bomble YJ, Zhang M. Streamlining heterologous expression of top carbonic anhydrases in Escherichia coli: bioinformatic and experimental approaches. Microb Cell Fact 2024; 23:190. [PMID: 38956607 PMCID: PMC11218372 DOI: 10.1186/s12934-024-02463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shu Huang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
7
|
Holly KJ, Youse MS, Flaherty DP. Enterococci carbonic anhydrase inhibition. Enzymes 2024; 55:283-311. [PMID: 39222994 DOI: 10.1016/bs.enz.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrase metalloenzymes are encoded in genomes throughout all kingdoms of life with a conserved function catalyzing the reversible conversion of CO2 to bicarbonate. Carbonic anhydrases have been well-investigated in humans, but are still relatively understudied in bacterial organisms, including Enterococci. Studies over the past decade have presented bacterial carbonic anhydrases as potential drug targets, with some chemical scaffolds potently inhibiting the Enterococcus carbonic anhydrases in vitro and displaying antimicrobial efficacy against Enterococcus organisms. While carbonic anhydrases in Enterococci still have much to be explored, hypotheses may be drawn from similar Gram-positive organisms for which known information exists about carbonic anhydrase function and relevance. Within this chapter is reported information and rational hypotheses regarding the subcellar locations, potential physiological roles, essentiality, structures, and kinetics of carbonic anhydrases in Enterococci.
Collapse
Affiliation(s)
- Katrina J Holly
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
8
|
Youse MS, Holly KJ, Flaherty DP. Neisseria gonorrhoeae carbonic anhydrase inhibition. Enzymes 2024; 55:243-281. [PMID: 39222993 DOI: 10.1016/bs.enz.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes that are found in all kingdoms of life. Though different classes of CAs vary in their roles and structures, their primary function is to catalyze the reaction between carbon dioxide and water to produce bicarbonate and a proton. Neisseria gonorrhoeae encodes for three distinct CAs (NgCAs) from three different families: an α-, a β-, and a γ-isoform. This chapter details the differences between the three NgCAs, summarizing their subcellular locations, roles, essentiality, structures, and enzyme kinetics. These bacterial enzymes have the potential to be drug targets; thus, previous studies have investigated the inhibition of NgCAs-primarily the α-isoform. Therefore, the classes of inhibitors that have been shown to bind to the NgCAs will be discussed as well. These classes include traditional CA inhibitors, such as sulfonamides, phenols, and coumarins, as well as non-traditional inhibitors including anions and thiocarbamates.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Katrina J Holly
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Braga RE, Najar FZ, Murphy CL, Patrauchan MA. Carbonic anhydrases in bacterial pathogens. Enzymes 2024; 55:313-342. [PMID: 39222996 DOI: 10.1016/bs.enz.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases (CAs) catalyze the reversable hydration of carbon dioxide to bicarbonate placing them into the core of the biochemical carbon cycle. Due to the fundamental importance of their function, they evolved independently into eight classes, three of which have been recently discovered. Most research on CAs has focused on their representatives in eukaryotic organisms, while prokaryotic CAs received significantly less attention. Nevertheless, prokaryotic CAs play a key role in the fundamental ability of the biosphere to acquire CO2 for photosynthesis and to decompose the organic matter back to CO2. They also contribute to a broad spectrum of processes in pathogenic bacteria, enhancing their ability to survive in a host and, therefore, present a promising target for developing antimicrobials. This review focuses on the distribution of CAs among bacterial pathogens and their importance in bacterial virulence and host-pathogen interactions.
Collapse
Affiliation(s)
- Reygan E Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Fares Z Najar
- Bioinformatics Core, Oklahoma State University, Stillwater, OK, United States
| | - Chelsea L Murphy
- Bioinformatics Core, Oklahoma State University, Stillwater, OK, United States
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
10
|
Capasso C, Supuran CT. Overview on bacterial carbonic anhydrase genetic families. Enzymes 2024; 55:1-29. [PMID: 39222988 DOI: 10.1016/bs.enz.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bacterial carbonic anhydrases (BCAs, EC 4.2.1.1) are indispensable enzymes in microbial physiology because they facilitate the hydration of carbon dioxide (CO2) to bicarbonate ions (HCO3-) and protons (H+), which are crucial for various metabolic processes and cellular homeostasis. Their involvement spans from metabolic pathways, such as photosynthesis, respiration, to organic compounds production, which are pivotal for bacterial growth and survival. This chapter elucidates the diversity of BCA genetic families, categorized into four distinct classes (α, β, γ, and ι), which may reflect bacterial adaptation to environmental niches and their metabolic demands. The diversity of BCAs is essential not only for understanding their physiological roles but also for exploring their potential in biotechnology. Knowledge of their diversity enables researchers to develop innovative biocatalysts for industrial applications, including carbon capture technologies to convert CO2 emissions into valuable products. Additionally, BCAs are relevant to biomedical research and drug development because of their involvement in bacterial pathogenesis and microbial survival within the host. Understanding the diversity and function of BCAs can aid in designing targeted therapeutics that interfere with bacterial metabolism and potentially reduce the risk of infections.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
11
|
Capasso C, Supuran CT. Bacterial ι-CAs. Enzymes 2024; 55:121-142. [PMID: 39222989 DOI: 10.1016/bs.enz.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent research has identified a novel class of carbonic anhydrases (CAs), designated ι-CA, predominantly found in marine diatoms, eukaryotic algae, cyanobacteria, bacteria, and archaea genomes. This class has garnered attention owing to its unique biochemical properties and evolutionary significance. Through bioinformatic analyses, LCIP63, a protein initially annotated with an unknown function, was identified as a potential ι-CA in the marine diatom Thalassiosira pseudonana. Subsequent biochemical characterization revealed that LCIP63 has CA activity and its preference for manganese ions over zinc, indicative of evolutionary adaptation to marine environments. Further exploration of bacterial ι-CAs, exemplified by Burkholderia territorii ι-CA (BteCAι), demonstrated catalytic efficiency and sensitivity to sulfonamide and inorganic anion inhibitors, the classical CA inhibitors (CAIs). The classification of ι-CAs into two variant types based on their sequences, distinguished by the COG4875 and COG4337 domains, marks a significant advancement in our understanding of these enzymes. Structural analyses of COG4337 ι-CAs from eukaryotic microalgae and cyanobacteria thereafter revealed a distinctive structural arrangement and a novel catalytic mechanism involving specific residues facilitating CO2 hydration in the absence of metal ion cofactors, deviating from canonical CA behavior. These findings underscore the biochemical diversity within the ι-CA class and highlight its potential as a target for novel antimicrobial agents. Overall, the elucidation of ι-CA properties and mechanisms advances our knowledge of carbon metabolism in diverse organisms and underscores the complexity of CA evolution and function.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, italy
| |
Collapse
|
12
|
Manyumwa CV, Zhang C, Jers C, Mijakovic I. Alpha Carbonic Anhydrase from Nitratiruptor tergarcus Engineered for Increased Activity and Thermostability. Int J Mol Sci 2024; 25:5853. [PMID: 38892041 PMCID: PMC11173315 DOI: 10.3390/ijms25115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The development of carbon capture and storage technologies has resulted in a rising interest in the use of carbonic anhydrases (CAs) for CO2 fixation at elevated temperatures. In this study, we chose to rationally engineer the α-CA (NtCA) from the thermophilic bacterium Nitratiruptor tergarcus, which has been previously suggested to be thermostable by in silico studies. Using a combination of analyses with the DEEPDDG software and available structural knowledge, we selected residues in three regions, namely, the catalytic pocket, the dimeric interface and the surface, in order to increase thermostability and CO2 hydration activity. A total of 13 specific mutations, affecting seven amino acids, were assessed. Single, double and quadruple mutants were produced in Escherichia coli and analyzed. The best-performing mutations that led to improvements in both activity and stability were D168K, a surface mutation, and R210L, a mutation in the dimeric interface. Apart from these, most mutants showed improved thermostability, with mutants R210K and N88K_R210L showing substantial improvements in activity, up to 11-fold. Molecular dynamics simulations, focusing particularly on residue fluctuations, conformational changes and hydrogen bond analysis, elucidated the structural changes imposed by the mutations. Successful engineering of NtCA provided valuable lessons for further engineering of α-CAs.
Collapse
Affiliation(s)
- Colleen Varaidzo Manyumwa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
| | - Chenxi Zhang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
- Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
13
|
Capasso C, Supuran CT. Biomedical applications of prokaryotic carbonic anhydrases: an update. Expert Opin Ther Pat 2024; 34:351-363. [PMID: 38840307 DOI: 10.1080/13543776.2024.2365407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION This review offers an updated perspective on the biomedical applications of prokaryotic carbonic anhydrases (CAs), emphasizing their potential as targets for drug development against antibiotic-resistant bacterial infections. A systematic review of literature from PubMed, Web of Science, and Google Scholar has been conducted to provide a comprehensive analysis. AREA COVERED It delves into the pivotal roles of prokaryotic CAs in bacterial metabolism and their distinctions from mammalian CAs. The review explores the diversity of CA classes in bacteria, discusses selective inhibitors targeting bacterial CAs, and explores their potential applications in biomedical research. Furthermore, it analyzes clinical trials investigating the efficacy of carbonic anhydrase inhibitors (CAIs) and patented approaches for developing antibacterial CAIs, highlighting their translational potential in creating innovative antibacterial agents. EXPERT OPINION Recent years have witnessed increased recognition of CA inhibition as a promising strategy against bacterial infections. Challenges persist in achieving selectivity over human isoforms and optimizing therapeutic efficacy. Structural biology techniques provide insights into unique active site architectures, guiding selective inhibitor design. The review underscores the importance of interdisciplinary collaborations, innovative drug delivery systems, and advanced drug discovery approaches in unlocking the full therapeutic potential of prokaryotic CA inhibitors. It emphasizes the significance of these efforts in addressing antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Foster B, Hugosson F, Scucchia F, Enjolras C, Babonis LS, Hoaen W, Martindale MQ. A novel in vivo system to study coral biomineralization in the starlet sea anemone, Nematostella vectensis. iScience 2024; 27:109131. [PMID: 38384856 PMCID: PMC10879693 DOI: 10.1016/j.isci.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Coral conservation requires a mechanistic understanding of how environmental stresses disrupt biomineralization, but progress has been slow, primarily because corals are not easily amenable to laboratory research. Here, we highlight how the starlet sea anemone, Nematostella vectensis, can serve as a model to interrogate the cellular mechanisms of coral biomineralization. We have developed transgenic constructs using biomineralizing genes that can be injected into Nematostella zygotes and designed such that translated proteins may be purified for physicochemical characterization. Using fluorescent tags, we confirm the ectopic expression of the coral biomineralizing protein, SpCARP1, in Nematostella. We demonstrate via calcein staining that SpCARP1 concentrates calcium ions in Nematostella, likely initiating the formation of mineral precursors, consistent with its suspected role in corals. These results lay a fundamental groundwork for establishing Nematostella as an in vivo system to explore the evolutionary and cellular mechanisms of coral biomineralization, improve coral conservation efforts, and even develop novel biomaterials.
Collapse
Affiliation(s)
- Brent Foster
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Fredrik Hugosson
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Federica Scucchia
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Camille Enjolras
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Institute of Human Genetics, CNRS, Montpellier 34090, France
| | - Leslie S. Babonis
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - William Hoaen
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Mark Q. Martindale
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| |
Collapse
|
15
|
Scott KM, Payne RR, Gahramanova A. Widespread dissolved inorganic carbon-modifying toolkits in genomes of autotrophic Bacteria and Archaea and how they are likely to bridge supply from the environment to demand by autotrophic pathways. Appl Environ Microbiol 2024; 90:e0155723. [PMID: 38299815 PMCID: PMC10880623 DOI: 10.1128/aem.01557-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation in Cyanobacteria and some Proteobacteria using the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO2 and HCO3- supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes.
Collapse
Affiliation(s)
- Kathleen M. Scott
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ren R. Payne
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Arin Gahramanova
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
16
|
Iizuka R, Hattori S, Kosaka Y, Masaki Y, Kawano Y, Ohtsu I, Hibbett D, Katayama Y, Yoshida M. Sulfur assimilation using gaseous carbonyl sulfide by the soil fungus Trichoderma harzianum. Appl Environ Microbiol 2024; 90:e0201523. [PMID: 38299812 PMCID: PMC10880591 DOI: 10.1128/aem.02015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide (COS) for the assimilation of a sulfur compound. We found that the filamentous fungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the β-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma.IMPORTANCEThe biological assimilation of gaseous CO2 and N2 involves essential processes known as carbon fixation and nitrogen fixation, respectively. In this study, we found that the fungus Trichoderma harzianum strain THIF08 can grow with gaseous carbonyl sulfide (COS), the most abundant and ubiquitous gaseous sulfur compound, as a sulfur source. When the fungus grew in these conditions, COS was assimilated into sulfur metabolites, and the key enzyme of this assimilation process is COS hydrolase (COSase), which specifically degrades COS. Moreover, the pathway was more energy efficient than the typical sulfate assimilation pathway. COSase genes are widely distributed in Ascomycota, Basidiomycota, and Mucoromycota and also occur in some Chytridiomycota, indicating that COS assimilation is widespread in fungi. Phylogenetic analysis of these genes revealed that the acquisition of COSase in filamentous fungi was estimated to have occurred at about 790-670 Ma, around the time that filamentous fungi transitioned to a terrestrial environment.
Collapse
Affiliation(s)
- Ryuka Iizuka
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shohei Hattori
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yusuke Kosaka
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yoshihito Masaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yusuke Kawano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Euglena Co., Ltd., Minato‑ku, Tokyo, Japan
| | - Iwao Ohtsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Euglena Co., Ltd., Minato‑ku, Tokyo, Japan
| | - David Hibbett
- Department of Biology, Clark University, Worcester, Massachusetts, USA
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties, Taito-ku, Tokyo, Japan
| | - Makoto Yoshida
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
17
|
Di Stadio G, Orita I, Nakamura R, Fukui T. Gas fermentation combined with water electrolysis for production of polyhydroxyalkanoate copolymer from carbon dioxide by engineered Ralstonia eutropha. BIORESOURCE TECHNOLOGY 2024; 394:130266. [PMID: 38159815 DOI: 10.1016/j.biortech.2023.130266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A recycled-gas closed-circuit culture system was developed for safe autotrophic cultivation of a hydrogen-oxidizing, polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha, using a non-combustible gas mixture with low-concentration of H2 supplied by water electrolysis. Automated feedback regulation of gas flow enabled input of H2, CO2, and O2 well balanced with the cellular demands, leading to constant gas composition throughout the cultivation. The engineered strain of R. eutropha produced 1.71 g/L of poly(3-hydroxybutyrate-co-12.5 mol% 3-hydroxyhexanoate) on a gas mixture of H2/CO2/O2/N2 = 4:12:7:77 vol% with a 69.2 wt% cellular content. Overexpression of can encoding cytosolic carbonic anhydrase increased the 3HHx fraction up to 19.6 mol%. The yields of biomass and PHA on input H2 were determined to be 72.9 % and 63.1 %, corresponding to 51.0 % and 44.2 % yield on electricity, respectively. The equivalent solar-to-biomass/PHA efficiencies were estimated to be 2.1-3.8 %, highlighting the high energy conversion capability of R. eutropha.
Collapse
Affiliation(s)
- Gabriele Di Stadio
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
18
|
Jo BH. Improved Solubility and Stability of a Thermostable Carbonic Anhydrase via Fusion with Marine-Derived Intrinsically Disordered Solubility Enhancers. Int J Mol Sci 2024; 25:1139. [PMID: 38256209 PMCID: PMC10816239 DOI: 10.3390/ijms25021139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Carbonic anhydrase (CA), an enzyme catalyzing the reversible hydration reaction of carbon dioxide (CO2), is considered a promising biocatalyst for CO2 reduction. The α-CA of Thermovibrio ammonificans (taCA) has emerged as a compelling candidate due to its high thermostability, a critical factor for industrial applications. However, the low-level expression and poor in vitro solubility have hampered further utilization of taCA. Recently, these limitations have been addressed through the fusion of the NEXT tag, a marine-derived, intrinsically disordered small peptide that enhances protein expression and solubility. In this study, the solubility and stability of NEXT-taCA were further investigated. When the linker length between the NEXT tag and the taCA was shortened, the expression level decreased without compromising solubility-enhancing performance. A comparison between the NEXT tag and the NT11 tag demonstrated the NEXT tag's superiority in improving both the expression and solubility of taCA. While the thermostability of taCA was lower than that of the extensively engineered DvCA10, the NEXT-tagged taCA exhibited a 30% improvement in long-term thermostability compared to the untagged taCA, suggesting that enhanced solubility can contribute to enzyme thermostability. Furthermore, the bioprospecting of two intrinsically disordered peptides (Hcr and Hku tags) as novel solubility-enhancing fusion tags was explored, demonstrating their performance in improving the expression and solubility of taCA. These efforts will advance the practical application of taCA and provide tools and insights for enzyme biochemistry and bioengineering.
Collapse
Affiliation(s)
- Byung Hoon Jo
- Division of Life Science, Research Institute of Life Science, and Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
19
|
Yang M, Umer MJ, Wang H, Han J, Han J, Liu Q, Zheng J, Cai X, Hou Y, Xu Y, Wang Y, Khan MKR, Ditta A, Liu F, Zhou Z. Decoding the guardians of cotton resilience: A comprehensive exploration of the βCA genes and its role in Verticillium dahliae resistance. PHYSIOLOGIA PLANTARUM 2023; 175:e14113. [PMID: 38148227 DOI: 10.1111/ppl.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the βCA gene in six cotton species and preliminary analysis of the βCA gene in upland cotton. In total, 73 βCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHβCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHβCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHβCA6, GHβCA7, GHβCA10, GHβCA15, and GHβCA16 were highly expressed under various abiotic stress conditions, whereas GHβCA3, GHβCA9, GHβCA10, and GHβCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthβCA1, GthβCA2, and GthβCA4 showed elevated expression across stress conditions and tissues. Silencing GHβCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHβCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Mengying Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Heng Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jiale Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangping Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jie Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Yuqing Hou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Yanchao Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Yuhong Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | | | - Allah Ditta
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Zhongli Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| |
Collapse
|
20
|
Yu S, Xu C, Tang T, Zhang Y, Effiong K, Hu J, Bi Y, Xiao X. Down-regulation of iron/zinc ion transport and toxin synthesis in Microcystis aeruginosa exposed to 5,4'-dihydroxyflavone. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132396. [PMID: 37672994 DOI: 10.1016/j.jhazmat.2023.132396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Flavonoids, common natural polyphenolic compounds from plants, have been proposed as highly effective and safe algicides. However, the molecular mechanism of flavonoids inhibiting Microcystis aeruginosa remains unclear. This study aims in exploring the global transcriptional changes and molecular docking in cyanobacterial cells in response to flavonoids. Transcriptomic analysis revealed that 5,4'-dihydroxyflavone (DHF) primarily affected the genes transcription of iron and zinc ion transport, resulting in the blockage of transport for iron (II), iron (III) and zinc (II), which eventually led to a decrease in intracellular iron and zinc content. 5,4'-DHF can also interfere with iron and zinc transport by binding to metal ion transport-related proteins, leading to eliminated biological activities in M. aeruginosa. Meanwhile, 5,4'-DHF inhibit microcystin synthesis and reduce the content of intercellular toxin by inhibiting the transcription of mcyC and binding with McyC protein, implying that 5,4'-DHF have potential to reduce the risk of microcystins in the environment. Moreover, iron starvation and down-regulation of photosynthesis-related genes transcription led to the inhibition of electron transport in photosynthetic system. These results provide more information for the inhibitory mechanism of flavonoids, and the inhibition of flavonoids on metal ion transmembrane transport provides a new perspective for the development of allelochemical algicides.
Collapse
Affiliation(s)
- Shumiao Yu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| | - Caicai Xu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Tao Tang
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Yiyi Zhang
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Kokoette Effiong
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Jing Hu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi Xiao
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, Zhejiang 316021, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of the Ministry of Natural Resources of China, Shanghai 201206, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China; Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Nguyen MT, Fernandez CA, Haider MM, Chu KH, Jian G, Nassiri S, Zhang D, Rousseau R, Glezakou VA. Toward Self-Healing Concrete Infrastructure: Review of Experiments and Simulations across Scales. Chem Rev 2023; 123:10838-10876. [PMID: 37286529 DOI: 10.1021/acs.chemrev.2c00709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cement and concrete are vital materials used to construct durable habitats and infrastructure that withstand natural and human-caused disasters. Still, concrete cracking imposes enormous repair costs on societies, and excessive cement consumption for repairs contributes to climate change. Therefore, the need for more durable cementitious materials, such as those with self-healing capabilities, has become more urgent. In this review, we present the functioning mechanisms of five different strategies for implementing self-healing capability into cement based materials: (1) autogenous self-healing from ordinary portland cement and supplementary cementitious materials and geopolymers in which defects and cracks are repaired through intrinsic carbonation and crystallization; (2) autonomous self-healing by (a) biomineralization wherein bacteria within the cement produce carbonates, silicates, or phosphates to heal damage, (b) polymer-cement composites in which autonomous self-healing occurs both within the polymer and at the polymer-cement interface, and (c) fibers that inhibit crack propagation, thus allowing autogenous healing mechanisms to be more effective. In all cases, we discuss the self-healing agent and synthesize the state of knowledge on the self-healing mechanism(s). In this review article, the state of computational modeling across nano- to macroscales developed based on experimental data is presented for each self-healing approach. We conclude the review by noting that, although autogenous reactions help repair small cracks, the most fruitful opportunities lay within design strategies for additional components that can migrate into cracks and initiate chemistries that retard crack propagation and generate repair of the cement matrix.
Collapse
Affiliation(s)
| | | | - Md Mostofa Haider
- University of California, Davis, One Shield Avenue, Davis, California 95616, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Guoqing Jian
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Somayeh Nassiri
- University of California, Davis, One Shield Avenue, Davis, California 95616, USA
| | - Difan Zhang
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Roger Rousseau
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | |
Collapse
|
22
|
Chilambi GS, Wang YH, Wallace NR, Obiwuma C, Evans KM, Li Y, Shalaby MAW, Flaherty DP, Shields RK, Doi Y, Van Tyne D. Carbonic Anhydrase Inhibition as a Target for Antibiotic Synergy in Enterococci. Microbiol Spectr 2023; 11:e0396322. [PMID: 37260400 PMCID: PMC10434275 DOI: 10.1128/spectrum.03963-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Enterococcus faecalis is a hospital-associated opportunistic pathogen that can cause infections with high mortality, such as infective endocarditis. With an increasing occurrence of multidrug-resistant enterococci, there is a need for alternative strategies to treat enterococcal infections. We isolated a gentamicin-hypersusceptible E. faecalis strain from a patient with infective endocarditis that carried a mutation in the alpha-carbonic anhydrase (α-CA) and investigated how disruption of α-CA sensitized E. faecalis to killing with gentamicin. The gentamicin-hypersusceptible α-CA mutant strain showed increased intracellular gentamicin uptake in comparison to an isogenic strain encoding full-length, wild-type α-CA. We hypothesized that increased gentamicin uptake could be due to increased proton motive force (PMF), increased membrane permeability, or both. We observed increased intracellular ATP production in the α-CA mutant strain, suggesting increased PMF-driven gentamicin uptake contributed to the strain's gentamicin susceptibility. We also analyzed the membrane permeability and fatty acid composition of isogenic wild-type and α-CA mutant strains and found that the mutant displayed a membrane composition that was consistent with increased membrane permeability. Finally, we observed that exposure to the FDA-approved α-CA inhibitor acetazolamide lowered the gentamicin MIC of eight genetically diverse E. faecalis strains with intact α-CA but did not change the MIC of the α-CA mutant strain. These results suggest that α-CA mutation or inhibition increases PMF and alters membrane permeability, leading to increased uptake of gentamicin into E. faecalis. This connection could be exploited clinically to provide new combination therapies for patients with enterococcal infections. IMPORTANCE Enterococcal infections can be difficult to treat, and new therapeutic approaches are needed. In studying an E. faecalis clinical strain from an infected patient, we found that the bacteria were rendered hypersusceptible to aminoglycoside antibiotics through a mutation that disrupted the α-CA. Our follow-on work suggested two different ways that α-CA disruption causes increased gentamicin accumulation in E. faecalis: increased proton motive force-powered uptake and increased membrane permeability. We also found that a mammalian CA inhibitor could sensitize a variety of E. faecalis strains to killing with gentamicin. Given that mammalian CA inhibitors are frequently used to treat conditions such as glaucoma, hypertension, and epilepsy, our findings suggest that these "off-the-shelf" inhibitors could also be useful partner antibiotics for the treatment of E. faecalis infections.
Collapse
Affiliation(s)
- Gayatri Shankar Chilambi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Hao Wang
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathan R. Wallace
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chetachukwu Obiwuma
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kirsten M. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yanhong Li
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Menna-Allah W. Shalaby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Ali J, Faridi S, Sardar M. Carbonic anhydrase as a tool to mitigate global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83093-83112. [PMID: 37336857 DOI: 10.1007/s11356-023-28122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
The global average temperature breaks the record every year, and this unprecedented speed at which it is unfolding is causing serious climate change which in turn impacts the lives of humans and other living organisms. Thus, it is imperative to take immediate action to limit global warming. Increased CO2 emission from the industrial sector that relies on fossil fuels is the major culprit. Mitigating global warming is an uphill battle that involves an integration of technologies such as switching to renewable energy, increasing the carbon sink capacity, and implementing carbon capture and sequestration (CCS) on major sources of CO2 emissions. Among all these methods, CCS is globally accepted as a potential technology to address this climate change. CCS using carbonic anhydrase (CA) is gaining momentum due to its advantages over other conventional CCS technologies. CA is a metalloenzyme that catalyses a fundamental reaction for life, i.e. the interconversion of bicarbonate and protons from carbon dioxide and water. The practical application of CA requires stable CAs operating under harsh operational conditions. CAs from extremophilic microbes are the potential candidates for the sequestration of CO2 and conversion into useful by-products. The soluble free form of CA is expensive, unstable, and non-reusable in an industrial setup. Immobilization of CA on various support materials can provide a better alternative for application in the sequestration of CO2. The present review provides insight into several types of CAs, their distinctive characteristics, sources, and recent developments in CA immobilization strategies for application in CO2 sequestration.
Collapse
Affiliation(s)
- Juned Ali
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shazia Faridi
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meryam Sardar
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
24
|
Jurdzinski KT, Mehrshad M, Delgado LF, Deng Z, Bertilsson S, Andersson AF. Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity. SCIENCE ADVANCES 2023; 9:eadg2059. [PMID: 37235649 PMCID: PMC10219603 DOI: 10.1126/sciadv.adg2059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The crossing of environmental barriers poses major adaptive challenges. Rareness of freshwater-marine transitions separates the bacterial communities, but how these are related to brackish counterparts remains elusive, as do the molecular adaptations facilitating cross-biome transitions. We conducted large-scale phylogenomic analysis of freshwater, brackish, and marine quality-filtered metagenome-assembled genomes (11,248). Average nucleotide identity analyses showed that bacterial species rarely existed in multiple biomes. In contrast, distinct brackish basins cohosted numerous species, but their intraspecific population structures displayed clear signs of geographic separation. We further identified the most recent cross-biome transitions, which were rare, ancient, and most commonly directed toward the brackish biome. Transitions were accompanied by systematic changes in amino acid composition and isoelectric point distributions of inferred proteomes, which evolved over millions of years, as well as convergent gains or losses of specific gene functions. Therefore, adaptive challenges entailing proteome reorganization and specific changes in gene content constrains the cross-biome transitions, resulting in species-level separation between aquatic biomes.
Collapse
Affiliation(s)
- Krzysztof T. Jurdzinski
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luis Fernando Delgado
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ziling Deng
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
25
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
26
|
Pujic P, Carro L, Fournier P, Armengaud J, Miotello G, Dumont N, Bourgeois C, Saupin X, Jame P, Selak GV, Alloisio N, Normand P. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. Int J Mol Sci 2023; 24:ijms24119162. [PMID: 37298114 DOI: 10.3390/ijms24119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
A phyloprofile of Frankia genomes was carried out to identify those genes present in symbiotic strains of clusters 1, 1c, 2 and 3 and absent in non-infective strains of cluster 4. At a threshold of 50% AA identity, 108 genes were retrieved. Among these were known symbiosis-associated genes such as nif (nitrogenase), and genes which are not know as symbiosis-associated genes such as can (carbonic anhydrase, CAN). The role of CAN, which supplies carbonate ions necessary for carboxylases and acidifies the cytoplasm, was thus analyzed by staining cells with pH-responsive dyes; assaying for CO2 levels in N-fixing propionate-fed cells (that require a propionate-CoA carboxylase to yield succinate-CoA), fumarate-fed cells and N-replete propionate-fed cells; conducting proteomics on N-fixing fumarate and propionate-fed cells and direct measurement of organic acids in nodules and in roots. The interiors of both in vitro and nodular vesicles were found to be at a lower pH than that of hyphae. CO2 levels in N2-fixing propionate-fed cultures were lower than in N-replete ones. Proteomics of propionate-fed cells showed carbamoyl-phosphate synthase (CPS) as the most overabundant enzyme relative to fumarate-fed cells. CPS combines carbonate and ammonium in the first step of the citrulline pathway, something which would help manage acidity and NH4+. Nodules were found to have sizeable amounts of pyruvate and acetate in addition to TCA intermediates. This points to CAN reducing the vesicles' pH to prevent the escape of NH3 and to control ammonium assimilation by GS and GOGAT, two enzymes that work in different ways in vesicles and hyphae. Genes with related functions (carboxylases, biotin operon and citrulline-aspartate ligase) appear to have undergone decay in non-symbiotic lineages.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Lorena Carro
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
- Departamento de Microbiología y Genética, Facultad de CC Agrarias y Ambientales, Universidad de Salamanca, Plaza Doctores de la Reina, 37007 Salamanca, Spain
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | | | - Caroline Bourgeois
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Xavier Saupin
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Patrick Jame
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Gabriela Vuletin Selak
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Nicole Alloisio
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| |
Collapse
|
27
|
Karahan ZC, Altinsoy İ, Çalişkan BN, Dede S, Kayiş G, Türkoğlu HC, Evren E, Doğanay Erdoğan B, Kiliç SG, Dolapçi İ, Tekeli A. Investigation of the presence of Capnophilic bacteria in routine urine cultures. Eur J Clin Microbiol Infect Dis 2023; 42:519-524. [PMID: 36811709 DOI: 10.1007/s10096-023-04570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Capnophilic Escherichia coli (CEC) strains are rarely isolated from urinary tract infections (UTIs). The purpose of this research was to look into the incidence and traits of the CEC strains that cause UTIs. Nine (0.11%) epidemiologically unrelated CEC isolates with varying antibiotic susceptibility patterns were identified from patients with various co-morbidities after the evaluation of 8500 urine samples. Three of these strains belonged to the O25b-ST131 clone, and none of them possessed the yadF gene. Due to adverse incubation conditions, CEC isolation is difficult. Although rare, capnophilic incubation of urine cultures may be considered particularly for patients with underlying predisposing conditions.
Collapse
Affiliation(s)
- Zeynep Ceren Karahan
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey.
- Central Microbiology Laboratory, Ibn-I Sina Hospital, Ankara University School of Medicine, Ankara, Turkey.
| | - İrem Altinsoy
- Ankara University School of Medicine, Ankara, Turkey
| | | | - Sıla Dede
- Ankara University School of Medicine, Ankara, Turkey
| | - Görkem Kayiş
- Ankara University School of Medicine, Ankara, Turkey
| | | | - Ebru Evren
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
- Central Microbiology Laboratory, Ibn-I Sina Hospital, Ankara University School of Medicine, Ankara, Turkey
| | | | - Selin Gamze Kiliç
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - İştar Dolapçi
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Alper Tekeli
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
28
|
Wang L, Zhang J, Wang R, Huang Z, Cui R, Zhu H, Yang Y, Zhang D. Genome-wide identification, evolution, and expression analysis of carbonic anhydrases genes in soybean (Glycine max). Funct Integr Genomics 2023; 23:37. [PMID: 36639600 DOI: 10.1007/s10142-023-00966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Carbonic anhydrases (CAs), as zinc metalloenzymes, are ubiquitous in nature and play essential roles in diverse biological processes. Although CAs have been broadly explored and studied, comprehensive characteristics of CA gene family members in the soybean (Glycine max) are still lacking. A total of 35 CA genes (GmCAs) were identified; they distributed on sixteen chromosomes of the soybean genome and can be divided into three subfamilies (α-type, β-type, and γ-type). Bioinformatics analysis showed that the specific GmCA gene subfamily or clade exhibited similar characteristics and that segmental duplications took the major role in generating new GmCAs. Furthermore, the synteny and evolutionary constraints analyses of CAs among soybean and distinct species provided more detailed evidence for GmCA gene family evolution. Cis-element analysis of promoter indicated that GmCAs may be responsive to abiotic stress and regulate photosynthesis. Moreover, the expression patterns of GmCAs varied in different tissues at diverse developmental stages in soybean. Additionally, we found that eight representative GmCAs may be involved in the response of soybean to low phosphorus stress. The systematic investigation of the GmCA gene family in this study will provide a valuable basis for further functional research on soybean CA genes.
Collapse
Affiliation(s)
- Li Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinyu Zhang
- Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
29
|
Krueger LA, Koester LR, Jones DF, Spangler DA. Carbon dioxide equivalent emissions from corn silage fermentation. Front Microbiol 2023; 13:1092315. [PMID: 36699579 PMCID: PMC9869070 DOI: 10.3389/fmicb.2022.1092315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The European Climate Law recently codified the goal for European climate neutrality by 2050, highlighting the need for sustainable farming practices within a robust and transparent carbon dioxide equivalent (CO2e) accounting system. In the present study, a series of equations were proposed for the estimation of CO2e emissions from corn silage fermentation. Systematic review of previous meta-analyses of corn silage fermentation identified the mean and standard deviation statistics for key model inputs of acetic acid, ethanol, lactic acid, ammonia, and volatile-corrected dry matter loss. Estimates of CO2e emissions were determined for a mock dataset comprising 1,000 iterations of randomly-generated values for each metric in accordance with mean and variance statistics of the source data. Estimates for CO2e emissions of corn silage based on meta-analysis review of laboratory experiments were 1.9 ± 5.6% (GWP20) and 0.2 ± 5.5% (GWP100) of silage dry matter. Furthermore, model results demonstrated a precedent for CO2 recycling by silage microorganisms, which was supported by genome annotation of strains belonging to common silage species. Linear model equations for GWP20 and GWP100 with inputs and outputs in mg kg-1 silage dry matter were developed, where inputs are acetic acid (A), ethanol (E), lactic acid (L), and volatile corrected dry matter loss (DV). Linear equations are (for GWP20; Eq. 11): GWP 20 = - 3626.1 - 0.04343 A + 0.8011 E - 0.03173 L + 1.46573 D V and for GWP100; Eq. 12: GWP 100 = - 8526.10 - 0.22403 A - 0.11963 E - 0.03173 L + 1.46573 D V . .
Collapse
Affiliation(s)
- Lucas A Krueger
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| | - Lucas R Koester
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| | - David F Jones
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| | - David A Spangler
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| |
Collapse
|
30
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
31
|
Ibrahim I, Ayariga JA, Xu J, Adebanjo A, Robertson BK, Samuel-Foo M, Ajayi OS. CBD resistant Salmonella strains are susceptible to epsilon 34 phage tailspike protein. Front Med (Lausanne) 2023; 10:1075698. [PMID: 36960333 PMCID: PMC10028193 DOI: 10.3389/fmed.2023.1075698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as "human friends", thus fulfilling the adage that "the enemy of my enemy is my friend". Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tailspike protein to cause bacteria membrane disruption, and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption, and dehydrogenase inactivation by the protein. The results of this work provides an interesting background to highlight the crucial role phage protein such as E34 TSP could play in pathogenic bacterial control.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- *Correspondence: Joseph Atia Ayariga,
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Ayomide Adebanjo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL, United States
- Olufemi S. Ajayi,
| |
Collapse
|
32
|
An W, Holly KJ, Nocentini A, Imhoff RD, Hewitt CS, Abutaleb NS, Cao X, Seleem MN, Supuran CT, Flaherty DP. Structure-activity relationship studies for inhibitors for vancomycin-resistant Enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem 2022; 37:1838-1844. [PMID: 35758212 PMCID: PMC9246096 DOI: 10.1080/14756366.2022.2092729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE), consisting of pathogenic Enterococcus faecalis and E. faecium, is a leading cause of hospital-acquired infections (HAIs). We recently repurposed the FDA-approved human carbonic anhydrase (CA) inhibitor acetazolamide (AZM) against VRE agent with the likely mechanism of action for the molecules being inhibition of one, or both, of the bacterial CA isoforms expressed in VRE. To elucidate how inhibitor binding to the enzymes relates to MIC, we further characterised the inhibition constants (Ki) against the E. faecium α-CA (Efα-CA) and γ-CA (Efγ-CA), as well as against human CA I (hCAI) and human CA II (hCAII) to assess selectivity. We have also utilised homology modelling and molecular dynamics (MD) simulations to gain a better understanding of the potential interactions the molecules are making with the targets. In this paper, we elaborate on the SAR for the AZM analogs as it pertains to MIC and Ki for each CA.
Collapse
Affiliation(s)
- Weiwei An
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Katrina J Holly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Ryan D Imhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy.,Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Claudiu T Supuran
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| |
Collapse
|
33
|
Zaidi S, Srivastava N, Kumar Khare S. Microbial carbonic anhydrase mediated carbon capture, sequestration & utilization: A sustainable approach to delivering bio-renewables. BIORESOURCE TECHNOLOGY 2022; 365:128174. [PMID: 36283672 DOI: 10.1016/j.biortech.2022.128174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In the recent scenario, anthropogenic interventions have alarmingly disrupted climatic conditions. The persistent change in the climate necessitates carbon neutrality. Efficient ways of carbon capture and sequestration could be employed for sustainable product generation. Carbonic anhydrase (CA) is an enzyme that reversibly catalyzes the conversion of carbon dioxide to bicarbonate ions, further utilized by cells for metabolic processes. Hence, utilizing CA from microbial sources for carbon sequestration and the corresponding delivery of bio-renewables could be the eco-friendly approach. Consequently, the microbial CA and amine-based carbon capture chemicals are synergistically applied to enhance carbon capture efficiency and eventual utilization. This review comprehends recent developments coupled with engineering techniques, especially in microbial CA, to create integrated systems for CO2 sequestration. It envisages developing sustainable approaches towards mitigating environmental CO2 from industries and fossil fuels to generate bio-renewables and other value-added chemicals.
Collapse
Affiliation(s)
- Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
34
|
Khan M, Avula SK, Halim SA, Waqas M, Asmari M, Khan A, Al-Harrasi A. Biochemical and in silico inhibition of bovine and human carbonic anhydrase-II by 1H-1,2,3-triazole analogs. Front Chem 2022; 10:1072337. [PMID: 36505753 PMCID: PMC9732439 DOI: 10.3389/fchem.2022.1072337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
A series of 1H-1,2,3-triazole analogs (7a-7d and 9a-9s) were synthesized via "click" chemistry and evaluated for in vitro carbonic anhydrase-II (bovine and human) inhibitory activity. The synthesis of intermediates, 7a and 7c, was achieved by using (S)-(-)ethyl lactate as a starting material. These compounds (7a and 7c) underwent Suzuki-Miyaura cross-coupling reaction with different arylboronic acids in 1,4-dioxane, reflux at 90-120°C for 8 h using Pd(PPh3)4 as a catalyst (5 mol%), and K2CO3 (3.0 equiv)/K2PO4 (3.0 equiv) as a base to produce target 1H-1,2,3-triazole molecules (9a-9s) for a good yield of 67-86%. All the synthesized compounds were characterized through NMR spectroscopic techniques. Furthermore, all those compounds have shown significant inhibitory potential for both sources of carbonic anhydrase-II (CA-II). In the case of bCA-II, compounds 9i, 7d, 9h, 9o, 9g, and 9e showed potent activity with IC50 values in the range of 11.1-17.8 µM. Whereas for hCA-II, compounds 9i, 9c, 9o, and 9j showed great potential with IC50 values in the range of 10.9-18.5 µM. The preliminary structure-activity relationship indicates that the presence of the 1H-1,2,3-triazole moiety in those synthesized 1H-1,2,3-triazole analogs (7a-7d and 9a-9s) significantly contributes to the overall activity. However, several substitutions on this scaffold affect the activity to several folds. The selectivity index showed that compounds 9c, 9k, and 9p are selective inhibitors of hCA-II. Kinetics studies showed that these compounds inhibited both enzymes (bCA-II and hCA-II) in a competitive manner. Molecular docking indicates that all the active compounds fit well in the active site of CA-II. This study has explored the role of 1H-1,2,3-triazole-containing compounds in the inhibition of CA-II to combat CA-II-related disorders.
Collapse
Affiliation(s)
- Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,H.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Mufarreh Asmari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,*Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi,
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman,*Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi,
| |
Collapse
|
35
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
36
|
Yuan Y, Wang F, Li H, Su S, Gao H, Han X, Ren S. Potential application of the immobilization of carbonic anhydrase based on metal organic framework supports. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Langella E, Di Fiore A, Alterio V, Monti SM, De Simone G, D’Ambrosio K. α-CAs from Photosynthetic Organisms. Int J Mol Sci 2022; 23:ijms231912045. [PMID: 36233343 PMCID: PMC9570166 DOI: 10.3390/ijms231912045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze the reversible carbon dioxide hydration reaction. Among the eight different CA classes existing in nature, the α-class is the largest one being present in animals, bacteria, protozoa, fungi, and photosynthetic organisms. Although many studies have been reported on these enzymes, few functional, biochemical, and structural data are currently available on α-CAs isolated from photosynthetic organisms. Here, we give an overview of the most recent literature on the topic. In higher plants, these enzymes are engaged in both supplying CO2 at the Rubisco and determining proton concentration in PSII membranes, while in algae and cyanobacteria they are involved in carbon-concentrating mechanism (CCM), photosynthetic reactions and in detecting or signaling changes in the CO2 level in the environment. Crystal structures are only available for three algal α-CAs, thus not allowing to associate specific structural features to cellular localizations or physiological roles. Therefore, further studies on α-CAs from photosynthetic organisms are strongly needed to provide insights into their structure–function relationship.
Collapse
|
38
|
Brazelton WJ, McGonigle JM, Motamedi S, Pendleton HL, Twing KI, Miller BC, Lowe WJ, Hoffman AM, Prator CA, Chadwick GL, Anderson RE, Thomas E, Butterfield DA, Aquino KA, Früh-Green GL, Schrenk MO, Lang SQ. Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field. Appl Environ Microbiol 2022; 88:e0092922. [PMID: 35950875 PMCID: PMC9469722 DOI: 10.1128/aem.00929-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.
Collapse
Affiliation(s)
| | - Julia M. McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Shahrzad Motamedi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Katrina I. Twing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William J. Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Cecilia A. Prator
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Elaina Thomas
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA
| | | | | | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Susan Q. Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
39
|
Sharma T, Sharma A, Xia CL, Lam SS, Khan AA, Tripathi S, Kumar R, Gupta VK, Nadda AK. Enzyme mediated transformation of CO 2 into calcium carbonate using purified microbial carbonic anhydrase. ENVIRONMENTAL RESEARCH 2022; 212:113538. [PMID: 35640707 DOI: 10.1016/j.envres.2022.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, a bacterial carbonic anhydrase (CA) was purified from Corynebacterium flavescens for the CO2 conversion into CaCO3. The synthesized CaCO3 can be utilized in the papermaking industry as filler material, construction material and in steel industry. Herein, the CA was purified by using a Sephadex G-100 column chromatography having 29.00 kDa molecular mass in SDS-PAGE analysis. The purified CA showed an optimal temperature of 35 °C and pH 7.5. In addition, a kinetic study of CA using p-NPA as substrate showed Vmax (166.66 μmoL/mL/min), Km (5.12 mM), and Kcat (80.56 sec-1) using Lineweaver Burk plot. The major inhibitors of CA activity were Na2+, K+, Mn2+, and Al3+, whereas Zn2+ and Fe2+ slightly enhanced it. The purified CA showed a good efficacy to convert the CO2 into CaCO3 with a total conversion rate of 65.05 mg CaCO3/mg of protein. In silico analysis suggested that the purified CA has conserved Zn2+ coordinating residues such as His 111, His 113, and His 130 in the active site center. Further analysis of the CO2 binding site showed conserved residues such as Val 132, Val 142, Leu 196, Thr 197, and Val 205. However, a substitution has been observed where Trp 208 of its closest structural homolog T. ammonificans CA is replaced with Arg 207 of C. flavescens. The presence of a hydrophilic mutation in the CO2 binding hydrophobic region is a further subject of investigation.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171 005, India
| | - Chang Lei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnological Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow, Uttar Pradesh, 226025, India
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India.
| |
Collapse
|
40
|
Evaluation of indole-picolinamide hybrid molecules as carbonic anhydrase-II inhibitors: Biological and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Maheshwari N, Thakur IS, Srivastava S. Role of carbon-dioxide sequestering bacteria for clean air environment and prospective production of biomaterials: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38950-38971. [PMID: 35304714 DOI: 10.1007/s11356-022-19393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The increase in demand of fossil fuel uses for developmental activity and manufacturing of goods have resulted a huge emission of global warming gases (GWGs) in the atmosphere. Among all GWGs, CO2 is the major contributor that inevitably causes global warming and climate change. Mitigation strategies like biological CO2 capture through sequestration and their storage into biological organic form are used to minimize the concentration of atmospheric CO2 with the goal to control climate change. Since increasing atmospheric CO2 level supports microbial growth and productivity thus microbial-based CO2 sequestration has remarkable advantages as compared to plant-based sequestration. This review focuses on CO2 sequestration mechanism in bacteria through different carbon fixation pathways, involved enzymes, their role in calcite, and other environmentally friendly biomaterials such as biofuel, bioplastic, and biosurfactant.
Collapse
Affiliation(s)
- Neha Maheshwari
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India
| | - Indu Shekhar Thakur
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shaili Srivastava
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India.
| |
Collapse
|
42
|
The production and biochemical characterization of α-carbonic anhydrase from Lactobacillus rhamnosus GG. Appl Microbiol Biotechnol 2022; 106:4065-4074. [PMID: 35612631 PMCID: PMC9200688 DOI: 10.1007/s00253-022-11990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Abstract
We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, β, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only β- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s−1 and kcat/KM of 1.41 × 107 s−1 M−1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. Key points • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.
Collapse
|
43
|
Sangeetha M, Sivarajan A, Radhakrishnan M, Siddharthan N, Balagurunathan R. Biosequestration of carbon dioxide using carbonic anhydrase from novel Streptomyces kunmingensis. Arch Microbiol 2022; 204:270. [PMID: 35441896 DOI: 10.1007/s00203-022-02887-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
The increase in the atmospheric concentrations of carbon dioxide due to anthropogenic interventions has led to several undesirable consequences, notably global warming and related changes. Avoidance of and/or removal of carbon dioxide will result in the reduction of global warming. Biosequestration of carbon by using carbonic anhydrase (CA) as biocatalyst is one of most effective approaches. In the present study, actinobacterial cultures isolated from bamboo (Bambusa vulgaris) rhizosphere were screened for the production of carbonic anhydrase enzyme. The strain BS19 which showed promising CA production was selected as the potential strain. Strain BS19 was identified as Streptomyces kunmingensis based on the phenotypic and molecular characteristics. In submerged fermentation, strain BS19 produced 214.21 IU/ml of CA enzyme. The molecular mass of the CA was determined as 45 ± 2 kDa. The production of CA was found to be optimal at pH 7.0 and at temperature of 28 °C. The full length periplasmic CA gene was successfully amplified from S. kunmingensis BS19. Biomimetic sequestration of carbon was detected and quantified through CaCO3 precipitation method. Further, the CA of BS 19 was successfully used to mineralize CO2 present in motorbike exhaust, which has a similar composition to that of flue gas. The well-defined rhombohedral calcite crystals formed in the mineral carbonation reaction was observed through SEM analysis. The findings of this study clearly indicated that Streptomyces kunmingensis BS19 isolated from bamboo rhizosphere is a promising candidate for the production of carbonic anhydrase which deserves the potential for CO2 sequestration.
Collapse
Affiliation(s)
- Murthy Sangeetha
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Anbalmani Sivarajan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Manikkam Radhakrishnan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Nagarajan Siddharthan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
44
|
Vincent J, Colin B, Lanneluc I, Sabot R, Sopéna V, Turcry P, Mahieux PY, Refait P, Jeannin M, Sablé S. New Biocalcifying Marine Bacterial Strains Isolated from Calcareous Deposits and Immediate Surroundings. Microorganisms 2021; 10:76. [PMID: 35056526 PMCID: PMC8778039 DOI: 10.3390/microorganisms10010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Marine bacterial biomineralisation by CaCO3 precipitation provides natural limestone structures, like beachrocks and stromatolites. Calcareous deposits can also be abiotically formed in seawater at the surface of steel grids under cathodic polarisation. In this work, we showed that this mineral-rich alkaline environment harbours bacteria belonging to different genera able to induce CaCO3 precipitation. We previously isolated 14 biocalcifying marine bacteria from electrochemically formed calcareous deposits and their immediate environment. By microscopy and µ-Raman spectroscopy, these bacterial strains were shown to produce calcite-type CaCO3. Identification by 16S rDNA sequencing provided between 98.5 and 100% identity with genera Pseudoalteromonas, Pseudidiomarina, Epibacterium, Virgibacillus, Planococcus, and Bhargavaea. All 14 strains produced carbonic anhydrase, and six were urease positive. Both proteins are major enzymes involved in the biocalcification process. However, this does not preclude that one or more other metabolisms could also be involved in the process. In the presence of urea, Virgibacillus halodenitrificans CD6 exhibited the most efficient precipitation of CaCO3. However, the urease pathway has the disadvantage of producing ammonia, a toxic molecule. We showed herein that different marine bacteria could induce CaCO3 precipitation without urea. These bacteria could then be used for eco-friendly applications, e.g., the formation of bio-cements to strengthen dikes and delay coastal erosion.
Collapse
Affiliation(s)
- Julia Vincent
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Béatrice Colin
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| | - Isabelle Lanneluc
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| | - René Sabot
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Valérie Sopéna
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| | - Philippe Turcry
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Pierre-Yves Mahieux
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Philippe Refait
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Marc Jeannin
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Sophie Sablé
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| |
Collapse
|
45
|
Bonardi A, Nocentini A, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Gratteri P, Supuran CT. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs - a joint docking/molecular dynamics study. J Enzyme Inhib Med Chem 2021; 36:469-479. [PMID: 33472446 PMCID: PMC7822066 DOI: 10.1080/14756366.2020.1862102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023] Open
Abstract
The binding mode of aromatic sulphonamides and clinically licenced drugs to the three carbonic anhydrase (CA, EC 4.2.1.1) isoforms from the human pathogen V. cholerae was here thouroghly characterised by a joint docking and molecular dynamics in silico protocol. In fact, VchCA, VchCAβ, and VchCAγ are crucial in the pathogen life cycle and growth and represent innovative targets to fight V. cholerae proliferation overcoming the spreading chemoresistance to the available drugs. A set of 40 sulphonamides/sulfamates VchCAs inhibitors was studied using the proteins homology built 3 D models unveiling the key and stable interactions responsible for a potent CA inhibition. This study has the aim to offer insights and guidelines for the future rational design of potent and selective inhibitors targeting CA isoforms from V. cholerae or other human pathogens.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Dalal Saied Abdullah
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Paola Gratteri
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Sesto Fiorentino, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
46
|
Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field. Appl Environ Microbiol 2021; 88:e0075821. [PMID: 34788070 PMCID: PMC8788690 DOI: 10.1128/aem.00758-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and “Bathymodiolus” platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.
Collapse
|
47
|
Staphylococcus aureus Genomes Harbor Only MpsAB-Like Bicarbonate Transporter but Not Carbonic Anhydrase as Dissolved Inorganic Carbon Supply System. Microbiol Spectr 2021; 9:e0097021. [PMID: 34730408 PMCID: PMC8567241 DOI: 10.1128/spectrum.00970-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In recent years, it became apparent that not only autotrophic but also most other bacteria require CO2 or bicarbonate for growth. Two systems are available for the acquisition of dissolved inorganic carbon supply (DICS): the cytoplasmic localized carbonic anhydrase (CA) and the more recently described bicarbonate transporter MpsAB (membrane potential generating system). In the pathogenic species Staphylococcus aureus, there are contradictions in the literature regarding the presence of a CA or MpsAB. Here, we address these contradictions in detail. We could demonstrate by careful BLASTp analyses with 259 finished and 4,590 unfinished S. aureus genomes that S. aureus does not contain CA and that the bicarbonate transporter MpsAB is the only DICS system in this species. This finding is further supported by two further pieces of evidence: (i) mpsAB deletion mutants in four different S. aureus strains failed to grow under atmospheric air, which should not be the case if they possess CAs, since we have previously shown that both CA and MpsAB can substitute for each other, and (ii) S. aureus is completely resistant to CA inhibitors, whereas Staphylococcus carnosus, which has been shown to have only CA, was inhibited by ethoxyzolamide (EZA). Taken together, we demonstrate beyond doubt that the species S. aureus possesses only the bicarbonate transporter MpsAB as its sole DICS system. IMPORTANCE The discrepancies in the current literature and even in NCBI database, which listed some protein sequences annotated as Staphylococcus aureus carbonic anhydrase (CA), are misleading. One of the existing problems in publicly available sequence databases is the presence of incorrectly annotated genes, especially if they originated from unfinished genomes. Here, we demonstrate that some of these unfinished genomes are of poor quality and should be interpreted with caution. In the present study, we aimed to address these discrepancies and correct the current literature about S. aureus CA, considering the medical relevance of S. aureus. If left unchecked, these misleading studies and wrongly annotated genes might lead to a continual propagation of wrong annotation and, consequently, wrong interpretations and wasted time. In addition, we also show that bicarbonate transporter MpsAB-harboring bacteria are resistant to CA inhibitor, suggesting that pathogens possessing both MpsAB and CA are not treatable with CA inhibitors.
Collapse
|
48
|
Fan SH, Matsuo M, Huang L, Tribelli PM, Götz F. The MpsAB Bicarbonate Transporter Is Superior to Carbonic Anhydrase in Biofilm-Forming Bacteria with Limited CO 2 Diffusion. Microbiol Spectr 2021; 9:e0030521. [PMID: 34287032 PMCID: PMC8552792 DOI: 10.1128/spectrum.00305-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
CO2 and bicarbonate are required for carboxylation reactions, which are essential in most bacteria. To provide the cells with sufficient CO2, there exist two dissolved inorganic carbon supply (DICS) systems: the membrane potential-generating system (MpsAB) and the carbonic anhydrase (CA). Recently, it has been shown that MpsAB is a bicarbonate transporter that is present not only in photo- and autotrophic bacteria, but also in a diverse range of nonautotrophic microorganisms. Since the two systems rarely coexist in a species but are interchangeable, we investigated what advantages the one system might have over the other. Using the genus Staphylococcus as a model, we deleted the CA gene can in Staphylococcus carnosus and mpsABC genes in Staphylococcus aureus. Deletion of the respective gene in one or the other species led to growth inhibition that could only be reversed by CO2 supplementation. While the S. carnosus Δcan mutant could be fully complemented with mpsABC, the S. aureus ΔmpsABC mutant was only partially complemented by can, suggesting that MpsAB outperforms CA. Interestingly, we provide evidence that mucus biofilm formation such as that involving polysaccharide intercellular adhesin (PIA) impedes the diffusion of CO2 into cells, making MpsAB more advantageous in biofilm-producing strains or species. Coexpression of MpsAB and CA does not confer any growth benefits, even under stress conditions. In conclusion, the distribution of MpsAB or CA in bacteria does not appear to be random as expression of bicarbonate transporters provides an advantage where diffusion of CO2 is impeded. IMPORTANCE CO2 and bicarbonate are required for carboxylation reactions in central metabolism and biosynthesis of small molecules in all bacteria. This is achieved by two different systems for dissolved inorganic carbon supply (DICS): these are the membrane potential-generating system (MpsAB) and the carbonic anhydrase (CA), but both rarely coexist in a given species. Here, we compared both systems and demonstrate that the distribution of MpsAB and/or CA within the phylum Firmicutes is apparently not random. The bicarbonate transporter MpsAB has an advantage in species where CO2 diffusion is hampered-for instance, in mucus- and biofilm-forming bacteria. However, coexpression of MpsAB and CA does not confer any growth benefits, even under stress conditions. Given the clinical relevance of Staphylococcus in the medical environment, such findings contribute to the understanding of bacterial metabolism and thus are crucial for exploration of potential targets for antimicrobials. The knowledge gained here as exemplified by staphylococcal species could be extended to other pathogenic bacteria.
Collapse
Affiliation(s)
- Sook-Ha Fan
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| | - Miki Matsuo
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| | - Li Huang
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Paula M. Tribelli
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| |
Collapse
|
49
|
Reinforcement of Recycled Aggregate by Microbial-Induced Mineralization and Deposition of Calcium Carbonate—Influencing Factors, Mechanism and Effect of Reinforcement. CRYSTALS 2021. [DOI: 10.3390/cryst11080887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology.
Collapse
|
50
|
Entrapment of the Fastest Known Carbonic Anhydrase with Biomimetic Silica and Its Application for CO 2 Sequestration. Polymers (Basel) 2021; 13:polym13152452. [PMID: 34372054 PMCID: PMC8347136 DOI: 10.3390/polym13152452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.
Collapse
|