1
|
Bertero E, Popoiu TA, Maack C. Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. Basic Res Cardiol 2024; 119:569-585. [PMID: 38890208 PMCID: PMC11319510 DOI: 10.1007/s00395-024-01060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Mitochondrial calcium (Ca2+) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca2+ levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca2+ in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca2+ handling by regulating the activity of the main Ca2+ influx and efflux pathways, i.e., the mitochondrial Ca2+ uniporter and sodium/Ca2+ exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy
| | - Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
2
|
Consegal M, Miró-Casas E, Barba I, Ruiz-Meana M, Inserte J, Benito B, Rodríguez C, Ganse FG, Rubio-Unguetti L, Llorens-Cebrià C, Ferreira-González I, Rodríguez-Sinovas A. Connexin 43 modulates reverse electron transfer in cardiac mitochondria from inducible knock-out Cx43 Cre-ER(T)/fl mice by altering the coenzyme Q pool. Basic Res Cardiol 2024; 119:673-689. [PMID: 38724619 DOI: 10.1007/s00395-024-01052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.
Collapse
Affiliation(s)
- Marta Consegal
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabet Miró-Casas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignasi Barba
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVicUCC), Can Baumann. Ctra. de Roda, 70, 08500, Vic, Spain
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Benito
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Freddy G Ganse
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Rubio-Unguetti
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Llorens-Cebrià
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Ferreira-González
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red (CIBER) de Epidemiología y Salud Pública, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Rodríguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Xiong X, Chen W, Chen C, Wu Q, He C. Analysis of the function and therapeutic strategy of connexin 43 from its subcellular localization. Biochimie 2024; 218:1-7. [PMID: 37611889 DOI: 10.1016/j.biochi.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Connexins (Cxs) are a family of transmembrane proteins located in the plasma membrane of human cells, among which connexin 43 (Cx43) is abundantly expressed in various types of human cells. Cx43, encoded by the gap junction protein alpha 1 (GJA1) gene, assembles into a hexameric structure in the Golgi apparatus and translocates to the plasma membrane to form hemichannels (Hcs), which pair with those of the cells in contact with each other and form gap junction intercellular communication (GJIC). The role of Cx43 as a connexin localized at the plasma membrane to perform channel functions is well recognized in previous studies, but recent studies have found that it can also be localized in the nucleus, mitochondria, or present in extracellular vesicles (EVs) and tunneling nanotubes (TNTs). Cx43 in the nucleus is involved in gene transcription regulation, cytoskeleton formation, cell migration and adhesion. Cx43 in mitochondria is involved in mitochondrial respiration-related functions, and Cx43 in extracellular vesicles and tunneling nanotubes is involved in distant cellular information exchange. It is because of the diverse distribution of subcellular localization of Cx43 that it is possible to explore the corresponding functions by analyzing its localization. In this review, we summarize the important roles of Cx43 in disease development from the perspective of subcellular localization, and provide new ideas for Cx43 as a therapeutic target and the search for related pathological mechanisms.
Collapse
Affiliation(s)
- Xinhai Xiong
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Wenjie Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Cheng Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China; 926 Hospital of the People's Liberation Army, Kaiyuan, Yunnan, 661600, China.
| | - Qi Wu
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Chaopeng He
- The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| |
Collapse
|
4
|
Lee SY, Fontana F, Sugatani T, Portales Castillo I, Leanza G, Coler-Reilly A, Civitelli R. Connexin43 in mesenchymal lineage cells regulates body adiposity and energy metabolism in mice. JCI Insight 2024; 9:e170016. [PMID: 38349739 PMCID: PMC11063945 DOI: 10.1172/jci.insight.170016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) beiging in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of Gja1 (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the Dermo1/Twist2 promoter led to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high-fat diet (HFD) in both sexes. These protective effects were related to increased locomotion, fuel utilization, energy expenditure, nonshivering thermogenesis, and better glucose tolerance in conditionally Gja1-ablated mice. Accordingly, Gja1-mutant mice exhibited reduced adipocyte hypertrophy, partially preserved insulin sensitivity, increased BAT lipolysis, and decreased whitening under HFD. This metabolic phenotype was not reproduced with more restricted Gja1 ablation in differentiated adipocytes, suggesting that Cx43 in adipocyte progenitors or other targeted cells restrains energy expenditures and promotes fat accumulation. These results reveal what we believe is a hitherto unknown action of Cx43 in adiposity, and offer a promising new pharmacologic target for improving metabolic balance in diabetes and obesity.
Collapse
|
5
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Aging-induced mitochondrial dysfunction: two distinct populations of mitochondria versus a combined population. Am J Physiol Heart Circ Physiol 2024; 326:H385-H395. [PMID: 38099846 PMCID: PMC11219051 DOI: 10.1152/ajpheart.00363.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024]
Abstract
Mitochondrial function in aged hearts is impaired, and studies of isolated mitochondria are commonly used to assess their function. The two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), are affected by aging. However, the yield of these mitochondria, particularly SSM, is limited in the mouse heart because of the smaller heart size. To address this issue, the authors developed a method to isolate a mixed population (MIX) of SSM and IFM mitochondria from a single mouse heart. The aim of the study was to compare the mitochondrial function between SSM, IFM, and the MIX population from young and aged mouse hearts. The MIX population had a higher yield of total protein and citrate synthase activity from both young and aged hearts compared with the individual yields of SSM or IFM. Oxidative phosphorylation (OXPHOS) decreased in aged SSM and IFM compared with young SSM and IFM, as well as in the MIX population isolated from aged hearts compared with young hearts, when using complex I or IV substrates. Furthermore, aging barely affected the sensitivity to mitochondrial permeability transition pore (MPTP) opening in SSM, whereas the sensitivity was increased in IFM isolated from aged hearts and in the MIX population from aged hearts compared with the corresponding populations isolated from young hearts. These results suggest that mitochondrial dysfunction exists in aged hearts and the isolation of a MIX population of mitochondria from the mouse heart is a potential approach to studying mitochondrial function in the mouse heart.NEW & NOTEWORTHY We developed two methods to isolate mitochondria from a single mouse heart. We compared mitochondrial function in young and aged mice using mitochondria isolated with different methods. Both methods can be successfully used to isolate cardiac mitochondria from single mouse hearts. Our results provide the flexibility to isolate mitochondria from a single mouse heart based on the purpose of the study.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jeremy Thompson
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Ying Hu
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Veterans Affairs Medical Center, Richmond, Virginia, United States
| |
Collapse
|
6
|
Lee SY, Fontana F, Sugatani T, Castillo IP, Leanza G, Coler-Reilly A, Civitelli R. Connexin43 in mesenchymal lineage cells regulates body adiposity and energy metabolism in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574415. [PMID: 38260624 PMCID: PMC10802316 DOI: 10.1101/2024.01.05.574415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) "beiging" in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of Gja1 (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the Dermo1/Twist2 promoter leads to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high fat diet (HFD) in both sexes. These protective effects from obesogenic diet are related to increased locomotion, fuel utilization, energy expenditure, non-shivering thermogenesis, and better glucose tolerance in conditionally Gja1 ablated mice. Accordingly, Gja1 mutant mice exhibit reduced adipocyte hypertrophy, partially preserved insulin sensitivity, increased BAT lipolysis and decreased whitening under HFD. This metabolic phenotype is not reproduced with more restricted Gja1 ablation in differentiated adipocytes, suggesting that Cx43 has a hitherto unknown function in adipocyte progenitors or other targeted cells, resulting in restrained energy expenditures and fat accumulation. These results disclose an hitherto unknown action of Cx43 in adiposity, and offer a promising new pharmacologic target for improving metabolic balance in diabetes and obesity.
Collapse
Affiliation(s)
- Seung-Yon Lee
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Francesca Fontana
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Toshifumi Sugatani
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Ignacio Portales Castillo
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Giulia Leanza
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Ariella Coler-Reilly
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| |
Collapse
|
7
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
8
|
Lucaciu SA, Leighton SE, Hauser A, Yee R, Laird DW. Diversity in connexin biology. J Biol Chem 2023; 299:105263. [PMID: 37734551 PMCID: PMC10598745 DOI: 10.1016/j.jbc.2023.105263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Over 35 years ago the cell biology community was introduced to connexins as the subunit employed to assemble semicrystalline clusters of intercellular channels that had been well described morphologically as gap junctions. The decade that followed would see knowledge of the unexpectedly large 21-member human connexin family grow to reflect unique and overlapping expression patterns in all organ systems. While connexin biology initially focused on their role in constructing highly regulated intercellular channels, this was destined to change as discoveries revealed that connexin hemichannels at the cell surface had novel roles in many cell types, especially when considering connexin pathologies. Acceptance of connexins as having bifunctional channel properties was initially met with some resistance, which has given way in recent years to the premise that connexins have multifunctional properties. Depending on the connexin isoform and cell of origin, connexins have wide-ranging half-lives that vary from a couple of hours to the life expectancy of the cell. Diversity in connexin channel characteristics and molecular properties were further revealed by X-ray crystallography and single-particle cryo-EM. New avenues have seen connexins or connexin fragments playing roles in cell adhesion, tunneling nanotubes, extracellular vesicles, mitochondrial membranes, transcription regulation, and in other emerging cellular functions. These discoveries were largely linked to Cx43, which is prominent in most human organs. Here, we will review the evolution of knowledge on connexin expression in human adults and more recent evidence linking connexins to a highly diverse array of cellular functions.
Collapse
Affiliation(s)
- Sergiu A Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephanie E Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Ryan Yee
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
9
|
Schunke KJ, Rodriguez J, Dyavanapalli J, Schloen J, Wang X, Escobar J, Kowalik G, Cheung EC, Ribeiro C, Russo R, Alber BR, Dergacheva O, Chen SW, Murillo-Berlioz AE, Lee KB, Trachiotis G, Entcheva E, Brantner CA, Mendelowitz D, Kay MW. Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction. Basic Res Cardiol 2023; 118:43. [PMID: 37801130 PMCID: PMC10558415 DOI: 10.1007/s00395-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.
Collapse
Affiliation(s)
- Kathryn J Schunke
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
- Department of Anatomy, Biochemistry and Physiology, University of Hawaii, 651 Ilalo St, Honolulu, HI, BSB 211 96813, USA.
| | - Jeannette Rodriguez
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - John Schloen
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Emily C Cheung
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Rebekah Russo
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Sheena W Chen
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Alejandro E Murillo-Berlioz
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Kyongjune B Lee
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Gregory Trachiotis
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Christine A Brantner
- The GWU Nanofabrication and Imaging Center, 800 22nd Street NW, Washington, DC, 20052, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA.
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
| |
Collapse
|
10
|
Cetin-Ferra S, Francis SC, Cooper AT, Neikirk K, Marshall AG, Hinton A, Murray SA. Mitochondrial Connexins and Mitochondrial Contact Sites with Gap Junction Structure. Int J Mol Sci 2023; 24:ijms24109036. [PMID: 37240383 DOI: 10.3390/ijms24109036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria contain connexins, a family of proteins that is known to form gap junction channels. Connexins are synthesized in the endoplasmic reticulum and oligomerized in the Golgi to form hemichannels. Hemichannels from adjacent cells dock with one another to form gap junction channels that aggregate into plaques and allow cell-cell communication. Cell-cell communication was once thought to be the only function of connexins and their gap junction channels. In the mitochondria, however, connexins have been identified as monomers and assembled into hemichannels, thus questioning their role solely as cell-cell communication channels. Accordingly, mitochondrial connexins have been suggested to play critical roles in the regulation of mitochondrial functions, including potassium fluxes and respiration. However, while much is known about plasma membrane gap junction channel connexins, the presence and function of mitochondrial connexins remain poorly understood. In this review, the presence and role of mitochondrial connexins and mitochondrial/connexin-containing structure contact sites will be discussed. An understanding of the significance of mitochondrial connexins and their connexin contact sites is essential to our knowledge of connexins' functions in normal and pathological conditions, and this information may aid in the development of therapeutic interventions in diseases linked to mitochondria.
Collapse
Affiliation(s)
- Selma Cetin-Ferra
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sharon C Francis
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Anthonya T Cooper
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biology, University of Hawaii, Hilo, HI 96720, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Mitochondrial connexin43 and mitochondrial K ATP channels modulate triggered arrhythmias in mouse ventricular muscle. Pflugers Arch 2023; 475:477-488. [PMID: 36707457 DOI: 10.1007/s00424-023-02789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Connexin43 (Cx43) exits as hemichannels in the inner mitochondrial membrane. We examined how mitochondrial Cx43 and mitochondrial KATP channels affect the occurrence of triggered arrhythmias. To generate cardiac-specific Cx43-deficient (cCx43-/-) mice, Cx43flox/flox mice were crossed with α-MHC (Myh6)-cre+/- mice. The resulting offspring, Cx43flox/flox/Myh6-cre+/- mice (cCx43-/- mice) and their littermates (cCx43+/+ mice), were used. Trabeculae were dissected from the right ventricles of mouse hearts. Cardiomyocytes were enzymatically isolated from the ventricles of mouse hearts. Force was measured with a strain gauge in trabeculae (22°C). To assess arrhythmia susceptibility, the minimal extracellular Ca2+ concentration ([Ca2+]o,min), at which arrhythmias were induced by electrical stimulation, was determined in trabeculae. ROS production was estimated with 2',7'-dichlorofluorescein (DCF), mitochondrial membrane potential with tetramethylrhodamine methyl ester (TMRM), and Ca2+ spark frequency with fluo-4 and confocal microscopy in cardiomyocytes. ROS production within the mitochondria was estimated with MitoSoxRed and mitochondrial Ca2+ with rhod-2 in trabeculae. Diazoxide was used to activate mitochondrial KATP. Most of cCx43-/- mice died suddenly within 8 weeks. Cx43 was present in the inner mitochondrial membrane in cCx43+/+ mice but not in cCx43-/- mice. In cCx43-/- mice, the [Ca2+]o,min was lower, and Ca2+ spark frequency, the slope of DCF fluorescence intensity, MitoSoxRed fluorescence, and rhod-2 fluorescence were higher. TMRM fluorescence was more decreased in cCx43-/- mice. Most of these changes were suppressed by diazoxide. In addition, in cCx43-/- mice, antioxidant peptide SS-31 and N-acetyl-L-cysteine increased the [Ca2+]o,min. These results suggest that Cx43 deficiency activates Ca2+ leak from the SR, probably due to depolarization of mitochondrial membrane potential, an increase in mitochondrial Ca2+, and an increase in ROS production, thereby causing triggered arrhythmias, and that Cx43 hemichannel deficiency may be compensated by activation of mitochondrial KATP channels in mouse hearts.
Collapse
|
12
|
The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. BIOLOGY 2023; 12:biology12020204. [PMID: 36829482 PMCID: PMC9953436 DOI: 10.3390/biology12020204] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.
Collapse
|
13
|
Zhang J, Riquelme MA, Hua R, Acosta FM, Gu S, Jiang JX. Connexin 43 hemichannels regulate mitochondrial ATP generation, mobilization, and mitochondrial homeostasis against oxidative stress. eLife 2022; 11:e82206. [PMID: 36346745 PMCID: PMC9642995 DOI: 10.7554/elife.82206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is a major risk factor that causes osteocyte cell death and bone loss. Prior studies primarily focus on the function of cell surface expressed Cx43 channels. Here, we reported a new role of mitochondrial Cx43 (mtCx43) and hemichannels (HCs) in modulating mitochondria homeostasis and function in bone osteocytes under oxidative stress. In murine long bone osteocyte-Y4 cells, the translocation of Cx43 to mitochondria was increased under H2O2-induced oxidative stress. H2O2 increased the mtCx43 level accompanied by elevated mtCx43 HC activity, determined by dye uptake assay. Cx43 knockdown (KD) by the CRISPR-Cas9 lentivirus system resulted in impairment of mitochondrial function, primarily manifested as decreased ATP production. Cx43 KD had reduced intracellular reactive oxidative species levels and mitochondrial membrane potential. Additionally, live-cell imaging results demonstrated that the proton flux was dependent on mtCx43 HCs because its activity was specifically inhibited by an antibody targeting Cx43 C-terminus. The co-localization and interaction of mtCx43 and ATP synthase subunit F (ATP5J2) were confirmed by Förster resonance energy transfer and a protein pull-down assay. Together, our study suggests that mtCx43 HCs regulate mitochondrial ATP generation by mediating K+, H+, and ATP transfer across the mitochondrial inner membrane and the interaction with mitochondrial ATP synthase, contributing to the maintenance of mitochondrial redox levels in response to oxidative stress.
Collapse
Affiliation(s)
- Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science CenterSan AntonioUnited States
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science CenterSan AntonioUnited States
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science CenterSan AntonioUnited States
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science CenterSan AntonioUnited States
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science CenterSan AntonioUnited States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science CenterSan AntonioUnited States
| |
Collapse
|
14
|
Falck AT, Lund BA, Johansen D, Lund T, Ytrehus K. The Ambivalence of Connexin43 Gap Peptides in Cardioprotection of the Isolated Heart against Ischemic Injury. Int J Mol Sci 2022; 23:ijms231710197. [PMID: 36077595 PMCID: PMC9456187 DOI: 10.3390/ijms231710197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The present study investigates infarct-reducing effects of blocking ischemia-induced opening of connexin43 hemichannels using peptides Gap19, Gap26 or Gap27. Cardioprotection by ischemic preconditioning (IPC) and Gap peptides was compared, and combined treatment was tested in isolated, perfused male rat hearts using function and infarct size after global ischemia, high-resolution respirometry of isolated mitochondrial and peptide binding kinetics as endpoints. The Gap peptides reduced infarct size significantly when given prior to ischemia plus at reperfusion (Gap19 76.2 ± 2.7, Gap26 72.9 ± 5.8 and Gap27 71.9 ± 5.8% of untreated control infarcts, mean ± SEM). Cardioprotection was lost when Gap26, but not Gap27 or Gap19, was combined with triggering IPC (IPC 73.4 ± 5.5, Gap19-IPC 60.9 ± 5.1, Gap26-IPC 109.6 ± 7.8, Gap27-IPC 56.3 ± 8.0% of untreated control infarct). Binding stability of peptide Gap26 to its specific extracellular loop sequence (EL2) of connexin43 was stronger than Gap27 to its corresponding loop EL1 (dissociation rate constant Kd 0.061 ± 0.004 vs. 0.0043 ± 0.0001 s-1, mean ± SD). Mitochondria from IPC hearts showed slightly but significantly reduced respiratory control ratio (RCR). In vitro addition of Gap peptides did not significantly alter respiration. If transient hemichannel activity is part of the IPC triggering event, inhibition of IPC triggering stimuli might limit the use of cardioprotective Gap peptides.
Collapse
Affiliation(s)
- Aleksander Tank Falck
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bjarte Aarmo Lund
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - David Johansen
- Department of Internal Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Trine Lund
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence:
| |
Collapse
|
15
|
Boengler K, Leybaert L, Ruiz-Meana M, Schulz R. Connexin 43 in Mitochondria: What Do We Really Know About Its Function? Front Physiol 2022; 13:928934. [PMID: 35860665 PMCID: PMC9289461 DOI: 10.3389/fphys.2022.928934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023] Open
Abstract
Connexins are known for their ability to mediate cell-cell communication via gap junctions and also form hemichannels that pass ions and molecules over the plasma membrane when open. Connexins have also been detected within mitochondria, with mitochondrial connexin 43 (Cx43) being the best studied to date. In this review, we discuss evidence for Cx43 presence in mitochondria of cell lines, primary cells and organs and summarize data on its localization, import and phosphorylation status. We further highlight the influence of Cx43 on mitochondrial function in terms of respiration, opening of the mitochondrial permeability transition pore and formation of reactive oxygen species, and also address the presence of a truncated form of Cx43 termed Gja1-20k. Finally, the role of mitochondrial Cx43 in pathological conditions, particularly in the heart, is discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences—Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
- *Correspondence: Rainer Schulz,
| |
Collapse
|
16
|
Shimura D, Shaw RM. GJA1-20k and Mitochondrial Dynamics. Front Physiol 2022; 13:867358. [PMID: 35399255 PMCID: PMC8983841 DOI: 10.3389/fphys.2022.867358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Connexin 43 (Cx43) is the primary gap junction protein of mammalian heart ventricles and is encoded by the gene Gja1 which has a single coding exon and therefore cannot be spliced. We previously identified that Gja1 mRNA undergoes endogenous internal translation initiated at one of several internal AUG (M) start codons, generating N-terminal truncated protein isoforms that retain the C-terminus distal to the start site. GJA1-20k, whose translation initiates at mRNA M213, is usually the most abundant isoform in cells and greatly increases after ischemic and metabolic stress. GJA1-20k consists of a small segment of the last transmembrane domain and the complete C-terminus tail of Cx43, with a total size of about 20 kDa. The original role identified for GJA1-20k is as an essential subunit that facilitates the trafficking of full-length Cx43 hexameric hemichannels to cell-cell contacts, generating traditional gap junctions between adjacent cells facilitating, in cardiac muscle, efficient spread of electrical excitation. GJA1-20k deficient mice (generated by a M213L substitution in Gja1) suffer poor electrical coupling between cardiomycytes and arrhythmogenic sudden death two to 4 weeks after their birth. We recently identified that exogenous GJA1-20k expression also mimics the effect of ischemic preconditioning in mouse heart. Furthermore, GJA1-20k localizes to the mitochondrial outer membrane and induces a protective and DRP1 independent form of mitochondrial fission, preserving ATP production and generating less reactive oxygen species (ROS) under metabolic stress, providing powerful protection of myocardium to ischemic insult. In this manuscript, we focus on the detailed roles of GJA1-20k in mitochondria, and its interaction with the actin cytoskeleton.
Collapse
|
17
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
18
|
Boulghobra D, Dubois M, Alpha-Bazin B, Coste F, Olmos M, Gayrard S, Bornard I, Meyer G, Gaillard JC, Armengaud J, Reboul C. Increased protein S-nitrosylation in mitochondria: a key mechanism of exercise-induced cardioprotection. Basic Res Cardiol 2021; 116:66. [PMID: 34940922 DOI: 10.1007/s00395-021-00906-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) activation in the heart plays a key role in exercise-induced cardioprotection during ischemia-reperfusion, but the underlying mechanisms remain unknown. We hypothesized that the cardioprotective effect of exercise training could be explained by the re-localization of eNOS-dependent nitric oxide (NO)/S-nitrosylation signaling to mitochondria. By comparing exercised (5 days/week for 5 weeks) and sedentary Wistar rats, we found that exercise training increased eNOS level and activation by phosphorylation (at serine 1177) in mitochondria, but not in the cytosolic subfraction of cardiomyocytes. Using confocal microscopy, we confirmed that NO production in mitochondria was increased in response to H2O2 exposure in cardiomyocytes from exercised but not sedentary rats. Moreover, by S-nitrosoproteomic analysis, we identified several key S-nitrosylated proteins involved in mitochondrial function and cardioprotection. In agreement, we also observed that the increase in Ca2+ retention capacity by mitochondria isolated from the heart of exercised rats was abolished by exposure to the NOS inhibitor L-NAME or to the reducing agent ascorbate, known to denitrosylate proteins. Pre-incubation with ascorbate or L-NAME also increased mitochondrial reactive oxygen species production in cardiomyocytes from exercised but not from sedentary animals. We confirmed these results using isolated hearts perfused with L-NAME before ischemia-reperfusion. Altogether, these results strongly support the hypothesis that exercise training increases eNOS/NO/S-nitrosylation signaling in mitochondria, which might represent a key mechanism of exercise-induced cardioprotection.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Florence Coste
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France
| | - Maxime Olmos
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France
| | | | | | - Gregory Meyer
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Cyril Reboul
- LAPEC EA-4278, Avignon Université, 84000, Avignon, France. .,Cardiovascular Physiology Laboratory, UPR4278, UFR Sciences Technologies Santé, Centre INRAE-Site Agroparc, 228 route de l'Aérodrome, 84914, Avignon Cedex 9, France.
| |
Collapse
|
19
|
Homme RP, George AK, Singh M, Smolenkova I, Zheng Y, Pushpakumar S, Tyagi SC. Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. Int J Mol Sci 2021; 22:ijms222413546. [PMID: 34948342 PMCID: PMC8706694 DOI: 10.3390/ijms222413546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although blood–heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.
Collapse
|
20
|
Subcellular Localization of Connexin 26 in Cardiomyocytes and in Cardiomyocyte-Derived Extracellular Vesicles. Molecules 2021; 26:molecules26216726. [PMID: 34771134 PMCID: PMC8587102 DOI: 10.3390/molecules26216726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Connexins (Cxs) are a family of membrane-spanning proteins, expressed in vertebrates and named according to their molecular weight. They are involved in tissue homeostasis, and they function by acting at several communication levels. Cardiac Cxs are responsible for regular heart function and, among them, Cx26 and Cx43 are widely expressed throughout the heart. Cx26 is present in vessels, as well as in cardiomyocytes, and its localization is scattered all over the cell aside from at the intercalated discs as is the case for the other cardiac Cxs. However, having been found in cardiomyocytes only recently, both its subcellular localization and its functional characterization in cardiomyocytes remain poorly understood. Therefore, in this study we aimed to obtain further data on the localization of Cx26 at the subcellular level. Our TEM immunogold analyses were performed on rat heart ventricles and differentiated H9c2 cardiac cell sections as well as on differentiated H9c2 derived extracellular vesicles. The results confirmed the absence of Cx26 at intercalated discs and showed the presence of Cx26 at the level of different subcellular compartments. The peculiar localization at the level of extracellular vesicles suggested a specific role for cardiac Cx26 in inter-cellular communication in an independent gap junction manner.
Collapse
|
21
|
Wang JD, Shao Y, Liu D, Liu NY, Zhu DY. Rictor/mTORC2 involves mitochondrial function in ES cells derived cardiomyocytes via mitochondrial Connexin 43. Acta Pharmacol Sin 2021; 42:1790-1797. [PMID: 33547375 PMCID: PMC8563760 DOI: 10.1038/s41401-020-00591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Rictor is a key component of the mammalian target of rapamycin complex 2 (mTORC2) and is required for Akt phosphorylation (Ser473). Our previous study shows that knockdown of Rictor prevents cardiomyocyte differentiation from mouse embryonic stem (ES) cells and induces abnormal electrophysiology of ES cell-derived cardiomyocytes (ESC-CMs). Besides, knockdown of Rictor causes down-expression of connexin 43 (Cx43), the predominant gap junction protein, that is located in both the sarcolemma and mitochondria in cardiomyocytes. Mitochondrial Cx43 (mtCx43) plays a crucial role in mitochondrial function. In this study, we used the model of cardiomyocyte differentiation from mouse ES cells to elucidate the mechanisms for the mitochondrial damage in ESC-CMs after knockdown of Rictor. We showed swollen and ruptured mitochondria were observed after knockdown of Rictor under transmission electron microscope. ATP production and mitochondrial transmembrane potential were significantly decreased in Rictor-knockdown cells. Furthermore, knockdown of Rictor inhibited the activities of mitochondrial respiratory chain complex. The above-mentioned changes were linked to inhibiting the translocation of Cx43 into mitochondria by knockdown of Rictor. We revealed that knockdown of Rictor inactivated the mTOR/Akt signalling pathway and subsequently decreased HDAC6 expression, resulted in Hsp90 hyper-acetylation caused by HDAC6 inhibition, thus, inhibited the formation of Hsp90-Cx43-TOM20 complex. In conclusion, the mitochondrial Cx43 participates in shRNA-Rictor-induced mitochondrial function damage in the ESC-CMs.
Collapse
|
22
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
23
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
24
|
Retamal MA, Fernandez-Olivares A, Stehberg J. Over-activated hemichannels: A possible therapeutic target for human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166232. [PMID: 34363932 DOI: 10.1016/j.bbadis.2021.166232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
In our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Santiago, Chile; Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Santiago, Chile.
| | | | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
25
|
Wang L, Li Q, Diao J, Lin L, Wei J. MiR-23a Is Involved in Myocardial Ischemia/Reperfusion Injury by Directly Targeting CX43 and Regulating Mitophagy. Inflammation 2021; 44:1581-1591. [PMID: 33651309 DOI: 10.1007/s10753-021-01443-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023]
Abstract
Activation of CX43 signaling protects myocardial cells from myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanism remains unclear. MicroRNAs (miRNAs) are well known to play important roles in the progression of diverse diseases. Here, we first confirmed the expression profile of CX43 in rat heart tissues with I/R injury. Then, microRNAs (miRNAs) that target CX43 were predicted using miRDB, miRWalk, and TargetScan. The candidate miR-23a was selected, and its expression level in I/R samples was investigated. To determine the role of miR-23a, rat primary myocardial cells were transfected with miR-23a mimics after they were subjected to hypoxia-reoxygenation (H/R) injury. Transfection of miR-23a mimics stimulated mitophagy through the PINK1/Parkin pathway and downregulated the protein level of CX43. Treatment of miR-23a-transfected cells with NF-kB inhibitors completely abolished miR-23a-mediated mitophagy after H/R. Moreover, miR-23a transfection significantly suppressed CX43 expression and enhanced mitophagy in the model heart in vivo. Therefore, miR-23a plays a detrimental role in myocardial I/R injury by enhancing mitophagy and inhibiting CX43 mRNA.
Collapse
Affiliation(s)
- Lina Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiayu Diao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lin Lin
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jin Wei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
26
|
Activation of Cx43 Hemichannels Induces the Generation of Ca 2+ Oscillations in White Adipocytes and Stimulates Lipolysis. Int J Mol Sci 2021; 22:ijms22158095. [PMID: 34360859 PMCID: PMC8347185 DOI: 10.3390/ijms22158095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels-carbenoxolone, octanol, proadifen and Gap26-as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.
Collapse
|
27
|
Martins-Marques T, Rodriguez-Sinovas A, Girao H. Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role? Free Radic Biol Med 2021; 169:397-409. [PMID: 33892116 DOI: 10.1016/j.freeradbiomed.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Antonio Rodriguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Passeig Vall D'Hebron, 119-129, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
28
|
Chen M, Li G, Zhang L, Ning K, Yang B, Jiang JX, Wang DE, Xu H. Primary Osteocyte Supernatants Metabolomic Profiling of Two Transgenic Mice With Connexin43 Dominant Negative Mutants. Front Endocrinol (Lausanne) 2021; 12:649994. [PMID: 34093433 PMCID: PMC8169970 DOI: 10.3389/fendo.2021.649994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteocytes could release some small molecules (≤ 1 kDa) through gap junctions and hemichannels to extracellular environment, such as prostaglandin E2 (PGE2), nitric oxide (NO) and adenosine triphosphate (ATP), which play key roles in transferring signals between bone cells and other tissue cells. Connexin (Cx) 43 is the most abundant connexin in osteocytes. To further discover molecules released by osteocytes through Cx43 channels and better understand the regulatory function of Cx43 channels in osteocytes, we performed non-targeted global metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on conditioned medium collected from osteocytes isolated from two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). The results revealed that several new categories of molecules, such as "fatty acyls" and "carboxylic acids and derivatives", could be released through osteocytic Cx43 channels. In addition, alteration of Cx43 channel function affected the release of metabolites related to inflammatory reaction and oxidative stress. Pathway analysis further showed that citric acid cycle was the most differential metabolic pathway regulated by Cx43 channels. In sum, these results isolated new potential metabolites released by osteocytes through Cx43 channels, and offered a novel perspective to understand the regulatory mechanisms of osteocytes on themselves and other cells as well.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Baoqiang Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
29
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
30
|
De Smet MA, Lissoni A, Nezlobinsky T, Wang N, Dries E, Pérez-Hernández M, Lin X, Amoni M, Vervliet T, Witschas K, Rothenberg E, Bultynck G, Schulz R, Panfilov AV, Delmar M, Sipido KR, Leybaert L. Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability. J Clin Invest 2021; 131:137752. [PMID: 33621213 DOI: 10.1172/jci137752] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.
Collapse
Affiliation(s)
- Maarten Aj De Smet
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium.,Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Internal Medicine and
| | - Alessio Lissoni
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Timur Nezlobinsky
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Nan Wang
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marta Pérez-Hernández
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, New York, USA
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, New York, USA
| | - Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katja Witschas
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, New York University, New York, New York, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia.,Arrhythmia Department, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, New York, USA
| | - Karin R Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Hirschhäuser C, Lissoni A, Görge PM, Lampe PD, Heger J, Schlüter KD, Leybaert L, Schulz R, Boengler K. Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 2021; 116:21. [PMID: 33751227 PMCID: PMC7985055 DOI: 10.1007/s00395-021-00861-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43MAPKmut, Cx43PKCmut, and Cx43CK1mut mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43CK1mut mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43PKCmut and Cx43CK1mut but not in Cx43MAPKmut cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 × 3 min ischemia/5 min reperfusion) in WT, Cx43MAPKmut, and Cx43PKCmut, but not in Cx43CK1mut mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection.
Collapse
Affiliation(s)
- Christine Hirschhäuser
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Alessio Lissoni
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacqueline Heger
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany
| | - Kerstin Boengler
- Institut für Physiologie, Justus-Liebig Universität Gießen, Aulweg 129, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for Right Ventricular Function. Int J Mol Sci 2021; 22:ijms22030987. [PMID: 33498172 PMCID: PMC7863922 DOI: 10.3390/ijms22030987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.
Collapse
|
33
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
34
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
35
|
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 2020; 57:102884. [PMID: 32653860 PMCID: PMC7355051 DOI: 10.1016/j.ebiom.2020.102884] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often follows are among the leading causes of death and disability worldwide. As such, new treatments are needed to protect the myocardium against the damaging effects of the acute ischaemia and reperfusion injury (IRI) that occurs in AMI, in order to reduce myocardial infarct (MI) size, preserve cardiac function, and improve patient outcomes. In this regard, cardiac mitochondria play a dual role as arbiters of cell survival and death following AMI. Therefore, preventing mitochondrial dysfunction induced by acute myocardial IRI is an important therapeutic strategy for cardioprotection. In this article, we review the role of mitochondria as key determinants of acute myocardial IRI, and we highlight their roles as therapeutic targets for reducing MI size and preventing HF following AMI. In addition, we discuss the challenges in translating mitoprotective strategies into the clinical setting for improving outcomes in AMI patients.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Sauri Hernandez-Resendiz
- National Heart Research Institute Singapore, National Heart Centre, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Institute of Biochemistry, Medical School, Justus-Liebig University, 35392 Giessen, Germany
| | - Gustavo E Crespo-Avilan
- National Heart Research Institute Singapore, National Heart Centre, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Institute of Biochemistry, Medical School, Justus-Liebig University, 35392 Giessen, Germany
| | - Ying-Hsi Lin
- National Heart Research Institute Singapore, National Heart Centre, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
36
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
37
|
Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24:7102-7114. [PMID: 32490600 PMCID: PMC7339171 DOI: 10.1111/jcmm.15341] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichung CityTaiwan
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of CoimbraCACCCoimbraPortugal
| | - Brenda R. Kwak
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Rosario Rizzuto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| |
Collapse
|
38
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Connexin/Innexin Channels in Cytoplasmic Organelles. Are There Intracellular Gap Junctions? A Hypothesis! Int J Mol Sci 2020; 21:ijms21062163. [PMID: 32245189 PMCID: PMC7139775 DOI: 10.3390/ijms21062163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
This paper proposes the hypothesis that cytoplasmic organelles directly interact with each other and with gap junctions forming intracellular junctions. This hypothesis originated over four decades ago based on the observation that vesicles lining gap junctions of crayfish giant axons contain electron-opaque particles, similar in size to junctional innexons that often appear to directly interact with junctional innexons; similar particles were seen also in the outer membrane of crayfish mitochondria. Indeed, vertebrate connexins assembled into hexameric connexons are present not only in the membranes of the Golgi apparatus but also in those of the mitochondria and endoplasmic reticulum. It seems possible, therefore, that cytoplasmic organelles may be able to exchange small molecules with each other as well as with organelles of coupled cells via gap junctions.
Collapse
|
40
|
Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol 2020; 177:5413-5431. [PMID: 31995639 PMCID: PMC7680005 DOI: 10.1111/bph.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic and pharmacological conditioning of the left ventricle is mediated by the activation of signalling cascades, which finally converge at the mitochondria and reduce ischaemia/reperfusion (I/R) injury. Whereas the molecular mechanisms of conditioning in the left ventricle are well characterized, cardioprotection of the right ventricle is principally feasible but less established. Similar to what is known for the left ventricle, a dysregulation in signalling pathways seems to play a role in I/R injury of the healthy and failing right ventricle and in the ability/inability of the right ventricle to respond to a conditioning stimulus. The maintenance of mitochondrial function seems to be crucial in both ventricles to reduce I/R injury. As far as currently known, similar molecular mechanisms mediate ischaemic and pharmacological preconditioning in the left and right ventricles. However, the two ventricles seem to respond differently towards exercise‐induced preconditioning. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | | | | | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
41
|
Lissoni A, Hulpiau P, Martins-Marques T, Wang N, Bultynck G, Schulz R, Witschas K, Girao H, De Smet M, Leybaert L. RyR2 regulates Cx43 hemichannel intracellular Ca2+-dependent activation in cardiomyocytes. Cardiovasc Res 2019; 117:123-136. [PMID: 31841141 DOI: 10.1093/cvr/cvz340] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Connexin-based gap junctions are crucial for electrical communication in the heart; they are each composed of two docked hemichannels (HCs), supplied as unpaired channels via the sarcolemma. When open, an unpaired HC forms a large pore, high-conductance and Ca2+-permeable membrane shunt pathway that may disturb cardiomyocyte function. HCs composed of connexin 43 (Cx43), a major cardiac connexin, can be opened by electrical stimulation but only by very positive membrane potentials. Here, we investigated the activation of Cx43 HCs in murine ventricular cardiomyocytes voltage-clamped at -70 mV. METHODS AND RESULTS Using whole-cell patch-clamp, co-immunoprecipitation, western blot analysis, immunocytochemistry, proximity ligation assays, and protein docking studies, we found that stimulation of ryanodine receptors (RyRs) triggered unitary currents with a single-channel conductance of ∼220 pS, which were strongly reduced by Cx43 knockdown. Recordings under Ca2+-clamp conditions showed that both RyR activation and intracellular Ca2+ elevation were necessary for HC opening. Proximity ligation studies indicated close Cx43-RyR2 apposition (<40 nm), and both proteins co-immunoprecipitated indicating physical interaction. Molecular modelling suggested a strongly conserved RyR-mimicking peptide sequence (RyRHCIp), which inhibited RyR/Ca2+ HC activation but not voltage-triggered activation. The peptide also slowed down action potential repolarization. Interestingly, alterations in the concerned RyR sequence are known to be associated with primary familial hypertrophic cardiomyopathy. CONCLUSION Our results demonstrate that Cx43 HCs are intimately linked to RyRs, allowing them to open at negative diastolic membrane potential in response to RyR activation.
Collapse
Affiliation(s)
- Alessio Lissoni
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Paco Hulpiau
- Department of Bio-Medical Sciences, HOWEST University of Applied Sciences (Hogeschool West-Vlaanderen), Bruges, Belgium
| | - Tânia Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Nan Wang
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Geert Bultynck
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, Belgium
| | - Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Giessen, Germany
| | - Katja Witschas
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Maarten De Smet
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
42
|
Wang M, Smith K, Yu Q, Miller C, Singh K, Sen CK. Mitochondrial connexin 43 in sex-dependent myocardial responses and estrogen-mediated cardiac protection following acute ischemia/reperfusion injury. Basic Res Cardiol 2019; 115:1. [PMID: 31741053 DOI: 10.1007/s00395-019-0759-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
Preserving mitochondrial activity is crucial in rescuing cardiac function following acute myocardial ischemia/reperfusion (I/R). The sex difference in myocardial functional recovery has been observed after I/R. Given the key role of mitochondrial connexin43 (Cx43) in cardiac protection initiated by ischemic preconditioning, we aimed to determine the implication of mitochondrial Cx43 in sex-related myocardial responses and to examine the effect of estrogen (17β-estradiol, E2) on Cx43, particularly mitochondrial Cx43-involved cardiac protection following I/R. Mouse primary cardiomyocytes and isolated mouse hearts (from males, females, ovariectomized females, and doxycycline-inducible Tnnt2-controlled Cx43 knockout without or with acute post-ischemic E2 treatment) were subjected to simulated I/R in culture or Langendorff I/R (25-min warm ischemia/40-min reperfusion), respectively. Mitochondrial membrane potential and mitochondrial superoxide production were measured in cardiomyocytes. Myocardial function and infarct size were determined. Cx43 and its isoform, Gja1-20k, were assessed in mitochondria. Immunoelectron microscopy and co-immunoprecipitation were also used to examine mitochondrial Cx43 and its interaction with estrogen receptor-α by E2 in mitochondria, respectively. There were sex disparities in stress-induced cardiomyocyte mitochondrial function. E2 partially restored mitochondrial activity in cardiomyocytes following acute injury. Post-ischemia infusion of E2 improved functional recovery and reduced infarct size with increased Cx43 content and phosphorylation in mitochondria. Ablation of cardiac Cx43 aggravated mitochondrial damage and abolished E2-mediated cardiac protection during I/R. Female mice were more resistant to myocardial I/R than age-matched males with greater protective role of mitochondrial Cx43 in female hearts. Post-ischemic E2 usage augmented mitochondrial Cx43 content and phosphorylation, increased mitochondrial Gja1-20k, and showed cardiac protection.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.
| | - Kwynlyn Smith
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Qing Yu
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Caroline Miller
- Electron Microscopy Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
43
|
Myocardial Adaptation in Pseudohypoxia: Signaling and Regulation of mPTP via Mitochondrial Connexin 43 and Cardiolipin. Cells 2019; 8:cells8111449. [PMID: 31744200 PMCID: PMC6912244 DOI: 10.3390/cells8111449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
Therapies intended to mitigate cardiovascular complications cannot be applied in practice without detailed knowledge of molecular mechanisms. Mitochondria, as the end-effector of cardioprotection, represent one of the possible therapeutic approaches. The present review provides an overview of factors affecting the regulation processes of mitochondria at the level of mitochondrial permeability transition pores (mPTP) resulting in comprehensive myocardial protection. The regulation of mPTP seems to be an important part of the mechanisms for maintaining the energy equilibrium of the heart under pathological conditions. Mitochondrial connexin 43 is involved in the regulation process by inhibition of mPTP opening. These individual cardioprotective mechanisms can be interconnected in the process of mitochondrial oxidative phosphorylation resulting in the maintenance of adenosine triphosphate (ATP) production. In this context, the degree of mitochondrial membrane fluidity appears to be a key factor in the preservation of ATP synthase rotation required for ATP formation. Moreover, changes in the composition of the cardiolipin’s structure in the mitochondrial membrane can significantly affect the energy system under unfavorable conditions. This review aims to elucidate functional and structural changes of cardiac mitochondria subjected to preconditioning, with an emphasis on signaling pathways leading to mitochondrial energy maintenance during partial oxygen deprivation.
Collapse
|
44
|
Gender- and region-specific changes in estrogen signaling in aging rat brain mitochondria. Aging (Albany NY) 2019; 10:2148-2169. [PMID: 30169330 PMCID: PMC6128413 DOI: 10.18632/aging.101538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
Abstract
Recently epidemiological studies suggest females lose neuroprotection from neurodegenerative diseases as they go through menopause. It has been hypothesized that this neuroprotection is hormone-dependent. The current study characterized cell signaling molecules downstream of estrogen receptor beta that are known to play a role in memory, PKC, ERK, and connexin-43, in regions of the brain associated with memory decline in an attempt to elucidate significant changes that occur post-estrus. Total whole cell lysates were compared to isolated mitochondrial protein because mitochondrial function is known to be altered during aging. As hypothesized, protein concentrations differed depending on age, gender, and brain region. Additionally, many of these changes occurred within mitochondria but not within whole cell lysates indicating that these are epigenetic alterations. These findings accentuate the complexity of aging and provide insight into the gender-specific cellular processes that occur throughout this process.
Collapse
|
45
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 2019; 114:40. [DOI: 10.1007/s00395-019-0748-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
46
|
Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 2019; 80:1013-1030. [DOI: 10.1002/ddr.21593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Natalia V. Naryzhnaya
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Leonid N. Maslov
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Peter R. Oeltgen
- Department of PathologyUniversity of Kentucky College of Medicine Lexington Kentucky
| |
Collapse
|
47
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
48
|
Bell CL, Shakespeare TI, Smith AR, Murray SA. Visualization of Annular Gap Junction Vesicle Processing: The Interplay Between Annular Gap Junctions and Mitochondria. Int J Mol Sci 2018; 20:ijms20010044. [PMID: 30583492 PMCID: PMC6337258 DOI: 10.3390/ijms20010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
It is becoming clear that in addition to gap junctions playing a role in cell⁻cell communication, gap junction proteins (connexins) located in cytoplasmic compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unclear. In this study, immunocytochemical, super-resolution, and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structures and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures-annular gap junctions-were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest, among other possibilities, that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 delivery to the mitochondria. Furthermore, it points to the need for investigating annular gap junctions as more than only vesicles destined for degradation.
Collapse
Affiliation(s)
- Cheryl L Bell
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Amber R Smith
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
49
|
Basheer WA, Fu Y, Shimura D, Xiao S, Agvanian S, Hernandez DM, Hitzeman TC, Hong T, Shaw RM. Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 2018; 3:121900. [PMID: 30333316 DOI: 10.1172/jci.insight.121900] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023] Open
Abstract
Connexin 43 (Cx43), a product of the GJA1 gene, is a gap junction protein facilitating intercellular communication between cardiomyocytes. Cx43 protects the heart from ischemic injury by mechanisms that are not well understood. GJA1 mRNA can undergo alternative translation, generating smaller isoforms in the heart, with GJA1-20k being the most abundant. Here, we report that ischemic and ischemia/reperfusion (I/R) injuries upregulate endogenous GJA1-20k protein in the heart, which targets to cardiac mitochondria and associates with the outer mitochondrial membrane. Exploring the functional consequence of increased GJA1-20k, we found that AAV9-mediated gene transfer of GJA1-20k in mouse hearts increases mitochondrial biogenesis while reducing mitochondrial membrane potential, respiration, and ROS production. By doing so, GJA1-20k promotes a protective mitochondrial phenotype, as seen with ischemic preconditioning (IPC), which also increases endogenous GJA1-20k in heart lysates and mitochondrial fractions. As a result, AAV9-GJA1-20k pretreatment reduces myocardial infarct size in mouse hearts subjected to in vivo ischemic injury or ex vivo I/R injury, similar to an IPC-induced cardioprotective effect. In conclusion, GJA1-20k is an endogenous stress response protein that induces mitochondrial biogenesis and metabolic hibernation, preconditioning the heart against I/R insults. Introduction of exogenous GJA1-20k is a putative therapeutic strategy for patients undergoing anticipated ischemic injury.
Collapse
Affiliation(s)
- Wassim A Basheer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ying Fu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daisuke Shimura
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shaohua Xiao
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sosse Agvanian
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diana M Hernandez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tara C Hitzeman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - TingTing Hong
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| | - Robin M Shaw
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, California
| |
Collapse
|
50
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|