1
|
Machado RS, Tavares FN, Sousa IP. Global landscape of coxsackieviruses in human health. Virus Res 2024; 344:199367. [PMID: 38561065 PMCID: PMC11002681 DOI: 10.1016/j.virusres.2024.199367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.
Collapse
Affiliation(s)
- Raiana S Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil; Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brasil; Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Ivanildo P Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil.
| |
Collapse
|
2
|
Vlad B, Jelcic I, Balint B. Parkinsonism due to Coxsackie B Virus Infection-Case Report and Literature Review. Mov Disord Clin Pract 2023; 10:S24-S28. [PMID: 37636219 PMCID: PMC10448620 DOI: 10.1002/mdc3.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Benjamin Vlad
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Ilijas Jelcic
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Bettina Balint
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
- University of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Leta V, Urso D, Batzu L, Lau YH, Mathew D, Boura I, Raeder V, Falup-Pecurariu C, van Wamelen D, Ray Chaudhuri K. Viruses, parkinsonism and Parkinson's disease: the past, present and future. J Neural Transm (Vienna) 2022; 129:1119-1132. [PMID: 36036863 PMCID: PMC9422946 DOI: 10.1007/s00702-022-02536-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
Parkinsonism secondary to viral infections is not an uncommon occurrence and has been brought under the spotlight with the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A variety of viruses have been described with a potential of inducing or contributing to the occurrence of parkinsonism and Parkinson's disease (PD), although the relationship between the two remains a matter of debate originating with the description of encephalitis lethargica in the aftermath of the Spanish flu in 1918. While some viral infections have been linked to an increased risk for the development of PD, others seem to have a causal link with the occurrence of parkinsonism. Here, we review the currently available evidence on viral-induced parkinsonism with a focus on potential pathophysiological mechanisms and clinical features. We also review the evidence on viral infections as a risk factor for developing PD and the link between SARS-CoV-2 and parkinsonism, which might have important implications for future research and treatments.
Collapse
Affiliation(s)
- Valentina Leta
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Daniele Urso
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Yue Hui Lau
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Donna Mathew
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Iro Boura
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vanessa Raeder
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
- Department of Neurology, Technical University Dresden, Dresden, Germany
| | | | - Daniel van Wamelen
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
4
|
Ivan I, Irincu L, Diaconu Ş, Falup-Pecurariu C. Parkinsonism associated with viral infection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:1-16. [PMID: 36208896 DOI: 10.1016/bs.irn.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There are several known causes of secondary parkinsonism, the most common being head trauma, stroke, medications, or infections. A growing body of evidence suggests that viral agents may trigger parkinsonian symptoms, but the exact pathological mechanisms are still unknown. In some cases, lesions or inflammatory processes in the basal ganglia or substantia nigra have been found to cause reversible or permanent impairment of the dopaminergic pathway, leading to the occurrence of extrapyramidal symptoms. This chapter reviews current data regarding the viral agents commonly associated with parkinsonism, such as Epstein Barr virus (EBV), hepatitis viruses, human immunodeficiency virus (HIV), herpes viruses, influenza virus, coxsackie virus, and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). We present possible risk factors, proposed pathophysiology mechanisms, published case reports, common associations, and prognosis in order to offer a concise overview of the viral spectrum involved in parkinsonism.
Collapse
Affiliation(s)
| | | | - Ştefania Diaconu
- County Clinic Hospital, Brașov, Romania; Faculty of Medicine, Transilvania University, Brașov, Romania.
| | - Cristian Falup-Pecurariu
- County Clinic Hospital, Brașov, Romania; Faculty of Medicine, Transilvania University, Brașov, Romania
| |
Collapse
|
5
|
SARS-CoV-2, COVID-19 and Parkinson’s Disease—Many Issues Need to Be Clarified—A Critical Review. Brain Sci 2022; 12:brainsci12040456. [PMID: 35447986 PMCID: PMC9028450 DOI: 10.3390/brainsci12040456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neurological manifestations during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are of interest, regarding acute treatment and the so-called post-COVID-19 syndrome. Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. Hence, the influence of SARS-CoV-2 and the COVID-19 syndrome on PD patients has raised many questions and produced various publications with conflicting results. We reviewed the literature, with respect to symptoms, treatment, and whether the virus itself might cause PD during the SARS-CoV-2 pandemic in SARS-CoV-2-affected symptomatic PD patients (COVID-19 syndrome). In addition, we comment on the consequences in non-symptomatic and non-affected PD patients, as well as post-COVID syndrome and its potential linkage to PD, presenting our own data from our out-patient clinic.
Collapse
|
6
|
Picornavirus May Be Linked to Parkinson’s Disease through Viral Antigen in Dopamine-Containing Neurons of Substantia Nigra. Microorganisms 2022; 10:microorganisms10030599. [PMID: 35336174 PMCID: PMC8953350 DOI: 10.3390/microorganisms10030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease linked with the loss of dopaminergic neurons in the brain region called substantia nigra and caused by unknown pathogenic mechanisms. Two currently recognized prominent features of PD are an inflammatory response manifested by glial reaction and T-cell infiltration, as well as the presence of various toxic mediators derived from activated glial cells. PD or parkinsonism has been described after infection with several different viruses and it has therefore been hypothesized that a viral infection might play a role in the pathogenesis of the disease. We investigated formalin-fixed post-mortem brain tissue from 9 patients with Parkinson’s disease and 11 controls for the presence of Ljungan virus (LV) antigen using a polyclonal antibody against the capsid protein of this recently identified picornavirus with neurotropic properties, suspected of being both a human and an animal pathogen. Evidence of viral antigen was found in 7 out of 9 Parkinson’s disease cases and in only 1 out of 11 controls (p = 0.005). The picornavirus antigen was present in dopamine-containing neurons of the substantia nigra. We propose that LV or an LV-related virus initiates the pathological process underlying sporadic PD. LV-related picornavirus antigen has also been reported in patients with Alzheimer’s disease. Potentially successful antiviral treatment in Alzheimer’s disease suggests a similar treatment for Parkinson's disease. Amantadine, originally developed as an antiviral drug against influenza infection, has also been used for symptomatic treatment of patients with PD for more than 50 years and is still commonly used by neurologists today. The fact that amantadine also has an antiviral effect on picornaviruses opens the question of this drug being re-evaluated as potential PD therapy in combination with other antiviral compounds directed against picornaviruses.
Collapse
|
7
|
Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. Int J Mol Sci 2020; 21:ijms21228630. [PMID: 33207731 PMCID: PMC7697920 DOI: 10.3390/ijms21228630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.
Collapse
|
8
|
Jmii H, Fisson S, Aouni M, Jaidane H. Type B coxsackieviruses and central nervous system disorders: critical review of reported associations. Rev Med Virol 2020; 31:e2191. [PMID: 33159700 DOI: 10.1002/rmv.2191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/07/2022]
Abstract
Type B coxsackieviruses (CV-B) frequently infect the central nervous system (CNS) causing neurological diseases notably meningitis and encephalitis. These infections occur principally among newborns and children. Epidemiological studies of patients with nervous system disorders demonstrate the presence of infectious virus, its components, or anti-CV-B antibodies. Some experimental studies conducted in vitro and in vivo support the potential association between CV-B and idiopathic neurodegenerative diseases such as amyotrophic lateral sclerosis and psychiatric illness such as schizophrenia. However, mechanisms explaining how CV-B infections may contribute to the genesis of CNS disorders remain unclear. The proposed mechanisms focus on the immune response following the viral infection as a contributor to pathogenesis. This review describes these epidemiological and experimental studies, the modes of transmission of CV-B with an emphasis on congenital transmission, the routes used by CV-B to reach the brain parenchyma, and plausible mechanisms by which CV-B may induce CNS diseases, with a focus on potential immunopathogenesis.
Collapse
Affiliation(s)
- Habib Jmii
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sylvain Fisson
- Généthon, Inserm UMR_S951, Univ Evry, University Paris Saclay, Evry, France
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hela Jaidane
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
9
|
Olsen LK, Cairns AG, Ådén J, Moriarty N, Cabre S, Alamilla VR, Almqvist F, Dowd E, McKernan DP. Viral mimetic priming enhances α-synuclein-induced degeneration: Implications for Parkinson's disease. Brain Behav Immun 2019; 80:525-535. [PMID: 31029796 DOI: 10.1016/j.bbi.2019.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
Evidence is accumulating to suggest that viral infections and consequent viral-mediated neuroinflammation may contribute to the etiology of idiopathic Parkinson's disease. Moreover, viruses have been shown to influence α-synuclein oligomerization as well as the autophagic clearance of abnormal intra-cellular proteins aggregations, both of which are key neuropathological events in Parkinson's disease pathogenesis. To further investigate the interaction between viral-mediated neuroinflammation and α-synuclein aggregation in the context of Parkinson's disease, this study sought to determine the impact of viral neuroinflammatory priming on α-synuclein aggregate-induced neuroinflammation and neurotoxicity in the rat nigrostriatal pathway. To do so, male Sprague-Dawley rats were intra-nigrally injected with a synthetic mimetic of viral dsRNA (poly I:C) followed two weeks later by a peptidomimetic small molecule which accelerates α-synuclein fibril formation (FN075). The impact of the viral priming on α-synuclein aggregation-induced neuroinflammation, neurodegeneration and motor dysfunction was assessed. We found that prior administration of the viral mimetic poly I:C significantly exacerbated or precipitated the α-synuclein aggregate induced neuropathological and behavioral effects. Specifically, sequential exposure to the two challenges caused a significant increase in nigral microgliosis (p < 0.001) and astrocytosis (p < 0.01); precipitated a significant degeneration of the nigrostriatal cell bodies (p < 0.05); and precipitated a significant impairment in forelimb kinesis (p < 0.01) and sensorimotor integration (p < 0.01). The enhanced sensitivity of the nigrostriatal neurons to pathological α-synuclein aggregation after viral neuroinflammatory priming further suggests that viral infections may contribute to the etiology and pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Laura K Olsen
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | | | - Jörgen Ådén
- Department of Chemistry, Umeå University, Sweden
| | - Niamh Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Silvia Cabre
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Veronica R Alamilla
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | | | - Eilís Dowd
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Declan P McKernan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Ireland.
| |
Collapse
|
10
|
A role for viral infections in Parkinson's etiology? Neuronal Signal 2018; 2:NS20170166. [PMID: 32714585 PMCID: PMC7373231 DOI: 10.1042/ns20170166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Despite over 200 years since its first description by James Parkinson, the cause(s) of most cases of Parkinson's disease (PD) are yet to be elucidated. The disparity between the current understanding of PD symptomology and pathology has led to numerous symptomatic therapies, but no strategy for prevention or disease cure. An association between certain viral infections and neurodegenerative diseases has been recognized, but largely ignored or dismissed as controversial, for decades. Recent epidemiological studies have renewed scientific interest in investigating microbial interactions with the central nervous system (CNS). This review examines past and current clinical findings and overviews the potential molecular implications of viruses in PD pathology.
Collapse
|
11
|
Jackson-Lewis V, Lester D, Kozina E, Przedborski S, Smeyne RJ. From Man to Mouse. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis 2012; 46:527-52. [PMID: 22192366 PMCID: PMC3429117 DOI: 10.1016/j.nbd.2011.10.026] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 2012; 62:2154-68. [PMID: 22361232 DOI: 10.1016/j.neuropharm.2012.01.028] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic Parkinson's disease (PD) represents a complex interaction between the inherent vulnerability of the nigrostriatal dopaminergic system, a possible genetic predisposition, and exposure to environmental toxins including inflammatory triggers. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of PD. Activation of microglia and increased levels of pro-inflammatory mediators such as TNF-α, IL-1β and IL-6, reactive oxygen species and eicosanoids has been reported after post-mortem analysis of the substantia nigra from PD patients and in animal models of PD. It is hypothesised that chronically activated microglia secrete high levels of pro-inflammatory mediators which damage neurons and further activate microglia, resulting in a feed forward cycle promoting further inflammation and neurodegeneration. Moreover, nigrostriatal dopaminergic neurons are more vulnerable to pro-inflammatory and oxidative mediators than other cell types because of their low intracellular glutathione concentration. Systemic inflammation has also been suggested to contribute to neurodegeneration in PD, as lymphocyte infiltration has been observed in brains of PD patients and in animal models of PD, substantiating the current theory of a fundamental role of inflammation in neurodegeneration. We will examine the current evidence in the literature which offers insight into the premise that both central and systemic inflammation may contribute to neurodegeneration in PD. We will discuss the emerging possibility of the use of diagnostic tools such as imaging technologies for PD patients. Finally, we will present the immunomodulatory therapeutic strategies that are now under investigation and in clinical trials as potential neuroprotective drugs for PD.
Collapse
Affiliation(s)
- Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Biosciences Institute, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
14
|
Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's disease. Neurotox Res 2011; 21:90-116. [PMID: 22002807 DOI: 10.1007/s12640-011-9281-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
The causes of Parkinson's disease (PD) are unknown, but there is evidence that exposure to environmental agents, including a number of viruses, toxins, agricultural chemicals, dietary nutrients, and metals, is associated with its development in some cases. The presence of smell loss and the pathological involvement of the olfactory pathways in the early stages of PD are in accord with the tenants of the olfactory vector hypothesis. This hypothesis postulates that some forms of PD may be caused or catalyzed by environmental agents that enter the brain via the olfactory mucosa. In this article, we provide an overview of evidence implicating xenobiotics agents in the etiology of PD and review animal, mostly rodent, studies in which toxicants have been introduced into the nose in an attempt to induce behavioral or neurochemical changes similar to those seen in PD. The available data suggest that this route of exposure results in highly variable outcomes, depending upon the involved xenobiotic, exposure history, and the age and species of the animals tested. Some compounds, such as rotenone, paraquat, and 6-hydroxydopamine, have limited capacity to reach and damage the nigrostriatal dopaminergic system via the intranasal route. Others, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), readily enter the brain via this route in some species and influence the function of the nigrostriatal pathway. Intranasal infusion of MPTP in some rodents elicits a developmental sequence of behavioral and neurochemical changes that closely mimics that seen in PD. For this reason, such an MPTP rodent model appears to be an ecologically valid means for assessing novel palliative treatments for both the motor and non-motor symptoms of PD. More research is needed, however, on this and other ecologically valid models.
Collapse
|
15
|
Jang H, Boltz DA, Webster RG, Smeyne RJ. Viral parkinsonism. Biochim Biophys Acta Mol Basis Dis 2008; 1792:714-21. [PMID: 18760350 DOI: 10.1016/j.bbadis.2008.08.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 12/30/2022]
Abstract
Parkinson's disease is a debilitating neurological disorder that affects 1-2% of the adult population over 55 years of age. For the vast majority of cases, the etiology of this disorder is unknown, although it is generally accepted that there is a genetic susceptibility to any number of environmental agents. One such agent may be viruses. It has been shown that numerous viruses can enter the nervous system, i.e. they are neurotropic, and induce a number of encephalopathies. One of the secondary consequences of these encephalopathies can be parkinsonism, that is both transient as well as permanent. One of the most highlighted and controversial cases of viral parkinsonism is that which followed the 1918 influenza outbreak and the subsequent induction of von Economo's encephalopathy. In this review, we discuss the neurological sequelae of infection by influenza virus as well as that of other viruses known to induce parkinsonism including Coxsackie, Japanese encephalitis B, St. Louis, West Nile and HIV viruses.
Collapse
Affiliation(s)
- Haeman Jang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
16
|
Lai BCL, Marion SA, Teschke K, Tsui JKC. Occupational and environmental risk factors for Parkinson's disease. Parkinsonism Relat Disord 2002; 8:297-309. [PMID: 15177059 DOI: 10.1016/s1353-8020(01)00054-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Revised: 10/26/2001] [Accepted: 10/26/2001] [Indexed: 12/21/2022]
Abstract
The etiology of Parkinson's disease (PD) remains obscure. Current research suggests that a variety of occupational and environmental risk factors may be linked to PD. This paper provides an overview of major occupational and environmental factors that have been associated with the development of PD and tries to assess current thinking about these factors and their possible mechanisms of operation. While clear links to rural living, dietary factors, exposure to metals, head injury, and exposure to infectious diseases during childhood have not been established, there is general agreement that smoking and exposure to pesticides affect the probability of developing PD.
Collapse
Affiliation(s)
- B C L Lai
- Department of Medicine, Division of Neurology, Neurodegenerative Disorders Centre, The University of British Columbia, Purdy Pavilion, 2221 Wesbrook Mall, Vancouver, BC, Canada V6T 2B5
| | | | | | | |
Collapse
|
17
|
Abstract
Rest tremor is a common feature of Parkinson's disease, but its underlying pathophysiology remains unknown. This review hypothesizes that tremor is related to selective loss of components of the substantia nigra. The relative scarcity of tremor in related Parkinsonian conditions may indicate a dissociation associated with different pathological involvement of the substantia nigra and its connections. Connections of the subthalamic nucleus with the pallidum, modified by cortical and nigral inputs, allow for the transfer of tremorogenic activity to the thalamus. Thalamo-cortical interactions, tempered by cerebellar input, generate the final common pathway for tremor production.
Collapse
Affiliation(s)
- J Carr
- Neurodegenerative Disorders Centre, Vancouver Hospital and Health Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Tsui JK, Calne DB, Wang Y, Schulzer M, Marion SA. Occupational risk factors in Parkinson's disease. Canadian Journal of Public Health 1999. [PMID: 10570579 DOI: 10.1007/bf03404523] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND An apparent excess of teachers and healthcare workers among the Parkinson's disease patients of a large tertiary care movement disorders clinic suggested the hypothesis that high exposure to viral (or other) respiratory infections in these occupations might be a risk factor for Parkinson's disease. METHODS A case-control study of the association between occupation and Parkinson's disease was conducted. Cases (414) were all Parkinson's disease patients seen at the University of British Columbia Hospital Movement Disorders Clinic between 1986 and 1993, residing in Greater Vancouver, and under 65 in 1991. Controls (6,659) were randomly selected from the 1991 Canadian Census. FINDINGS Parkinson's disease was associated with teaching (OR 2.50, 95% CI 1.67-3.74) and occupation in healthcare services (OR 2.07, 95% CI 1.34-3.20), but there were several other substantial associations, both positive and negative. INTERPRETATION While referral bias cannot be ruled out, the authors find the consistency of the overall pattern of associations with the respiratory infection hypothesis striking.
Collapse
Affiliation(s)
- J K Tsui
- Department of Medicine, University of British Columbia, Vancouver
| | | | | | | | | |
Collapse
|
19
|
Takahashi M, Yamada T, Nakanishi K, Fujita K, Nakajima K, Nobusawa E, Yamamoto T, Kato T, Okada H. Influenza a virus infection of primary cultured cells from rat fetal brain. Parkinsonism Relat Disord 1997; 3:97-102. [DOI: 10.1016/s1353-8020(97)00010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/1997] [Indexed: 11/24/2022]
|
20
|
Picard F, de Saint-Martin A, Salmon E, Hirsch E, Marescaux C. Postencephalitic stereotyped involuntary movements responsive to L-Dopa. Mov Disord 1996; 11:567-70. [PMID: 8866499 DOI: 10.1002/mds.870110513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In 1954, at the age of 5 years, our patient had an encephalitic syndrome associated with a prolonged lethargic state. After this episode, he developed a severe parkinsonian syndrome that, after a few years, was associated with axial dystonia and stereotyped abnormal movements of the upper limbs. This complex and progressive extrapyramidal syndrome had many similarities to the encephalitis lethargica as described by von Economo. Results of cerebral computed tomography and magnetic resonance imaging were normal. Fluorodopa positron emission tomography showed a significant bilateral reduction of tracer accumulation in both putamen, similar to that observed in patients with idiopathic Parkinson's disease. However, in this patient, treatment with L-Dopa suppressed all akinetic, dystonic and dyskinetic symptoms. The effectiveness of L-Dopa was abolished by administration of a D2 antagonist and was fully reproduced by a D2 agonist. In conclusion, this patient presented a complex postencephalitic, extrapyramidal syndrome, with akinetic symptoms and involuntary movements. These symptoms appeared to be related to a limited lesion of the dopaminergic neurons of the zona compacta of the substantia nigra.
Collapse
Affiliation(s)
- F Picard
- Service de Neurologie, Neuropsychologie et Explorations Fonctionnelles des Epilepsies, Hopitaux Universitaires de Strasbourg, France
| | | | | | | | | |
Collapse
|
21
|
Isolated involvement of substantia nigra in acute transient parkinsonism: MRI and PET observations. Parkinsonism Relat Disord 1995; 1:67-72. [DOI: 10.1016/1353-8020(95)00017-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/1995] [Indexed: 11/18/2022]
|
22
|
Peatfield RC. Basal ganglia damage and subcortical dementia after possible insidious Coxsackie virus encephalitis. Acta Neurol Scand 1987; 76:340-5. [PMID: 3425221 DOI: 10.1111/j.1600-0404.1987.tb03591.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two patients with a chronic non-progressive illness beginning with undue sleepiness and personality change are described. Both have an atypical movement disorder, clearly distinct from Parkinson's disease. Each has an impairment of memory and learning with relative preservation of arithmetical, language and visuospatial tasks, suggesting a subcortical dementia. Both have atrophy of deep structures on their CT scans, and elevated antibodies to one of the Coxsackie viruses. It is suggested that insidious virus encephalitis (perhaps cases that would previously have been described as encephalitis lethargica) still occurs, and is among the causes of subcortical dementia.
Collapse
Affiliation(s)
- R C Peatfield
- Department of Neurology, General Infirmary, Leeds, England
| |
Collapse
|
23
|
The cause of Parkinson's disease. Mov Disord 1981. [DOI: 10.1016/b978-0-407-02295-9.50007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
24
|
Abstract
Sera from 40 patients with idiopathic Parkinson's disease and their age- and sex-matched controls were assayed for immunoglobulin G (IgG) antibodies against herpes simplex virus (HSV) type 1-induced cell surface antigens with the indirect immunofluorescent test. An increased level of HSV antibodies was found among the patients with Parkinson's disease when the distribution of titres (P less than 0.001), the mean titres (P less than 0.001), or the mean paired titre difference (P less than 0.001) was compared with the controls. This may suggest a part of HSV in the pathogenesis of Parkinson's disease. Alternatively, the increased HSV antibody response might be an epiphenomenon indirectly associated with Parkinson's disease.
Collapse
|
25
|
Abstract
The modal age at onset of the parkinsonian syndrome during the past thrity years is less than a decade higher than it was in the late 19th and early 20th centuries, suggesting that the same disease entity is affecting parkinsonian patients now as then. The evidence points to the existence of two distinct clinical entities: 1) parkinsonism secondary to encephalitis lethargica, which had its greatest influence on the epidemiology of parkinsonism between 1920 and 1945; and 2) classic parkinsonism, which has undergone little change in the past hundred years.
Collapse
|
26
|
Bojinov S. Encephalitis with acute Parkinsonian syndrome and bilateral inflammatory necrosis of the substantia nigra. J Neurol Sci 1971; 12:383-415. [PMID: 4324653 DOI: 10.1016/0022-510x(71)90109-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Jacob H, Lütcke A. [Subacute sclerosing leukoencephalitis simulating acute epidemic encephalitis (acute encephalitic parkinsonism) with marked development of morular cells and Russell bodies]. J Neurol Sci 1971; 12:137-53. [PMID: 5101672 DOI: 10.1016/0022-510x(71)90045-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|