1
|
Porgalı Zayman E, Erbay MF. Neuroanatomical comparison of treatment-resistant and treatment-responsive schizophrenia patients using the cloud-based brain magnetic resonance image segmentation and parcellation system: An MRIcloud study. Psychiatry Res Neuroimaging 2024; 339:111789. [PMID: 38354479 DOI: 10.1016/j.pscychresns.2024.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Recent developments in neuroimaging have improved our understanding of the biological mechanisms underlying schizophrenia. However, neuroimaging findings in treatment-resistant schizophrenia (TRS) remain unclear. In the present study, we aimed to explore potential neuroanatomical regions that may be associated with treatment resistance in schizophrenia patients by comparing neuroanatomical regions of TRS and non-TRS patients using the MRICloud method. A total of 33 schizophrenia patients (meeting DSM 5 diagnostic criteria for schizophrenia) were included in the study. Patients were dichotomized into TRS (n = 18) and non-TRS (n = 15) groups, and all patients underwent MRI. Neuroanatomical regions of TRS and non-TRS patients were compared using the MRICloud method. Disease severity was measured using the Positive and Negative Syndrome Scale (PANSS). Interestingly, a statistically significant greater left Corpus Collosum (CC) thickness was found in TRS patients compared to non-TRS patients. It is clear that further studies comparing TRS patients with non-TRS patients are needed, and these studies should focus on the circuits in the corpus callosum that are thought to play a role in treatment resistance. Further longitudinal studies are also needed to complement the cross-sectional studies, using a multimodal imaging approach in the patients with clearly defined TRS criteria.
Collapse
|
2
|
Savulich G, Ferry-Bolder E, Lim TV, Mak E, Ersche KD. The 'Resilient Brain': challenging key characteristics associated with the concept of resilience. Psychol Med 2023; 53:6933-6936. [PMID: 36695015 DOI: 10.1017/s0033291722003907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eve Ferry-Bolder
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Tsen Vei Lim
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Kotoula V, Evans JW, Punturieri C, Johnson SC, Zarate CA. Functional MRI markers for treatment-resistant depression: Insights and challenges. PROGRESS IN BRAIN RESEARCH 2023; 278:117-148. [PMID: 37414490 PMCID: PMC10501192 DOI: 10.1016/bs.pbr.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Imaging studies of treatment-resistant depression (TRD) have examined brain activity, structure, and metabolite concentrations to identify critical areas of investigation in TRD as well as potential targets for treatment interventions. This chapter provides an overview of the main findings of studies using three imaging modalities: structural magnetic resonance imaging (MRI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS). Decreased connectivity and metabolite concentrations in frontal brain areas appear to characterize TRD, although results are not consistent across studies. Treatment interventions, including rapid-acting antidepressants and transcranial magnetic stimulation (TMS), have shown some efficacy in reversing these changes while alleviating depressive symptoms. However, comparatively few TRD imaging studies have been conducted, and these studies often have relatively small sample sizes or employ different methods to examine a variety of brain areas, making it difficult to draw firm conclusions from imaging studies about the pathophysiology of TRD. Larger studies with more unified hypotheses, as well as data sharing, could help TRD research and spur better characterization of the illness, providing critical new targets for treatment intervention.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States.
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Claire Punturieri
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Sara C Johnson
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Liu C, Kim WS, Shen J, Tsogt U, Kang NI, Lee KH, Chung YC. Altered Neuroanatomical Signatures of Patients With Treatment-Resistant Schizophrenia Compared to Patients With Early-Stage Schizophrenia and Healthy Controls. Front Psychiatry 2022; 13:802025. [PMID: 35664476 PMCID: PMC9158464 DOI: 10.3389/fpsyt.2022.802025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background The relationship between brain structural changes and cognitive dysfunction in schizophrenia is strong. However, few studies have investigated both neuroanatomical abnormalities and cognitive dysfunction in treatment-resistant schizophrenia (TRS). We examined neuroanatomical markers and cognitive function between patients with TRS or early-stage schizophrenia (ES-S) and healthy controls (HCs). Relationships between neuroanatomical markers and cognitive function in the patient groups were also investigated. Methods A total of 46 and 45 patients with TRS and ES-S and 61 HCs underwent structural magnetic resonance imaging (MRI) brain scanning and comprehensive cognitive tests. MRI scans were analyzed using the FreeSurfer to investigate differences in cortical surface area (CSA), cortical thickness (CT), cortical volume (CV), and subcortical volume (SCV) among the groups. Four cognitive domains (attention, verbal memory, executive function, and language) were assessed. Comparisons of neuroanatomical and cognitive function results among the three groups were performed. Results A widespread reduction in CT was observed in patients with TRS compared to HCs, but differences in cortical thinning between TRS and ES-S patients were mainly limited to the inferior frontal gyrus and insula. Several subcortical structures (accumbens, amygdala, hippocampus, putamen, thalamus and ventricles) were significantly altered in TRS patients compared to both ES-S patients and HCs. Performance in the verbal memory domain was significantly worse in TRS patients compared to ES-S patients. A positive relationship between the thickness of the left middle temporal gyrus and the composite score for language was identified in patients with ES-S. Conclusions Our findings suggest significant cognitive impairment and reductions in CT and SCV in individuals with TRS compared to those with ES-S and HCs. These abnormalities could act as biomarkers for earlier identification of TRS.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Jie Shen
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, South Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
5
|
Is treatment-resistant schizophrenia associated with distinct neurobiological callosal connectivity abnormalities? CNS Spectr 2021; 26:545-549. [PMID: 32772934 DOI: 10.1017/s1092852920001753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Resistance to antipsychotic treatment affects up to 30% of patients with schizophrenia. Although the time course of development of treatment-resistant schizophrenia (TRS) varies from patient to patient, the reasons for these variations remain unknown. Growing evidence suggests brain dysconnectivity as a significant feature of schizophrenia. In this study, we compared fractional anisotropy (FA) of brain white matter between TRS and non-treatment-resistant schizophrenia (non-TRS) patients. Our central hypothesis was that TRS is associated with reduced FA values. METHODS TRS was defined as the persistence of moderate to severe symptoms after adequate treatment with at least two antipsychotics from different classes. Diffusion-tensor brain MRI obtained images from 34 TRS participants and 51 non-TRS. Whole-brain analysis of FA and axial, radial, and mean diffusivity were performed using Tract-Based Spatial Statistics (TBSS) and FMRIB's Software Library (FSL), yielding a contrast between TRS and non-TRS patients, corrected for multiple comparisons using family-wise error (FWE) < 0.05. RESULTS We found a significant reduction in FA in the splenium of corpus callosum (CC) in TRS when compared to non-TRS. The antipsychotic dose did not relate to the splenium CC. CONCLUSION Our results suggest that the focal abnormality of CC may be a potential biomarker of TRS.
Collapse
|
6
|
Piras F, Vecchio D, Kurth F, Piras F, Banaj N, Ciullo V, Luders E, Spalletta G. Corpus callosum morphology in major mental disorders: a magnetic resonance imaging study. Brain Commun 2021; 3:fcab100. [PMID: 34095833 PMCID: PMC8172496 DOI: 10.1093/braincomms/fcab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Mental disorders diagnosis is based on specific clinical criteria. However, clinical studies found similarities and overlapping phenomenology across a variety of disorders, which suggests a common neurobiological substrate. Thus, there is a need to measure disease-related neuroanatomical similarities and differences across conditions. While structural alterations of the corpus callosum have been investigated in obsessive-compulsive disorder, schizophrenia, major depressive disorder and bipolar disorder, no study has addressed callosal aberrations in all diseases in a single study. Moreover, results from pairwise comparisons (patients vs. controls) show some inconsistencies, possibly related to the parcellation methods to divide the corpus callosum into subregions. The main aim of the present paper was to uncover highly localized callosal characteristics for each condition (i.e. obsessive-compulsive disorder, schizophrenia, major depressive disorder and bipolar disorder) as compared either to healthy control subjects or to each other. For this purpose, we did not rely on any sub-callosal parcellation method, but applied a well-validated approach measuring callosal thickness at 100 equidistant locations along the whole midline of the corpus callosum. One hundred and twenty patients (30 in each disorder) as well as 30 controls were recruited for the study. All groups were closely matched for age and gender, and the analyses were performed controlling for the impact of antipsychotic treatment and illness duration. There was a significant main effect of group along the whole callosal surface. Pairwise post hoc comparisons revealed that, compared to controls, patients with obsessive-compulsive disorder had the thinnest corpora callosa with significant effects almost on the entire callosal structure. Patients with schizophrenia also showed thinner corpora callosa than controls but effects were confined to the isthmus and the anterior part of the splenium. No significant differences were found in both major depressive disorder and bipolar disorder patients compared to controls. When comparing the disease groups to each other, the corpus callosum was thinner in obsessive-compulsive disorder patients than in any other group. The effect was evident across the entire corpus callosum, with the exception of the posterior body. Altogether, our study suggests that the corpus callosum is highly changed in obsessive-compulsive disorder, selectively changed in schizophrenia and not changed in bipolar disorder and major depressive disorder. These results shed light on callosal similarities and differences among mental disorders providing valuable insights regarding the involvement of the major brain commissural fibre tract in the pathophysiology of each specific mental illness.
Collapse
Affiliation(s)
- Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, Private Bag 92019, New Zealand
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, Private Bag 92019, New Zealand.,Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Klok MPC, van Eijndhoven PF, Argyelan M, Schene AH, Tendolkar I. Structural brain characteristics in treatment-resistant depression: review of magnetic resonance imaging studies. BJPsych Open 2019; 5:e76. [PMID: 31474243 PMCID: PMC6737518 DOI: 10.1192/bjo.2019.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) has been related to structural brain characteristics that are correlated with the severity of disease. However, the correlation of these structural changes is less well clarified in treatment-resistant depression (TRD). AIMS To summarise the existing literature on structural brain characteristics in TRD to create an overview of known abnormalities of the brain in patients with MDD, to form hypotheses about the absence or existence of a common pathophysiology of MDD and TRD. METHOD A systematic search of PubMed and the Cochrane Library for studies published between 1998 and August of 2016 investigating structural brain changes in patients with TRD compared with healthy controls or patients with MDD. RESULTS Fourteen articles are included in this review. Lower grey matter volume (GMV) in the anterior cingulate cortex, right cerebellum, caudate nucleus, superior/medial frontal gyrus and hippocampus does not seem to differentiate TRD from milder forms of MDD. However, lower GMV in the putamen, inferior frontal gyrus, precentral gyrus, angular- and post-central gyri together with specific mainly parietal white matter tract changes seem to be more specific structural characteristics of TRD. CONCLUSIONS The currently available data on structural brain changes in patients with TRD compared with milder forms of MDD and healthy controls cannot sufficiently distinguish between a 'shared continuum hypothesis' and a 'different entity hypothesis'. Our review clearly suggests that although there is some overlap in affected brain regions between milder forms of MDD and TRD, TRD also comes with specific alterations in mainly the putamen and parietal white matter tracts. DECLARATION OF INTEREST None.
Collapse
Affiliation(s)
| | - Philip F van Eijndhoven
- Psychiatrist, Department of Psychiatry, Radboud University Medical Center; and Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands
| | - Miklos Argyelan
- Psychiatrist, Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research; andDivision of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, USA
| | - Aart H Schene
- Professor of Psychiatry, Department of Psychiatry, Radboud University Medical Center; and Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands
| | - Indira Tendolkar
- Professor of Psychiatry, Department of Psychiatry, Radboud University Medical Center; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands;and LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Germany
| |
Collapse
|
8
|
Abstract
Depressive symptoms can occur at any point in the duration of schizophrenia. However, we are unable to predict if or when depression will occur in schizophrenic patients. Simultaneously, the standard treatment of depression in schizophrenic patients is the combination of antidepressants and antipsychotics, which has been minimally effective for most patients. Based on several studies, we hypothesized the existence of depressive-type schizophrenia and reviewed the substantial evidence supporting the hypothesis of depressive-type schizophrenia. Simultaneously, we propose technical methods to explore the neuropathology of depressive-type schizophrenia in order to identify the disease during its early stages and to predict how patients will respond to the standard treatment strategies. We believe that the new classification of depressive-type schizophrenia will differentiate it from other forms of depression. In return, this will aid in the discovery of new therapeutic strategies for combatting this disease.
Collapse
|
9
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
10
|
Cyprien F, Courtet P, Maller J, Meslin C, Ritchie K, Ancelin ML, Artero S. Increased Serum C-reactive Protein and Corpus Callosum Alterations in Older Adults. Aging Dis 2019; 10:463-469. [PMID: 31011488 PMCID: PMC6457060 DOI: 10.14336/ad.2018.0329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/29/2018] [Indexed: 01/22/2023] Open
Abstract
Chronic systemic low-grade inflammation is associated with aging, but little is known on whether age-related inflammation affects brain structure, particularly white matter. The current study tested the hypothesis that in older adults without dementia, higher serum levels of high-sensitivity C-reactive protein (hs-CRP) are associated with reduced corpus callosum (CC) areas. French community-dwelling subjects (ESPRIT study) aged 65 and older (N=101) underwent hs-CRP testing and structural magnetic resonance imaging (MRI). Multiple linear regression models were carried out. In the unadjusted model, higher hs-CRP level was significantly associated with smaller anterior, mid, and total midsagittal CC areas, but not with the posterior CC area. These associations were independent of demographic characteristics and intracranial volume. After adjustment for body mass index, diabetes, inflammation-related chronic pathologies and white matter lesions (WML), only the associations between hs-CRP level and smaller anterior and total midsagittal CC areas were still significant, although weaker. These findings suggest that low-grade inflammation is associated with CC structural integrity alterations in older adults independently of physical or neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Fabienne Cyprien
- 1INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France.,2CHU Montpellier, F-34095, France
| | - Philippe Courtet
- 1INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France.,2CHU Montpellier, F-34095, France
| | - Jerome Maller
- 3Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia
| | - Chantal Meslin
- 4Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, ANU College of Medicine, Biology and Environment at the Australian National University, Canberra, Australia
| | - Karen Ritchie
- 1INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France
| | - Marie-Laure Ancelin
- 1INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France
| | - Sylvaine Artero
- 1INSERM, Univ Montpellier, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier, France
| |
Collapse
|
11
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
12
|
Crocker CE, Tibbo PG. Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia. Front Pharmacol 2018; 9:1172. [PMID: 30405407 PMCID: PMC6201564 DOI: 10.3389/fphar.2018.01172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Despite development of comprehensive approaches to treat schizophrenia and other psychotic disorders and improve outcomes, there remains a proportion (approximately one-third) of patients who are treatment resistant and will not have remission of psychotic symptoms despite adequate trials of pharmacotherapy. This level of treatment response is stable across all stages of the spectrum of psychotic disorders, including early phase psychosis and chronic schizophrenia. Our current pharmacotherapies are beneficial in decreasing positive symptomology in most cases, however, with little to no impact on negative or cognitive symptoms. Not all individuals with treatment resistant psychosis unfortunately, even benefit from the potential pharmacological reductions in positive symptoms. The existing pharmacotherapy for psychosis is targeted at neurotransmitter receptors. The current first and second generation antipsychotic medications all act on dopamine type 2 receptors with the second generation drugs also interacting significantly with serotonin type 1 and 2 receptors, and with varying pharmacodynamic profiles overall. This focus on developing dopaminergic/serotonergic antipsychotics, while beneficial, has not reduced the proportion of patients experiencing treatment resistance to date. Another pharmacological approach is imperative to address treatment resistance both for response overall and for negative symptoms in particular. There is research suggesting that changes in white matter integrity occur in schizophrenia and these may be more associated with cognition and even negative symptomology. Here we review the evidence that white matter abnormalities in the brain may be contributing to the symptomology of psychotic disorders. Additionally, we propose that white matter may be a viable pharmacological target for pharmacoresistant schizophrenia and discuss current treatments in development for schizophrenia that target white matter.
Collapse
Affiliation(s)
- Candice E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Diagnostic Imaging, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Tréhout M, Leroux E, Delcroix N, Dollfus S. Relationships between corpus callosum and language lateralization in patients with schizophrenia and bipolar disorders. Bipolar Disord 2017; 19:496-504. [PMID: 28834020 DOI: 10.1111/bdi.12526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The question of whether there is a continuum or a dichotomy among patients with schizophrenia (SZ) and bipolar disorders (BD) has not been clearly resolved and remains a challenge. Thus, the identification of specific biomarkers of these disorders might be helpful. The present study investigated the volume of the corpus callosum (CC) and functional lateralization for language as potential biomarkers and their relationships in SZ and BD. METHODS The study included 20 patients with SZ, 20 patients with BD and 40 healthy controls (HC). A functional lateralization index (FLI) was computed for each participant within the language comprehension network. For each participant, the volume of the total CC and those of three subregions were extracted. These variables and their anatomo-functional relationships were investigated. RESULTS In comparison to HC, SZ patients presented a decreased leftward lateralization for language, whereas this was not found in BD patients. However, as compared to SZ patients and HC, BD patients showed a reduction in CC volume associated with a lower leftward lateralization for language. CONCLUSIONS Our study revealed that SZ patients displayed a reduction of the leftward functional lateralization for language; however, no reduction of CC volume was observed, whereas BD patients presented a decreased volume of the CC associated with a lower leftward asymmetry for language. The results of our study detected distinct anomalies in both SZ and BD that may be considered as specific biomarkers of these disorders related to neurodevelopmental models.
Collapse
Affiliation(s)
- Maxime Tréhout
- Service de Psychiatrie, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, UFR de médecine (Medical School), Caen, France.,Normandie Univ, UNICAEN, ISTS, Caen, France
| | | | | | - Sonia Dollfus
- Service de Psychiatrie, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, UFR de médecine (Medical School), Caen, France.,Normandie Univ, UNICAEN, ISTS, Caen, France
| |
Collapse
|
14
|
Abstract
Although treatment-resistant schizophrenia (TRS) was described 50 years ago and has a gold standard treatment with clozapine based on well-defined criteria, there is still a matter of great interest and controversy. In terms of the underlying mechanisms of the development of TRS, progress has been made for the elucidation of the neurochemical mechanisms. Structural neuroimaging studies have shown that patients with TRS have significant reduction of the prefrontal cortex volume when compared with non- TRS. This article updates and enhances our previous review with new evidence mainly derived from new studies, clinical trials, systematic reviews, and meta-analyses.
Collapse
Affiliation(s)
- Helio Elkis
- Instituto de Psiquiatria HC- FMUSP, Rua Ovidio Pires de Campos 785-São Paulo, SP-05403-010, Brazil.
| | | |
Collapse
|
15
|
Mouchlianitis E, McCutcheon R, Howes OD. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. Lancet Psychiatry 2016; 3:451-63. [PMID: 26948188 PMCID: PMC5796640 DOI: 10.1016/s2215-0366(15)00540-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023]
Abstract
Around 30% of patients with schizophrenia show an inadequate response to antipsychotics-ie, treatment resistance. Neuroimaging studies can help to uncover the underlying neurobiological reasons for such resistance and identify these patients earlier. Additionally, studies examining the effect of clozapine on the brain can help to identify aspects of clozapine that make it uniquely effective in patients with treatment resistance. We did a systematic search of PubMed between Jan 1, 1980, and April 13, 2015, to identify all neuroimaging studies that examined treatment-resistant patients or longitudinally assessed the effects of clozapine treatment. We identified 330 articles, of which 61 met the inclusion criteria. Replicated differences between treatment-resistant and treatment-responsive patients include reductions in grey matter and perfusion of frontotemporal regions, and increases in white matter and basal ganglia perfusion, with effect sizes ranging from 0·4 to greater than 1. Clozapine treatment led to reductions in caudate nucleus volume in three separate studies. The available evidence supports the hypothesis that some of the neurobiological changes seen in treatment-resistant schizophrenia lie along a continuum with treatment-responsive schizophrenia, whereas other differences are categorical in nature and have potential to be used as biomarkers. However, further replication is needed, and for neuroimaging findings to be clinically translatable, future studies need to focus on a-priori hypotheses and be adequately powered.
Collapse
Affiliation(s)
- Elias Mouchlianitis
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK; Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Institute of Clinical Science, Imperial College London, London, UK.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK; Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Institute of Clinical Science, Imperial College London, London, UK
| |
Collapse
|
16
|
Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Sci Rep 2016; 6:21825. [PMID: 26906716 PMCID: PMC4764827 DOI: 10.1038/srep21825] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/01/2016] [Indexed: 02/05/2023] Open
Abstract
White matter (WM) abnormalities have long been suspected in major depressive disorder (MDD). Tract-based spatial statistics (TBSS) studies have detected abnormalities in fractional anisotropy (FA) in MDD, but the available evidence has been inconsistent. We performed a quantitative meta-analysis of TBSS studies contrasting MDD patients with healthy control subjects (HCS). A total of 17 studies with 18 datasets that included 641 MDD patients and 581 HCS were identified. Anisotropic effect size-signed differential mapping (AES-SDM) meta-analysis was performed to assess FA alterations in MDD patients compared to HCS. FA reductions were identified in the genu of the corpus callosum (CC) extending to the body of the CC and left anterior limb of the internal capsule (ALIC) in MDD patients relative to HCS. Descriptive analysis of quartiles, sensitivity analysis and subgroup analysis further confirmed these findings. Meta-regression analysis revealed that individuals with more severe MDD were significantly more likely to have FA reductions in the genu of the CC. This study provides a thorough profile of WM abnormalities in MDD and evidence that interhemispheric connections and frontal-striatal-thalamic pathways are the most convergent circuits affected in MDD.
Collapse
|
17
|
Galinowski A, Miranda R, Lemaitre H, Paillère Martinot ML, Artiges E, Vulser H, Goodman R, Penttilä J, Struve M, Barbot A, Fadai T, Poustka L, Conrod P, Banaschewski T, Barker GJ, Bokde A, Bromberg U, Büchel C, Flor H, Gallinat J, Garavan H, Heinz A, Ittermann B, Kappel V, Lawrence C, Loth E, Mann K, Nees F, Paus T, Pausova Z, Poline JB, Rietschel M, Robbins TW, Smolka M, Schumann G, Martinot JL. Resilience and corpus callosum microstructure in adolescence. Psychol Med 2015; 45:2285-2294. [PMID: 25817177 DOI: 10.1017/s0033291715000239] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Resilience is the capacity of individuals to resist mental disorders despite exposure to stress. Little is known about its neural underpinnings. The putative variation of white-matter microstructure with resilience in adolescence, a critical period for brain maturation and onset of high-prevalence mental disorders, has not been assessed by diffusion tensor imaging (DTI). Lower fractional anisotropy (FA) though, has been reported in the corpus callosum (CC), the brain's largest white-matter structure, in psychiatric and stress-related conditions. We hypothesized that higher FA in the CC would characterize stress-resilient adolescents. METHOD Three groups of adolescents recruited from the community were compared: resilient with low risk of mental disorder despite high exposure to lifetime stress (n = 55), at-risk of mental disorder exposed to the same level of stress (n = 68), and controls (n = 123). Personality was assessed by the NEO-Five Factor Inventory (NEO-FFI). Voxelwise statistics of DTI values in CC were obtained using tract-based spatial statistics. Regional projections were identified by probabilistic tractography. RESULTS Higher FA values were detected in the anterior CC of resilient compared to both non-resilient and control adolescents. FA values varied according to resilience capacity. Seed regional changes in anterior CC projected onto anterior cingulate and frontal cortex. Neuroticism and three other NEO-FFI factor scores differentiated non-resilient participants from the other two groups. CONCLUSION High FA was detected in resilient adolescents in an anterior CC region projecting to frontal areas subserving cognitive resources. Psychiatric risk was associated with personality characteristics. Resilience in adolescence may be related to white-matter microstructure.
Collapse
Affiliation(s)
- A Galinowski
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| | - R Miranda
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| | - H Lemaitre
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| | - M-L Paillère Martinot
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| | - E Artiges
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| | - H Vulser
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| | - R Goodman
- King's College, London Institute of Psychiatry,London,UK
| | - J Penttilä
- Psychiatry Department,University of Tampere,School of Medicine, Tampere,Finland
| | - M Struve
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | | | - T Fadai
- Universitaetsklinikum Hamburg Eppendorf,Hamburg,Germany
| | - L Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | - P Conrod
- King's College, London Institute of Psychiatry,London,UK
| | - T Banaschewski
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | - G J Barker
- King's College, London Institute of Psychiatry,London,UK
| | - A Bokde
- Institute of Neuroscience and Department of Psychiatry,School of Medicine,Trinity College Dublin,Dublin,Ireland
| | - U Bromberg
- Universitaetsklinikum Hamburg Eppendorf,Hamburg,Germany
| | - C Büchel
- Universitaetsklinikum Hamburg Eppendorf,Hamburg,Germany
| | - H Flor
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | - J Gallinat
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte,Charité-Universitätsmedizin,Berlin,Germany
| | - H Garavan
- Institute of Neuroscience,Trinity College Dublin,Dublin,Ireland
| | - A Heinz
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte,Charité-Universitätsmedizin,Berlin,Germany
| | - B Ittermann
- Physikalisch-Technische Bundesanstalt (PTB),Braunschweig und Berlin,Germany
| | - V Kappel
- Department of Child and Adolescent Psychiatry,Psychosomatics and Psychotherapy,Charité-Universitätsmedizin,Berlin,Germany
| | - C Lawrence
- School of Psychology,University of Nottingham,UK
| | - E Loth
- King's College, London Institute of Psychiatry,London,UK
| | - K Mann
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | - F Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | - T Paus
- School of Psychology,University of Nottingham,UK
| | - Z Pausova
- Department of Physiology and Nutritional Sciences,The Hospital for Sick Children,University of Toronto,Toronto, ONT,Canada
| | | | - M Rietschel
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim/Heidelberg University,Germany
| | - T W Robbins
- Department of Experimental Psychology,Behavioural and Clinical Neurosciences Institute,University of Cambridge,UK
| | - M Smolka
- Department of Psychiatry and Psychotherapy,Technische Universität Dresden,Germany
| | - G Schumann
- King's College, London Institute of Psychiatry,London,UK
| | - J-L Martinot
- INSERM,UMR 1000,Research unit Imaging and Psychiatry,Service Hospitalier Frédéric Joliot,Orsay,France
| |
Collapse
|
18
|
Nakajima S, Takeuchi H, Plitman E, Fervaha G, Gerretsen P, Caravaggio F, Chung JK, Iwata Y, Remington G, Graff-Guerrero A. Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia. Schizophr Res 2015; 164:164-75. [PMID: 25684554 PMCID: PMC4409508 DOI: 10.1016/j.schres.2015.01.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent developments in neuroimaging have advanced the understanding of biological mechanisms underlying schizophrenia. However, neuroimaging correlates of treatment-resistant schizophrenia (TRS) and superior effects of clozapine on TRS remain unclear. METHODS Systematic search was performed to identify neuroimaging characteristics unique to TRS and ultra-resistant schizophrenia (i.e. clozapine-resistant [URS]), and clozapine's efficacy in TRS using Embase, Medline, and PsychInfo. Search terms included (schizophreni*) and (resistan* OR refractory OR clozapine) and (ASL OR CT OR DTI OR FMRI OR MRI OR MRS OR NIRS OR PET OR SPECT). RESULTS 25 neuroimaging studies have investigated TRS and effects of clozapine. Only 5 studies have compared TRS and non-TRS, collectively providing no replicated neuroimaging finding specific to TRS. Studies comparing TRS and healthy controls suggest that hypometabolism in the prefrontal cortex, hypermetabolism in the basal ganglia, and structural anomalies in the corpus callosum contribute to TRS. Clozapine may increase prefrontal hypoactivation in TRS although this was not related to clinical improvement; in contrast, evidence has suggested a link between clozapine efficacy and decreased metabolism in the basal ganglia and thalamus. CONCLUSION Existing literature does not elucidate neuroimaging correlates specific to TRS or URS, which, if present, might also shed light on clozapine's efficacy in TRS. This said, leads from other lines of investigation, including the glutamatergic system can prove useful in guiding future neuroimaging studies focused on, in particular, the frontocortical-basal ganglia-thalamic circuits. Critical to the success of this work will be precise subtyping of study subjects based on treatment response/nonresponse and the use of multimodal neuroimaging.
Collapse
Affiliation(s)
- Shinichiro Nakajima
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan; Schizophrenia Division, Complex Mental Illness Program, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Eric Plitman
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Gagan Fervaha
- Schizophrenia Division, Complex Mental Illness Program, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Philip Gerretsen
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Fernando Caravaggio
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Jun Ku Chung
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Yusuke Iwata
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, Canada; Schizophrenia Division, Complex Mental Illness Program, Centre for Addiction and Mental Health, Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
19
|
Cyprien F, Courtet P, Poulain V, Maller J, Meslin C, Bonafé A, Le Bars E, Ancelin ML, Ritchie K, Artero S. Corpus callosum size may predict late-life depression in women: a 10-year follow-up study. J Affect Disord 2014; 165:16-23. [PMID: 24882172 DOI: 10.1016/j.jad.2014.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recent research on late-life depression (LLD) pathophysiology suggests the implication of abnormalities in cerebral white matter and particularly in interhemispheric transfer. Corpus callosum (CC) is the main brain interhemispheric commissure. Hence, we investigated the association between baseline CC measures and risk of LDD. METHODS We studied 467 non-demented individuals without LLD at baseline from a cohort of elderly community-dwelling people (the ESPRIT study). LLD was assessed at year 2, 4, 7 and 10 of the study follow-up. At baseline, T1-weighted magnetic resonance images were manually traced to measure the mid-sagittal areas of the anterior, mid and posterior CC. Multivariate Cox proportional hazards models stratified by sex were used to predict LLD incidence over 10 years. RESULTS A significant interaction between gender and CC size was found (p=0.02). LLD incidence in elderly women, but not in men, was significantly associated with smaller anterior (HR 1.37 [1.05-1.79] p=0.017), mid (HR 1.43 [1.09-1.86] p=0.008), posterior (HR 1.39 [1.12-1.74] p=0.002) and total (HR 1.53 [1.16-2.00] p=0.002) CC areas at baseline in Cox models adjusted for age, education, global cognitive impairment, ischemic pathologies, left-handedness, white matter lesion, intracranial volume and past depression. LIMITATIONS The main limitation was the retrospective assessment of major depression. CONCLUSION Smaller CC size is a predictive factor of incident LLD over 10 years in elderly women independently of cognitive deterioration. Our finding suggests a possible role of CC and reduced interhemispheric connectivity in LLD pathophysiology. Extensive explorations are needed to clarify the mechanisms leading to CC morphometric changes in mood disorders.
Collapse
Affiliation(s)
- Fabienne Cyprien
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier 1, Montpellier F-34000, France; CHRU Carémeau, Nîmes, France
| | - Philippe Courtet
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier 1, Montpellier F-34000, France; CHRU Montpellier, Montpellier, France
| | - Vanessa Poulain
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France
| | - Jerome Maller
- Monash Alfred Psychiatry Research Centre, The Alfred & Monash University School of Psychology and Psychiatry, Melbourne, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Alain Bonafé
- University of Montpellier 1, Montpellier F-34000, France; CHRU Montpellier, Montpellier, France
| | | | - Marie-Laure Ancelin
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier 1, Montpellier F-34000, France
| | - Karen Ritchie
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier 1, Montpellier F-34000, France; Faculty of Medicine, Imperial College, St Mary׳s Hospital, London, United Kingdom
| | - Sylvaine Artero
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier 1, Montpellier F-34000, France.
| |
Collapse
|
20
|
de Diego-Adeliño J, Pires P, Gómez-Ansón B, Serra-Blasco M, Vives-Gilabert Y, Puigdemont D, Martín-Blanco A, Alvarez E, Pérez V, Portella MJ. Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychol Med 2014; 44:1171-1182. [PMID: 23962469 DOI: 10.1017/s003329171300158x] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although white-matter abnormalities have been reported in middle-aged patients with major depressive disorder (MDD), few data are available on treatment-resistant MDD and the influence of relevant variables related to clinical burden of illness is far from being well established. METHOD The present study examined white-matter microstructure in a sample of 52 patients with MDD in different stages (treatment-resistant/chronic MDD, n = 18; remitted-recurrent MDD, n = 15; first-episode MDD, n = 19) and 17 healthy controls, using diffusion tensor imaging with a tract-based spatial statistics approach. Groups were comparable in age and gender distribution, and results were corrected for familywise error (FWE) rate. RESULTS Widespread significant reductions of fractional anisotropy (FA) - including the cingulum, corpus callosum, superior and inferior longitudinal fascicule - were evident in treatment-resistant/chronic MDD compared with first-episode MDD and controls (p < 0.05, FWE-corrected). Decreased FA was observed within the ventromedial prefrontal region in treatment-resistant/chronic MDD even when compared with the remitted-recurrent MDD group (p < 0.05, FWE-corrected). Longer duration of illness (β = -0.49, p = 0.04) and higher depression severity (at a trend level: β = -0.26, p = 0.06) predicted lower FA in linear multiple regression analysis at the whole-brain level. The number of previous episodes and severity of symptoms were significant predictors when focused on the ventromedial prefrontal area (β = -0.28, p = 0.04; and β = -0.29, p = 0.03, respectively). Medication effects were controlled for in the analyses and results remained unaltered. CONCLUSIONS Our findings support the notion that disruptions of white-matter microstructure, particularly in fronto-limbic networks, are associated with resistance to treatment and higher current and past burden of depression.
Collapse
Affiliation(s)
- J de Diego-Adeliño
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - P Pires
- Department of Neuroradiology - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - B Gómez-Ansón
- Department of Neuroradiology - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - M Serra-Blasco
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Y Vives-Gilabert
- Port d'Informació Científica (PIC), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - D Puigdemont
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - A Martín-Blanco
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - E Alvarez
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - V Pérez
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - M J Portella
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
21
|
Investigating the role of the corpus callosum in regulating motor overflow in multiple sclerosis. J Neurol 2013; 260:1997-2004. [DOI: 10.1007/s00415-013-6914-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
|
22
|
Wang L, Li K, Zhang QE, Zeng YW, Jin Z, Dai WJ, Su YA, Wang G, Tan YL, Yu X, Si TM. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study. PLoS One 2013; 8:e60191. [PMID: 23555920 PMCID: PMC3612036 DOI: 10.1371/journal.pone.0060191] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/22/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Abnormalities in large-scale, structural and functional brain connectivity have been increasingly reported in patients with major depressive disorder (MDD). However, MDD-related alterations in functional interaction between the cerebral hemispheres are still not well understood. Resting state fMRI, which reveals spontaneous neural fluctuations in blood oxygen level dependent signals, provides a means to detect interhemispheric functional coherence. We examined the resting state functional connectivity (RSFC) between the two hemispheres and its relationships with clinical characteristics in MDD patients using a recently proposed measurement named "voxel-mirrored homotopic connectivity (VMHC)". METHODOLOGY/PRINCIPAL FINDINGS We compared the interhemispheric RSFC, computed using the VMHC approach, of seventeen first-episode drug-naive patients with MDD and seventeen healthy controls. Compared to the controls, MDD patients showed significant VMHC decreases in the medial orbitofrontal gyrus, parahippocampal gyrus, fusiform gyrus, and occipital regions including the middle occipital gyrus and cuneus. In MDD patients, a negative correlation was found between VMHC of the fusiform gyrus and illness duration. Moreover, there were several regions whose VMHC showed significant negative correlations with the severity of cognitive disturbance, including the prefrontal regions, such as middle and inferior frontal gyri, and two regions in the cereballar crus. CONCLUSIONS/SIGNIFICANCE These findings suggest that the functional coordination between homotopic brain regions is impaired in MDD patients, thereby providing new evidence supporting the interhemispheric connectivity deficits of MDD. The significant correlations between the VMHC and clinical characteristics in MDD patients suggest potential clinical implication of VMHC measures for MDD. Interhemispheric RSFC may serve as a useful screening method for evaluating MDD where neural connectivity is implicated in the pathophysiology.
Collapse
Affiliation(s)
- Li Wang
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Ke Li
- Department of Radiology, 306 Hospital of People’s Liberation Army, Beijing, China
| | - Qing-E Zhang
- Mood Disorders Center, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Ya-Wei Zeng
- Department of Radiology, 306 Hospital of People’s Liberation Army, Beijing, China
| | - Zhen Jin
- Department of Radiology, 306 Hospital of People’s Liberation Army, Beijing, China
| | - Wen-Ji Dai
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Yun-Ai Su
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Gang Wang
- Mood Disorders Center, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yun-Long Tan
- Center for Psychiatric Research, Beijing Huilongguan Hospital, Beijing, China
| | - Xin Yu
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Tian-Mei Si
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| |
Collapse
|
23
|
Xu K, Jiang W, Ren L, Ouyang X, Jiang Y, Wu F, Kong L, Womer F, Liu Z, Blumberg HP, Tang Y, Wang F. Impaired interhemispheric connectivity in medication-naive patients with major depressive disorder. J Psychiatry Neurosci 2013; 38:43-8. [PMID: 22498077 PMCID: PMC3529218 DOI: 10.1503/jpn.110132] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Abnormalities in the anterior interhemispheric connections provided by the corpus callosum (CC) have long been implicated in major depressive disorder (MDD). The purpose of this study was to investigate interhemispheric connectivity in medication-naive patients with MDD by measuring fractional anisotropy in the CC with diffusion tensor imaging (DTI) techniques. METHODS We obtained DTI scans from medication-naive patients with MDD and from matched healthy controls. Fractional anisotropy values were compared using semiautomatic region of interest methods to localize the regional CC differences between these 2 groups. RESULTS We enrolled 27 patients and 27 controls in our study. Fractional anisotropy values were significantly lower in the anterior genu of the CC in the MDD group than in the control group (p = 0.009, corrected); results were not significantly different in any other CC subregions. LIMITATIONS As patients with MDD were already experiencing acute episodes, future studies of individuals at risk for MDD are warranted to elucidate the interhemispheric connectivity abnormalities associated with the predisposition to MDD. CONCLUSION The findings demonstrate abnormalities in the structural integrity of the anterior genu of the CC in medication-naive individuals with MDD, which may contribute to impairment of interhemispheric connectivity in patients with this disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanqing Tang
- Correspondence to: Y. Tang, Department of Psychiatry, The First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang 110001, Liaoning, China; ; and F. Wang, Department of Psychiatry, Yale University School of Medicine, New Haven CT 06511, USA;
| | | |
Collapse
|
24
|
Herron TJ, Kang X, Woods DL. Automated measurement of the human corpus callosum using MRI. Front Neuroinform 2012; 6:25. [PMID: 22988433 PMCID: PMC3439830 DOI: 10.3389/fninf.2012.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023] Open
Abstract
The corpus callosum includes the majority of fibers that connect the two cortical hemispheres. Studies of cross-sectional callosal morphometry and area have revealed developmental, gender, and hemispheric differences in healthy populations and callosal deficits associated with neurodegenerative disease and brain injury. However, accurate quantification of the callosum using magnetic resonance imaging is complicated by intersubject variability in callosal size, shape, and location and often requires manual outlining of the callosum in order to achieve adequate performance. Here we describe an objective, fully automated protocol that utilizes voxel-based images to quantify the area and thickness both of the entire callosum and of different callosal compartments. We verify the method's accuracy, reliability, robustness, and multisite consistency and make comparisons with manual measurements using public brain-image databases. An analysis of age-related changes in the callosum showed increases in length and reductions in thickness and area with age. A comparison of older subjects with and without mild dementia revealed that reductions in anterior callosal area independently predicted poorer cognitive performance after factoring out Mini-Mental Status Examination scores and normalized whole brain volume. Open-source software implementing the algorithm is available at www.nitrc.org/projects/c8c8.
Collapse
Affiliation(s)
- Timothy J Herron
- Human Cognitive Neurophysiology Laboratory, Research Service, US Veterans Affairs, Northern California Health Care System Martinez, CA, USA
| | | | | |
Collapse
|
25
|
Cole J, Chaddock CA, Farmer AE, Aitchison KJ, Simmons A, McGuffin P, Fu CHY. White matter abnormalities and illness severity in major depressive disorder. Br J Psychiatry 2012; 201:33-9. [PMID: 22576724 DOI: 10.1192/bjp.bp.111.100594] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND White matter abnormalities have been implicated in the aetiology of major depressive disorder; however, the relationship between the severity of symptoms and white matter integrity is currently unclear. AIMS To investigate white matter integrity in people with major depression and healthy controls, and to assess its relationship with depressive symptom severity. METHOD Diffusion tensor imaging data were acquired from 66 patients with recurrent major depression and a control group of 66 healthy individuals matched for age, gender and IQ score, and analysed with tract-based spatial statistics. The relationship between white matter integrity and severity of depression as measured by the Beck Depression Inventory was examined. RESULTS Depressive illness was associated with widespread regions of decreased white matter integrity, including regions in the corpus callosum, superior longitudinal fasciculus and anterior corona radiata, compared with the control group. Increasing symptom severity was negatively correlated with white matter integrity, predominantly in the corpus callosum. CONCLUSIONS Widespread alterations in white matter integrity are evident in major depressive disorder. These abnormalities are heightened with increasing severity of depressive symptoms.
Collapse
Affiliation(s)
- James Cole
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Suicidal behavior is associated with reduced corpus callosum area. Biol Psychiatry 2011; 70:320-6. [PMID: 21531383 DOI: 10.1016/j.biopsych.2011.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/09/2011] [Accepted: 02/25/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Corpus callosum (CC) size has been associated with cognitive and emotional deficits in a range of neuropsychiatric and mood disorders. As such deficits are also found in suicidal behavior, we investigated specifically the association between CC atrophy and suicidal behavior. METHODS We studied 435 right-handed individuals without dementia from a cohort of community-dwelling persons aged 65 years and over (the ESPRIT study). They were divided in three groups: suicide attempters (n = 21), affective control subjects (AC) (n = 180) without history of suicide attempt but with a history of depression, and healthy control subjects (HC) (n = 234). T1-weighted magnetic resonance images were traced to measure the midsagittal areas of the anterior, mid, and posterior CC. Multivariate analysis of covariance was used to compare CC areas in the three groups. RESULTS Multivariate analyses adjusted for age, gender, childhood trauma, head trauma, and total brain volume showed that the area of the posterior third of CC was significantly smaller in suicide attempters than in AC (p = .020) and HC (p = .010) individuals. No significant differences were found between AC and HC. No differences were found for the anterior and mid thirds of the CC. CONCLUSIONS Our findings emphasize a reduced size of the posterior third of the CC in subjects with a history of suicide, suggesting a diminished interhemispheric connectivity and a possible role of CC in the pathophysiology of suicidal behavior. Further studies are needed to strengthen these results and clarify the underlying cellular changes leading to these morphometric differences.
Collapse
|
27
|
Wang Z, Kemp DE, Chan PK, Fang Y, Ganocy SJ, Calabrese JR, Gao K. Comparisons of the tolerability and sensitivity of quetiapine-XR in the acute treatment of schizophrenia, bipolar mania, bipolar depression, major depressive disorder, and generalized anxiety disorder. Int J Neuropsychopharmacol 2011; 14:131-42. [PMID: 20875219 PMCID: PMC3433839 DOI: 10.1017/s146114571000101x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Quetiapine extended-release (quetiapine-XR) has been studied in patients with schizophrenia, bipolar mania, bipolar depression, major depressive disorder (MDD), and generalized anxiety disorder (GAD). The purpose of this study was to compare the tolerability and sensitivity of quetiapine-XR among these psychiatric conditions. The discontinuation due to adverse events (DAEs) and reported somnolence in randomized, double-blind, placebo-controlled studies of quetiapine-XR in these psychiatric conditions were examined. The absolute risk reduction or increase and the number needed to treat to benefit (NNTB) or harm (NNTH) for DAEs and reported somnolence of quetiapine-XR ≥ 300 mg/d relative to placebo were estimated. Data from one study in schizophrenia (n=465), one in mania (n=316), one in bipolar depression (n=280), two in refractory MDD (n=624), two in MDD (n=669) and three in GAD (n=1109) were available. The risk for DAEs of quetiapine-XR relative to placebo was significantly increased in bipolar depression (NNTH=9), refractory MDD (NNTH=8), MDD (NNTH=9), and GAD (NNTH=5), but not in schizophrenia and mania. The risk for reported somnolence of quetiapine-XR relative to placebo was significantly increased in schizophrenia (600 mg/d NNTH=15 and 800 mg/d NNTH=11), mania (NNTH=8), bipolar depression (NNTH=4), refractory MDD (NNTH=5), MDD (NNTH=5) and GAD (NNTH=5). These results suggest that patients with GAD had the poorest tolerability during treatment with quetiapine-XR, but they had a similar sensitivity as those with bipolar depression and MDD. Patients with schizophrenia or mania had a higher tolerability and a lower sensitivity than those with bipolar depression, MDD, or GAD.
Collapse
Affiliation(s)
- Zuowei Wang
- Department of Psychiatry, Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Maller JJ, Daskalakis ZJ, Thomson RHS, Daigle M, Barr MS, Fitzgerald PB. Hippocampal volumetrics in treatment-resistant depression and schizophrenia: the devil's in de-tail. Hippocampus 2010; 22:9-16. [PMID: 20882552 DOI: 10.1002/hipo.20873] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2010] [Indexed: 11/05/2022]
Abstract
Studies of patients with major depressive disorder (MDD) and schizophrenia (SCH) have revealed reduced hippocampal volumes, but findings have been inconsistent due to sample and measurement differences. The current study sought to measure this structure in a large sample of MDD, SCH, and healthy subjects, using a strict measurement protocol, to elucidate morphological-specific volumetric differences. Patients with treatment-resistant MDD (N = 182) and treatment-resistant SCH with auditory-verbal hallucinations (N = 52), and healthy controls (N = 76) underwent psychiatric assessments and brain MRI. The findings indicate that (1) MDD and SCH patients have reduced total hippocampal volume which was marked in the tails (more so in patients with MDD), (2) region of interest estimation protocols and sample characteristics may help explain volumetric differences between previous SCH studies.
Collapse
Affiliation(s)
- Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University School of Psychology and Psychiatry, Melbourne Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Makris N, Seidman LJ, Ahern T, Kennedy DN, Caviness VS, Tsuang MT, Goldstein JM. White matter volume abnormalities and associations with symptomatology in schizophrenia. Psychiatry Res 2010; 183:21-9. [PMID: 20538438 PMCID: PMC2913317 DOI: 10.1016/j.pscychresns.2010.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/02/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
Abstract
The cerebral white matter (WM) is critically involved in many bio-behavioral functions impaired in schizophrenia. However, the specific neural systems underlying symptomatology in schizophrenia are not well known. By comparing the volume of all brain fiber systems between chronic patients with DSM-III-R schizophrenia (n=88) and matched healthy community controls (n=40), we found that a set of a priori WM regions of local and distal associative fiber systems was significantly different in patients with schizophrenia. There were significant positive correlations between volumes (larger) in anterior callosal, cingulate and temporal deep WM regions (related to distal connections) with positive symptoms, such as hallucinations, delusions and bizarre behavior, and significant negative correlation between volumes (smaller) in occipital and paralimbic superficial WM (related to local connections) and posterior callosal fiber systems with higher negative symptoms, such as alogia. Furthermore, the temporal sagittal system showed significant rightward asymmetry between patients and controls. These observations suggest a pattern of volume WM alterations associated with symptomatology in schizophrenia that may be related in part to predisposition to schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Makris
- Athinoula A. Martinos Imaging Center, Department of Neurology, Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Kaymaz N, van Os J. Murray et al. (2004) revisited: is bipolar disorder identical to schizophrenia without developmental impairment? Acta Psychiatr Scand 2009; 120:249-52. [PMID: 19744075 DOI: 10.1111/j.1600-0447.2009.01472.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|