1
|
Wu J, Zhai J, Jia H, Ahamba IS, Dong X, Ren Z. Whole-transcriptome analysis reveals the profiles and roles of coding and non-coding RNAs during hair follicle cycling in Rex rabbits. BMC Genomics 2025; 26:74. [PMID: 39863835 PMCID: PMC11765939 DOI: 10.1186/s12864-025-11264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown. RESULTS In this study, we identified the hair follicle stages of Rex rabbits aged 3 to 5.5 months. Skin samples collected at 4, 5 and 5.5 months, representing the morphological features of the anagen, catagen and telogen stage separately, were finally selected for whole-transcriptome analysis. 25,736 mRNA, 8280 lncRNA, 24,885 circRNA and 1138 miRNA transcripts were identified. 6027 differently expressed mRNAs (DEGs), 2381 differently expressed lncRNAs (DELs), 438 differently expressed circRNAs (DECs) and 167 differently expressed miRNAs (DEMs) were detected in the anagen vs. catagen (AvC) comparison. 4092 DEGs, 1540 DELs, 356 DECs and 141 DEMs were detected in the anagen vs. telogen (AvT) comparison. 2290 DEGs, 779 DELs, 249 DECs and 92 DEMs were detected in the catagen vs. telogen (CvT) comparison. DEGs were primarily enriched in GO items including plasma membrane, integral component of plasma membrane and extracellular space. KEGG enrichment analysis revealed that DEGs were mainly enriched in PI3K-Akt signaling pathway, cell cycle and Wnt signaling pathway (p < 0.05). KEGG analysis showed trans-acting genes of DELs were significantly enriched in Hippo signaling pathway, PI3K-Akt signaling pathway and Melanogenesis. Target genes of DEMs were mainly enriched in MAPK signaling pathway, Wnt signaling pathway, ECM-receptor interaction and Signaling pathways regulating pluripotency of stem cells. Based on the ceRNA mechanism, lncRNA/circRNA-miRNA-mRNA networks were constructed involving 9 DECs, 437 DELs, 50 DEMs and 416 DEGs. CONCLUSIONS Totally, this study provides comprehensive insights into the expression patterns of protein-coding genes and non-coding transcripts throughout the HF cycle, and enhancing the understanding of the regulatory mechanisms underlying mammalian hair fiber development.
Collapse
Affiliation(s)
- Jie Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haofan Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Zhou H, Bai L, Li S, Li W, Wang J, Tao J, Hickford JGH. Genetics of Wool and Cashmere Fibre: Progress, Challenges, and Future Research. Animals (Basel) 2024; 14:3228. [PMID: 39595283 PMCID: PMC11591541 DOI: 10.3390/ani14223228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Wool (sheep) and cashmere (goat) fibres have unique biological, physical, and chemical properties and these fibres are becoming more important as the demand for natural products increases. However, these complex protein fibres are at times compromised by natural variability in their properties, and this can impact their use and value. Genetic improvement via selection and breeding can partly overcome this problem, enabling the farming of sheep and goats that produce more desirable fibre. This review explores the challenges in improving wool and cashmere fibre characteristics using genetics, with a focus on improving our understanding of the key protein components of fibres, wool keratins and keratin-associated proteins (KAPs). Despite progress in our knowledge of these proteins, gaining a better understanding of them and how they affect these fibres remains an ongoing challenge. This is not straight-forward, given the large number of similar yet unique genes that produce the proteins and the gaps that remain in their identification and characterisation. More research is required to clarify gene and protein sequence variability and the location and patterns of gene expression, which in turn limits our understanding of fibre growth and variation. Several aspects that currently hinder our progress in this quest include the incomplete identification of all the genes and weaknesses in the approaches used to characterise them, including newer omics technologies. We describe future research directions and challenges, including the need for ongoing gene identification, variation characterisation, and gene expression analysis and association studies to enable further improvement to these valuable natural fibres.
Collapse
Affiliation(s)
- Huitong Zhou
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (L.B.); (S.L.); (J.W.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Lingrong Bai
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (L.B.); (S.L.); (J.W.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Shaobin Li
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (L.B.); (S.L.); (J.W.)
| | - Wenhao Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Jiqing Wang
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (L.B.); (S.L.); (J.W.)
| | - Jinzhong Tao
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China;
| | - Jon G. H. Hickford
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (L.B.); (S.L.); (J.W.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
3
|
Bai L, Zhou H, Tao J, Hickford JGH. Characterisation of Ovine KRTAP19-3 and Its Impact on Wool Traits in Chinese Tan Sheep. Animals (Basel) 2024; 14:2772. [PMID: 39409721 PMCID: PMC11475705 DOI: 10.3390/ani14192772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Wool, a natural fibre derived from sheep, can present a challenge to wool processing and manufacturing industries because of the variation in fibre traits. Genetic improvement offers one solution to this challenge, and having a better understanding of the genes that affect wool fibre traits is therefore important. Here, we describe ovine KRTAP19-3, a new member of the KAP19 gene family. Phylogenetic analysis revealed its relationship to other known KRTAP19 gene sequences, and an analysis of the nucleotide sequence variation in KRTAP19-3 from 288 sheep of a variety of breeds revealed six unique variant sequences. Among these variants, eleven single nucleotide polymorphisms (SNPs) were detected, with six located in the coding region. Three of these coding region SNPs were non-synonymous and would result in amino acid changes. Associations were observed between the presence of specific sequence variants in Chinese Tan sheep and wool trait variation, particularly an increase in fibre diameter variability in the heterotypic hair fibres. These findings enhance our understanding of the genes that encode sheep wool proteins.
Collapse
Affiliation(s)
- Lingrong Bai
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Huitong Zhou
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jinzhong Tao
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jon G. H. Hickford
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.B.); (H.Z.); (J.T.)
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
4
|
He Z, Sun H, Zhao F, Ma L, Wang J, Liu X, Li M, Hao Z, Li S. MicroRNA expression profiles reveal wool development and fineness regulation in Gansu alpine fine-wool sheep. Genomics 2024; 116:110922. [PMID: 39178999 DOI: 10.1016/j.ygeno.2024.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The development of wool has a complex regulatory mechanism both influenced by genetic and environmental factors. MicroRNAs (miRNA) were involved in various biological processes of animals, and may play an important role in the regulation of wool development. In this study, we comprehensively analyzed and identified the histological parameters of hair follicles, as well as the miRNAs, target genes, pathways, and Gene Ontology terms related to wool fineness regulation and wool growth and development using HE staining and RNA-Seqs methods. Both coarse (group C, mean fiber diameter (MFD) = 22.26 ± 0.69 μm, n = 6) and fine (group F, MFD = 16.91 ± 0.29 μm, n = 6) of Gansu alpine fine-wool sheep with different wool fineness were used in this study. The results showed that the primary follicle diameter and secondary wool fiber diameter in group C were significantly higher than those in group F (P < 0.05). And the number of primary and secondary hair follicles in group C was significantly lower than that in group F (P < 0.05). Furthermore, a total of 67 DE miRNAs and 290 potential DE miRNAs target genes were screened in the skin tissues of sheep from groups F and C, and some potential target genes related to wool fineness regulation were screened, such as CDH2, KRT82, FOXN1, LOC101106296, KRT20, MCOLN3, KRT71, and TERT. These genes were closely related to Glutathione metabolism, epidermal cell differentiation, keratinization, and regulation of hair cycle. Moreover, the regulatory network of miRNAs-mRNAs suggested that miRNAs (miR-129-x, novel m0079-3p, miR-2484-z, novel m0025-5P, etc.) may play a key role in the wool development and wool fineness regulation of Gansu alpine fine-wool sheep. In summary, this study expands the existing miRNAs database and provides new information for studying the regulation of wool development in Gansu alpine fine wool sheep.
Collapse
Affiliation(s)
- Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Hongxian Sun
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Longxia Ma
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China.
| |
Collapse
|
5
|
Zhang C, Qin Q, Wang Y, Wang Z, Liu Z. Identification of Key Proteins Related to Cashmere Fiber Diameter by Integrated Proteomics and Bioinformatic Analyses in the Alpas and Alxa Goat Breeds. Genes (Basel) 2024; 15:1154. [PMID: 39336745 PMCID: PMC11431775 DOI: 10.3390/genes15091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Goats (Capra hircus) have always been a source of fiber for human use and hold an important place in international high-end textiles. Fiber diameter is the most concerning economic indicator for producers. Understanding the formation mechanism of fiber diameter and its related key proteins can help optimize and control the production of cashmere. METHODS Cashmere goats (n = 36) of the Alpas (n = 18) and Alxa (n = 18) breeds, with a similar age (2 years old) and live weight (25-26 kg), were selected from the Yiwei White Cashmere Goat Breeding Farm, Erdos, Inner Mongolia. Using phenotypic indicators, we evaluated the diameter of the cashmere fibers in Alxa and Alpas goats. We also used electron microscopy to examine the cashmere fiber's structure and label-free liquid chromatography-tandem mass spectrometry to determine the protein content of the two cashmere fibers. The proteins affecting fiber diameter were identified and analyzed by Western blot, Co-Immunoprecipitation, and bioinformatics analysis. RESULTS The average diameter of the Alxa breed was smaller (p < 0.05) than that of the Alpas breed (Alxa's cashmere vs. Alpas' cashmere). Proteomics technology enabled the highly confident detection of 171 proteins. A total of 68 differentially expressed proteins were identified in the two types of cashmere; 131 proteins were specifically expressed in Alpas goats, and 40 proteins were specifically expressed in Alxa goats. A key protein group that could cause variations in fiber diameter was found using the protein-protein interaction network. To ascertain the reason for the variation in fiber diameter, a structural study of the major protein groups was carried out. CONCLUSIONS KRT10, KRT14, KRT17, and KRT82 are the main proteins impacting the diameter difference, and they have a substantial effect on the average fiber diameter.
Collapse
Affiliation(s)
- Chongyan Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot 010018, China
| | - Qing Qin
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Yichuan Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Zhixin Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot 010018, China
| | - Zhihong Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot 010018, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| |
Collapse
|
6
|
Chai W, Zhou H, Gong H, Wang C, Hickford JGH. Variation in the Exon 3-4 Region of Ovine KRT85 and Its Effect on Wool Traits. Animals (Basel) 2024; 14:2272. [PMID: 39123798 PMCID: PMC11311021 DOI: 10.3390/ani14152272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
α-keratins are structural proteins in the cortex of wool fibres and assemble in an organized fashion into keratin intermediate filaments. Variation in these keratin proteins affects the structure and characteristics of wool fibre, making keratin genes ideal candidates for the development of gene markers that describe variations in wool traits. A region of KRT85 spanning exon 3-4 (including the entire exon 3, intron 3, exon 4 and part of intron 4) was investigated. Two banding patterns defining two variant sequences (A and B) were observed in this region, and these were characterised by the presence of two single nucleotide polymorphisms. The effect of this variation in the exon 3-4 region of KRT85 on wool traits was investigated in 463 Merino × Southdown-cross lambs. The frequencies of these two variants in these sheep were 55.6% and 44.4%, respectively. Three different genotypes were observed with frequencies of 32.6%, 46.1% and 21.3% for AA, AB and BB, respectively. The presence of A was associated with an increase in greasy fleece weight and clean fleece weight, while the presence of B was associated with an increased wool prickle factor. These findings should be replicated in a broader range of sheep breeds to determine whether the associations are robust and to clarify whether the observed effects are attributable to breed differences or to gene effects themselves.
Collapse
Affiliation(s)
- Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (W.C.); (C.W.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Science, Lincoln University, Lincoln 7647, Canterbury, New Zealand; (H.Z.); (H.G.)
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agricultural and Life Science, Lincoln University, Lincoln 7647, Canterbury, New Zealand; (H.Z.); (H.G.)
| | - Hua Gong
- Gene-Marker Laboratory, Faculty of Agricultural and Life Science, Lincoln University, Lincoln 7647, Canterbury, New Zealand; (H.Z.); (H.G.)
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252059, China; (W.C.); (C.W.)
| | - Jon G. H. Hickford
- Gene-Marker Laboratory, Faculty of Agricultural and Life Science, Lincoln University, Lincoln 7647, Canterbury, New Zealand; (H.Z.); (H.G.)
| |
Collapse
|
7
|
Ahlawat S, Vasu M, Mir MA, Singh MK, Arora R, Sharma R, Chhabra P, Sharma U. Molecular insights into Pashmina fiber production: comparative skin transcriptomic analysis of Changthangi goats and sheep. Mamm Genome 2024; 35:160-169. [PMID: 38589518 DOI: 10.1007/s00335-024-10040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Ladakh, one of the highest inhabited regions globally, hosts the unique Changthangi goat, renowned for producing Pashmina, the world's most luxurious natural fiber. In comparison, the fiber derived from Changthangi sheep is considered next only to Pashmina. This research endeavors to compare the skin transcriptome profiles of Changthangi goats and Changthangi sheep, aiming to discern the molecular determinants behind the recognition of Changthangi goats as the source of Pashmina. Drawing upon previously conducted studies, a collective of 225 genes correlated with fiber characteristics were extracted from the differentially expressed genes noticed between the two species (p-value of ≤ 0.05 and a log2 fold change of ≥ 1.5). These genes were analyzed using DAVID software to understand their biological functions and to identify enriched KEGG and Reactome pathways. The protein-protein interaction networks were constructed using Cytoscape, cytoHubba, and STRING to focus on key genes and infer their biological significance. Comparative transcriptome analysis revealed significantly higher expression of genes involved in signaling pathways like Wnt, MAPK, PI3K-Akt, Hedgehog, associated with fiber development and quality in Changthangi goats. These pathways play crucial roles in hair follicle (HF) formation, maintenance of epidermal stem cells, and fiber characteristics. Findings also highlight the enrichment of cell adhesion molecules and ECM-receptor interaction, emphasizing their roles in HF structure, growth, and signaling. This investigation offers an in-depth understanding of the molecular intricacies governing Pashmina production in Changthangi goats, providing valuable insights into their unique genetic makeup and underlying mechanisms influencing the exceptional quality of Pashmina fibers.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M A Mir
- Mountain Research Centre for Sheep and Goat, SKUAST, Shuhama (Aulestang), Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
8
|
Li W, Bai L, Zhou H, Zhang Z, Ma Z, Wu G, Luo Y, Tanner J, Hickford JGH. Ovine KRT81 Variants and Their Influence on Selected Wool Traits of Commercial Value. Genes (Basel) 2024; 15:681. [PMID: 38927617 PMCID: PMC11202848 DOI: 10.3390/genes15060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Keratins are the main structural protein components of wool fibres, and variation in them and their genes (KRTs) is thought to influence wool structure and characteristics. The PCR-single strand conformation polymorphism technique has been used previously to investigate genetic variation in selected coding and intron regions of the type II sheep keratin gene KRT81, but no variation was identified. In this study, we used the same technique to explore the 5' untranslated region of KRT81 and detected three sequence variants (A, B and C) that contain four single nucleotide polymorphisms. Among the 389 Merino × Southdown cross sheep investigated, variant B was linked to a reduction in clean fleece weight, while C was associated with an increase in both greasy fleece weight and clean fleece weight. No discernible effects on staple length or mean-fibre-diameter-related traits were observed. These findings suggest that variation in ovine KRT81 might influence wool growth by changing the density of wool follicles in the skin, the density of individual fibres, or the area of the skin producing fibre, as opposed to changing the rate of extrusion of fibres or their diameter.
Collapse
Affiliation(s)
- Wenhao Li
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (W.L.); (Z.M.); (G.W.)
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
| | - Lingrong Bai
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| | - Huitong Zhou
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| | - Zhihe Zhang
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
| | - Zhijie Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (W.L.); (Z.M.); (G.W.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (W.L.); (Z.M.); (G.W.)
| | - Yuzhu Luo
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
| | - Jasmine Tanner
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| | - Jon G. H. Hickford
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| |
Collapse
|
9
|
Zhao B, Cai J, Zhang X, Li J, Bao Z, Chen Y, Wu X. Single nucleotide polymorphisms in the KRT82 promoter region modulate irregular thickening and patchiness in the dorsal skin of New Zealand rabbits. BMC Genomics 2024; 25:458. [PMID: 38730432 PMCID: PMC11088042 DOI: 10.1186/s12864-024-10370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND While rabbits are used as models in skin irritation tests, the presence of irregular patches and thickening on the dorsal skin can affect precise evaluation. In this study, genes associated with patchiness or non-patchiness on the dorsal skin of New Zealand rabbits were investigated to identify potential regulators of the patchiness phenotype. RESULTS The results showed that parameters associated with hair follicles (HFs), such as HF density, skin thickness, and HF depth, were augmented in rabbits with the patchiness phenotype relative to the non-patchiness phenotype. A total of 592 differentially expressed genes (DEGs) were identified between the two groups using RNA-sequencing. These included KRT72, KRT82, KRT85, FUT8, SOX9, and WNT5B. The functions of the DEGs were investigated by GO and KEGG enrichment analyses. A candidate gene, KRT82, was selected for further molecular function verification. There was a significant positive correlation between KRT82 expression and HF-related parameters, and KRT82 overexpression and knockdown experiments with rabbit dermal papilla cells (DPCs) showed that it regulated genes related to skin and HF growth and development. Investigation of single nucleotide polymorphisms (SNPs) in the exons and promoter region of KRT82 identified four SNPs in the promoter region but none in the exons. The G.-631G > T, T.-696T > C, G.-770G > T and A.-873 A > C alleles conformed to the Hardy - Weinberg equilibrium, and three identified haplotypes showed linkage disequilibrium. Luciferase reporter assays showed that the core promoter region of KRT82 was located in the - 600 to - 1200 segment, in which the four SNPs were located. CONCLUSIONS The morphological characteristics of the patchiness phenotype were analyzed in New Zealand rabbits and DEGs associated with this phenotype were identified by RNA-sequencing. The biological functions of the gene KRT82 associated with this phenotype were analyzed, and four SNPs were identified in the promoter region of the gene. These findings suggest that KRT82 may be a potential biomarker for the breeding of experimental New Zealand rabbits.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
10
|
Chen Z, Zhao F, He Z, Sun H, Xi Q, Yu X, Ding Y, An Z, Wang J, Liu X, Li M, Hao Z, Li S. Expression Localization of the KRT32 Gene and Its Association of Genetic Variation with Wool Traits. Curr Issues Mol Biol 2024; 46:2961-2974. [PMID: 38666915 PMCID: PMC11049001 DOI: 10.3390/cimb46040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in keratin gene expression and spatiotemporal regulation determine the compositional content and cellular localization of wool keratin, thereby affecting wool traits. Therefore, keratin gene family member 32 (KRT32) was selected for a study using RT-qPCR, immunofluorescence, and penta-primer amplification refractory mutation system (PARMS) techniques. The results showed that KRT32 mRNA was highly expressed in the skin and localized to the inner root sheath (IRS), outer root sheath (ORS) and dermal papilla (DP). Sequencing results identified eight SNPs in KRT32, and association analyses revealed that the variations were significantly associated with multiple traits in wool (p < 0.05), including MFD, CF and MFC. The constructed haplotype combination H2H3 has higher CF and smaller MFD than other haplotype combination (p < 0.05). In conclusion, KRT32 can be used as a candidate gene for molecular genetic improvement of wool in Gansu Alpine Fine-wool sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.C.); (F.Z.); (Z.H.); (H.S.); (Q.X.); (X.Y.); (Y.D.); (Z.A.); (J.W.); (X.L.); (M.L.); (Z.H.)
| |
Collapse
|
11
|
Yu X, Li S, Zhou H, Zhao F, Hu J, Wang J, Liu X, Li M, Zhao Z, Hao Z, Shi B, Hickford JGH. Spatiotemporal Expression and Haplotypes Identification of KRT84 Gene and Their Association with Wool Traits in Gansu Alpine Fine-Wool Sheep. Genes (Basel) 2024; 15:248. [PMID: 38397237 PMCID: PMC10888427 DOI: 10.3390/genes15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Keratin (K) is a major protein component of hair and is involved in hair growth and development. In this study, we analysed the expression, localization, and polymorphism of the K84 gene (KRT84) in Gansu Alpine Fine-wool sheep using immunofluorescence, RT-qPCR, and PARMS (penta-primer amplification refractory mutation system). Haplotypes of KRT84 were also constructed and their relationship with wool traits analysed. It was revealed that KRT84 was highly expressed in hair follicles, including the inner root sheath, outer root sheath, and hair medulla and at all six lamb ages investigated from 1 to 270 days of age. Three SNPs were detected in KRT84 exon 1, and they formed three haplotypes (named H1, H2, and H3) and six genotypes. Analyses revealed an association between haplotype combinations (diplotypes) and the mean fibre curvature, mean staple length, mean staple strength, mean fibre diameter, the coefficient of variation of fibre diameter, and comfort factor for these sheep. These results suggest that KRT84 is of importance in determining several key traits in Gansu Alpine Fine-wool sheep and that the gene could possibly be used as a genetic marker for wool trait selection in these sheep.
Collapse
Affiliation(s)
- Xueqin Yu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huitong Zhou
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China;
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.Y.); (F.Z.); (J.H.); (J.W.); (X.L.); (M.L.); (Z.Z.); (Z.H.); (B.S.)
| | - Jon G. H. Hickford
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China;
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
12
|
Zhou H, Li W, Bai L, Wang J, Luo Y, Li S, Hickford JGH. Ovine KRTAP36-2: A New Keratin-Associated Protein Gene Related to Variation in Wool Yield. Genes (Basel) 2023; 14:2045. [PMID: 38002988 PMCID: PMC10671549 DOI: 10.3390/genes14112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Keratin-associated proteins (KAPs) are structural components of wool fibres. High-glycine/tyrosine (HGT)-KAPs are a subset of the KAP family, and their abundance in fibres varies. In this study, we report the discovery of an ovine HGT-KAP gene to which we assigned the name KRTAP36-2. Polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) analyses revealed four variants of this gene in a screening population of 170 sheep from a variety of breeds. The DNA sequencing of the variants revealed four single-nucleotide polymorphisms (SNPs) and a dinucleotide deletion. Three of these SNPs were in the coding region, and one of these was non-synonymous and potentially led to the amino acid substitution p.Cys27Gly near the middle of the protein. The remaining SNP was located near the putative TATA box, and the di-nucleotide deletion was near the putative transcription initiation site. The effect of this variation in KRTAP36-2 was investigated in 274 Southdown × Merino lambs that were the progeny of five sires. Variation was only found to be associated with wool yield, that is, the proportion of the greasy fleece that remained as clean fleece upon scouring (expressed as a percentage). This may have some value in increasing wool production.
Collapse
Affiliation(s)
- Huitong Zhou
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Wenhao Li
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Lingrong Bai
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Jiqing Wang
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jonathan G. H. Hickford
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
13
|
Sun H, Meng K, Wang Y, Wang Y, Yuan X, Li X. LncRNAs regulate the cyclic growth and development of hair follicles in Dorper sheep. Front Vet Sci 2023; 10:1186294. [PMID: 37583467 PMCID: PMC10423938 DOI: 10.3389/fvets.2023.1186294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Hair follicles in Dorper sheep are characterized by seasonal cyclic growth and development, consequently resulting in hair shedding during spring. The cyclic growth and development of hair follicles are regulated by several influencing factors such as photoperiods, hormones, age of the animal, genes, long non-coding RNAs (lncRNAs), and signaling pathways. Methods In the present study, skin samples of five shedding sheep (S), used as experimental animals, and three non-shedding sheep (N), used as controls, were collected at three time points (September 27, 2019; January 3, 2020; and March 17, 2020) for RNA sequencing (RNA-seq) technology. Nine different groups (S1-vs-S2, S1-vs-S3, S2-vs-S3, N1- vs-N2, N1-vs-N3, N2-vs-N3, S1-vs-N1, S2-vs-N2, and S3-vs-N3) were compared using FDR < 0.05 and log 21 FC >as thresholds to assess the differences in the expression of lncRNAs. Results and discussion In total, 395 differentially expressed (DE) lncRNAs were screened. Cluster heatmap analysis identified two types of expression patterns, namely, high expression during the anagen phase (A pattern) and high expression during the telogen phase (T pattern). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the target genes were largely enriched in the Estrogen signaling pathway, PI3K-Akt signaling pathway, Fc gamma R-mediated phagocytosis, and cell adhesion molecules (CAMs), which are associated with hair follicle cyclic growth and development-related pathways. In addition, 17 pairs of lncRNAs-target genes related to hair follicle cyclic growth and development were screened, and a regulatory network was constructed. Altogether, candidate lncRNAs and their regulated target genes were screened that contributed to sheep hair follicle cyclic growth and development. We believe these findings will provide useful insights into the underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Label-free proteomics to identify keratins and keratin-associated proteins and their effects on the fleece traits of Inner Mongolia Cashmere Goats. CZECH JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.17221/93/2022-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Identification and Characterization of Circular RNAs (circRNAs) Using RNA-Seq in Two Breeds of Cashmere Goats. Genes (Basel) 2023; 14:genes14020331. [PMID: 36833256 PMCID: PMC9956322 DOI: 10.3390/genes14020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA generated from back-splicing the reactions of linear RNA. It plays an important role in various cellular and biological processes. However, there are few studies about the regulatory effect of circRNAs on cashmere fiber traits in cashmere goats. In this study, the expression profiles of circRNAs in skin tissue were compared between Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats, with a significant difference in cashmere fiber yield, cashmere fiber diameter, and cashmere fiber color, using RNA-seq. A total of 11,613 circRNAs were expressed in the caprine skin tissue, and their type, chromosomal distribution, and length distribution were characterized. A total of 115 up-regulated circRNAs and 146 down-regulated circRNAs in LC goats were screened compared to ZB goats. The authenticity of 10 differentially expressed circRNAs was validated by detecting their expression levels and the head-to-tail splice junction using RT-PCR and DNA sequencing, respectively. The parent genes of differentially expressed circRNA were mainly enriched in some Gene Ontology (GO) terms and pathways related to cashmere fiber traits, such as the canonical Wnt signaling pathway, which is involved in the regulation of cell promotion, stem cell proliferation, Wnt signaling pathway regulation, epithelial morphogenesis, MAPK signaling pathway, and cell adhesion molecules pathway. Eight differentially expressed circRNAs were further selected to construct a circRNA-miRNA network, and some miRNAs that were previously reported as related to fiber traits were found in the network. This study provides a deep understanding of the roles of circRNAs in the regulation of cashmere fiber traits in cashmere goats and the involvement of differential splicing in phenotypic expression according to breed and region.
Collapse
|
16
|
Tian M, He X, Wang W, Feng Y, Zhang D, Li Z, Liu D. Transcriptome Analysis Reveals Genes Contributed to Min Pig Villi Hair Follicle in Different Seasons. Vet Sci 2022; 9:639. [PMID: 36423088 PMCID: PMC9697675 DOI: 10.3390/vetsci9110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 02/01/2025] Open
Abstract
The Min pig, a local pig breed in China, has a special trait which has intermittent villus and coat hair regeneration. However, the regulation and mechanism of villus in Min pigs have not yet been described. We observed and described the phenotype of Min pig dermal villi in detail and sequenced the mRNA transcriptome of Min pig hair follicles. A total of 1520 differentially expressed genes (DEG) were obtained.K-means hierarchical clustering showed that there was a significant expression pattern difference in winter compared with summer. Gene enrichment and network analysis results showed that the hair growth in Min pigs was closely related to the composition of desmosomes and regulated by an interaction network composed of eight core genes, namely DSP, DSC3, DSG4, PKP1, TGM1, KRT4, KRT15, and KRT84. Methylation analysis of promoters of target genes showed that the PKP1 gene was demethylated. Our study will help to supplement current knowledge of the growth mechanism of different types of hair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
17
|
Gong G, Fan Y, Li W, Yan X, Yan X, Zhang L, Wang N, Chen O, Zhang Y, Wang R, Liu Z, Jiang W, Li J, Wang Z, Lv Q, Su R. Identification of the Key Genes Associated with Different Hair Types in the Inner Mongolia Cashmere Goat. Animals (Basel) 2022; 12:ani12111456. [PMID: 35681921 PMCID: PMC9179306 DOI: 10.3390/ani12111456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The Inner Mongolia cashmere goat is an excellent local breed in China. According to the characteristics of wool quilts, the Inner Mongolia cashmere goat can be divided into three types: a long-hair type (hair length of >22 cm), a short-hair type (hair length of ≤13 cm), and an intermediate type (hair length of >13 cm and ≤22 cm). It is found that hair length has a certain reference value for the indirect selection of other important economic traits of cashmere. In order to explore the molecular mechanisms and related regulatory genes of the different hair types, a weighted gene coexpression network analysis (WGCNA) was carried out on the gene expression data and phenotypic data of 12-month-old Inner Mongolia cashmere goats with a long-hair type (LHG) and a short-hair type (SHG) to explore the coexpression modules related to different coat types and nine candidate genes, and detect the relative expression of key candidate genes. The results showed that the WGCNA divided these genes into 19 coexpression modules and found that there was a strong correlation between one module and different hair types. The expression trends of this module’s genes were different in the two hair types, with high expression in the LHG and low expression in the SHG. GO functions are mainly concentrated in cellular components, including intermediate filaments (GO:0005882), intermediate filament cytoskeletons (GO:0045111), and cytoskeletal parts (GO:0044430). The KEGG pathway is mainly enriched in arginine as well as proline metabolism (chx00330) and the MAPK signaling pathway (chx04010). The candidate genes of the different hair types, including the KRT39, KRT74, LOC100861184, LOC102177231, LOC102178767, LOC102179881, LOC106503203, LOC108638293, and LOC108638298 genes, were screened. Through qRT-PCR, it was found that there were significant differences in these candidate genes between the two hair types, and most of them had a significant positive correlation with hair length. It was preliminarily inferred that these candidate genes could regulate the different hair types of cashmere goats and provide molecular markers for hair growth.
Collapse
Affiliation(s)
- Gao Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Wenze Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaomin Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ludan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Oljibilig Chen
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Wei Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| |
Collapse
|
18
|
Saif R, Mahmood T, Ejaz A, Zia S. Pathway enrichment and network analysis of differentially expressed genes in pashmina goat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Li YC, He DQ, Ma YH, Ma Q, Ding W, Chen YH, Zhang M, Luo F, Chen LY, Wang JK, Jiang L, Li YK, Tao JZ. Skin transcriptome analysis identifies the key genes underlying fur development in Chinese Tan sheep in the birth and Er-mao periods. Gene 2022; 820:146257. [PMID: 35143949 DOI: 10.1016/j.gene.2022.146257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Hair follicle development in Tan sheep differs significantly between the birth and Er-mao periods, but the underlying molecular mechanism is still unclear. We profiled the skin transcriptomes of Tan sheep in the birth and Er-mao periods via RNA-seq technology. The Tan sheep examined consisted of three sheep in the birth period and three sheep in the Er-mao period. A total of 364 differentially expressed genes (DEGs) in the skin of Tan sheep between the birth period and the Er-mao period were identified, among which 168 were upregulated and 196 were downregulated. Interestingly, the FOS proto-oncogene (FOS) (fold change = 22.67, P value = 2.15*10^-44) was the most significantly differentially expressed gene. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the FOS gene was significantly enriched in the signaling pathway related to hair follicle development. Immunohistochemical analysis showed that the FOS gene was expressed in the skin of Chinese Tan sheep at the birth and Er-mao periods, with significantly higher expression in the Er-mao period. Our findings suggest that the FOS gene promotes hair follicle development in Tan sheep.
Collapse
Affiliation(s)
- Ya Chao Li
- Agricultural College, Ning Xia University, Yin Chuan 750021, China; The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Dong Qian He
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Yue Hui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qin Ma
- Animal Science Institute of Ning Xia Agricultural and Forestry Academy, Yin Chuan 750002, China
| | - Wei Ding
- Animal Science Institute of Ning Xia Agricultural and Forestry Academy, Yin Chuan 750002, China
| | - Yong Hong Chen
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Meng Zhang
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Fang Luo
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Li Yao Chen
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Jun Kui Wang
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Lin Jiang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Ying Kang Li
- Animal Science Institute of Ning Xia Agricultural and Forestry Academy, Yin Chuan 750002, China.
| | - Jin Zhong Tao
- Agricultural College, Ning Xia University, Yin Chuan 750021, China.
| |
Collapse
|
20
|
Whole exome sequencing in Alopecia Areata identifies rare variants in KRT82. Nat Commun 2022; 13:800. [PMID: 35145093 PMCID: PMC8831607 DOI: 10.1038/s41467-022-28343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Alopecia areata is a complex genetic disease that results in hair loss due to the autoimmune-mediated attack of the hair follicle. We previously defined a role for both rare and common variants in our earlier GWAS and linkage studies. Here, we identify rare variants contributing to Alopecia Areata using a whole exome sequencing and gene-level burden analyses approach on 849 Alopecia Areata patients compared to 15,640 controls. KRT82 is identified as an Alopecia Areata risk gene with rare damaging variants in 51 heterozygous Alopecia Areata individuals (6.01%), achieving genome-wide significance (p = 2.18E−07). KRT82 encodes a hair-specific type II keratin that is exclusively expressed in the hair shaft cuticle during anagen phase, and its expression is decreased in Alopecia Areata patient skin and hair follicles. Finally, we find that cases with an identified damaging KRT82 variant and reduced KRT82 expression have elevated perifollicular CD8 infiltrates. In this work, we utilize whole exome sequencing to successfully identify a significant Alopecia Areata disease-relevant gene, KRT82, and reveal a proposed mechanism for rare variant predisposition leading to disrupted hair shaft integrity. Common variants have been discovered to be associated with Alopecia Areata; however, rare variants have been less well studied. Here, the authors use whole-exome sequencing to identify associated rare variants in the hair keratin gene KRT82. Further, they find that individuals with Alopecia Areata have reduced expression of KRT82 in the skin and hair follicle.
Collapse
|
21
|
Zhang Y, Zhang D, Xu Y, Qin Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Selection of Cashmere Fineness Functional Genes by Translatomics. Front Genet 2022; 12:775499. [PMID: 35096002 PMCID: PMC8790676 DOI: 10.3389/fgene.2021.775499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dongyun Zhang
- International Business School and International Economics and Trade, Shenyang Normal University, Shenyang, China
| | - Yanan Xu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingang Sun
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
22
|
Wang S, Wu T, Sun J, Li Y, Yuan Z, Sun W. Single-Cell Transcriptomics Reveals the Molecular Anatomy of Sheep Hair Follicle Heterogeneity and Wool Curvature. Front Cell Dev Biol 2022; 9:800157. [PMID: 34993204 PMCID: PMC8724054 DOI: 10.3389/fcell.2021.800157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Wool is the critical textile raw material which is produced by the hair follicle of sheep. Therefore, it has important implications to investigate the molecular mechanism governing hair follicle development. Due to high cellular heterogeneity as well as the insufficient cellular, molecular, and spatial characterization of hair follicles on sheep, the molecular mechanisms involved in hair follicle development and wool curvature of sheep remains largely unknown. Single-cell RNA sequencing (scRNA-seq) technologies have made it possible to comprehensively dissect the cellular composition of complex skin tissues and unveil the differentiation and spatial signatures of epidermal and hair follicle development. However, such studies are lacking so far in sheep. Here, single-cell suspensions from the curly wool and straight wool lambskins were prepared for unbiased scRNA-seq. Based on UAMP dimension reduction analysis, we identified 19 distinct cell populations from 15,830 single-cell transcriptomes and characterized their cellular identity according to specific gene expression profiles. Furthermore, novel marker gene was applied in identifying dermal papilla cells isolated in vitro. By using pseudotime ordering analysis, we constructed the matrix cell lineage differentiation trajectory and revealed the dynamic gene expression profiles of matrix progenitors' commitment to the hair shaft and inner root sheath (IRS) cells. Meanwhile, intercellular communication between mesenchymal and epithelial cells was inferred based on CellChat and the prior knowledge of ligand–receptor pairs. As a result, strong intercellular communication and associated signaling pathways were revealed. Besides, to clarify the molecular mechanism of wool curvature, differentially expressed genes in specific cells between straight wool and curly wool were identified and analyzed. Our findings here provided an unbiased and systematic view of the molecular anatomy of sheep hair follicle comprising 19 clusters; revealed the differentiation, spatial signatures, and intercellular communication underlying sheep hair follicle development; and at the same time revealed the potential molecular mechanism of wool curvature, which will give important new insights into the biology of the sheep hair follicle and has implications for sheep breeding.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianyi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yue Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Chai W, Zhou H, Gong H, Hickford JG. Variation in the ovine KRT34 promoter region affects wool traits. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Yamamoto M, Sakamoto Y, Honda Y, Koike K, Nakamura H, Matsumoto T, Ando S. De novo filament formation by human hair keratins K85 and K35 follows a filament development pattern distinct from cytokeratin filament networks. FEBS Open Bio 2021; 11:1299-1312. [PMID: 33605551 PMCID: PMC8091587 DOI: 10.1002/2211-5463.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
In human hair follicles, the hair‐forming cells express 16 hair keratin genes depending on the differentiation stages. K85 and K35 are the first hair keratins expressed in cortical cells at the early stage of the differentiation. Two types of mutations in the gene encoding K85 are associated with ectodermal dysplasia of hair and nail type. Here, we transfected cultured SW‐13 cells with human K85 and K35 genes and characterized filament formation. The K85–K35 pair formed short filaments in the cytoplasm, which gradually elongated and became thicker and entangled around the nucleus, indicating that K85–K35 promotes lateral association of short intermediate filaments (IFs) into bundles but cannot form IF networks in the cytoplasm. Of the K85 mutations related to ectodermal dysplasia of hair and nail type, a two‐nucleotide (C1448T1449) deletion (delCT) in the protein tail domain of K85 interfered with the K85–K35 filament formation and gave only aggregates, whereas a missense mutation (233A>G) that replaces Arg78 with His (R78H) in the head domain of K85 did not interfere with the filament formation. Transfection of cultured MCF‐7 cells with all the hair keratin gene combinations, K85–K35, K85(R78H)–K35 and K85(delCT)–K35, as well as the individual hair keratin genes, formed well‐developed cytoplasmic IF networks, probably by incorporating into the endogenous cytokeratin IF networks. Thus, the unique de novo assembly properties of the K85–K35 pair might play a key role in the early stage of hair formation.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yasuko Sakamoto
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yuko Honda
- Faculty of Medicine, Saga University, Japan
| | - Kenzo Koike
- Hair Care Research Center, KAO Corporation, Tokyo, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Science, Sojo University, Kumamoto, Japan
| | | | - Shoji Ando
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| |
Collapse
|
25
|
Guo T, Han J, Yuan C, Liu J, Niu C, Lu Z, Yue Y, Yang B. Comparative proteomics reveals genetic mechanisms underlying secondary hair follicle development in fine wool sheep during the fetal stage. J Proteomics 2020; 223:103827. [PMID: 32422274 DOI: 10.1016/j.jprot.2020.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/01/2023]
Abstract
The aim of this study was to investigate the genetic mechanisms underlying wool production by characterizing the skin protein profile and determining the proteomic changes that occur as a consequence of development in wool-producing sheep using a label-free proteomics approach. Samples were collected at four stages during gestation (87, 96, 102, and 138 days), and every two consecutive stages were statistically compared (87 versus 96, 96 versus 102, and 102 versus 138 days). We identified 227 specific proteins in the sheep proteome that were present in all four stages, and 123 differentially abundant proteins (DAPs). We also observed that the microstructure of the secondary follicles changed significantly during the development of the fetal skin hair follicle. The screened DAPs were strictly related to metabolic and skin development pathways, and were associated with pathways such as the glycolysis/gluconeogenesis. These analyses indicated that the wool production of fine wool sheep is regulated via a variety of pathways. These findings provide an important resource that can be used in future studies of the genetic mechanisms underlying wool traits in fine wool sheep, and the identified DAPs should be further investigated as candidate markers for predicting wool traits in sheep. SIGNIFICANCE: Wool quality (fiber diameter, length, etc.) is an important economic trait of fine wool sheep that is determined by secondary follicle differentiation and re-differentiation. Secondary follicles of fine wool sheep developed from a bud (87 days), and underwent differentiation (96 days) and rapid growth (102 days) until maturity (138 days) during gestation. Comparative analysis based on differential proteomics of these four periods could provide a better understanding of the wool growth mechanism of fine wool sheep and offer novel strategies for improving fine wool quality by breeding.
Collapse
Affiliation(s)
- Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Jilong Han
- Shihezi University, Shihezi 832000, People's Republic of China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
26
|
Ahlawat S, Arora R, Sharma R, Sharma U, Kaur M, Kumar A, Singh KV, Singh MK, Vijh RK. Skin transcriptome profiling of Changthangi goats highlights the relevance of genes involved in Pashmina production. Sci Rep 2020; 10:6050. [PMID: 32269277 PMCID: PMC7142143 DOI: 10.1038/s41598-020-63023-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Pashmina, the world's finest natural fiber is derived from secondary hair follicles of Changthangi goats which are domesticated in Ladakh region of Jammu and Kashmir by nomadic pastoralists. Complex epithelial-mesenchymal interactions involving numerous signal molecules and signaling pathways govern hair follicle morphogenesis and mitosis across different species. The present study involved transcriptome profiling of skin from fiber type Changthangi goats and meat type Barbari goats to unravel gene networks and metabolic pathways that might contribute to Pashmina development. In Changthangi goats, 525 genes were expressed at significantly higher levels and 54 at significantly lower levels with fold change >2 (padj < 0.05). Functional annotation and enrichment analysis identified significantly enriched pathways to be formation of the cornified envelope, keratinization and developmental biology. Expression of genes for keratins (KRTs) and keratin-associated proteins (KRTAPs) was observed to be much higher in Changthangi goats. A host of transcriptional regulator genes for hair follicle keratin synthesis such as GPRC5D, PADI3, HOXC13, FOXN1, LEF1 and ELF5 showed higher transcript abundance in Pashmina producing goats. Positive regulation of Wnt signaling pathway and negative regulation of Oncostatin M signaling pathway may be speculated to be important contributors to hair follicle development and hair shaft differentiation in Changthangi goats.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | |
Collapse
|
27
|
Wang Y, Zheng Y, Guo D, Zhang X, Guo S, Hui T, Yue C, Sun J, Guo S, Bai Z, Cai W, Zhang X, Fan Y, Wang Z, Bai W. m6A Methylation Analysis of Differentially Expressed Genes in Skin Tissues of Coarse and Fine Type Liaoning Cashmere Goats. Front Genet 2020; 10:1318. [PMID: 32038703 PMCID: PMC6987416 DOI: 10.3389/fgene.2019.01318] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification in mRNAs of all higher eukaryotes. Here we perform two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to identify key genes with m6A modification in cashmere fiber growth. A total of 9,085 m6A sites were differentially RNA m6A methylated as reported from by MeRIP-seq, including 7,170 upregulated and 1,915 downregulated. In addition, by comparing m6A-modified genes between the fine-type Liaoning cashmere goat (FT-LCG) and coarse-type Liaoning Cashmere Goat (CT-LCG) skin samples, we obtain 1,170 differentially expressed genes. In order to identify the differently methylated genes related to cashmere fiber growth, 19 genes were selected to validate by performing qRT-PCR in FT-LCG and CT-LCG. In addition, GO enrichment analysis shows that differently methylated genes are mainly involved in keratin filament and intermediate filament. These findings provide a theoretical basis for future research on the function of m6A modification during the growth of cashmere fiber.
Collapse
Affiliation(s)
- Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | - Xinghui Zhang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | | | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Oostendorp C, Geutjes PJ, Smit F, Tiemessen DM, Polman S, Abbawi A, Brouwer KM, Eggink AJ, Feitz WFJ, Daamen WF, van Kuppevelt TH. Sustained Postnatal Skin Regeneration Upon Prenatal Application of Functionalized Collagen Scaffolds. Tissue Eng Part A 2020; 27:10-25. [PMID: 31971880 DOI: 10.1089/ten.tea.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida. Impact statement Prenatal closure of fetal skin in case of spina bifida prevents damage to the spinal cord. Closure of the defect is challenging and may result in postnatal growth malformations. In this study, the postnatal effects of a prenatally applied collagen scaffold functionalized with heparin and vascular endothelial growth factor (VEGF)/fibroblast growth factor (FGF) were investigated. An increase of the surface area of regenerated skin ("growing with the child") and generation of hair follicles was observed. Gene expression levels resembled those of native skin with respect to the extracellular matrix and hair follicles. Overall, in utero closure of skin defects using heparin/VEGF/FGF functionalized collagen scaffolds results in long-term skin regeneration.
Collapse
Affiliation(s)
- Corien Oostendorp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoerd Polman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aya Abbawi
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrien M Brouwer
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Xiao P, Zhong T, Liu Z, Ding Y, Guan W, He X, Pu Y, Jiang L, Ma Y, Zhao Q. Integrated Analysis of Methylome and Transcriptome Changes Reveals the Underlying Regulatory Signatures Driving Curly Wool Transformation in Chinese Zhongwei Goats. Front Genet 2020; 10:1263. [PMID: 31969898 PMCID: PMC6960231 DOI: 10.3389/fgene.2019.01263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
The Zhongwei goat is kept primarily for its beautiful white, curly pelt that appears when the kid is approximately 1 month old; however, this representative phenotype often changes to a less curly phenotype during postnatal development in a process that may be mediated by multiple molecular signals. DNA methylation plays important roles in mammalian cellular processes and is essential for the initiation of hair follicle (HF) development. Here, we sought to investigate the effects of genome-wide DNA methylation by combining expression profiles of the underlying curly fleece dynamics. Genome-wide DNA methylation maps and transcriptomes of skin tissues collected from 45- to 108-day-old goats were used for whole-genome bisulfite sequencing (WGBS) and RNA sequencing, respectively. Between the two developmental stages, 1,250 of 3,379 differentially methylated regions (DMRs) were annotated in differentially methylated genes (DMGs), and these regions were mainly related to intercellular communication and the cytoskeleton. Integrated analysis of the methylome and transcriptome data led to the identification of 14 overlapping genes that encode crucial factors for wool fiber development through epigenetic mechanisms. Furthermore, a functional study using human hair inner root sheath cells (HHIRSCs) revealed that, one of the overlapping genes, platelet-derived growth factor C (PDGFC) had a significant effect on the messenger RNA expression of several key HF-related genes that promote cell migration and proliferation. Our study presents an unprecedented analysis that was used to explore the enigma of fleece morphological changes by combining methylome maps and transcriptional expression, and these data revealed stage-specific epigenetic changes that potentially affect fiber development. Furthermore, our functional study highlights a possible role for the overlapping gene PDGFC in HF cell growth, which may be a predictable biomarker for fur goat selection.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Department of Agriculture and Rural Areas of Ningxia Hui Autonomous Region, Wuzhong, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong He
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Chen W, Zhang W, Wu R, Cai Y, Xue X, Cheng J. Identification of biomarkers associated with histological grade and prognosis of gastric cancer by co-expression network analysis. Oncol Lett 2019; 18:5499-5507. [PMID: 31612058 PMCID: PMC6781762 DOI: 10.3892/ol.2019.10869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
The biological characteristics and clinical outcomes of gastric cancer (GC) are largely dependent on the histopathological type and degree of differentiation. The identification of the molecular mechanisms underlying the histological grade of GC may provide information about tumorigenesis and tumor progression, and may subsequently be used to develop novel therapeutic agents. The present study obtained the RNA sequencing data and clinical characteristics of patients with GC from The Cancer Genome Atlas. A total of 1,400 differentially expressed genes (DEGs) were screened between two histological grades. Weighted gene co-expression network analysis (WGCNA) was subsequently used to identify nine co-expressed gene modules, and the black module was found to be the most significant for prognosis prediction of tumor. Additionally, the black module was associated with overall survival time, death event, N stage and tumor-node-metastasis (TNM) stage. Functional enrichment analysis revealed that the biological processes of the genes in the black module included ‘Wnt signaling pathway’ and ‘structural molecule activity’. Additionally, 10 network hub genes that were significantly associated with the progression of GC were identified from the black module, and the significance of each hub gene was determined across different TNM stages. Kaplan-Meier survival curves revealed that keratin 40 and glycine decarboxylase were significantly associated with patient prognosis (P<0.05), suggesting that these genes may serve as potential progression and prognosis biomarkers in GC. The present study identified molecular markers that correlated with histological grade in GC. Therefore, the results obtained in the present study may have important clinical implications on treatment selection, risk stratification and prognosis prediction in patients with GC.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Weiteng Zhang
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ruisen Wu
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yiqi Cai
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Cheng
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
31
|
Diversity of Trichocyte Keratins and Keratin Associated Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1054:21-32. [PMID: 29797265 DOI: 10.1007/978-981-10-8195-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Wool and hair fibres are primarily composed of proteins of which the keratins and keratin associated proteins (KAPs) are the major component. Considerable diversity is known to exist within these two groups of proteins. In the case of the keratins two major families are known, of which there are 11 members in the acidic Type I family and 7 members in the neutral-basic Type II family. The KAPs are even more diverse than the keratins, with 35 families being known to exist when the KAPs found in monotremes, marsupials and other mammalian species are taken into consideration. Human hair and wool are known to have 88 and 73 KAPs respectively, though this number rises for wool when polymorphism within KAP families is included.
Collapse
|
32
|
An Integrated Analysis of Cashmere Fineness lncRNAs in Cashmere Goats. Genes (Basel) 2019; 10:genes10040266. [PMID: 30987022 PMCID: PMC6523453 DOI: 10.3390/genes10040266] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Animal growth and development are regulated by long non-coding RNAs (lncRNAs). However, the functions of lncRNAs in regulating cashmere fineness are poorly understood. To identify the key lncRNAs that are related to cashmere fineness in skin, we have collected skin samples of Liaoning cashmere goats (LCG) and Inner Mongolia cashmere goats (MCG) in the anagen phase, and have performed RNA sequencing (RNA-seq) approach on these samples. The high-throughput sequencing and bioinformatics analyses identified 437 novel lncRNAs, including 93 differentially expressed lncRNAs. We also identified 3084 differentially expressed messenger RNAs (mRNAs) out of 27,947 mRNAs. Gene ontology (GO) analyses of lncRNAs and target genes in cis show a predominant enrichment of targets that are related to intermediate filament and intermediate filament cytoskeleton. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, sphingolipid metabolism is a significant pathway for lncRNA targets. In addition, this is the first report to reveal the possible lncRNA–mRNA regulatory network for cashmere fineness in cashmere goats. We also found that lncRNA XLOC_008679 and its target gene, KRT35, may be related to cashmere fineness in the anagen phase. The characterization and expression analyses of lncRNAs will facilitate future studies on the potential value of fiber development in LCG.
Collapse
|
33
|
Analyses of histological and transcriptome differences in the skin of short-hair and long-hair rabbits. BMC Genomics 2019; 20:140. [PMID: 30770723 PMCID: PMC6377753 DOI: 10.1186/s12864-019-5503-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hair fibre length is an important economic trait of rabbits in fur production. However, molecular mechanisms regulating rabbit hair growth have remained elusive. RESULTS Here we aimed to characterise the skin traits and gene expression profiles of short-hair and long-hair rabbits by histological and transcriptome analyses. Haematoxylin-eosin staining was performed to observe the histological structure of the skin of short-hair and long-hair rabbits. Compared to that in short-hair rabbits, a significantly longer anagen phase was observed in long-hair rabbits. In addition, by RNA sequencing, we identified 951 genes that were expressed at significantly different levels in the skin of short-hair and long-hair rabbits. Nine significantly differentially expressed genes were validated by quantitative real-time polymerase chain reaction. A gene ontology analysis revealed that epidermis development, hair follicle development, and lipid metabolic process were significantly enriched. Further, we identified potential functional genes regulating follicle development, lipid metabolic, and apoptosis as well as important pathways including extracellular matrix-receptor interaction and basal cell carcinoma pathway. CONCLUSIONS The present study provides transcriptome evidence for the differences in hair growth between short-hair and long-hair rabbits and reveals that lipid metabolism and apoptosis might constitute major factors contributing to hair length.
Collapse
|
34
|
Grosvenor AJ, Deb-Choudhury S, Middlewood PG, Thomas A, Lee E, Vernon JA, Woods JL, Taylor C, Bell FI, Clerens S. The physical and chemical disruption of human hair after bleaching - studies by transmission electron microscopy and redox proteomics. Int J Cosmet Sci 2018; 40:536-548. [DOI: 10.1111/ics.12495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- A. J. Grosvenor
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - S. Deb-Choudhury
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - P. G. Middlewood
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - A. Thomas
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - E. Lee
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - J. A. Vernon
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - J. L. Woods
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - C. Taylor
- Unilever R&D; Port Sunlight Bebington U.K
| | - F. I. Bell
- Unilever R&D; Port Sunlight Bebington U.K
| | - S. Clerens
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
- Biomolecular Interaction Centre; University of Canterbury; Christchurch New Zealand
| |
Collapse
|
35
|
Wang S, Luo Z, Zhang Y, Yuan D, Ge W, Wang X. The inconsistent regulation of HOXC13 on different keratins and the regulation mechanism on HOXC13 in cashmere goat (Capra hircus). BMC Genomics 2018; 19:630. [PMID: 30139327 PMCID: PMC6107959 DOI: 10.1186/s12864-018-5011-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background During hair growth, cortical cells emerging from the proliferative follicle bulb rapidly undergo a differentiation program and synthesize large amounts of hair keratin proteins. In this process, HOXC13 is one critical regulatory factor, proved by the hair defects in HOXC13 mutant mice and HOXC13 mutant patients. However, inconsistent conclusions were drawn from previous researches regarding the regulation of HOXC13 on different keratins. Whether HOXC13 has extensive and unified regulatory role on these numerous keratins is unclear. Results In this study, firstly, RNA-seq was performed to reveal the molecular mechanism of cashmere cycle including anagen and telogen. Subsequently, combining the sequencing with qRT-PCR and immunofluorescent staining results, we found that HOXC13 showed similar expression pattern with a large proportion of keratins except for KRT1 and KRT2, which were higher in anagen compared with telogen. Then, the regulatory role of HOXC13 on different keratins was investigated using dual-luciferase reporter system and keratin promoter-GFP system by overexpressing HOXC13 in HEK 293 T cells and dermal papilla cells. Our results demonstrated that HOXC13 up-regulated the promoter activity of KRT84 and KRT38, while down-regulated the promoter activity of KRT1 and KRT2, which suggested HOXC13 had an ambivalent effect on the promoters of different KRTs. Furtherly, the regulation on HOXC13 itself was investigated. At transcriptional level, the binding sites of HOXC13 and LEF1 were found in the promoter of HOXC13. Then, through transfecting corresponding overexpression vector and dual-luciferase reporter system into dermal papilla cells, the negative-feedback regulation of HOXC13 itself and positive regulation of LEF1 on HOXC13 promoter were revealed. In addition, melatonin could significantly increase the promoter activity of HOXC13 under the concentration of 10 μM and 25 μM by adding exogenous melatonin into dermal papilla cells. At post-transcriptional level, we investigated whether chi-miR-200a could target HOXC13 through dual-luciferase reporter system. At epigenetic level, we investigated the methylation level of HOXC13 promoter at different stages including anagen, telogen and 60d of embryonic period. As a result, miR-200a and methylation were not regulatory factors of HOXC13. Interestingly, we found two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 that could deprive the regulatory function of HOXC13 on keratins without changing its protein expression. Conclusion HOXC13 had an inconsistent effect on the promoters of different keratins. Two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 deprived its function on keratin regulation. Besides, the negative-feedback regulation by HOXC13 itself and positive regulation by LEF1 and melatonin on HOXC13 promoter were revealed. This study will enrich the function of HOXC13 on keratin regulation and contribute to understand the mechanism of hair follicle differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5011-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhixin Luo
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuelang Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Yuan
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Ge
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Yu Z, Plowman JE, Maclean P, Wildermoth JE, Brauning R, McEwan JC, Maqbool NJ. Ovine keratome: identification, localisation and genomic organisation of keratin and keratin-associated proteins. Anim Genet 2018; 49:361-370. [DOI: 10.1111/age.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Z. Yu
- AgResearch Ltd; Ruakura Research Centre; Private Bag 3123 Hamilton 3214 New Zealand
| | - J. E. Plowman
- AgResearch Ltd; Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
| | - P. Maclean
- AgResearch Ltd; Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
| | - J. E. Wildermoth
- AgResearch Ltd; Ruakura Research Centre; Private Bag 3123 Hamilton 3214 New Zealand
| | - R. Brauning
- AgResearch Limited; Invermay Agricultural Centre; Private Bag 50034 Mosgiel 9053 New Zealand
| | - J. C. McEwan
- AgResearch Limited; Invermay Agricultural Centre; Private Bag 50034 Mosgiel 9053 New Zealand
| | - N. J. Maqbool
- AgResearch Ltd; Ruakura Research Centre; Private Bag 3123 Hamilton 3214 New Zealand
| |
Collapse
|
37
|
Jones L, Harland D, Jarrold B, Connolly J, Davis M. The walking dead: sequential nuclear and organelle destruction during hair development. Br J Dermatol 2018; 178:1341-1352. [DOI: 10.1111/bjd.16148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- L.A. Jones
- Institute of Molecular and Cell Biology; Agency for Science; Technology and Research; Singapore City Singapore
| | - D.P. Harland
- Food and Bio-Based Products Group; AgResearch Ltd; Christchurch New Zealand
| | | | - J.E. Connolly
- Institute of Molecular and Cell Biology; Agency for Science; Technology and Research; Singapore City Singapore
- Institute of Biomedical Studies; Baylor University; Waco TX U.S.A
- Department of Microbiology and Immunology; National University of Singapore; Singapore City Singapore
| | - M.G. Davis
- The Procter and Gamble Company; Mason OH U.S.A
| |
Collapse
|
38
|
Abstract
Macrofibrils are the main structural component of the hair cortex, and are a composite material in which trichokeratin intermediate filaments (IFs) are arranged as organised arrays embedded in a matrix composed of keratin-associated proteins (KAPs) and keratin head groups. Various architecture of macrofibrils is possible, with many having a central core around which IFs are helically arranged, an organisation most accurately described as a double-twist arrangement. In this chapter we describe the architecture of macrofibrils and then cover their formation, with most of the material focusing on the theory that the initial stages of macrofibril formation are as liquid crystals.
Collapse
|
39
|
Abstract
The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.
Collapse
|
40
|
Abstract
The evolution of keratins was closely linked to the evolution of epithelia and epithelial appendages such as hair. The characterization of keratins in model species and recent comparative genomics studies have led to a comprehensive scenario for the evolution of keratins including the following key events. The primordial keratin gene originated as a member of the ancient gene family encoding intermediate filament proteins. Gene duplication and changes in the exon-intron structure led to the origin of type I and type II keratins which evolved further by nucleotide sequence modifications that affected both the amino acid sequences of the encoded proteins and the gene expression patterns. The diversification of keratins facilitated the emergence of new and epithelium type-specific properties of the cytoskeleton. In a common ancestor of reptiles, birds, and mammals, a rise in the number of cysteine residues facilitated extensive disulfide bond-mediated cross-linking of keratins in claws. Subsequently, these cysteine-rich keratins were co-opted for an additional function in epidermal follicular structures that evolved into hair, one of the key events in the evolution of mammals. Further diversification of keratins occurred during the evolution of the complex multi-layered organisation of hair follicles. Thus, together with the evolution of other structural proteins, epithelial patterning mechanisms, and development programmes, the evolution of keratins underlied the evolution of the mammalian integument.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Fraser RDB, Parry DAD. Structural Hierarchy of Trichocyte Keratin Intermediate Filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1054:57-70. [PMID: 29797268 DOI: 10.1007/978-981-10-8195-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although trichocyte keratins (hair, wool, quill, claw) have been studied since the 1930s it is only over the last 30 years or so that major advances have been made in our understanding of the complex structural hierarchy of the filamentous component of this important filament-matrix composite. A variety of techniques, including amino acid sequence analysis, computer modelling, X-ray fibre diffraction and protein crystallography, various forms of electron microscopy, and crosslinking methods have now combined to reveal much of the structural detail. The heterodimeric structure of the keratin molecule is clear, as are the highly-specific modes by which these molecules aggregate to form functionally viable IF. The observation that hair keratin can adopt not one but two structurally-distinct conformations, one formed in the living cells at the base of the hair follicle in a reducing environment and the second in the fully differentiated hair in dead cells in an oxidized state, was unexpected but has major implications for the mechanism of hair growth. Insights have also been made into the mechanism of the uppermost level of hair superstructure, relating to the assembly of the IF in the paracortical and orthocortical macrofibrils.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,, Tewantin, QLD, Australia
| | - David A D Parry
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
42
|
Ji D, Yang B, Li Y, Cai M, Zhang W, Cheng G, Guo H. Transcriptomic inspection revealed a possible pathway regulating the formation of the high-quality brush hair in Chinese Haimen goat ( Capra hircus). ROYAL SOCIETY OPEN SCIENCE 2018; 5:170907. [PMID: 29410805 PMCID: PMC5792882 DOI: 10.1098/rsos.170907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 05/29/2023]
Abstract
The high-quality brush hair, or Type III brush hair, is coarse hair but with a tip and little medulla, which uniquely grows in the cervical carina of Chinese Haimen goat (Capra hircus). To unveil the mechanism of the formation of Type III brush hair in Haimen goats, transcriptomic RNAseq technology was used for screening of differentially expressed genes (DEGs) in the skin samples of the Type III and the non-Type III hair goats, and these DEGs were analysed by KEGG pathway analysis. The results showed that a total of 295 DEGs were obtained, mainly from three main functional types: cellular component, molecular function and biological process. These DEGs were mainly enriched in three KEGG pathways, such as protein processing in endoplasmic reticulum, MAPK, and complement and coagulation cascades. These DEGs gave hints to a possible mechanism, under which heat stress possibly initiated the formation. The study provided some useful biological information, which could give a new view about the roles of certain factors in hair growth and give hints on the mechanism of the formation of the Type III brush hair in Chinese Haimen goat.
Collapse
Affiliation(s)
| | | | - Yongjun Li
- College of Animal Science and Technology, Key Laboratory for Animal Genetics and Breeding of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Sulayman A, Tursun M, Sulaiman Y, Huang X, Tian K, Tian Y, Xu X, Fu X, Mamat A, Tulafu H. Association analysis of polymorphisms in six keratin genes with wool traits in sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:775-783. [PMID: 29103286 PMCID: PMC5933973 DOI: 10.5713/ajas.17.0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 10/22/2017] [Indexed: 12/27/2022]
Abstract
Objective The purpose of this study was to investigate the genetic effects of six keratin (KRT) genes on the wool traits of 418 Chinese Merino (Xinjiang type) (CMXT) individuals. Methods To explore the effects and association of six KRT genes on sheep wool traits, The polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP), DNA sequencing, and the gene pyramiding effect methods were used. Results We report 20 mutation sites (single-nucleotide polymorphisms) within the six KRT genes, in which twelve induced silent mutations; five induced missense mutations and resulted in Ile→Thr, Glu→Asp, Gly→Ala, Ala→Ser, Se→His; two were nonsense mutations and one was a same-sense mutation. Association analysis showed that two genotypes of the KRT31 gene were significantly associated with fiber diameter (p<0.05); three genotypes of the KRT36 gene were significantly associated with wool fineness score and fiber diameter (p<0.05), three genotypes of the KRT38 gene were significantly associated with the number of crimps (p< 0.05); and three genotypes of the KRT85 gene were significantly associated with wool crimps score, body size, and fiber diameter (p<0.05). Analysis of the gene pyramiding effect between the different genotypes of the gene loci KRT36, KRT38, and KRT85, each genotype in a gene locus was combined with all the genotypes of another two gene loci and formed the different three loci combinations, indicated a total of 26 types of possible combined genotypes in the analyzed population. Compared with the other combined genotypes, the combinations CC-GG-II, CC-HH-IJ, CC-HH-JJ, DD-HH-JJ, CC-GH-IJ, and CC-GH-JJ at gene loci KRT36, KRT38, and KRT85, respectively, had a greater effect on wool traits (p<0.05). Conclusion Our results indicate that the mutation loci of KRT31, KRT36, KRT38, and KRT85 genes, as well as the combinations at gene loci KRT36, KRT38, and KRT85 in CMXT have significant effects on wool traits, suggesting that these genes are important candidate genes for wool traits, which will contribute to sheep breeding and provide a molecular basis for improved wool quality in sheep.
Collapse
Affiliation(s)
- Ablat Sulayman
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Mahira Tursun
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Animal Husbandry and Veterinary Institute, Wen Quan, Boertala, Xinjiang 833400, China
| | - Yiming Sulaiman
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kechuan Tian
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Yuezhen Tian
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Xinming Xu
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Xuefeng Fu
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Amat Mamat
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Xinjiang Academy of Animal Science, Urumqi 830000, China
| | | |
Collapse
|
44
|
A comparison of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Sci Rep 2017; 7:14301. [PMID: 29085060 PMCID: PMC5662721 DOI: 10.1038/s41598-017-14772-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022] Open
Abstract
We characterised wool traits, and skin gene expression profiles of fine wool Super Merino (SM) and coarse wool Small Tail Han (STH) sheep. SM sheep had a significantly higher total density of wool follicles, heavier fleeces, finer fibre diameter, and increased crimp frequency, staple length and wool grease (lanolin) production. We found 435 genes were expressed at significantly different levels in the skin of the two breeds (127 genes more highly in SM and 308 genes more highly in STH sheep). Classification of the genes more highly expressed in SM sheep revealed numerous lipid metabolic genes as well as genes encoding keratins, keratin-associated proteins, and wool follicle stem cell markers. In contrast, mammalian epidermal development complex genes and other genes associated with skin cornification and muscle function were more highly expressed in STH sheep. Genes identified in this study may be further evaluated for inclusion in breeding programs, or as targets for therapeutic or genetic interventions, aimed at altering wool quality or yield. Expression of the lipid metabolic genes in the skin of sheep may be used as a novel trait with the potential to alter the content or properties of lanolin or the fleece.
Collapse
|
45
|
Chai W, Zhou H, Forrest RH, Gong H, Hodge S, Hickford JG. Polymorphism of KRT83 and its association with selected wool traits in Merino-cross lambs. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Bolormaa S, Swan AA, Brown DJ, Hatcher S, Moghaddar N, van der Werf JH, Goddard ME, Daetwyler HD. Multiple-trait QTL mapping and genomic prediction for wool traits in sheep. Genet Sel Evol 2017; 49:62. [PMID: 28810834 PMCID: PMC5558709 DOI: 10.1186/s12711-017-0337-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data. Several key traits determine the value of wool and influence a sheep's susceptibility to fleece rot and fly strike. Our aim was to predict genomic estimated breeding values (GEBV) and to compare three methods of combining information across traits to map polymorphisms that affect these traits. METHODS GEBV for 5726 Merino and Merino crossbred sheep were calculated using BayesR and genomic best linear unbiased prediction (GBLUP) with real and imputed 510,174 SNPs for 22 traits (at yearling and adult ages) including wool production and quality, and breech conformation traits that are associated with susceptibility to fly strike. Accuracies of these GEBV were assessed using fivefold cross-validation. We also devised and compared three approximate multi-trait analyses to map pleiotropic quantitative trait loci (QTL): a multi-trait genome-wide association study and two multi-trait methods that use the output from BayesR analyses. One BayesR method used local GEBV for each trait, while the other used the posterior probabilities that a SNP had an effect on each trait. RESULTS BayesR and GBLUP resulted in similar average GEBV accuracies across traits (~0.22). BayesR accuracies were highest for wool yield and fibre diameter (>0.40) and lowest for skin quality and dag score (<0.10). Generally, accuracy was higher for traits with larger reference populations and higher heritability. In total, the three multi-trait analyses identified 206 putative QTL, of which 20 were common to the three analyses. The two BayesR multi-trait approaches mapped QTL in a more defined manner than the multi-trait GWAS. We identified genes with known effects on hair growth (i.e. FGF5, STAT3, KRT86, and ALX4) near SNPs with pleiotropic effects on wool traits. CONCLUSIONS The mean accuracy of genomic prediction across wool traits was around 0.22. The three multi-trait analyses identified 206 putative QTL across the ovine genome. Detailed phenotypic information helped to identify likely candidate genes.
Collapse
Affiliation(s)
- Sunduimijid Bolormaa
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, 3083, Australia. .,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.
| | - Andrew A Swan
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Daniel J Brown
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Sue Hatcher
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Nasir Moghaddar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Julius H van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| | - Michael E Goddard
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, 3083, Australia.,School of Land and Environment, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hans D Daetwyler
- Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
| |
Collapse
|
47
|
Liu Y, Kang X, Yang W, Xie M, Zhang J, Fang M. Differential expression of KRT83 regulated by the transcript factor CAP1 in Chinese Tan sheep. Gene 2017; 614:15-20. [PMID: 28284878 DOI: 10.1016/j.gene.2017.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 10/24/2022]
Abstract
Keratin 83 (KRT83) is an important keratin protein in hair development. In this study, expression of KRT83 was compared among different tissues and between 1-month-old lambs and 48-month adult of Chinese Tan sheep, which showed different fleece phenotypes. The results showed that KRT83 was only expressed in skin, and KRT83 mRNA level in skin was significantly higher in Tan lambs than in adult sheep. To further understand the expression regulation of KRT83 by transcription factors in Tan sheep, amplified sequences coving different ranges of KRT83 promoter region were inserted into a pGL3-basic vector and then transfected into sheep primary fibroblast cells. Luciferase assay indicated that the sequence from -218bp to -10bp in the KRT83 promoter induced the highest transcription activity of the vector in the fibroblast cells. Transcription factor adenylate cyclase-associated protein 1 (CAP1) was predicted by online tools within this region. Electrophoretic mobility shift assay (EMSA) confirmed binding of the purified CAP1 protein to the target core region from -88bp to -10bp, because mutation in the target core sequence resulted in failure of CAP1 binding to the target region. Moreover, overexpression of CAP1 protein led to repression of the KRT83 promoter activity in sheep primary fibroblast cells, and expression of CAP1 was lower in lambs than in adult sheep. Therefore, we concluded that CAP1 is a key transcription factor involved in negative regulation of KRT83 expression in Tan sheep skin. Our study provides new insights into the transcriptional regulation of KRT83 and further hints of its critical role in curly hair phenotype in sheep.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan 750021, PR China
| | - Wanjie Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Minggui Xie
- Institute of Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Jiangxi 330200, PR China
| | - Jibin Zhang
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
48
|
Shah K, Ansar M, Mughal ZUN, Khan FS, Ahmad W, Ferrara TM, Spritz RA. Recessive progressive symmetric erythrokeratoderma results from a homozygous loss-of-function mutation ofKRT83and is allelic with dominant monilethrix. J Med Genet 2016; 54:186-189. [DOI: 10.1136/jmedgenet-2016-104107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/04/2022]
|
49
|
Zhao J, Liu N, Liu K, He J, Yu J, Bu R, Cheng M, De W, Liu J, Li H. Identification of genes and proteins associated with anagen wool growth. Anim Genet 2016; 48:67-79. [PMID: 27611105 DOI: 10.1111/age.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
Identifying genes of major effect for wool growth would offer strategies for improving the quality and increasing the yield of fine wool. In this study, we employed the Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin (more wool growing) in Aohan fine wool sheep (a Chinese indigenous breed) in comparison with groin skin (no wool growing) at the anagen stage of the wool follicle. A microarray study revealed that 4772 probes were differentially expressed, including 2071 upregulated and 2701 downregulated probes, in the comparisons of body side skin vs. groin skin (S/G). The microarray results were verified by means of quantitative PCR. A total of 1099 probes were assigned to unique genes/transcripts. The number of distinct genes/transcripts (annotated) was 926, of which 352 were upregulated and 574 were downregulated. In S/G, 13 genes were upregulated by more than 10 fold, whereas 60 genes were downregulated by more than 10 fold. Further analysis revealed that the majority of the genes possibly related to the wool growth could be assigned to categories including regulation of cell division, intermediate filament, cytoskeletal part and growth factor activity. Several potential gene families may participate in hair growth regulation, including fibroblast growth factors, transforming growth factor-β, WNTs, insulin-like growth factor, vascular endothelial growth factors and so on. Proteomic analysis also revealed 196 differentially expressed protein points, of which 121 were identified as single protein points.
Collapse
Affiliation(s)
- J Zhao
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China.,China Agricultural University, Beijing, 100193, China
| | - N Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - K Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - J He
- Qingdao Agricultural University, Qingdao, 266109, China
| | - J Yu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - R Bu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - M Cheng
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - W De
- Nanjing Medical University, Nanjing, 210029, China
| | - J Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - H Li
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| |
Collapse
|
50
|
Characterization of the Promoter Regions of Two Sheep Keratin-Associated Protein Genes for Hair Cortex-Specific Expression. PLoS One 2016; 11:e0153936. [PMID: 27100288 PMCID: PMC4839604 DOI: 10.1371/journal.pone.0153936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
The keratin-associated proteins (KAPs) are the structural proteins of hair fibers and are thought to play an important role in determining the physical properties of hair fibers. These proteins are activated in a striking sequential and spatial pattern in the keratinocytes of hair fibers. Thus, it is important to elucidate the mechanism that underlies the specific transcriptional activity of these genes. In this study, sheep KRTAP 3–3 and KRTAP11-1 genes were found to be highly expressed in wool follicles in a tissue-specific manner. Subsequently, the promoter regions of the two genes that contained the 5′ flanking/5′ untranslated regions and the coding regions were cloned. Using an in vivo transgenic approach, we found that the promoter regions from the two genes exhibited transcriptional activity in hair fibers. A much stronger and more uniformly expressed green fluorescent signal was observed in the KRTAP11-1-ZsGreen1 transgenic mice. In situ hybridization revealed the symmetrical expression of sheep KRTAP11-1 in the entire wool cortex. Consistently, immunohistochemical analysis demonstrated that the pattern of ZsGreen1 expression in the hair cortex of transgenic mice matches that of the endogenous KRTAP11-1 gene, indicating that the cloned promoter region contains elements that are sufficient to govern the wool cortex-specific transcription of KRTAP11-1. Furthermore, regulatory regions in the 5′ upstream sequence of the sheep KRTAP11-1 gene that may regulate the observed hair keratinocyte specificity were identified using in vivo reporter assays.
Collapse
|