1
|
Zhang C, Qin Q, Wang Y, Wang Z, Liu Z. Identification of Key Proteins Related to Cashmere Fiber Diameter by Integrated Proteomics and Bioinformatic Analyses in the Alpas and Alxa Goat Breeds. Genes (Basel) 2024; 15:1154. [PMID: 39336745 PMCID: PMC11431775 DOI: 10.3390/genes15091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Goats (Capra hircus) have always been a source of fiber for human use and hold an important place in international high-end textiles. Fiber diameter is the most concerning economic indicator for producers. Understanding the formation mechanism of fiber diameter and its related key proteins can help optimize and control the production of cashmere. METHODS Cashmere goats (n = 36) of the Alpas (n = 18) and Alxa (n = 18) breeds, with a similar age (2 years old) and live weight (25-26 kg), were selected from the Yiwei White Cashmere Goat Breeding Farm, Erdos, Inner Mongolia. Using phenotypic indicators, we evaluated the diameter of the cashmere fibers in Alxa and Alpas goats. We also used electron microscopy to examine the cashmere fiber's structure and label-free liquid chromatography-tandem mass spectrometry to determine the protein content of the two cashmere fibers. The proteins affecting fiber diameter were identified and analyzed by Western blot, Co-Immunoprecipitation, and bioinformatics analysis. RESULTS The average diameter of the Alxa breed was smaller (p < 0.05) than that of the Alpas breed (Alxa's cashmere vs. Alpas' cashmere). Proteomics technology enabled the highly confident detection of 171 proteins. A total of 68 differentially expressed proteins were identified in the two types of cashmere; 131 proteins were specifically expressed in Alpas goats, and 40 proteins were specifically expressed in Alxa goats. A key protein group that could cause variations in fiber diameter was found using the protein-protein interaction network. To ascertain the reason for the variation in fiber diameter, a structural study of the major protein groups was carried out. CONCLUSIONS KRT10, KRT14, KRT17, and KRT82 are the main proteins impacting the diameter difference, and they have a substantial effect on the average fiber diameter.
Collapse
Affiliation(s)
- Chongyan Zhang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot 010018, China
| | - Qing Qin
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Yichuan Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Zhixin Wang
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot 010018, China
| | - Zhihong Liu
- Animal Science Department, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Z.)
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot 010018, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| |
Collapse
|
2
|
Li R, Chen M, Yan D, Chen L, Lin M, Deng B, Zhuang L, Gao F, Leung GPH, You J. iTRAQ-based quantitative proteomics revealing the therapeutic mechanism of a medicinal and edible formula YH0618 in reducing doxorubicin-induced alopecia by targeting keratins and TGF-β/Smad3 pathway. Heliyon 2024; 10:e33051. [PMID: 39021977 PMCID: PMC11253279 DOI: 10.1016/j.heliyon.2024.e33051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
YH0618, a medicinal and edible formulation, has demonstrated the potential to alleviate doxorubicin-induced alopecia in animal studies and clinical trials. However, the mechanisms underlying its therapeutic effects remain unexplored. The objective of this study was to ascertain possible therapeutic targets of YH0618 in the treatment of doxorubicin-induced alopecia. The assessment of hair loss was conducted through the measurement of the proportion of the affected area and the examination of skin histology. Isobaric tags for relative and absolute quantification (iTRAQ) in quantitative proteomics was employed to discern proteins that exhibited variable expressions. The major proteins associated with doxorubicin-induced alopecia were identified using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The interaction network of the differentially expressed proteins was constructed using the STRING database and the Python software. The study analyzed a total of 3894 proteins extracted from the skin tissue of mice. Doxorubicin treatment resulted in the upregulation of 18 distinct proteins, whereas one differential protein was found to be downregulated. The above effects were reinstated after the administration of the YH0618 therapy. The bioinformatic study revealed that the identified proteins exhibited enrichment in many biological processes, including staphylococcus aureus infection, estrogen signaling route, pyruvate metabolism, chemical carcinogenesis, and PPAR signaling pathway. The results of Western blot revealed that the levels of keratin 81 (Krt81), keratin 34 (Krt34), keratin 33a (Krt33a), and Sma and MAD-related protein 3 (Smad3) were upregulated in response to doxorubicin treatment, and were attenuated by the administration of YH0618. These four proteins are likely to correlate with DOX-induced alopecia and serve as promising therapeutic targets for YH0618. This work presents significant insights and empirical evidence for comprehending the process underlying chemotherapy-induced alopecia, paving the way for exploring innovative therapeutic or preventive strategies employing herbal items.
Collapse
Affiliation(s)
- Renkai Li
- College of Pharmacy, Shenzhen Technology University, Room 704, Block A2, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mingxia Chen
- College of Pharmacy, Shenzhen Technology University, Room 704, Block A2, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Danxi Yan
- College of Pharmacy, Shenzhen Technology University, Room 704, Block A2, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Liang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mandi Lin
- Department of Radiotherapy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Bohui Deng
- College of Pharmacy, Shenzhen Technology University, Room 704, Block A2, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Likai Zhuang
- College of Pharmacy, Shenzhen Technology University, Room 704, Block A2, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Fei Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jieshu You
- College of Pharmacy, Shenzhen Technology University, Room 704, Block A2, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Cope H, Elsborg J, Demharter S, McDonald JT, Wernecke C, Parthasarathy H, Unadkat H, Chatrathi M, Claudio J, Reinsch S, Avci P, Zwart SR, Smith SM, Heer M, Muratani M, Meydan C, Overbey E, Kim J, Chin CR, Park J, Schisler JC, Mason CE, Szewczyk NJ, Willis CRG, Salam A, Beheshti A. Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology. COMMUNICATIONS MEDICINE 2024; 4:106. [PMID: 38862781 PMCID: PMC11166967 DOI: 10.1038/s43856-024-00532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.
Collapse
Affiliation(s)
- Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Jonas Elsborg
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Abzu, Copenhagen, 2150, Denmark
| | | | - J Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington D.C., WA, 20057, USA
| | - Chiara Wernecke
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Department of Aerospace and Geodesy, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Hari Parthasarathy
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Engineering and Haas School of Business, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hriday Unadkat
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08540, USA
| | - Mira Chatrathi
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Letters and Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer Claudio
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Sigrid Reinsch
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Pinar Avci
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Martina Heer
- IU International University of Applied Sciences, Erfurt and University of Bonn, Bonn, Germany
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jangkeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Amr Salam
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Wang L, Tian R, Wang G, Zhao M, Zhang Y, Li J. Proteomic analysis of fetal skin by iTRAQ reveals molecular signals underlying Inner Mongolia Cashmere goat hair follicle initiation. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2169363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lele Wang
- Ulanqab of Medical College, Ulanqab, People’s Republic of China
| | - Rugang Tian
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, People’s Republic of China
| | - Gaofeng Wang
- Ulanqab Center for Animal Disease Control and Prevention, Ulanqab, People’s Republic of China
| | - Meng Zhao
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, People’s Republic of China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
5
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
6
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
7
|
Wang S, Kang Y, Qi F, Jin H. Genetics of hair graying with age. Ageing Res Rev 2023; 89:101977. [PMID: 37276979 DOI: 10.1016/j.arr.2023.101977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Hair graying is an early and obvious phenotypic and physiological trait with age in humans. Several recent advances in molecular biology and genetics have increased our understanding of the mechanisms of hair graying, which elucidate genes related to the synthesis, transport, and distribution of melanin in hair follicles, as well as genes regulating these processes above. Therefore, we review these advances and examine the trends in the genetic aspects of hair graying from enrichment theory, Genome-Wide association studies, whole exome sequencing, gene expression studies, and animal models for hair graying with age, aiming to overview the changes in hair graying at the genetic level and establish the foundation for future research. Meanwhile, by summarizing the genetics, it's of great value to explore the possible mechanism, treatment, or even prevention of hair graying with age.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Yuanbo Kang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan1#, Dongcheng District, Beijing 100730, P.R.China
| | - Fei Qi
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China.
| |
Collapse
|
8
|
Adav SS, Leung CY, Ng KW. Profiling of hair proteome revealed individual demographics. Forensic Sci Int Genet 2023; 66:102914. [PMID: 37482024 DOI: 10.1016/j.fsigen.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Human hair is often found at crime scenes, persists for a long time, and is a valuable biological specimen in forensic investigations. Hair contains minimal intact nuclear DNA for the discrimination of individual identity. In such cases, proteomics evaluation of hair proteins could provide an attractive alternative for protein-based human identification. Therefore, this study adopted a proteomic approach to profile hair shafts from both males and females across different ethnic populations including Chinese, Indians, Malays, and Filipinos in their 20-80 s. First, hair proteins were extracted by different methods to adopt the most suitable protocol that produced the highest extraction efficiency based on most significant enrichment of keratins and keratin-associated proteins. Abundance of hair keratins including both types I and II, and keratin-associated proteins, estimated using label-free quantification, showed distinguishable profiles, and the possibilities of distinguishing individuals within each ethnic origin. Similarly, several protein candidates and their abundances could be used to distinguish sex and age of individuals. This study explored the possibility of utilizing hair proteomics phenotyping in forensic science to differentiate individuals across various ethnic groups, sex and age.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ching Yung Leung
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
9
|
Label-free proteomics to identify keratins and keratin-associated proteins and their effects on the fleece traits of Inner Mongolia Cashmere Goats. CZECH JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.17221/93/2022-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Baltenneck F, Genty G, Samra EB, Richena M, Harland DP, Clerens S, Leccia E, Le Balch M, Doucet J, Michelet JF, Commo S. Age-associated thin hair displays molecular, structural and mechanical characteristic changes. J Struct Biol 2022; 214:107908. [PMID: 36265530 DOI: 10.1016/j.jsb.2022.107908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Hair thinning occurs during normal chronological aging in women and in men leading to an increased level of thinner hair shafts alongside original thicker shafts. However, the characteristics of age-associated thin hairs remain largely unknown. Here we analyzed these characteristics by comparing at multiscale thin and thick hairs originated from Caucasian women older than 50 years. We observed that the cortex of thick hair contains many K35(+)/K38(-) keratinocytes that decrease in number with decreasing hair diameter. Accordingly, X-ray diffraction revealed differences supporting that thin and thick hairs are different with regards to the nature of the intermediate filaments making up their cortices. In addition, we observed a direct correlation between hair ellipticity and diameter with thin hairs having an unexpected round shape compared to the elliptic shape of thick hairs. We also observed fewer cuticle layers and a reduced frequency of a medullae in thin hairs. Regarding mechanical properties, thin hairs exhibited a surprising increased rigidity, a decrease of the viscosity and a decrease of the water diffusion coefficient. Hence, aged-associated thin hairs exhibit numerous modifications likely due to changes of hair differentiation program as evidenced by the modulations in the expression of hair keratins and keratin-associated proteins and by the X-ray diffraction specters. Hence, hair thinning with age does not consist simply of the production of a smaller hair. It is rather a more profound process likely relying on the implementation of an "aged hair program" that takes place within the hair follicle.
Collapse
Affiliation(s)
| | - Gaianne Genty
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | | | | | | | | | | | | | | | - Stéphane Commo
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| |
Collapse
|
11
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
12
|
Stone RC, Aviv A, Paus R. Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. J Invest Dermatol 2021; 141:1031-1040. [PMID: 33509633 DOI: 10.1016/j.jid.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In this review, we propose that telomere length dynamics play an important but underinvestigated role in the biology of the hair follicle (HF), a prototypic, cyclically remodeled miniorgan that shows an intriguing aging pattern in humans. Whereas the HF pigmentary unit ages quickly, its epithelial stem cell (ESC) component and regenerative capacity are surprisingly aging resistant. Telomerase-deficient mice with short telomeres display an aging phenotype of hair graying and hair loss that is attributed to impaired HF ESC mobilization. Yet, it remains unclear whether the function of telomerase and telomeres in murine HF biology translate to the human system. Therefore, we propose new directions for future telomere research of the human HF. Such research may guide the development of novel treatments for selected disorders of human hair growth or pigmentation (e.g., chemotherapy-induced alopecia, telogen effluvium, androgenetic alopecia, cicatricial alopecia, graying). It might also increase the understanding of the global role of telomeres in aging-related human disease.
Collapse
Affiliation(s)
- Rivka C Stone
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Abraham Aviv
- The Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; Monasterium Laboratory, Münster, Germany
| |
Collapse
|
13
|
McCabe MC, Hill RC, Calderone K, Cui Y, Yan Y, Quan T, Fisher GJ, Hansen KC. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol Plus 2020; 8:100041. [PMID: 33543036 PMCID: PMC7852213 DOI: 10.1016/j.mbplus.2020.100041] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Human skin is composed of the cell-rich epidermis, the extracellular matrix (ECM) rich dermis, and the hypodermis. Within the dermis, a dense network of ECM proteins provides structural support to the skin and regulates a wide variety of signaling pathways which govern cell proliferation and other critical processes. Both intrinsic aging, which occurs steadily over time, and extrinsic aging (photoaging), which occurs as a result of external insults such as solar radiation, cause alterations to the dermal ECM. In this study, we utilized both quantitative and global proteomics, alongside single harmonic generation (SHG) and two-photon autofluorescence (TPAF) imaging, to assess changes in dermal composition during intrinsic and extrinsic aging. We find that both intrinsic and extrinsic aging result in significant decreases in ECM-supporting proteoglycans and structural ECM integrity, evidenced by decreasing collagen abundance and increasing fibril fragmentation. Intrinsic aging also produces changes distinct from those produced by photoaging, including reductions in elastic fiber and crosslinking enzyme abundance. In contrast, photoaging is primarily defined by increases in elastic fiber-associated protein and pro-inflammatory proteases. Changes associated with photoaging are evident even in young (mid 20s) sun-exposed forearm skin, indicating that proteomic evidence of photoaging is present decades prior to clinical signs of photoaging. GO term enrichment revealed that both intrinsic aging and photoaging share common features of chronic inflammation. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD015982. Intrinsic aging and photoaging both decrease ECM-supporting proteoglycans and structural ECM. Intrinsic aging produces reductions in elastic fiber and crosslinking enzyme abundance. Photoaging results in increases in pro-inflammatory proteases and elastic fiber abundance. Intrinsic aging and photoaging share common features associated with chronic inflammation. Proteomic changes associated with photoaging are evident decades prior to clinical aging signs.
Collapse
Key Words
- AUC, area under the curve
- Aging
- CE, cornified envelope
- CNBr, cyanogen bromide
- Collagen
- ECM, extracellular matrix
- Extracellular matrix
- GO, gene ontology
- Photoaging
- Proteomics
- QconCATs, quantitative concatemers
- SHG, single harmonic generation
- Skin
- TPAF, two-photon autofluorescence
- UV, ultraviolet
- iECM, insoluble ECM
- sECM, soluble ECM
Collapse
Affiliation(s)
- Maxwell C. McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Kenneth Calderone
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yilei Cui
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yan Yan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
- Corresponding author.
| |
Collapse
|
14
|
Yang Q, Lopez MJ. The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development. Toxicol Pathol 2019; 49:1294-1307. [PMID: 31741428 DOI: 10.1177/0192623319880469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The equine hoof capsule, composed of modified epidermis and dermis, is vital for protecting the third phalanx from forces of locomotion. There are descriptions of laminitis, defined as inflammation of sensitive hoof tissues but recognized as pathologic changes with or without inflammatory mediators, in the earliest records of domesticated horses. Laminitis can range from mild to serious, and signs can be acute, chronic, or transition from acute, severe inflammation to permanently abnormal tissue. Damage within the intricate dermal and epidermal connections of the primary and secondary lamellae is often associated with lifelong changes in hoof growth, repair, and conformation. Decades of research contribute to contemporary standards of care that include systemic and local therapies as well as mechanical hoof support. Despite this, consistent mechanisms to restore healthy tissue formation following a laminitic insult are lacking. Endogenous and exogenous progenitor cell contributions to healthy tissue formation is established for most tissues. There is comparably little information about equine hoof progenitor cells. Equine hoof anatomy, laminitis, and progenitor cells are covered in this review. The potential of progenitor cells to advance in vitro equine hoof tissue models and translate to clinical therapies may significantly improve prevention and treatment of a devastating condition that has afflicted equine companions throughout history.
Collapse
Affiliation(s)
- Qingqiu Yang
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| | - Mandi J Lopez
- Department of Veterinary Clinical Sciences, Laboratory for Equine and Comparative Orthopedic Research, Baton Rouge, LA, USA
| |
Collapse
|
15
|
Saitou M, Gokcumen O. Resolving the Insertion Sites of Polymorphic Duplications Reveals a HERC2 Haplotype under Selection. Genome Biol Evol 2019; 11:1679-1690. [PMID: 31124564 PMCID: PMC6587411 DOI: 10.1093/gbe/evz107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2019] [Indexed: 12/18/2022] Open
Abstract
Polymorphic duplications in humans have been shown to contribute to phenotypic diversity. However, the evolutionary forces that maintain variable duplications across the human genome are largely unexplored. We developed a linkage-disequilibrium based method to detect insertion sites of polymorphic duplications not represented in reference genomes. This method also allows resolution of haplotypes harboring the duplications. Using this approach, we conducted genome-wide analyses and identified the insertion sites of 22 common polymorphic duplications. We found that the majority of these duplications is intrachromosomal and only one of them is an interchromosomal insertion. Further characterization of these duplications revealed significant associations to blood and skin phenotypes. On the basis of population genetics analyses, we found that the duplication of a well-characterized pigmentation-related region, including the HERC2 gene, may be selected against in European populations. We further demonstrated that the haplotype harboring this duplication significantly affects the expression of the HERC2P9 gene in multiple tissues. Our study sheds light onto the evolutionary impact of understudied polymorphic duplications in human populations and presents methodological insights for future studies.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, SUNY at Buffalo
| | | |
Collapse
|
16
|
An Integrated Analysis of Cashmere Fineness lncRNAs in Cashmere Goats. Genes (Basel) 2019; 10:genes10040266. [PMID: 30987022 PMCID: PMC6523453 DOI: 10.3390/genes10040266] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Animal growth and development are regulated by long non-coding RNAs (lncRNAs). However, the functions of lncRNAs in regulating cashmere fineness are poorly understood. To identify the key lncRNAs that are related to cashmere fineness in skin, we have collected skin samples of Liaoning cashmere goats (LCG) and Inner Mongolia cashmere goats (MCG) in the anagen phase, and have performed RNA sequencing (RNA-seq) approach on these samples. The high-throughput sequencing and bioinformatics analyses identified 437 novel lncRNAs, including 93 differentially expressed lncRNAs. We also identified 3084 differentially expressed messenger RNAs (mRNAs) out of 27,947 mRNAs. Gene ontology (GO) analyses of lncRNAs and target genes in cis show a predominant enrichment of targets that are related to intermediate filament and intermediate filament cytoskeleton. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, sphingolipid metabolism is a significant pathway for lncRNA targets. In addition, this is the first report to reveal the possible lncRNA–mRNA regulatory network for cashmere fineness in cashmere goats. We also found that lncRNA XLOC_008679 and its target gene, KRT35, may be related to cashmere fineness in the anagen phase. The characterization and expression analyses of lncRNAs will facilitate future studies on the potential value of fiber development in LCG.
Collapse
|
17
|
Liu F, Chen Y, Zhu G, Hysi PG, Wu S, Adhikari K, Breslin K, Pospiech E, Hamer MA, Peng F, Muralidharan C, Acuna-Alonzo V, Canizales-Quinteros S, Bedoya G, Gallo C, Poletti G, Rothhammer F, Bortolini MC, Gonzalez-Jose R, Zeng C, Xu S, Jin L, Uitterlinden AG, Ikram MA, van Duijn CM, Nijsten T, Walsh S, Branicki W, Wang S, Ruiz-Linares A, Spector TD, Martin NG, Medland SE, Kayser M. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum Mol Genet 2019; 27:559-575. [PMID: 29220522 PMCID: PMC5886212 DOI: 10.1093/hmg/ddx416] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sijie Wu
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaustubh Adhikari
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Krystal Breslin
- Department of Biology, Indiana-University-Purdue-University-Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Ewelina Pospiech
- Institute of Zoology and Biomedical Research, Faculty of Biology and Earth Sciences, Jagiellonian University, Kraków, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Merel A Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fuduan Peng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Charanya Muralidharan
- Department of Biology, Indiana-University-Purdue-University-Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Victor Acuna-Alonzo
- Laboratorio de Genética Molecular, Escuela Nacional de Antropologia e Historia, México City, México
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City, México
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Maria Catira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Rolando Gonzalez-Jose
- Instituto Patagónico de Ciencias Sociales y Humanas, CENPAT-CONICET, Puerto Madryn, Argentina
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhua Xu
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Li Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susan Walsh
- Department of Biology, Indiana-University-Purdue-University-Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Sijia Wang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK.,Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Laboratory of Biocultural Anthropology, Law, Ethics, and Health (Centre National de la Recherche Scientifique and Etablissement Français du Sang), Aix-Marseille Université, Marseille, France
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Gao Y, Wang X, Yan H, Zeng J, Ma S, Niu Y, Zhou G, Jiang Y, Chen Y. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats. PLoS One 2016; 11:e0151118. [PMID: 26959817 PMCID: PMC4784850 DOI: 10.1371/journal.pone.0151118] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members played vital roles in HF differentiation and maturation. The DEGs we found could be attributed to the generation and development of HF, and thus will be critically important for improving the quantity and quality of fleece production in animals for fibres.
Collapse
Affiliation(s)
- Ye Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science, Yulin University, Yulin, People’s Republic of China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Hailong Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science, Yulin University, Yulin, People’s Republic of China
| | - Jie Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Sen Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- * E-mail:
| |
Collapse
|
19
|
Laatsch CN, Durbin-Johnson BP, Rocke DM, Mukwana S, Newland AB, Flagler MJ, Davis MG, Eigenheer RA, Phinney BS, Rice RH. Human hair shaft proteomic profiling: individual differences, site specificity and cuticle analysis. PeerJ 2014; 2:e506. [PMID: 25165623 PMCID: PMC4137660 DOI: 10.7717/peerj.506] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022] Open
Abstract
Hair from different individuals can be distinguished by physical properties. Although some data exist on other species, examination of the individual molecular differences within the human hair shaft has not been thoroughly investigated. Shotgun proteomic analysis revealed considerable variation in profile among samples from Caucasian, African–American, Kenyan and Korean subjects. Within these ethnic groups, prominent keratin proteins served to distinguish individual profiles. Differences between ethnic groups, less marked, relied to a large extent on levels of keratin associated proteins. In samples from Caucasian subjects, hair shafts from axillary, beard, pubic and scalp regions exhibited distinguishable profiles, with the last being most different from the others. Finally, the profile of isolated hair cuticle cells was distinguished from that of total hair shaft by levels of more than 20 proteins, the majority of which were prominent keratins. The cuticle also exhibited relatively high levels of epidermal transglutaminase (TGM3), accounting for its observed low degree of protein extraction by denaturants. In addition to providing insight into hair structure, present findings may lead to improvements in differentiating hair from various ethnic origins and offer an approach to extending use of hair in crime scene evidence for distinguishing among individuals.
Collapse
Affiliation(s)
- Chelsea N Laatsch
- Forensic Science Graduate Program and Department of Environmental Toxicology, University of California , Davis, CA , USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California , Davis, CA , USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California , Davis, CA , USA
| | | | - Abby B Newland
- Procter & Gamble, Mason Business Center , Mason, OH , USA
| | | | | | | | - Brett S Phinney
- Proteomics Core Facility, University of California , Davis, CA , USA
| | - Robert H Rice
- Forensic Science Graduate Program and Department of Environmental Toxicology, University of California , Davis, CA , USA
| |
Collapse
|
20
|
Ramot Y, Paus R. Harnessing neuroendocrine controls of keratin expression: A new therapeutic strategy for skin diseases? Bioessays 2014; 36:672-86. [DOI: 10.1002/bies.201400006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Laboratory for Hair Research and Regenerative Medicine, Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
21
|
Hypothalamic–Pituitary–Thyroid Axis Hormones Stimulate Mitochondrial Function and Biogenesis in Human Hair Follicles. J Invest Dermatol 2014; 134:33-42. [DOI: 10.1038/jid.2013.286] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
|
22
|
Rinnerthaler M, Duschl J, Steinbacher P, Salzmann M, Bischof J, Schuller M, Wimmer H, Peer T, Bauer JW, Richter K. Age-related changes in the composition of the cornified envelope in human skin. Exp Dermatol 2013; 22:329-35. [DOI: 10.1111/exd.12135] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Jutta Duschl
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Peter Steinbacher
- Department of Organismic Biology; Division of Zoology; University of Salzburg; Salzburg Austria
| | - Manuel Salzmann
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Johannes Bischof
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Markus Schuller
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Herbert Wimmer
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Thomas Peer
- Department of Organismic Biology; Division of Zoology; University of Salzburg; Salzburg Austria
| | - Johann W. Bauer
- Department of Dermatology; Division of Molecular Dermatology and EB House Austria; Paracelsus Medical University; Salzburg Austria
| | - Klaus Richter
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| |
Collapse
|
23
|
Heise R, Skazik C, Marquardt Y, Czaja K, Sebastian K, Kurschat P, Gan L, Denecke B, Ekanayake-Bohlig S, Wilhelm KP, Merk H, Baron J. Dexpanthenol Modulates Gene Expression in Skin Wound Healing in vivo. Skin Pharmacol Physiol 2012; 25:241-8. [DOI: 10.1159/000341144] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022]
|