1
|
Tang L, Wei QQ, Xiao Y, Tang MY, Zhu Y, Jiang MG, Chen P, Pan ZX. Bombyx mori Metal Carboxypeptidases12 ( BmMCP12) Is Involved in Host Protection Against Viral Infection. Int J Mol Sci 2024; 25:13536. [PMID: 39769299 PMCID: PMC11677143 DOI: 10.3390/ijms252413536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Baculoviruses, the largest studied insect viruses, are highly pathogenic to host insects. Bombyx mori nucleopolyhedrovirus (BmNPV) is the main cause of nuclear polyhedrosis of silkworm, a viral disease that causes significant economic losses to the sericulture industry. The anti-BmNPV mechanism of the silkworm has not yet been characterized. Carboxypeptidase is an enzyme that is involved in virtually all life activities of animals and plants. Studies have shown that the carboxypeptidase family is related to insect immunity. There are few reports on the role of carboxypeptidase in the defense of silkworms against pathogen invasion. In this study, we identified the homologous gene Bombyx mori metal carboxypeptidases12 (BmMCP12) related to mammalian carboxypeptidase A2 (CPA2) and found that BmMCP12 had a Zn-pept domain. The BmMCP12 gene was primarily located in the cytoplasm and was highly expressed in the midgut of silkworms, and the expression level in BmN-SWU1 cells was upregulated after infection with BmNPV. After overexpression of the BmMCP12 gene, quantitative real-time (qRT)-PCR and Western blots showed that BmMCP12 could inhibit BmNPV replication, whereas knockout of the gene had the opposite effect. In addition, we constructed transgenic silkworm strains with a knockout of BmMCP12, and the transgenic strains had reduced resistance to BmNPV. These findings deepen the functional study of silkworm carboxypeptidase and provide a new target for BmNPV disease prevention in silkworms.
Collapse
Affiliation(s)
- Liang Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Qiong-Qiong Wei
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Ming-Yan Tang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Man-Gui Jiang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei District, Chongqing 400715, China; (Q.-Q.W.); (Y.X.); (Y.Z.)
| | - Zhi-Xin Pan
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China; (L.T.); (M.-Y.T.); (M.-G.J.)
| |
Collapse
|
2
|
Yang L, Cheng Y, Wang Q, Hou J, Rong Q, Xiao C, Zhang Y, Yan J, Xia Q, Hou Y. Insights into the activation mechanism of Bm-CPA: Implications for insect molting regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104175. [PMID: 39134228 DOI: 10.1016/j.ibmb.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Carboxypeptidase A has been found across various animal species, yet its activation mechanism during the insect molting process remains elusive. Our study specifically delved into the activation mechanism of carboxypeptidase A (Bm-CPA), identified in Bombyx mori's molting fluid during metamorphosis. Initially, western blotting identified two forms of Bm-CPA, 65 kDa and 54 kDa, in the epidermis of silkworms during the molting stage. Expressing the complete Bm-CPA sequence in Pichia pastoris allowed the identification, via mass spectrometry analysis, of a 75-amino-acid propeptide for the initial hydrolysis process. Subsequently, a 35 kDa form of Bm-CPA emerged in the molting fluid, confirmed as the active form through in vitro assays, demonstrating potent carboxypeptidase A activity and faint carboxypeptidase B activity. Four potential activation sites (including Lys158/Arg159 and Arg177/Arg178) were identified through mass spectrometry and amino acid mutation analysis. RNAi of Bm-CPA indicates its critical role in molting. Finally, the carboxypeptidase inhibitor (Bm-CPI) from silkworm molting fluid was expressed to explore its role in regulating Bm-CPA activity, demonstrating a direct interaction with the 35 kDa Bm-CPA. Our research implies Bm-CPA's potential involvement in the silkworm molting process, suggesting diverse regulatory roles. These findings highlight intricate protein regulation patterns during insect metamorphosis and development.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jianing Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyu Rong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Chunxia Xiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yuhao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jiamin Yan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
3
|
Kriska T, Natarajan J, Herrnreiter A, Park SK, Pfister SL, Thomas MJ, Widiapradja A, Levick SP, Campbell WB. Cellular metabolism of substance P produces neurokinin-1 receptor peptide agonists with diminished cyclic AMP signaling. Am J Physiol Cell Physiol 2024; 327:C151-C167. [PMID: 38798270 PMCID: PMC11371325 DOI: 10.1152/ajpcell.00103.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Substance P (SP) is released from sensory nerves in the arteries and heart. It activates neurokinin-1 receptors (NK1Rs) causing vasodilation, immune modulation, and adverse cardiac remodeling. The hypothesis was tested: SP and SP metabolites activate different second messenger signaling pathways. Macrophages, endothelial cells, and fibroblasts metabolized SP to N- and C-terminal metabolites to varying extents. SP 5-11 was the most abundant metabolite followed by SP 1-4, SP 7-11, SP 6-11, SP 3-11, and SP 8-11. In NK1R-expressing human embryonic kidney 293 (HEK293) cells, SP and some C-terminal SP metabolites stimulate the NK1R, promoting the dissociation of several Gα proteins, including Gαs and Gαq from their βγ subunits. SP increases intracellular calcium concentrations ([Ca]i) and cyclic 3',5'-adenosine monophosphate (cAMP) accumulation with similar -log EC50 values of 8.5 ± 0.3 and 7.8 ± 0.1 M, respectively. N-terminal metabolism of SP by up to five amino acids and C-terminal deamidation of SP produce peptides that retain activity to increase [Ca]i but not to increase cAMP. C-terminal metabolism results in the loss of both activities. Thus, [Ca]i and cAMP signaling are differentially affected by SP metabolism. To assess the role of N-terminal metabolism, SP and SP 6-11 were compared with cAMP-mediated activities in NK1R-expressing 3T3 fibroblasts. SP inhibits nuclear factor κB (NF-κB) activity, cell proliferation, and wound healing and stimulates collagen production. SP 6-11 had little or no activity. Cyclooxygenase-2 (COX-2) expression is increased by SP but not by SP 6-11. Thus, metabolism may select the cellular response to SP by inhibiting or redirecting the second messenger signaling pathway activated by the NK1R.NEW & NOTEWORTHY Endothelial cells, macrophages, and fibroblasts metabolize substance P (SP) to N- and C-terminal metabolites with SP 5-11 as the most abundant metabolite. SP activates neurokinin-1 receptors to increase intracellular calcium and cyclic AMP. In contrast, SP metabolites of N-terminal metabolism and C-terminal deamidation retain the ability to increase calcium but lose the ability to increase cyclic AMP. These new insights indicate that the metabolism of SP directs cellular functions by regulating specific signaling pathways.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jayashree Natarajan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexander Widiapradja
- Robert C. Byrd Health Sciences Center, Department of Physiology and Pharmacology, West Virginia University, Morgantown, Virginia, United States
| | - Scott P Levick
- Robert C. Byrd Health Sciences Center, Department of Physiology and Pharmacology, West Virginia University, Morgantown, Virginia, United States
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Boullard NG, Paris JJ, Shariat-Madar Z, Mahdi F. Increased Prolylcarboxypeptidase Expression Can Serve as a Biomarker of Senescence in Culture. Molecules 2024; 29:2219. [PMID: 38792081 PMCID: PMC11123917 DOI: 10.3390/molecules29102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.
Collapse
Affiliation(s)
| | - Jason J. Paris
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| |
Collapse
|
5
|
Viana Neto AM, Guerreiro DD, Martins JAM, Vasconcelos FÁR, Melo RÉBF, Velho ALMCS, Neila-Montero M, Montes-Garrido R, Nagano CS, Araújo AA, Moura AA. Sperm traits and seminal plasma proteome of locally adapted hairy rams subjected to intermittent scrotal insulation. Anim Reprod Sci 2024; 263:107439. [PMID: 38447240 DOI: 10.1016/j.anireprosci.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
The present study evaluated the effects of heat stress on reproductive parameters of hairy rams. Six animals were subjected to scrotal insulation during four consecutive nights (6 PM - 6 AM). Day (D) 0 was the first day of insulation. Scrotal circumference increased from 30.5 ± 0.3 cm (at pre-insulation) to 31.8 ± 0.4 cm on D4, decreased 3.9 cm on D28, returning to 30.6 ± 0.6 cm on D57. Sperm concentration decreased from 3.7 ± 0.12 ×109 sperm/mL before insulation to 2.6 ± 0.1 ×109 on D23, returning to normal on D57. Sperm motility averaged 75 ± 2.9% before insulation, was undetectable on D23, and became normal on D77. Sperm with normal morphology reached 5.9 ± 2.6% on D35 but recovered (86.8 ± 2.1%) on D91. Sperm DNA integrity decreased from 86.5 ± 4.7% before insulation to 11.1 ± 3.7% on D63, returning to pre-insulation values on D120. Sperm BSP immunostaining was reduced after scrotal insulation. Variations in seminal protein abundances coincided with changes in sperm parameters. Seminal plasma superoxide dismutase, carboxypeptidase Q-precursor and NPC intracellular cholesterol transporter 2 decreased on D18, returning to normal after D28. Albumin, inhibitor of carbonic anhydrase precursor, EGF-like repeat and discoid I-like domain-containing protein 3 and polymeric immunoglobulin receptor increased after insulation. In summary, intermittent scrotal insulation drastically altered ram sperm attributes and seminal proteins, especially those associated with oxidative stress. Knowledge of animal´s response to thermal stress is vital in the scenario of climate changes.
Collapse
Affiliation(s)
| | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Jorge A M Martins
- School of Veterinary Medicine, Federal University of Cariri, Juazeiro do Norte, Brazil
| | | | - R Évila B F Melo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marta Neila-Montero
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Rafael Montes-Garrido
- Itra-ULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Celso S Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
6
|
Kuriki Y, Sogawa M, Komatsu T, Kawatani M, Fujioka H, Fujita K, Ueno T, Hanaoka K, Kojima R, Hino R, Ueo H, Ueo H, Kamiya M, Urano Y. Modular Design Platform for Activatable Fluorescence Probes Targeting Carboxypeptidases Based on ProTide Chemistry. J Am Chem Soc 2024; 146:521-531. [PMID: 38110248 DOI: 10.1021/jacs.3c10086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mari Sogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minoru Kawatani
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Hiroki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Hiroaki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Duan L, Calhoun SJ, Perez RE, Macias V, Mir F, Gattuso P, Maki CG. Prolylcarboxypeptidase promotes IGF1R/HER3 signaling and is a potential target to improve endocrine therapy response in estrogen receptor positive breast cancer. Cancer Biol Ther 2022; 23:1-10. [PMID: 36332175 PMCID: PMC9639567 DOI: 10.1080/15384047.2022.2142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolylcarboxypeptidase (PRCP) is a lysosomal serine protease that cleaves peptide substrates when the penultimate amino acid is proline. Previous studies have linked PRCP to blood-pressure and appetite control through its ability to cleave peptide substrates such as angiotensin II and α-MSH. A potential role for PRCP in cancer has to date not been widely appreciated. Endocrine therapy resistance in breast cancer is an enduring clinical problem mediated in part by aberrant receptor tyrosine kinase (RTK) signaling. We previously found PRCP overexpression promoted 4-hydroxytamoxifen (4-OHT) resistance in estrogen receptor-positive (ER+) breast cancer cells. Currently, we tested the potential association between PRCP with breast cancer patient outcome and RTK signaling, and tumor responsiveness to endocrine therapy. We found high PRCP protein levels in ER+ breast tumors associates with worse outcome and earlier recurrence in breast cancer patients, including patients treated with TAM. We found a PRCP specific inhibitor (PRCPi) enhanced the response of ER+ PDX tumors and MCF7 tumors to endoxifen, an active metabolite of TAM in mice. We found PRCP increased IGF1R/HER3 signaling and AKT activation in ER+ breast cancer cells that was blocked by PRCPi. Thus, PRCP is an adverse prognostic marker in breast cancer and a potential target to improve endocrine therapy in ER+ breast cancers.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA,CONTACT Lei Duan
| | - Sarah J. Calhoun
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ricardo E. Perez
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Fatima Mir
- Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Paolo Gattuso
- Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Carl G. Maki
- Department of Anatomy and Cell biology, Rush University Medical Center, Chicago, IL, 60612, USA,Carl G. Maki Department of Anatomy and Cell biology, Rush University Medical Center, 1705 W Harrison St, Jelke Bldg R1306, Chicago, IL, 60612, USA
| |
Collapse
|
8
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. In Silico Structural Analysis of Serine Carboxypeptidase Nf314, a Potential Drug Target in Naegleria fowleri Infections. Int J Mol Sci 2022; 23:ijms232012203. [PMID: 36293059 PMCID: PMC9603766 DOI: 10.3390/ijms232012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure–function relationship that favors their application as targets for discovering new or improved drugs against N. fowleri infections. Herein, we report a computational approach to study the structural features of Nf314 (a serine carboxypeptidase that is a virulence-related protein in N. fowleri infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that Nf314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function.
Collapse
|
9
|
Zhang X, Zhao P, Li S, Ma S, Du J, Liang S, Yang X, Yao L, Duan J. Genome-Wide Identification of M14 Family Metal Carboxypeptidases in Antheraea pernyi (Lepidoptera: Saturniidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1285-1293. [PMID: 35640220 DOI: 10.1093/jee/toac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/15/2023]
Abstract
The M14 family metal carboxypeptidase genes play an important role in digestion and pathogenic infections in the gut of insects. However, the roles of these genes in Antheraea pernyi (Guérin-Méneville, 1855) remain to be analyzed. In the present study, we cloned a highly expressed M14 metal carboxypeptidase gene (ApMCP1) found in the gut and discovered that it contained a 1,194 bp open reading frame encoding a 397-amino acid protein with a predicted molecular weight of 45 kDa. Furthermore, 14 members of the M14 family metal carboxypeptidases (ApMCP1-ApMCP14) were identified in the A. pernyi genome, with typical Zn_pept domains and two Zn-anchoring motifs, and were further classified into M14A, M14B, and M14D subfamilies. Expression analysis indicated that ApMCP1 and ApMCP9 were mainly expressed in the gut. Additionally, we observed that ApMCP1 and ApMCP9 displayed opposite expression patterns after starvation, highlighting their functional divergence during digestion. Following natural infection with baculovirus NPV, their expression was significantly upregulated in the gut of A. pernyi. Our results suggest that the M14 family metal carboxypeptidase genes are conservatively digestive enzymes and evolutionarily involved in exogenous pathogenic infections.
Collapse
Affiliation(s)
- Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Shanshan Li
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Xinfeng Yang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou 450008, PR China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
10
|
Qiao Q, Bouwman FG, van Baak MA, Roumans NJT, Vink RG, Mariman ECM. Plasma Levels of Triglycerides and IL-6 Are Associated With Weight Regain and Fat Mass Expansion. J Clin Endocrinol Metab 2022; 107:1920-1929. [PMID: 35366329 PMCID: PMC9202711 DOI: 10.1210/clinem/dgac198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Long-term weight loss (WL) maintenance is the biggest challenge for overweight and obesity because of the almost unavoidable phenomenon of partial or even total weight regain (WR) after WL. OBJECTIVE In the present study we investigated the relations of (the changes of) adipocyte size and other risk biomarkers with WR during the follow-up of the Yoyo dietary intervention. METHODS In this randomized controlled study, 48 overweight/obese participants underwent a very-low-calorie diet to lose weight, followed by a weight-stable period of 4 weeks and a follow-up period of 9 months. Anthropometric measurements, adipocyte volume of abdominal subcutaneous adipose tissue, and plasma metabolic parameters (free fatty acids [FFAs], triglycerides [TGs], total cholesterol, glucose, insulin, homeostasis model assessment of insulin resistance [HOMA-IR], interleukin 6 [IL-6], angiotensin-converting enzyme [ACE] activity, retinol binding protein 4 [RBP4]) at the beginning and the end of follow-up were analyzed. RESULTS Our results show that changes of TGs, IL-6, HOMA-IR, and ACE are significantly positively correlated with WR. Multiple linear regression analysis shows that only TG and IL-6 changes remained significantly correlated with WR and increased body fat mass. Moreover, the change in HOMA-IR was tightly correlated with the change in TGs. Surprisingly, change in adipocyte volume during follow-up was not correlated with WR nor with other factors, but positive correlations between adipocyte volume and HOMA-IR were found at the beginning and end of the follow-up. CONCLUSION These results suggest that TGs and IL-6 are independently linked to WR via separate mechanisms, and that HOMA-IR and adipocyte volume may indirectly link to WR through the change of plasma TGs.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 MD, Maastricht, the Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 MD, Maastricht, the Netherlands
| | - Marleen A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 MD, Maastricht, the Netherlands
| | - Nadia J T Roumans
- Institute for Technology-Inspired Regenerative Medicine, MERLN, Maastricht University Medical Centre, 6200 MD, Maastricht, the Netherlands
| | - Roel G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 MD, Maastricht, the Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
11
|
Akula S, Hellman L, Avilés FX, Wernersson S. Analysis of the mast cell expressed carboxypeptidase A3 and its structural and evolutionary relationship to other vertebrate carboxypeptidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104273. [PMID: 34619175 DOI: 10.1016/j.dci.2021.104273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Metallo-carboxypeptidases are exopeptidases with diverse expression and function, found in all kingdoms of life from bacteria to mammals. One of them, the carboxypeptidase A3 (CPA3), has become an important component of the mammalian immune system by its expression in mast cells. Mast cells (MCs) are highly specialized sentinel cells, which store large amounts of bioactive mediators, including CPA3, in very abundant cytoplasmic granules. Clinical studies have found an increased CPA3 expression in asthma but the physiological role as well as the evolutionary origin of CPA3 remains largely unexplored. CPA3 belongs to the M14A subfamily of metallo-carboxypeptidases, which among others also includes the digestive enzymes CPA1, CPA2, CPB1 and CPO. To study the appearance of CPA3 during vertebrate evolution, we here performed bioinformatic analyses of homologous genes and gene loci from a broad panel of metazoan animals from invertebrates to mammals. The phylogenetic analysis indicated that CPA3 appeared at the base of tetrapod evolution in a branch closer to CPB1 than to other CPAs. Indeed, CPA3 and CPB1 are also located in the same locus, on chromosome 3 in humans. The presence of CPA3 only in tetrapods and not in fishes, suggested that CPA3 could have appeared by a gene duplication from CPB1 during early tetrapod evolution. However, the apparent loss of CPA3 in several tetrapod lineages, e.g. in birds and monotremes, indicates a complex evolution of the CPA3 gene. Interestingly, in the lack of CPA3 in fishes, zebrafish MCs express instead CPA5 for which the most closely related human carboxypeptidase is CPA1, which has a similar cleavage specificity as CPA3. Collectively, these findings clarify and add to our understanding of the evolution of hematopoietic proteases expressed by mast cells.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, BOX 7011, SE-75007, Uppsala, Sweden; Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden.
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, BOX 7011, SE-75007, Uppsala, Sweden
| |
Collapse
|
12
|
Duan L, Calhoun S, Perez RE, Macias V, Mir F, Pergande MR, Gattuso P, Borgia JA, Maki CG. Prolyl Carboxypeptidase Maintains Receptor Tyrosine Kinase Signaling and Is a Potential Therapeutic Target in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030739. [PMID: 35159006 PMCID: PMC8833515 DOI: 10.3390/cancers14030739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) is an aggressive cancer type with limited treatment options and poor prognosis. Our research has revealed that a protein called prolylcarboxypeptidase (PRCP) is a potential therapy target for TNBC. We found that high levels of PRCP in tumors coincides with worse prognosis in TNBC patients. Inhibition of PRCP with a small molecule inhibitor blocked TNBC cell and tumor growth and inhibited the activity of several receptor tyrosine kinases (RTKs), proteins that are located on the surface of cells and that are important for cancer development and progression. Our findings suggest that PRCP is a novel prognostic factor for TNBC and that specific inhibitors of PRCP could be developed for TNBC treatment. Abstract TNBC is an aggressive cancer sub-type with limited treatment options and poor prognosis. New therapeutic targets are needed to improve outcomes in TNBC patients. PRCP is a lysosomal serine protease that cleaves peptide substrates when the penultimate amino acid is proline. A role for PRCP in TNBC or other cancers, and its potential as a therapy target has not yet been tested. In the current study, we found high tumor expression of PRCP associates with worse outcome and earlier recurrence in TNBC patients. Knockdown of PRCP or treatment with a small molecule PRCP inhibitor blocked proliferation and survival in TNBC cell lines and inhibited growth of TNBC tumors in mice. Mechanistically, we found PRCP maintains signaling from multiple receptor tyrosine kinases (RTKs), potentially by promoting crosstalk between RTKs and G-protein coupled receptors (GPCRs). Lastly, we found that the PRCP inhibitor caused synergistic killing of TNBC cells when combined with the EGFR and ErbB2 inhibitor lapatinib. Our results suggest that PRCP is potential prognostic marker for TNBC patient outcome and a novel therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Sarah Calhoun
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Ricardo E. Perez
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, 909 S. Wolcott St, Rm 6128, Chicago, IL 60612, USA;
| | - Fatima Mir
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (F.M.); (P.G.)
| | - Melissa R. Pergande
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Paolo Gattuso
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (F.M.); (P.G.)
| | - Jeffrey A. Borgia
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
| | - Carl G. Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac 507, Chicago, IL 60612, USA; (L.D.); (S.C.); (R.E.P.); (M.R.P.); (J.A.B.)
- Correspondence: ; Tel.: +312-563-3380
| |
Collapse
|
13
|
Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021; 51:566-593. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time, dynamic optical visualization of lesions and margins ensures not only complete resection of the malignant tissues but also better preservation of the vital organs/tissues during surgical procedures. Most imaging probes with an "always-on" signal encounter high background noise due to their non-specific accumulation in normal tissues. By contrast, activatable molecular probes only "turn on" their signals upon reaction with the targeted biomolecules that are overexpressed in malignant cells, offering high target-to-background ratios with high specificity and sensitivity. This review summarizes the recent progress of activatable molecular probes in surgical imaging and diagnosis. The design principle and mechanism of activatable molecular probes are discussed, followed by specific emphasis on applications ranging from fluorescence-guided surgery to endoscopy and tissue biopsy. Finally, potential challenges and perspectives in the field of activatable molecular probe-enabled surgical imaging are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guopeng Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
14
|
Zheng JM, Zhou HX, Yu HY, Xia YH, Yu QX, Qu HS, Bao JQ. By Increasing the Expression and Activation of STAT3, Sustained C5a Stimulation Increases the Proliferation, Migration, and Invasion of RCC Cells and Promotes the Growth of Transgrafted Tumors. Cancer Manag Res 2021; 13:7607-7621. [PMID: 34675657 PMCID: PMC8500505 DOI: 10.2147/cmar.s326352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Contradictive results about the direct role of C5a/C5aR1 axis in different cancer cells have been reported. The direct effect of C5a on human renal cell carcinoma (RCC) cells and the underlying mechanism are not clear. The aim of this study is to investigate the role of C5a/C5aR1 axis in RCC cells and its working mechanism. Methods RCC cells were infected with lentivirus Lenti-C5a, which was designed to over-express secretory C5a in the cells, or directly treated with recombinant C5a, the influence of these treatments in the cells and the underlying mechanism were explored. Results Transfection of RCC cells with Lenti-C5a markedly increased the production of C5a and significantly increased the proliferation, migration, and invasion of RCC cells, but direct addition of C5a to the cell culture medium had no such effects though it indeed induced a transient intracellular calcium rise. RCC cells were found to express carboxypeptidase D and M, which reportedly to inactivate C5a. Also, the RCC cells stably transfected with Lenti-C5a produced larger transgrafted tumors in nude mice compared with the non-transfected or control virus transfected cells. In addition, over-expression of C5a significantly increased the expression and phosphorylation of STAT3 as well as the phosphorylated JNK level. Furthermore, the effect of C5a over-expression on RCC cells' proliferation, migration, and invasion could be blocked by Stattic, a STAT3-specific inhibitor. Conclusion Chronic over-activation of C5a/C5aR1 axis could directly increase RCC cells' proliferation, migration, and invasion and thus contribute directly to the progression of the disease. Over-activation of STAT3 pathway is among the underlying mechanism.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Han-Xi Zhou
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Hong-Yuan Yu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Yu-Hui Xia
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Qing-Xin Yu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Hang-Shuai Qu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Jia-Qian Bao
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| |
Collapse
|
15
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
16
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
17
|
|
18
|
Silva-Aguiar RP, Peruchetti DB, Rocco PRM, Schmaier AH, E Silva PMR, Martins MA, Carvalho VF, Pinheiro AAS, Caruso-Neves C. Role of the renin-angiotensin system in the development of severe COVID-19 in hypertensive patients. Am J Physiol Lung Cell Mol Physiol 2020; 319:L596-L602. [PMID: 32783619 PMCID: PMC7516382 DOI: 10.1152/ajplung.00286.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.
Collapse
Affiliation(s)
| | - Diogo Barros Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Case Western Reserve University, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Patrícia Machado Rodrigues E Silva
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Frias Carvalho
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Acacia Sá Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Sörensen-Zender I, Chen R, Rong S, David S, Melk A, Haller H, Schmitt R. Binding to carboxypeptidase M mediates protective effects of fibrinopeptide Bβ 15-42. Transl Res 2019; 213:124-135. [PMID: 31401267 DOI: 10.1016/j.trsl.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/03/2023]
Abstract
During fibrinolysis a 28-amino-acid peptide is generated besides other degradation products of fibrin. This peptide, called Bβ15-42, which is cleaved by plasmin from the end of the fibrin Bβ-chain, is protective in myocardial and renal ischemia/reperfusion injury and improves the outcome in experimental sepsis. Bβ15-42 has been shown to mediate different beneficial effects in endothelial cells through binding to vascular endothelial-cadherin. Here, we provide in vitro and in vivo evidence that Bβ15-42 has additional cell protective activity in tubular cells, which is caused by a distinct mechanism. As vascular endothelial-cadherin is not expressed by tubular cells we used ligand-receptor capture technology LRC-TriCEPS to search for tubular cell surface receptors and identified carboxypeptidase M (CBPM) as a novel binding partner of Bβ15-42. Silencing CBPM with siRNA reduced the protective potential of Bβ15-42 against tubular cell stress. Bβ15-42 inhibited the enzymatic activity of CBPM and modified the impact of CBPM on bradykinin signaling. We conclude that beneficial properties of Bβ15-42 are not restricted to endothelial cells but are also active in epithelial cells where cytoprotection depends on CBPM binding.
Collapse
Affiliation(s)
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Sascha David
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| |
Collapse
|
20
|
Ichihashi Y, Komatsu T, Kyo E, Matsuzaki H, Hata K, Watanabe T, Ueno T, Hanaoka K, Urano Y. Separation-Based Enzymomics Assay for the Discovery of Altered Peptide-Metabolizing Enzymatic Activities in Biosamples. Anal Chem 2019; 91:11497-11501. [PMID: 31424921 DOI: 10.1021/acs.analchem.9b03016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed a novel method to globally monitor the enzymatic activities of biological samples based on performing the global activity analysis on a proteome separated by native electrophoresis. The study of the alteration in peptide-metabolizing enzymatic activity in colorectal tumor specimens led us to the discovery of elevated thimet oligopeptidase activity, which contributed to the faster consumption of immune-stimulating peptide neurotensin.
Collapse
Affiliation(s)
- Yuki Ichihashi
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Etsu Kyo
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hiroyuki Matsuzaki
- Department of Surgical Oncology, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Keisuke Hata
- Department of Surgical Oncology, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Core Research for Evolutional Science and Technology (CREST) Investigator , Japan Agency for Medical Research and Development (AMED) , 1-7-1 Otemachi , Chiyoda-ku , Tokyo 100-0004 , Japan
| |
Collapse
|
21
|
Kuang A, Erlund I, Herder C, Westerhuis JA, Tuomilehto J, Cornelis MC. Targeted proteomic response to coffee consumption. Eur J Nutr 2019; 59:1529-1539. [PMID: 31154491 DOI: 10.1007/s00394-019-02009-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Coffee is widely consumed and implicated in numerous health outcomes but the mechanisms by which coffee contributes to health is unclear. The purpose of this study was to test the effect of coffee drinking on candidate proteins involved in cardiovascular, immuno-oncological and neurological pathways. METHODS We examined fasting serum samples collected from a previously reported single blinded, three-stage clinical trial. Forty-seven habitual coffee consumers refrained from drinking coffee for 1 month, consumed 4 cups of coffee/day in the second month and 8 cups/day in the third month. Samples collected after each coffee stage were analyzed using three multiplex proximity extension assays that, after quality control, measured a total of 247 proteins implicated in cardiovascular, immuno-oncological and neurological pathways and of which 59 were previously linked to coffee exposure. Repeated measures ANOVA was used to test the relationship between coffee treatment and each protein. RESULTS Two neurology-related proteins including carboxypeptidase M (CPM) and neutral ceramidase (N-CDase or ASAH2), significantly increased after coffee intake (P < 0.05 and Q < 0.05). An additional 46 proteins were nominally associated with coffee intake (P < 0.05 and Q > 0.05); 9, 8 and 29 of these proteins related to cardiovascular, immuno-oncological and neurological pathways, respectively, and the levels of 41 increased with coffee intake. CONCLUSIONS CPM and N-CDase levels increased in response to coffee intake. These proteins have not previously been linked to coffee and are thus novel markers of coffee response worthy of further study. CLINICAL TRIAL REGISTRY: http://www.isrctn.com/ISRCTN12547806.
Collapse
Affiliation(s)
- Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Iris Erlund
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johan A Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jaakko Tuomilehto
- Disease Risk Unit, National Institute for Health and Welfare, 00271, Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jidda, 21589, Saudi Arabia
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
22
|
Kuriki Y, Kamiya M, Kubo H, Komatsu T, Ueno T, Tachibana R, Hayashi K, Hanaoka K, Yamashita S, Ishizawa T, Kokudo N, Urano Y. Establishment of Molecular Design Strategy To Obtain Activatable Fluorescent Probes for Carboxypeptidases. J Am Chem Soc 2018; 140:1767-1773. [DOI: 10.1021/jacs.7b11014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Mako Kamiya
- PRESTO (Japan)
Science
and Technology Agency (JST), 4-1-8
Honcho Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hidemasa Kubo
- Division
of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | - Takeaki Ishizawa
- Department
of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Norihiro Kokudo
- Department
of Surgery, National Center for Global Health and Medicine, 1-21-1
Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yasuteru Urano
- CREST (Japan)
Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
23
|
The carboxypeptidase D homolog silver regulates memory formation via insulin pathway in Drosophila. Protein Cell 2018; 7:606-10. [PMID: 27430952 PMCID: PMC4980332 DOI: 10.1007/s13238-016-0291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Kopf PG, Park SK, Herrnreiter A, Krause C, Roques BP, Campbell WB. Obligatory Metabolism of Angiotensin II to Angiotensin III for Zona Glomerulosa Cell-Mediated Relaxations of Bovine Adrenal Cortical Arteries. Endocrinology 2018; 159:238-247. [PMID: 29088382 PMCID: PMC5761603 DOI: 10.1210/en.2017-00759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperaldosteronism is associated with hypertension, cardiac hypertrophy, and congestive heart failure. Steroidogenic factors facilitate aldosterone secretion by increasing adrenal blood flow. Angiotensin (Ang) II decreases adrenal vascular tone through release of zona glomerulosa (ZG) cell-derived vasodilatory eicosanoids. However, ZG cell-mediated relaxation of bovine adrenal cortical arteries to Ang II is not altered by angiotensin type 1 or 2 receptor antagonists. Because traditional Ang II receptors do not mediate these vasorelaxations to Ang II, we investigated the role of Ang II metabolites. Ang III was identified by liquid chromatography-mass spectrometry as the primary ZG cell metabolite of Ang II. Ang III stimulated ZG cell-mediated relaxation of adrenal arteries with greater potency than did Ang II. Furthermore, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by aminopeptidase inhibition, and Ang III-stimulated relaxations persisted. Ang IV had little effect compared with Ang II. Moreover, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by an Ang III antagonist but not by an Ang (1-7) antagonist. In contrast, Ang II and Ang III were equipotent in stimulating aldosterone secretion from ZG cells and were unaffected by aminopeptidase inhibition. Additionally, aspartyl and leucyl aminopeptidases, which convert Ang II to Ang III, are the primary peptidase expressed in ZG cells. This was confirmed by enzyme activity. These data indicate that intra-adrenal metabolism of Ang II to Ang III is required for ZG cell-mediated relaxations of adrenal arteries but not aldosterone secretion. These studies have defined an important role of Ang III in the adrenal gland.
Collapse
MESH Headings
- Abattoirs
- Adrenal Cortex/blood supply
- Adrenal Cortex/drug effects
- Adrenal Cortex/metabolism
- Aldosterone/metabolism
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Angiotensin I/antagonists & inhibitors
- Angiotensin I/metabolism
- Angiotensin II/analogs & derivatives
- Angiotensin II/chemistry
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin III/metabolism
- Animals
- Arterioles/cytology
- Arterioles/drug effects
- Arterioles/metabolism
- Cattle
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- In Vitro Techniques
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Protease Inhibitors/pharmacology
- Vasodilation/drug effects
- Zona Glomerulosa/cytology
- Zona Glomerulosa/drug effects
- Zona Glomerulosa/metabolism
Collapse
Affiliation(s)
- Phillip G. Kopf
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Christian Krause
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bernard P. Roques
- Unité de Technologies Chimiques et Biologiques pour la Santé (U1022 INSERM, UMR8258 CNRS), Université Paris Descartes, 75006 Paris, France
| | - William B. Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
25
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
26
|
Graham TH. Prolylcarboxypeptidase (PrCP) inhibitors and the therapeutic uses thereof: a patent review. Expert Opin Ther Pat 2017; 27:1077-1088. [PMID: 28699813 DOI: 10.1080/13543776.2017.1349104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Prolylcarboxypeptidase (PrCP) is a serine protease that produces or degrades signaling proteins in several important pathways including the renin-angiotensin system (RAS), kallikrein-kinin system (KKS) and pro-opiomelanocortin (POMC) system. PrCP has the potential to be a therapeutic target for cardiovascular, inflammatory and metabolic diseases. Numerous classes of PrCP inhibitors have been developed by rational drug design and from high-throughput screening hits. These inhibitors have been tested in mouse models to assess their potential as new therapeutics. Areas Covered: This review covers the relevant studies that support PrCP as a target for drug discovery. All the significant patent applications and primary literature concerning the development of PrCP inhibitors are discussed. Expert Opinion: The pathways where PrCP is known to operate are complex and many aspects remain to be characterized. Many potent inhibitors of PrCP have been tested in vivo. The variable results obtained from in vivo studies with PrCP inhibitors suggest that additional understanding of the biochemistry and the required therapeutic inhibitor levels is necessary. Additional fundamental research into the signaling pathways is likely required before the true therapeutic potential of PrCP inhibition will be realized.
Collapse
Affiliation(s)
- Thomas H Graham
- a Merck Research Laboratories , Merck & Co., Inc ., Kenilworth , NJ , USA
| |
Collapse
|
27
|
Fine-tune regulation of carboxypeptidase N1 controls vascular patterning during zebrafish development. Sci Rep 2017; 7:1852. [PMID: 28500283 PMCID: PMC5431830 DOI: 10.1038/s41598-017-01976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
Vascular development is regulated by complicated signals and molecules in vertebrates. In this study, we characterized a novel function of carboxypeptidase N1 (Cpn1) in the vasculature. We show that cpn1 mRNA is expressed in developing vessels. The knockdown of cpn1 by morpholino injection impairs the growth of intersegmental vessels (ISV) and caudal vein plexus (CVP), suggesting the role of cpn1 in vascular development. We showed that vascular defects are not caused by cell death but are due to the impairment of migration and proliferation. Consistent with vascular growth defects, loss of cpn1 affects the expression of the vascular markers flt4, mrc1, flk, stabilin, and ephrinb2. Furthermore, the overexpression of cpn1 impaired the growth of ISV and CVP, but the remodeling expression of vascular markers was different from the knockdown of cpn1, indicating the differential regulation mechanisms in cpn1-overexpressing embryos. We examine the interaction between cpn1 and multiple signals and observed that cpn1 is regulated by Notch/VEGF signals for ISV growth and likely regulates BMP signals for CVP patterning. In conclusion, we demonstrate that cpn1 has a critical role in the vascular development of zebrafish. We also reveal a fine-tune regulation of cpn1 that controls vascular patterning mediated by multiple signals.
Collapse
|
28
|
Prolactin/androgen-inducible carboxypeptidase-D increases with nitrotyrosine and Ki67 for breast cancer progression in vivo, and upregulates progression markers VEGF-C and Runx2 in vitro. Breast Cancer Res Treat 2017; 164:27-40. [PMID: 28364216 DOI: 10.1007/s10549-017-4223-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Carboxypeptidase-D (CPD) cleaves C-terminal arginine (Arg) to produce nitric oxide (NO). Upregulation of CPD and NO by 17β-estradiol, prolactin (PRL), and androgen increases survival of human breast cancer (BCa) cells in vitro. To demonstrate similar events in vivo, CPD, nitrotyrosine (NT, hallmark of NO action), androgen receptor (AR), prolactin receptor (PRLR), and phospho-Stat5a (for activated PRLR) levels were evaluated in benign and malignant human breast tissues, and correlated with cell proliferation (Ki67) and BCa progression (Cullin-3) biomarkers. METHODS Paraffin-embedded breast tissues were analyzed by immunohistochemistry (IHC). BCa progression markers in human MCF-7 and T47D BCa cell lines treated with NO donor SIN-1 or PRL, ±CPD inhibitors were analyzed by RT-qPCR and immunoblotting. RESULTS IHC showed progressive increases in CPD, NT, Ki67, and Cullin-3 from low levels in benign tissues to high levels in ductal carcinoma in situ, low-grade, high-grade, and triple-negative BCa. CPD and NT staining were closely associated, implicating CPD in NO production. Phospho-Stat5a increased significantly from benign to high-grade BCa and was mostly nuclear. AR and PRLR were abundant in benign breast and BCa, including triple-negative tumors. SIN-1 and PRL increased VEGF-C and Runx2, but not Cullin-3, in BCa cell lines. PRL induction of VEGF-C and Runx2 was inhibited partly by CPD inhibitors, implicating NO, produced by PRL-regulated CPD, in BCa progression. CONCLUSIONS The CPD-Arg-NO pathway contributes to BCa progression in vitro and in vivo. PRL/androgen activation of the pathway support combined AR and PRLR blockade as an additional therapy for BCa.
Collapse
|
29
|
Abstract
Plasma prekallikrein is the liver-derived precursor of the trypsin-like serine protease plasma kallikrein, and circulates in plasma bound to high molecular weight kininogen. Plasma prekallikrein is activated to plasma kallikrein by activated factor XII or prolylcarboxypeptidase. Plasma kallikrein regulates the activity of multiple proteolytic cascades in the cardiovascular system such as the intrinsic pathway of coagulation, the kallikrein-kinin system, the fibrinolytic system, the renin-angiotensin system, and the complement pathways. As such, plasma kallikrein plays a central role in the pathogenesis of thrombosis, inflammation, and blood pressure regulation. Under physiological conditions, plasma kallikrein serves as a cardioprotective enzyme. However, its increased plasma concentration or hyperactivity perpetuates cardiovascular disease (CVD). In this article, we review the biochemistry and cell biology of plasma kallikrein and summarize data from preclinical and clinical studies that have established important functions of this serine protease in CVD states. Finally, we propose plasma kallikrein inhibitors as a novel class of drugs with potential therapeutic applications in the treatment of CVDs.
Collapse
|
30
|
Mitchelson FG, Mondia JP, Hughes EH. Effect of copper variation in yeast hydrolysate on C-terminal lysine levels of a monoclonal antibody. Biotechnol Prog 2017; 33:463-468. [DOI: 10.1002/btpr.2411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/09/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Erik H. Hughes
- Biogen Inc; 5000 Davis Drive, Research Triangle Park NC 27709
| |
Collapse
|
31
|
Mice with Catalytically Inactive Cathepsin A Display Neurobehavioral Alterations. Behav Neurol 2017; 2017:4261873. [PMID: 28133419 PMCID: PMC5241486 DOI: 10.1155/2017/4261873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
The lysosomal carboxypeptidase A, Cathepsin A (CathA), is a serine protease with two distinct functions. CathA protects β-galactosidase and sialidase Neu1 against proteolytic degradation by forming a multienzyme complex and activates sialidase Neu1. CathA deficiency causes the lysosomal storage disease, galactosialidosis. These patients present with a broad range of clinical phenotypes, including growth retardation, and neurological deterioration along with the accumulation of the vasoactive peptide, endothelin-1, in the brain. Previous in vitro studies have shown that CathA has specific activity against vasoactive peptides and neuropeptides, including endothelin-1 and oxytocin. A mutant mouse with catalytically inactive CathA enzyme (CathAS190A) shows increased levels of endothelin-1. In the present study, we elucidated the involvement of CathA in learning and long-term memory in 3-, 6-, and 12-month-old mice. Hippocampal endothelin-1 and oxytocin accumulated in CathAS190A mice, which showed learning impairments as well as long-term and spatial memory deficits compared with wild-type littermates, suggesting that CathA plays a significant role in learning and in memory consolidation through its regulatory role in vasoactive peptide processing.
Collapse
|
32
|
Timur ZK, Akyildiz Demir S, Seyrantepe V. Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides. Front Mol Biosci 2016; 3:68. [PMID: 27826550 PMCID: PMC5078471 DOI: 10.3389/fmolb.2016.00068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSAS190A . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum from CTSAS190A mouse model at 3- and 6-months of age. Our results suggest CTSA selectively contributes to processing of bioactive peptides in different tissues from CTSAS190A mice compared to age matched WT mice.
Collapse
Affiliation(s)
- Zehra Kevser Timur
- Izmir Institute of Technology, Molecular Biology and Genetics Izmir, Turkey
| | | | - Volkan Seyrantepe
- Izmir Institute of Technology, Molecular Biology and Genetics Izmir, Turkey
| |
Collapse
|
33
|
Genome-Wide Identification and Characterization of Carboxypeptidase Genes in Silkworm (Bombyx mori). Int J Mol Sci 2016; 17:ijms17081203. [PMID: 27483237 PMCID: PMC5000601 DOI: 10.3390/ijms17081203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022] Open
Abstract
The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1-BmMCP34) and 14 serine carboxypeptidases (BmSCP1-BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases.
Collapse
|
34
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Too CKL. Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate 2015. [PMID: 26202060 DOI: 10.1002/pros.23054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for conversion to nitric oxide (NO) by nitric oxide synthase (NOS). Prolactin (PRL) and androgens stimulate CPD gene transcription and expression, which increases intracellular production of NO to promote viability of prostate cancer (PCa) cells in vitro. The current study evaluated whether hormonal upregulation of CPD and NO promote PCa cell viabilty in vivo, by correlating changes in expression of CPD and nitrotyrosine residues (products of NO action) with proliferation marker Ki67 and associated proteins during PCa development and progression. METHODS Fresh prostate tissues, obtained from 40 men with benign prostatic hyperplasia (BPH) or PCa, were flash-frozen at the time of surgery and used for RT-qPCR analysis of CPD, androgen receptor (AR), PRL receptor (PRLR), eNOS, and Ki67 levels. Archival paraffin-embedded tissues from 113 men with BPH or PCa were used for immunohistochemical (IHC) analysis of CPD, nitrotyrosines, phospho-Stat5 (for activated PRLR), AR, eNOS/iNOS, and Ki67. RESULTS RT-qPCR and IHC analyses showed strong AR and PRLR expression in benign and malignant prostates. CPD mRNA levels increased ∼threefold in PCa compared to BPH, which corresponded to a twofold increase in Ki67 mRNA levels. IHC analysis showed a progressive increase in CPD from 11.4 ± 2.1% in benign to 21.8 ± 3.2% in low-grade (P = 0.007), 40.7 ± 4.0% in high-grade (P < 0.0001) and 50.0 ± 9.5% in castration-recurrent PCa (P < 0.0001). Immunostaining for nitrotyrosines and Ki67 mirrored these increases during PCa progression. CPD, nitrotyrosines, and Ki67 tended to co-localize, as did phospho-Stat5. CONCLUSIONS CPD, nitrotyrosine, and Ki67 levels were higher in PCa than in benign and tended to co-localize, along with phospho-Stat5. The strong correlation in expression of these proteins in benign and malignant prostate tissues, combined with abundant AR and PRLR, supports in vitro evidence that the CPD-Arg-NO pathway is involved in the regulation of PCa cell proliferation. It further highlights a role for PRL in the development and progression of PCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Merrimen
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David G Bell
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ricardo Rendon
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Catherine K L Too
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
35
|
Rego J, Moura A, Nouwens A, McGowan M, Boe-Hansen G. Seminal plasma protein profiles of ejaculates obtained by internal artificial vagina and electroejaculation in Brahman bulls. Anim Reprod Sci 2015; 160:126-37. [DOI: 10.1016/j.anireprosci.2015.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
|
36
|
Mammalian cell-produced therapeutic proteins: heterogeneity derived from protein degradation. Curr Opin Biotechnol 2014; 30:198-204. [DOI: 10.1016/j.copbio.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/22/2014] [Accepted: 07/27/2014] [Indexed: 12/24/2022]
|
37
|
Prolyl carboxypeptidase activity decline correlates with severity and short-term outcome in acute ischemic stroke. Neurochem Res 2014; 40:81-8. [PMID: 25370794 DOI: 10.1007/s11064-014-1468-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022]
Abstract
Prolyl carboxypeptidase (PRCP) is an enzyme associated with cerebrovascular risk factors such as hypertension, diabetes mellitus, obesity and hyperlipidemia. We aim to evaluate the relation between serum PRCP activity and severity, evolution and outcome of acute ischemic stroke. We used a specific RP-HPLC activity assay to measure PRCP activity in serum of 50 stroke patients at admission, and at 24 h, 72 h and 7 days after stroke onset to assess correlations with stroke severity based on the National Institutes of Health Stroke scale score (NIHSS), infarct volume on brain MRI scan, stroke outcome based on the modified Rankin scale (mRS) and mortality at 3 months after stroke. The average PRCP activity in serum decreased significantly the first 24 h after stroke onset and returned to baseline values at day 7. High NIHSS scores and infarct volumes at admission were related with a more pronounced decrease of PRCP in the first 24 h after stroke (ΔPRCP24, r = 0.31, P < 0.05; r = 0.30, P < 0.05). In addition, patients who displayed a more pronounced decrease in PRCP levels during the first 24 h after stroke were more likely to be institutionalized upon discharge (n = 21) (ΔPRCP24 ± SD, 0.05 ± 0.10 U/L vs. 0.17 ± 0.14 U/L, P = 0.001). The decrease in PRCP levels in the first 24 h after stroke onset is associated with stroke severity and an unfavourable short-term stroke outcome.
Collapse
|
38
|
Zhang X, Brovkovych V, Zhang Y, Tan F, Skidgel RA. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling. Cell Signal 2014; 27:90-103. [PMID: 25289859 DOI: 10.1016/j.cellsig.2014.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Viktor Brovkovych
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Yongkang Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Fulong Tan
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Randal A Skidgel
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States; Center for Lung and Vascular Biology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States.
| |
Collapse
|
39
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Goffin V, Too CKL. Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting. Prostate 2014; 74:732-42. [PMID: 24615730 DOI: 10.1002/pros.22793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for nitric oxide (NO) production. CPD and NO levels are upregulated by testosterone (T) and prolactin (PRL) to promote survival of prostate cancer (pCa) cells. This study evaluated CPD immunostaining and T/PRL regulation of CPD and NO levels in benign and malignant prostate tissues/cells to determine the role of CPD in pCa. METHODS Immunohistochemistry (IHC) and tissue microarrays (TMA) were used to determine CPD immunostaining in prostate specimens. QPCR and immunoblotting were used to quantify CPD mRNA/protein expression in prostate cells. NO production was measured using 4,5-diaminofluorescein diacetate assay. RESULTS CPD staining increased from 8.9 ± 3.8% (Mean ± SEM, n = 15) of benign epithelial cell area to 30.9 ± 2.9% (n = 30) of tumor cell area in one set of TMAs (P = 0.0008) and from 5.9 ± 0.9% (n = 45) of benign epithelial cell area to 18.8 ± 1.9% (n = 55) of tumor area in another (P < 0.0001). IHC of prostate tissues (≥50 mm(2)) confirmed increased CPD staining, from 13.1 ± 2.9% in benign (n = 16) to 29.5 ± 4.4% in pCa (n = 31, P = 0.0095). T and/or PRL increased CPD expression in several pCa but not benign cell lines. T and PRL acted synergistically to increase NO production, which was abolished only when receptor antagonists flutamide and Δ1-9-G129R-hPRL were used together. CONCLUSIONS CPD immunostaining and T/PRL-stimulated CPD expression were higher in pCa than benign tissues/cells. Elevated CPD increased NO production, which was abolished when both AR and PRLR were inhibited. Our study implicates a critical role for the T/PRL-stimulated CPD-Arg-NO pathway in pCa progression, and suggests that AR+PRLR inhibition is a more effective treatment for pCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Departments of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors. Bioorg Med Chem Lett 2014; 24:1657-60. [PMID: 24636945 DOI: 10.1016/j.bmcl.2014.02.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 01/28/2023]
Abstract
Bioisosteres are integral components of modern pharmaceutical research that allow structural optimization to maximize in vivo efficacy and minimize adverse effects by selectively modifying pharmacodynamic, pharmacokinetic and physicochemical properties. A recent medicinal chemistry campaign focused on identifying small molecule inhibitors of prolylcarboxypeptidase (PrCP) initiated an investigation into the use of pyrazoles as bioisosteres for amides. The results indicate that pyrazoles are suitable bioisosteric replacements of amide functional groups. The study is an example of managing bioisosteric replacement by incorporating subsequent structural modifications to maintain potency against the selected target. A heuristic model for an embedded pharmacophore is also described.
Collapse
|
41
|
Koirala S, Thomas LN, Too CKL. Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells. Mol Endocrinol 2014; 28:331-43. [PMID: 24433040 DOI: 10.1210/me.2013-1202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plasma membrane-bound carboxypeptidase-D (CPD) cleaves C-terminal arginine from extracellular substrates. In the cell, arginine is converted to nitric oxide (NO). We have reported that up-regulation of CPD mRNA/protein levels by 17β-estradiol and prolactin (PRL) in breast cancer cells, and by testosterone in prostate cancer cells, increased NO production and cell survival. The CPD promoter contains a consensus γ-interferon-activated sequence (GAS) and 3 putative androgen response elements (ARE.1, ARE.2, ARE.3) that could potentially bind PRL-activated transcription factor Stat5 (signal transducer and activator of transcription 5) and the liganded androgen receptor (AR), respectively. This study showed that synthetic androgen R1881 and PRL elevated CPD mRNA/protein levels in human MCF-7 and T47D breast cancer cells in a time-/dose-dependent manner. PRL/R1881-elevated CPD expression was blocked by actinomycin-D, and a CPD promoter construct containing these GAS and AREs was stimulated by PRL or R1881, indicating transcriptional regulation by both hormones. Luciferase reporter assays showed that GAS and the adjacent ARE.1 only were active. Mutation of GAS in the ΔGAS-CPD construct (ARE.1 intact) abolished CPD promoter activity in response to PRL and, surprisingly, to R1881 as well. ΔGAS-CPD promoter activity was restored by PRL+R1881 in combination, and enhanced by ectopic Stat5, but abolished by Stat5 gene knockdown. Chromatin immunoprecipitation analysis confirmed binding of activated Stat5 and liganded AR to GAS and ARE.1, respectively. Activated Stat5 also induced binding of unliganded AR to ARE.1, and liganded AR induced binding of unactivated Stat5 to GAS. In summary, PRL and R1881, acting through Stat5 and AR, act cooperatively to stimulate CPD gene transcription in breast cancer cells.
Collapse
Affiliation(s)
- Samir Koirala
- Department of Biochemistry & Molecular Biology (S.K., L.N.T., C.K.L.T.) and Department of Obstetrics & Gynaecology (C.K.L.T.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | |
Collapse
|
42
|
Zhang X, Tan F, Skidgel RA. Carboxypeptidase M is a positive allosteric modulator of the kinin B1 receptor. J Biol Chem 2013; 288:33226-40. [PMID: 24108126 DOI: 10.1074/jbc.m113.520791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand binding to extracellular domains of G protein-coupled receptors can result in novel and nuanced allosteric effects on receptor signaling. We previously showed that the protein-protein interaction of carboxypeptidase M (CPM) and kinin B1 receptor (B1R) enhances B1R signaling in two ways; 1) kinin binding to CPM causes a conformational activation of the B1R, and 2) CPM-generated des-Arg-kinin agonist is efficiently delivered to the B1R. Here, we show CPM is also a positive allosteric modulator of B1R signaling to its agonist, des-Arg(10)-kallidin (DAKD). In HEK cells stably transfected with B1R, co-expression of CPM enhanced DAKD-stimulated increases in intracellular Ca(2+) or phosphoinositide turnover by a leftward shift of the dose-response curve without changing the maximum. CPM increased B1R affinity for DAKD by ∼5-fold but had no effect on basal B1R-dependent phosphoinositide turnover. Soluble, recombinant CPM bound to HEK cells expressing B1Rs without stimulating receptor signaling. CPM positive allosteric action was independent of enzyme activity but depended on interaction of its C-terminal domain with the B1R extracellular loop 2. Disruption of the CPM/B1R interaction or knockdown of CPM in cytokine-treated primary human endothelial cells inhibited the allosteric enhancement of CPM on B1R DAKD binding or ERK1/2 activation. CPM also enhanced the DAKD-induced B1R conformational change as detected by increased intramolecular fluorescence or bioluminescence resonance energy transfer. Thus, CPM binding to extracellular loop 2 of the B1R results in positive allosteric modulation of B1R signaling, and disruption of this interaction could provide a novel therapeutic approach to reduce pathological B1R signaling.
Collapse
|
43
|
Debenham JS, Graham TH, Verras A, Zhang Y, Clements MJ, Kuethe JT, Madsen-Duggan C, Liu W, Bhatt UR, Chen D, Chen Q, Garcia-Calvo M, Geissler WM, He H, Li X, Lisnock J, Shen Z, Tong X, Tung EC, Wiltsie J, Xu S, Hale JJ, Pinto S, Shen DM. Discovery and optimization of orally active cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors. Bioorg Med Chem Lett 2013; 23:6228-33. [PMID: 24157366 DOI: 10.1016/j.bmcl.2013.09.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The synthesis, SAR, binding affinities and pharmacokinetic profiles are described for a series of cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors discovered by high throughput screening. Compounds show high levels of ex vivo target engagement in mouse plasma 20 h post oral dose.
Collapse
Affiliation(s)
- John S Debenham
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kehoe K, Verkerk R, Sim Y, Waumans Y, Van der Veken P, Lambeir AM, De Meester I. Validation of a specific prolylcarboxypeptidase activity assay and its suitability for plasma and serum measurements. Anal Biochem 2013; 443:232-9. [PMID: 24036038 DOI: 10.1016/j.ab.2013.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 01/17/2023]
Abstract
Prolylcarboxypeptidase (PRCP, EC 3.4.16.2), a lysosomal carboxypeptidase, was discovered 45 years ago. However, research has been hampered by a lack of well-validated assays that are needed to measure low activities in biological samples. Two reversed-phase high-performance liquid chromatography (RP-HPLC) methods for quantifying PRCP activity in crude homogenates and plasma samples were optimized and validated. PRCP activity was determined by measuring the hydrolysis of N-benzyloxycarbonyl-l-proline (Z-Pro)-Phe. The enzymatically formed Z-Pro and Phe were measured independently under different HPLC conditions. The in-house methods showed good precision, linearity, accuracy, and specificity. Based on Michaelis-Menten constants, Z-Pro-Phe was chosen over Z-Pro-Ala as the substrate of preference. Cross-reactivity studies with dipeptidyl peptidases (DPPs) 2, 4, and 9 and prolyl oligopeptidase (PREP) confirmed the specificity of the PRCP activity assay. The average PRCP activity in plasma and serum of 32 healthy individuals was found to be 0.65 ± 0.02 and 0.72 ± 0.03 U/L, respectively. Both methods can be used to measure PRCP activity specifically in different biological samples and are well suited to evaluate PRCP inhibitors. These well-validated methods are valuable tools for studying PRCP's role in cardiovascular diseases, stroke, inflammation, and metabolic syndrome.
Collapse
Affiliation(s)
- Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The renin–angiotensin system (RAS) has recently been extended by the addition of a novel axis consisting of the angiotensin-converting enzyme 2 (ACE2), the heptapeptide angiotensin (1–7) (Ang-(1–7)), and the G protein-coupled receptor Mas. ACE2 converts the vasoconstrictive and pro-oxidative peptide angiotensin II (Ang II) into Ang-(1–7) which exerts vasodilatory and antioxidative effects via its receptor Mas. Thereby, ACE2 regulates the local actions of the RAS in cardiovascular tissues and the ACE2/Ang-(1–7)/Mas axis exerts protective actions in hypertension, diabetes, and other cardiovascular disorders. Consequently, this novel RAS axis represents a promising therapeutic target for cardiovascular and metabolic diseases.
Collapse
|
46
|
Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013; 18:279-96. [PMID: 23672534 DOI: 10.3109/1354750x.2013.787544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Elena Kashuba
- Postgraduate Medical Institute, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
47
|
Inhibition of CatA: an emerging strategy for the treatment of heart failure. Future Med Chem 2013; 5:399-409. [DOI: 10.4155/fmc.13.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The lysosomal serine carboxypeptidase CatA has a very important and well-known structural function as well as a, so far, less explored catalytic function. A complete loss of the CatA protein results in the lysosomal storage disease galactosialidosis caused by intralysosomal degradation of β-galactosidase and neuraminidase 1. However, mice with a catalytically inactive CatA enzyme show no signs of this disease. This observation establishes a clear distinction between structural and catalytic functions of the CatA enzyme. Recently, several classes of orally bioavailable synthetic inhibitors of CatA have been identified. Pharmacological studies in rodents indicate a remarkable influence of CatA inhibition on cardiovascular disease progression and identify CatA as a promising novel target for the treatment of heart failure.
Collapse
|
48
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Sahin AO, Buitenhuis M. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adh Migr 2012; 6:39-48. [PMID: 22647939 DOI: 10.4161/cam.18975] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activity of various molecules including chemoattractants, selectins and integrins. This review will discuss recent studies that have extended our understanding of the molecular mechanisms underlying adhesion, migration and bone marrow homing of hematopoietic stem cells.
Collapse
Affiliation(s)
- Aysegul Ocal Sahin
- Department of Hematology and Erasmus MC Stem Cell Institute for Regenerative Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
50
|
Zhang X, Lowry JL, Brovkovych V, Skidgel RA. Characterization of dual agonists for kinin B1 and B2 receptors and their biased activation of B2 receptors. Cell Signal 2012; 24:1619-31. [PMID: 22522052 DOI: 10.1016/j.cellsig.2012.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/14/2023]
Abstract
Kinin B1 and B2 receptors (kB1R and kB2R) play important roles in many physiological and pathological processes. In some cases, kB1R or kB2R activation can have overlapping or complementary beneficial effects, thus an activator of both receptors might be advantageous. We found that replacement of the C-terminal Arg in the natural kB2R activators bradykinin (BK) or kallidin (KD) with Lys (K(9)-BK or K(10)-KD) resulted in agonists that effectively stimulate the downstream signaling of both the kB1R and kB2R as measured by increased inositol turnover, intracellular calcium, ERK1/2 phosphorylation, arachidonic acid release and NO production. However, K(9)-BK and K(10)-KD displayed some characteristics of biased agonism for kB2Rs as indicated by the rapid kinetics of ERK1/2 phosphorylation induced by K(9)-BK or K(10)-KD compared with the prolonged response mediated by BK or KD. In contrast, kinetics of ERK phosphorylation stimulated by K(10)-KD activation of the kB1R was the same as that induced by known kB1R agonist des-Arg(10)-KD. Furthermore, the endocytosis of kB2Rs mediated by K(9)-BK and K(10)-KD was remarkably less than that induced by BK and KD respectively. K(10)-KD stimulated kB1R and kB2R-dependent calcium responses and ERK1/2 phosphorylation in bovine endothelial cells. In cytokine-treated human endothelial cells, K(10)-KD stimulated ERK1/2 phosphorylation and a transient peak of NO production that was primarily kB2R-dependent. K(10)-KD also stimulated prolonged NO production that was both kB1R and kB2R-dependent. These data provide the first examples of dual agonists of kB1R and kB2R, and a biased agonist of kB2R and may provide useful clues for developing dual modulators of kB1Rs and kB2Rs for potential therapeutic use.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, United States
| | | | | | | |
Collapse
|