1
|
Montasser A, Dakrory AE, Ibrahim MIM, El Zayyat E, Tallima H, El Ridi R. Differential murine responses to Schistosoma mansoni eggs in the liver and small intestine lead to downmodulation of hepatic but not intestinal periovular granulomas. Infect Immun 2024; 92:e0036224. [PMID: 39560403 PMCID: PMC11629614 DOI: 10.1128/iai.00362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
To control schistosomiasis mansoni, it is important to attempt preventing the worms' egg-induced pathology in the liver and limiting pathogen transmission following egg exit from the intestines to the exterior. Therefore, the present study aimed to clarify the reasons behind the decades-long riddle of periovular granulomas downmodulation in the liver, but not the small intestine, with the progression of murine schistosomiasis mansoni. Outbred female CD-1 mice were percutaneously exposed to 15 Schistosoma mansoni cercariae. The liver and small intestine were collected from mice harboring a minimum of a worm couple at 8, 12, 16, and 20 weeks post-infection, assessed for egg counts/g and histopathological changes, and used to prepare Triton X-100 extracts. Content of cytokines, saturated and unsaturated fatty acids, triglycerides, cholesterol, reactive oxygen species, and uric acid per mg tissue extract proteins were evaluated using capture enzyme-linked immunosorbent assays, gas chromatography-flame ionization detector, and standard commercially available reagents, respectively. Examination of hematoxylin-eosin-stained tissue sections confirmed the decrease in size and changes in cellular composition of periovular granulomas in the liver but not the small intestine, associated with wide differences in released cytokines types and amounts, and content of the bioactive lipids, arachidonic and docosahexaenoic acids, reactive oxygen species, and uric acid. The results together disclosed that the downmodulation of hepatic, but not the small intestine, circumoval granulomas with the progression of murine S. mansoni naturally results from site- and tissue- specific immunological and biochemical responses to the egg-derived antigens and molecules and suggested that the intestines appear to harbor immune-privileged sites.
Collapse
Affiliation(s)
- Ashgan Montasser
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmad E. Dakrory
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Emad El Zayyat
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hatem Tallima
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuza Nazmul
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jinggang Lan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Michiko K Oyoshi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Miranda-Waldetario MC, Curotto de Lafaille MA. Oral tolerance to dietary antigens and Foxp3 + regulatory T cells. Immunol Rev 2024; 326:8-16. [PMID: 39054615 PMCID: PMC11436310 DOI: 10.1111/imr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Collapse
Affiliation(s)
- Mariana C.G. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, and Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Skvorak K, Mitchell V, Teadt L, Franklin KA, Lee HO, Kruse N, Huitt-Roehl C, Hang J, Du F, Galanie S, Guan S, Aijaz H, Zhang N, Rajkovic G, Kruger WD, Ismaili MHA, Huisman G, McCluskie K, Silverman AP. An orally administered enzyme therapeutic for homocystinuria that suppresses homocysteine by metabolizing methionine in the gastrointestinal tract. Mol Genet Metab 2023; 139:107653. [PMID: 37463544 DOI: 10.1016/j.ymgme.2023.107653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.
Collapse
Affiliation(s)
- Kristen Skvorak
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Leann Teadt
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Hyung-Ok Lee
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Julie Hang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Faye Du
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Steven Guan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hera Aijaz
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Nianliu Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | - Gjalt Huisman
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | | |
Collapse
|
6
|
Baafi K, March JC. Harnessing gut cells for functional insulin production: Strategies and challenges. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:7-13. [PMID: 39416909 PMCID: PMC11446352 DOI: 10.1016/j.biotno.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 10/19/2024]
Abstract
Reprogrammed glucose-responsive, insulin + cells ("β-like") exhibit the potential to bypass the hurdles of exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regulation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprogramming either mature or progenitor gut cells into surrogate "β-like" cells. However, there are predominant challenges impeding the use of gut "β-like" cells as clinical replacements for insulin therapy. Reprogrammed "β-like" gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose - potentiated insulin secretion. Despite the exceptionally low conversion rate of gut cells into surrogate "β-like" cells, the therapeutic quantity of gut "β-like" cells needed for normoglycemia has not even been established. There is also a lingering uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the strategies, challenges, and opportunities in the generation of functional, reprogrammed "β-like" cells.
Collapse
Affiliation(s)
- Kelvin Baafi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
7
|
Kitamoto T, Lee YK, Sultana N, Watanabe H, McKimpson WM, Du W, Fan J, Diaz B, Lin HV, Leibel RL, Belvedere S, Accili D, Accili D. Chemical induction of gut β-like-cells by combined FoxO1/Notch inhibition as a glucose-lowering treatment for diabetes. Mol Metab 2022; 66:101624. [PMID: 36341906 PMCID: PMC9664469 DOI: 10.1016/j.molmet.2022.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive β-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate β-like gut cells. METHODS We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced β-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced β-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive β-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION These results provide proof of principle of gut cell conversion into β-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Chiba University Graduate School of Medicine, Chiba, Japan, 2608670.
| | | | - Nishat Sultana
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hitoshi Watanabe
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wendy M McKimpson
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Jason Fan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, 33146, USA
| | - Bryan Diaz
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hua V Lin
- BioFront Therapeutics, Beijing, China
| | - Rudolph L Leibel
- Department of Pediatrics Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Domenico Accili
- Department of Medicine and Columbia University, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
8
|
Moriki D, Francino MP, Koumpagioti D, Boutopoulou B, Rufián-Henares JÁ, Priftis KN, Douros K. The Role of the Gut Microbiome in Cow's Milk Allergy: A Clinical Approach. Nutrients 2022; 14:4537. [PMID: 36364799 PMCID: PMC9656688 DOI: 10.3390/nu14214537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Cow's milk allergy (CMA) is the most prevalent food allergy (FA) in infancy and early childhood and can be present with various clinical phenotypes. The significant increase in FA rates recorded in recent decades has been associated with environmental and lifestyle changes that limit microbial exposure in early life and induce changes in gut microbiome composition. Gut microbiome is a diverse community of microbes that colonize the gastrointestinal tract (GIT) and perform beneficial functions for the host. This complex ecosystem interacts with the immune system and has a pivotal role in the development of oral tolerance to food antigens. Emerging evidence indicates that alterations of the gut microbiome (dysbiosis) in early life cause immune dysregulation and render the host susceptible to immune-mediated diseases later in life. Therefore, the colonization of the gut by "healthy" microbes that occurs in the first years of life determines the lifelong health of the host. Here, we present current data on the possible role of the gut microbiome in the development of CMA. Furthermore, we discuss how gut microbiome modification might be a potential strategy for CMA prevention and treatment.
Collapse
Affiliation(s)
- Dafni Moriki
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28001 Madrid, Spain
| | - Despoina Koumpagioti
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Barbara Boutopoulou
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Kostas N. Priftis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Douros
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
9
|
Modesto A, Cameron NR, Varghese C, Peters N, Stokes B, Phillips A, Bissett I, O'Grady G. Meta-Analysis of the Composition of Human Intestinal Gases. Dig Dis Sci 2022; 67:3842-3859. [PMID: 34623578 DOI: 10.1007/s10620-021-07254-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/13/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Understanding intestinal gases volume and composition may contribute to diagnosing digestive diseases and the microbiome's status. This meta-analysis aimed to define the composition of human intestinal gases and changes associated with diet. METHODS Studies were identified by systematic research of the MEDLINE(Ovid), Scopus, and Cochrane databases. Studies that measured the concentration of intestinal gases in healthy adult humans were retrieved. The JBI critical appraisal tool was used to evaluate the risk of bias. The primary outcomes analysed were the concentration of the most prevalent colonic gases. Participants were divided into groups according to dietary fibre content. RESULTS Eleven studies were included. The following gases were identified in similar concentrations across all studies (mean ± standard deviation): nitrogen (65.1 ± 20.89%), oxygen (2.3 ± 0.98%), carbon dioxide (9.9 ± 1.6%), hydrogen (2.9 ± 0.7%), and methane (14.4 ± 3.7%). Differences according to the dietary fibre were observed, with a positive correlation between fibre and volume of gas produced, particularly in fermented gases (carbon dioxide, hydrogen, and methane). DISCUSSION The meta-analysis has found defined concentrations of the five most common gases present in human colonic gas. Limitations included heterogenic methodologies, a low number of participants, and few recent studies. These findings may be helpful in diagnostic applications where colonic gas volume and composition are crucial factors, including functional disorders, microbiome analyses, and bowel perforation diagnostics.
Collapse
Affiliation(s)
- Andre Modesto
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Nelle-Rose Cameron
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Chris Varghese
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Nicolas Peters
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
| | - Bruce Stokes
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
| | - Anthony Phillips
- Faculty of Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Ian Bissett
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Greg O'Grady
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand. .,Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
10
|
Li L, Ma J, Hua X, Zhou Y, Qiu Y, Zhu Z, Zheng Y, Xie Q, Liang Z, Xu J. Altered Intra- and Inter-Network Functional Connectivity in Patients With Crohn’s Disease: An Independent Component Analysis-Based Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:855470. [PMID: 35310085 PMCID: PMC8926075 DOI: 10.3389/fnins.2022.855470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMany studies have reported changes in the structure and function of several brain areas in patients with Crohn’s disease (CD). However, little is known about whether the possible functional connectivity of resting-state networks (RSNs) is altered in CD patients.PurposeAim to investigate the intra- and inter-network alterations between related RSNs in patients with CD and the potential relationships between altered neuroimaging and CD clinical indices.Materials and MethodsIn this study, 20 CD patients and 22 age- and sex-matched healthy controls were included. All participants underwent functional magnetic resonance imaging examination. We used independent component analysis (ICA) to explore the changes in RSNs and evaluated functional connectivity between different RSNs using functional network connectivity (FNC) analysis, and Pearson correlation analysis was performed between altered intra- and inter-network functional connectivity and CD clinical index.ResultsSix CD-related RSNs were identified via ICA, namely the high visual, prime visual, language, dorsal default mode, posterior insula, and precuneus networks. Compared to healthy controls, patients with CD showed significant changes in prime visual and language networks. Additionally, the functional connectivity (FC) values of the left calcarine within the prime visual network were negatively correlated with CD duration. The inter-alterations showed that a significantly increased FNC existed between the language and dorsal default mode networks.ConclusionThe results showed CD-related changes in brain functional networks. This evidence provides more insights into the pathophysiological mechanisms of brain plasticity in CD.
Collapse
Affiliation(s)
- Lu Li
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuyun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- *Correspondence: Zonghui Liang,
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jianguang Xu,
| |
Collapse
|
11
|
Connell SJ, Jabbari A. The current state of knowledge of the immune ecosystem in alopecia areata. Autoimmun Rev 2022; 21:103061. [PMID: 35151885 PMCID: PMC9018517 DOI: 10.1016/j.autrev.2022.103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that affects approximately 2% of the general population. Patients with AA most commonly present with one or more patches of hair loss on the scalp in defined circular areas. A fraction of patients progress to more severe forms of the disease, in some cases with involvement of all body surfaces. The healthy anagen stage hair follicle is considered an immune privileged site, described as an environment that suppresses inflammatory immune responses. However, in AA, this immune privileged state collapses and marks the hair follicle as a target for the immune system, resulting in peri- and intrafollicular infiltration by lymphocytes. The complexity of the inflammatory ecosystem of the immune response to the hair follicle, and the relationships between the cellular and soluble participants, in AA remains incompletely understood. Many studies have demonstrated the presence of various immune cells around diseased hair follicles; however, often little is known about their respective contributions to AA pathogenesis. Furthering our understanding of the mechanisms of disease in AA is essential for the novel identification of targeted therapeutics that are efficacious and have few unintended effects.
Collapse
|
12
|
Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126676. [PMID: 34329091 DOI: 10.1016/j.jhazmat.2021.126676] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 05/26/2023]
Abstract
The gut microbiome, often referred to as "super organ", comprises up to a hundred trillion microorganisms, and the species diversity may vary from person to person. They perform a decisive role in diverse biological functions related to metabolism, immunity and neurological responses. However, the microbiome is sensitive to environmental pollutants, especially heavy metals. There is continuous interaction between heavy metals and the microbiome. Heavy metal exposure retards the growth and changes the structure of the phyla involved in the gut microbiome. Meanwhile, the gut microbiome tries to detoxify the heavy metals by altering the physiological conditions, intestinal permeability, enhancing enzymes for metabolizing heavy metals. This review summarizes the effect of heavy metals in altering the gut microbiome, the mechanism by which gut microbiota detoxifies heavy metals, diseases developed due to heavy metal-induced dysbiosis of the gut microbiome, and the usage of probiotics along with advancements in developing improved recombinant probiotic strains for the remediation of heavy metal toxicity.
Collapse
Affiliation(s)
- K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph's College, Thrissur 680121, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan ROC
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712100, China
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India.
| |
Collapse
|
13
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
14
|
Cui M, Pang G, Zhang T, Sun T, Zhang L, Kang R, Xue X, Pan H, Yang C, Zhang X, Chang J, Liu J, Zhang S, Wang H. Optotheranostic Nanosystem with Phone Visual Diagnosis and Optogenetic Microbial Therapy for Ulcerative Colitis At-Home Care. ACS NANO 2021; 15:7040-7052. [PMID: 33819424 DOI: 10.1021/acsnano.1c00135] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ulcerative colitis (UC) is a relapsing disorder characterized by chronic inflammation of the intestinal tract. However, the home care of UC based on remote monitoring, due to the operational complexity and time-consuming procedure, restrain its widespread applications. Here we constructed an optotheranostic nanosystem for self-diagnosis and long-acting mitigations of UC at home. The system included two major modules: (i) A disease prescreening module mediated by smartphone optical sensing. (ii) Disease real-time intervention module mediated by an optogenetic engineered bacteria system. Recombinant Escherichia coli Nissle 1917 (EcN) secreted interleukin-10 (IL-10) could downregulate inflammatory cascades and matrix metalloproteinases; it is a candidate for use in the therapeutic intervention of UC. The results showed that the Detector was able to analyze, report, and share the detection results in less than 1 min, and the limit of detection was 15 ng·mL-1. Besides, the IL-10-secreting EcN treatment suppressed the intestinal inflammatory response in UC mice and protected the intestinal mucosa against injury. The optotheranostic nanosystems enabled solutions to diagnose and treat disease at home, which promotes a mobile health service development.
Collapse
Affiliation(s)
- Meihui Cui
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Tao Zhang
- School of Electrical and Information Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- School of Chemical Engineering and Technology, Laboratory of Synthetic Microbiology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Lili Zhang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Ruru Kang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Xue
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chun Yang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xinyu Zhang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shufang Zhang
- School of Electrical and Information Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
15
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
16
|
Male V. Medawar and the immunological paradox of pregnancy: in context. OXFORD OPEN IMMUNOLOGY 2020; 2:iqaa006. [PMID: 36845570 PMCID: PMC9914476 DOI: 10.1093/oxfimm/iqaa006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
In 1953, Peter Medawar defined 'the immunological paradox of pregnancy', whereby the semi-allogeneic foetus can survive for 9 months in its mother, while a semi-allogeneic graft would be rejected. Here, I revisit the immunological paradox of pregnancy, setting it in the context of the time in which it was proposed. I go on to examine the extent to which Medawar's ideas on the subject have stood the test of time and how they have shaped reproductive immunology.
Collapse
Affiliation(s)
- Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London
| |
Collapse
|
17
|
Greslehner GP. Not by structures alone: Can the immune system recognize microbial functions? STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 84:101336. [PMID: 32830048 DOI: 10.1016/j.shpsc.2020.101336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
A central question for immunology is: what does the immune system recognize and according to which principles does this kind of recognition work? Immunology has been dominated by the idea of recognizing molecular structures and triggering an appropriate immune response when facing non-self or danger. Recently, characterizations in terms of function have turned out to be more conserved and explanatory in microbiota research than taxonomic composition for understanding microbiota-host interactions. Starting from a conceptual analysis of the notions of structure and function, I raise the title question whether it is possible for the immune system to recognize microbial functions. I argue that this is indeed the case, making the claim that some function-associated molecular patterns are not indicative of the presence of certain taxa (''who is there'') but of biochemical activities and effects (''what is going on''). In addition, I discuss case studies which show that there are immunological sensors that can directly detect microbial activities, irrespective of their specific structural manifestation. At the same time, the discussed account puts the causal role notions of function on a more realist and objective basis.
Collapse
Affiliation(s)
- Gregor P Greslehner
- ImmunoConcept, UMR5164, CNRS & University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
18
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
19
|
Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 2020; 13:149-160. [PMID: 31723251 PMCID: PMC6914669 DOI: 10.1038/s41385-019-0221-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Whereas antiretroviral therapy (ART) suppresses viral replication, ART discontinuation results in viral rebound, indicating the presence of viral reservoirs (VRs) established within lymphoid tissues. Herein, by sorting CD4 T-cell subsets from the spleen, mesenteric and peripheral lymph nodes (LNs) of SIVmac251-infected rhesus macaques (RMs), we demonstrate that effector memory (TEM) and follicular helper (TFH) CD4+ T cells harbor the highest frequency of viral DNA and RNA, as well of early R-U5 transcripts in ART-naïve RMs. Furthermore, our results highlight that these two CD4 T cells subsets harbor viral DNA and early R-U5 transcripts in the spleen and mesenteric LNs (but not in peripheral LN) of RMs treated with ART at day 4 post infection suggesting that these two anatomical sites are important for viral persistence. Finally, after ART interruption, we demonstrate the rapid and, compared to peripheral LNs, earlier seeding of SIV in spleen and mesenteric LNs, thereby emphasizing the importance of these two anatomical sites for viral replication dynamics. Altogether our results advance understanding of early viral seeding in which visceral lymphoid tissues are crucial in maintaining TEM and TFH VRs.
Collapse
|
20
|
Tulyeu J, Kumagai H, Jimbo E, Watanabe S, Yokoyama K, Cui L, Osaka H, Mieno M, Yamagata T. Probiotics Prevents Sensitization to Oral Antigen and Subsequent Increases in Intestinal Tight Junction Permeability in Juvenile-Young Adult Rats. Microorganisms 2019; 7:microorganisms7100463. [PMID: 31623229 PMCID: PMC6843414 DOI: 10.3390/microorganisms7100463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Increased intestinal permeability is thought to underlie the pathogenesis of food allergy. We explore the mechanism responsible for changes in the morphology and function of the intestinal barrier using a rat model of food allergy, focusing on the contribution of intestinal microbiota. Juvenile–young adult rats were sensitized with ovalbumin and treated with antibiotics or probiotics (Clostridium butyricum and Lactobacillus reuteri), respectively. The serum ovalbumin-IgE levels, intestinal permeability, histopathological features, tight junction (TJ)-associated proteins, Th2 cytokines, and gut microbiota in feces were analyzed in each group. Sensitized rats showed an increase in ovalbumin-IgE levels and intestinal permeability with gut mucosal inflammation, whereas rats that received probiotics were only mildly affected. Rats given ovalbumin, but not those given probiotics, showed a reduction in both TJ-related protein expression and localization. Th2 cytokine levels were increased in the sensitized rats, but not in those given probiotics. TJs in rats treated with ovalbumin and antibiotics were disrupted, but those in rats administered probiotics were undamaged. Clostridiaceae were increased in the probiotics groups, especially Alkaliphilus, relative to the ovalbumin-sensitized group. Gut microbiota appears to play a role in regulating epithelial barrier function, and probiotics may help to prevent food sensitization through the up-regulation of TJ proteins.
Collapse
Affiliation(s)
- Janyerkye Tulyeu
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
- Department of Immunology and Laboratory, School of Biomedicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia.
| | - Hideki Kumagai
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Eriko Jimbo
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 3290498, Japan.
| | - Koji Yokoyama
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 3290498, Japan.
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Makiko Mieno
- Department of Medical Informatics, Center for Information, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| |
Collapse
|
21
|
Mucosal T follicular helper cells in SIV-infected rhesus macaques: contributing role of IL-27. Mucosal Immunol 2019; 12:1038-1054. [PMID: 31114010 PMCID: PMC7746526 DOI: 10.1038/s41385-019-0174-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 02/04/2023]
Abstract
Mesenteric lymph nodes (MLNs), that drain the large and small intestine, are critical sites for the induction of oral tolerance. Although depletion of CD4 T cells in the intestinal lamina propria is a hallmark of HIV infection, CD4 T cell dynamics in MLNs is less known due to the lack of accessibility to these LNs. We demonstrate the early loss of memory CD4 T cells, including T follicular helper cells (Tfh) and a remodeling of MLN architecture in SIV-infected rhesus macaques (RMs). Along with the loss of Tfh cells, we observe the loss of memory B cells and of germinal center B cells. Tfh cells display a Th1 profile with increased levels of the transcription factors that negatively impact on Tfh differentiation and of Stat5 phosphorylation. MLNs of SIV-infected RMs display lower mRNA transcripts encoding for IL-12, IL-23, and IL-35, whereas those coding for IL-27 are not impaired in MLNs. In vitro, IL-27 negatively impacts on Tfh cells and recapitulates the profile observed in SIV-infected RMs. Therefore, early defects of memory CD4 T cells, as well of Tfh cells in MLNs, which play a central role in regulating the mucosal immune response, may have major implications for Aids.
Collapse
|
22
|
Kelly D, Kotliar M, Woo V, Jagannathan S, Whitt J, Moncivaiz J, Aronow BJ, Dubinsky MC, Hyams JS, Markowitz JF, Baldassano RN, Stephens MC, Walters TD, Kugathasan S, Haberman Y, Sundaram N, Rosen MJ, Helmrath M, Karns R, Barski A, Denson LA, Alenghat T. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn's disease. JCI Insight 2018; 3:122104. [PMID: 30232290 PMCID: PMC6237229 DOI: 10.1172/jci.insight.122104] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Altered response to the intestinal microbiota strongly associates with inflammatory bowel disease (IBD); however, how commensal microbial cues are integrated by the host during the pathogenesis of IBD is not understood. Epigenetics represents a potential mechanism that could enable intestinal microbes to modulate transcriptional output during the development of IBD. Here, we reveal a histone methylation signature of intestinal epithelial cells isolated from the terminal ilea of newly diagnosed pediatric IBD patients. Genes characterized by significant alterations in histone H3-lysine 4 trimethylation (H3K4me3) showed differential enrichment in pathways involving immunoregulation, cell survival and signaling, and metabolism. Interestingly, a large subset of these genes was epigenetically regulated by microbiota in mice and several microbiota-sensitive epigenetic targets demonstrated altered expression in IBD patients. Remarkably though, a substantial proportion of these genes exhibited H3K4me3 levels that correlated with the severity of intestinal inflammation in IBD, despite lacking significant differential expression. Collectively, these data uncover a previously unrecognized epigenetic profile of IBD that can be primed by commensal microbes and indicate sensitive targets in the epithelium that may underlie how microbiota predispose to subsequent intestinal inflammation and disease.
Collapse
Affiliation(s)
- Daniel Kelly
- Division of Immunobiology, Center for Inflammation and Tolerance
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | - Vivienne Woo
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Jordan Whitt
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marla C. Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, New York, USA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | | | - Robert N. Baldassano
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C. Stephens
- Department of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas D. Walters
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition
- Sheba Medical Center, Tel Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Michael Helmrath
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Artem Barski
- Divisions of Allergy and Immunology and Human Genetics, and
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Theresa Alenghat
- Division of Immunobiology, Center for Inflammation and Tolerance
| |
Collapse
|
23
|
Hajavi J, Esmaeili SA, Varasteh AR, Vazini H, Atabati H, Mardani F, Momtazi-Borojeni AA, Hashemi M, Sankian M, Sahebkar A. The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol 2018; 234:2386-2398. [PMID: 30192002 DOI: 10.1002/jcp.27263] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
The increased incidence of allergic disorders may be the result of a relative fall in microbial induction in the intestinal immune system during infancy and early childhood. Probiotics have recently been proposed as viable microorganisms for the prevention and treatment of specific allergic diseases. Different mechanisms have been considered for this probiotic property, such as generation of cytokines from activated pro-T-helper type 1 after bacterial contact. However, the effects of its immunomodulatory potential require validation for clinical applications. This review will focus on the currently available data on the benefits of probiotics in allergy disease.
Collapse
Affiliation(s)
- Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hadi Atabati
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Mardani
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol 2018; 40:357-370. [PMID: 29737384 PMCID: PMC6060788 DOI: 10.1007/s00281-018-0687-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The development of food allergies is increasingly being recognized as a post-solid organ transplant complication. In this article, we review the spectrum of post-transplant food allergy development and the proposed mechanisms for de novo food allergies and the clinical significance they pose. RECENT FINDINGS The development of new food allergies is disproportionately associated with pediatric liver transplants, where it occurs in up to 38% of select populations. The mechanism of food allergy development is not completely understood; however, it is likely promoted by unbalanced immune suppression. De novo food allergy development is a common complication of solid organ transplants with the highest risk occurring in pediatric liver transplant recipients. There are likely multiple mechanisms for food allergy development including passive transfer of membrane-bound IgE and lymphocytes from donor to recipient, as well as loss of food tolerance and active development of new food allergies. The optimal management of food allergies following organ transplants has not been well researched but may include changing the immune suppression regimen if the food allergy does not resolve without intervention.
Collapse
|
26
|
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17:761-773. [PMID: 28869253 DOI: 10.1038/nri.2017.100] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune privilege is a complex process that protects organs from immune-mediated attack and damage. It is accomplished by a series of cellular barriers that both control immune cell entry and promote the development of tolerogenic immune cells. In this Review, we describe the vascular endothelial and epithelial barriers in organs that are commonly considered to be immune privileged, such as the brain and the eye. We compare these classical barriers with barriers in the intestine, which share features with barriers of immune-privileged organs, such as the capacity to induce tolerance and to protect from external insults. We suggest that when intestinal barriers break down, disruption of other barriers at distant sites can ensue, and this may underlie the development of various neurological, metabolic and intestinal disorders.
Collapse
Affiliation(s)
- Ilaria Spadoni
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Giulia Fornasa
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
27
|
Plunkett CH, Nagler CR. The Influence of the Microbiome on Allergic Sensitization to Food. THE JOURNAL OF IMMUNOLOGY 2017; 198:581-589. [PMID: 28069753 DOI: 10.4049/jimmunol.1601266] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
The alarming increase in the incidence and severity of food allergies has coincided with lifestyle changes in Western societies, such as dietary modifications and increased antibiotic use. These demographic shifts have profoundly altered the coevolved relationship between host and microbiota, depleting bacterial populations critical for the maintenance of mucosal homeostasis. There is increasing evidence that the dysbiosis associated with sensitization to food fails to stimulate protective tolerogenic pathways, leading to the development of the type 2 immune responses that characterize allergic disease. Defining the role of beneficial allergy-protective members of the microbiota in the regulation of tolerance to food has exciting potential for new interventions to treat dietary allergies by modulation of the microbiota.
Collapse
Affiliation(s)
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637; and .,Committee on Immunology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
28
|
Pele LC, Haas CT, Hewitt RE, Robertson J, Skepper J, Brown A, Hernandez-Garrido JC, Midgley PA, Faria N, Chappell H, Powell JJ. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:619-630. [PMID: 27478107 PMCID: PMC5339085 DOI: 10.1016/j.nano.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 02/02/2023]
Abstract
Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery.
Collapse
Affiliation(s)
- Laetitia C. Pele
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Carolin T. Haas
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Rachel E. Hewitt
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jack Robertson
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jeremy Skepper
- Cambridge advanced Imaging Centre, Physiology development and Neuroscience, Anatomy building, University of Cambridge, Cambridge
| | - Andy Brown
- Institute for Materials Research, SCAPE, University of Leeds, Leeds
| | - Juan Carlos Hernandez-Garrido
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Rio San Pedro, Puerto Real, Spain
| | - Paul A. Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge
| | - Nuno Faria
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Helen Chappell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jonathan J. Powell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK,Corresponding author.
| |
Collapse
|
29
|
The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity 2016; 44:728-38. [PMID: 27096316 DOI: 10.1016/j.immuni.2016.02.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Allergic disease affects millions. Despite many advances in our understanding of the immune system in the past century, the physiologic underpinning for the existence of allergy remains largely mysterious. Food allergies, in particular, have increased dramatically in recent years, adding a new sense of urgency to unraveling this mystery. The concurrence of significant lifestyle changes in Western societies with increasing disease prevalence implies a causal link. Demographic variables that influence the composition and function of the commensal microbiota early in life seem to be most important. Identifying the evolutionary and physiologic foundations of allergic disease and defining what about our modern environment is responsible for its increased incidence will provide insights critical to the development of new approaches to prevention and treatment.
Collapse
|
30
|
Iweala OI, Burks AW. Food Allergy: Our Evolving Understanding of Its Pathogenesis, Prevention, and Treatment. Curr Allergy Asthma Rep 2016; 16:37. [PMID: 27041704 DOI: 10.1007/s11882-016-0616-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Food allergy is defined as an IgE-mediated hypersensitivity response to ingested food with allergic symptoms ranging from urticaria to life-threatening anaphylaxis. Food allergy is thought to develop because of (1) failed induction of tolerance upon initial exposure to food antigen or (2) breakdown of established tolerance to food antigen. We review current understanding of the pathogenesis, epidemiology, and natural history of food allergy, including the unconventional IgE-mediated food allergy to mammalian meat known as alpha-gal food allergy. We highlight emerging data on food allergy treatment and prevention, emphasizing the growing appeal of manipulating the gut microenvironment using probiotics and helminth products to blunt systemic allergic responses to food.
Collapse
Affiliation(s)
- Onyinye I Iweala
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina School of Medicine, 030 MacNider Hall, CB 7231, Chapel Hill, NC, 27599-7231, USA.
| | - A Wesley Burks
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina School of Medicine, 030 MacNider Hall, CB 7231, Chapel Hill, NC, 27599-7231, USA
| |
Collapse
|
31
|
Lee JB. Regulation of IgE-Mediated Food Allergy by IL-9 Producing Mucosal Mast Cells and Type 2 Innate Lymphoid Cells. Immune Netw 2016; 16:211-8. [PMID: 27574500 PMCID: PMC5002447 DOI: 10.4110/in.2016.16.4.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022] Open
Abstract
Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.
Collapse
Affiliation(s)
- Jee-Boong Lee
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
32
|
|
33
|
Yeom M, Sur BJ, Park J, Cho SG, Lee B, Kim ST, Kim KS, Lee H, Hahm DH. Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. J Appl Microbiol 2015; 119:560-70. [PMID: 25968453 DOI: 10.1111/jam.12844] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 01/19/2023]
Abstract
AIMS The purpose of this study was to investigate the effect of Lactobacillus casei variety rhamnosus (LCR35) on Atopic dermatitis (AD)-like symptoms in mice. METHODS AND RESULTS AD-like skin lesions in BALB/C mice were induced by sensitization and subsequent repeated challenges with trimellitic anhydride (TMA) for 10 days. LCR35 was orally administered to the mice once daily throughout the study. In the TMA-induced AD model, orally administered LCR35 suppressed significantly irritant-related scratching behaviour and skin dehydration as well as apparent severity of AD. LCR35 also significantly decreased serum levels of IgE and IL-4, but not IFN-γ, implying the restoration of TMA-induced disruption of Th1/Th2 balance. Quantitative real-time PCR targeting hypervariable regions of 16S rDNA gene of faecal microbiota indicated that the LCR35 treatment increased the population of Bifidobacterium, Lactobacilli, Enterococcus and Bacteroides fragilis group, but decreased those of Clostridium coccoides group. CONCLUSIONS LCR35 has the ability to suppress the development of AD in mice, possibly through the modulation of Th1/Th2 balance and gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY LCR35 has a strong potential as a probiotic for preventing AD.
Collapse
Affiliation(s)
- M Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - B J Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - J Park
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - S G Cho
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - B Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - S T Kim
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - K S Kim
- Department of Family Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - H Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - D H Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
34
|
Cheng P, Yao J, Wang C, Zhang L, Kong W. Molecular and cellular mechanisms of tight junction dysfunction in the irritable bowel syndrome. Mol Med Rep 2015; 12:3257-3264. [PMID: 25998845 PMCID: PMC4526093 DOI: 10.3892/mmr.2015.3808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
The pathophysiological mechanisms of the irritable bowel syndrome (IBS), one of the most prevalent gastrointestinal disorders, are complex and have not been fully elucidated. The present study aimed to investigate the molecular and cellular mechanisms of tight junction (TJ) dysfunction in IBS. Intestinal tissues of IBS and non‑IBS patients were examined to observe cellular changes by cell chemical tracer electron microscopy and transmission electron microscopy, and intestinal claudin‑1 protein was detected by immunohistochemistry, western blot analysis and fluorescence quantitative polymerase chain reaction. Compared with the control group, TJ broadening and the tracer extravasation phenomenon were observed in the diarrhea‑predominant IBS group, and a greater number of neuroendocrine cells and mast cells filled with high‑density particles in the endocrine package pulp as well as a certain extent of vacuolization were present. The expression of claudin‑1 in diarrhea‑predominant IBS patients was decreased, while it was increased in constipation‑predominant IBS patients. In conclusion, the results of the present study indicated that changes in cellular structure and claudin‑1 levels were associated with Tjs in IBS.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Gastroenterology, First Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianning Yao
- Department of Gastroenterology, First Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chunfeng Wang
- Department of Gastroenterology, First Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lianfeng Zhang
- Department of Gastroenterology, First Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wuming Kong
- Department of Gastroenterology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai 201306, P.R. China
| |
Collapse
|
35
|
Mukai A, Iijima H, Hiyama S, Fujii H, Shinzaki S, Inoue T, Shiraishi E, Kawai S, Araki M, Hayashi Y, Kondo J, Mizushima T, Kanto T, Egawa S, Nishida T, Tsujii M, Takehara T. Regulation of anergy-related ubiquitin E3 ligase, GRAIL, in murine models of colitis and patients with Crohn's disease. J Gastroenterol 2014; 49:1524-35. [PMID: 24356810 DOI: 10.1007/s00535-013-0923-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/04/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Abrogating tolerance is a critical step in the pathogenesis of Crohn's disease (CD). T cell-anergy is one of the main mechanisms of tolerance and is regulated by the gene related to anergy in lymphocytes (GRAIL). This study investigated the expressions and regulation of GRAIL in CD and murine colitis models. METHODS Expressions of GRAIL mRNA and protein in CD4+ T cells were investigated in the peripheral blood and mucosal tissues of patients with CD, mice with dextran sodium salt (DSS)-induced colitis, and Il-10-deficient mice. MicroRNAs responsible for the regulation of GRAIL were examined by miRNA microarray. GRAIL-overexpressing T cells were intravenously injected in mice with DSS-induced colitis. RESULTS The GRAIL expression was higher in the lamina propria (LP) CD4+ T cells of CD patients than of the control subjects, while it was lower in the peripheral blood CD4+ T cells of the CD patients than of the control subjects. The GRAIL mRNA expression was lower, but the GRAIL protein expression was higher in the LP of colitic mice than that of non-colitic mice. The miRNA microarray identified miR-290-5p as an miRNA that inhibits expression of the GRAIL protein and that is highly expressed in the LP of non-colitic mice. GRAIL-expressing T cells expressed regulatory T cell markers and showed suppressive effects in murine DSS-induced colitis. CONCLUSIONS Our results show that expression of GRAIL is uniquely regulated by the specific miRNA in the intestinal mucosa, and suggest that GRAIL may associate with the pathophysiology of CD.
Collapse
Affiliation(s)
- Akira Mukai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kotlyar DS, Shum M, Hsieh J, Blonski W, Greenwald DA. Non-pulmonary allergic diseases and inflammatory bowel disease: A qualitative review. World J Gastroenterol 2014; 20:11023-11032. [PMID: 25170192 PMCID: PMC4145746 DOI: 10.3748/wjg.v20.i32.11023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/06/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
While the etiological underpinnings of inflammatory bowel disease (IBD) are highly complex, it has been noted that both clinical and pathophysiological similarities exist between IBD and both asthma and non-pulmonary allergic phenomena. In this review, several key points on common biomarkers, pathophysiology, clinical manifestations and nutritional and probiotic interventions for both IBD and non-pulmonary allergic diseases are discussed. Histamine and mast cell activity show common behaviors in both IBD and in certain allergic disorders. IgE also represents a key immunoglobulin involved in both IBD and in certain allergic pathologies, though these links require further study. Probiotics remain a critically important intervention for both IBD subtypes as well as multiple allergic phenomena. Linked clinical phenomena, especially sinonasal disease and IBD, are discussed. In addition, nutritional interventions remain an underutilized and promising therapy for modification of both allergic disorders and IBD. Recommending new mothers breastfeed their infants, and increasing the duration of breastfeeding may also help prevent both IBD and allergic diseases, but requires more investigation. While much remains to be discovered, it is clear that non-pulmonary allergic phenomena are connected to IBD in a myriad number of ways and that the discovery of common immunological pathways may usher in an era of vastly improved treatments for patients.
Collapse
|
37
|
A role for impaired regulatory T cell function in adverse responses to aluminum adjuvant-containing vaccines in genetically susceptible individuals. Vaccine 2014; 32:5149-55. [PMID: 25066736 DOI: 10.1016/j.vaccine.2014.07.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/28/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Regulatory T cells play a critical role in the immune response to vaccination, but there is only a limited understanding of the response of regulatory T cells to aluminum adjuvants and the vaccines that contain them. Available studies in animal models show that although induced T regulatory cells may be induced concomitantly with effector T cells following aluminum-adjuvanted vaccination, they are unable to protect against sensitization, suggesting that under the Th2 immune-stimulating effects of aluminum adjuvants, Treg cells may be functionally compromised. Allergic diseases are characterized by immune dysregulation, with increases in IL-4 and IL-6, both of which exert negative effects on Treg function. For individuals with a genetic predisposition, the beneficial influence of adjuvants on immune responsiveness may be accompanied by immune dysregulation, leading to allergic diseases. This review examines aspects of the regulatory T cell response to aluminum-adjuvanted immunization and possible genetic susceptibility factors related to that response.
Collapse
|
38
|
Kovačević-Jovanović V, Miletić T, Stanojević S, Mitić K, Dimitrijević M. Strain differences in the humoral immune response to commensal bacterial antigens in rats. Acta Microbiol Immunol Hung 2013; 60:271-88. [PMID: 24060552 DOI: 10.1556/amicr.60.2013.3.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the immune response to commensal bacterial species in the two inbred rat strains: Dark Agouti (DA) and Albino Oxford (AO). The predominant Gram-negative aerobe in our rats' intestinal bacterial flora was Escherichia coli, while Proteus mirabilis was isolated only from DA rat strain. We report that sera from both DA and AO rat strains contain specific IgG against predominant intestinal flora. Intramuscular administration of commensal bacterial antigens provoked only Th1-type antibody response in AO rats while DA rats developed mixed Th1- and Th2-type antibody response to E. coli and Th1-type response to P. mirabilis antigens. Weaker antibody production to own E. coli and higher serum levels of natural IgG and IgA P. mirabilis-specific antibodies combined with higher CD3+ cells proliferation was found in AO rats. Strain difference in the pattern of antibody production and differential regulation of immune response to commensal bacteria may contribute to the marked differences in the immune reactivity of AO and DA rats.
Collapse
|
39
|
Increase in gut microbiota after immune suppression in baculovirus-infected larvae. PLoS Pathog 2013; 9:e1003379. [PMID: 23717206 PMCID: PMC3662647 DOI: 10.1371/journal.ppat.1003379] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/05/2013] [Indexed: 02/04/2023] Open
Abstract
Spodoptera exigua microarray was used to determine genes differentially expressed in S. exigua cells challenged with the species-specific baculovirus SeMNPV as well as with a generalist baculovirus, AcMNPV. Microarray results revealed that, in contrast to the host transcriptional shut-off that is expected during baculovirus infection, S. exigua cells showed a balanced number of up- and down-regulated genes during the first 36 hours following the infection. Many immune-related genes, including pattern recognition proteins, genes involved in signalling and immune pathways as well as immune effectors and genes coding for proteins involved in the melanization cascade were found to be down-regulated after baculovirus infection. The down-regulation of immune-related genes was confirmed in the larval gut. The expression of immune-related genes in the gut is known to affect the status of gut microorganisms, many of which are responsible for growth and development functions. We therefore asked whether the down-regulation that occurs after baculovirus infection affects the amount of gut microbiota. An increase in the gut bacterial load was observed and we hypothesize this to be as a consequence of viral infection. Subsequent experiments on virus performance in the presence and absence of gut microbiota revealed that gut bacteria enhanced baculovirus virulence, pathogenicity and dispersion. We discuss the host immune response processes and pathways affected by baculoviruses, as well as the role of gut microbiota in viral infection. Baculoviruses are large DNA viruses that infect invertebrates, mainly insects from the order Lepidoptera. They were first discovered to cause insects' epizootics and are now used worldwide as biocontrol agents. Extensive studies on baculovirus biology led to the discovery that they can serve as expression vectors in insect cells; recently they have also been considered as vectors for gene therapy. Baculovirus infection, like many other oral infections, starts with the invasion of the gut by viruses; the gut is a compartment colonized by a community of resident microbiota. In this study, we observed that baculovirus infection leads to the decreased expression of immune-related genes in a Spodoptera exigua cell culture as well as in the larval gut. Gut microbial loads were found to increase after baculovirus infection. A series of bioassays showed that the baculovirus performs better in the presence of microbiota in the gut. Our study shows that baculovirus infection leads to increase of microbiota loads in the gut and that the gut microbiota play a significant role in insect immunity and susceptibility to viral infections. These findings suggest that gut microbiota can be manipulated to improve biocontrol strategies that employ baculoviruses.
Collapse
|
40
|
Agathou CL, Beales IL. Factors associated with the use of probiotics in patients with inflammatory bowel disease. F1000Res 2013; 2:69. [PMID: 24555045 PMCID: PMC3901512 DOI: 10.12688/f1000research.2-69.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2013] [Indexed: 12/19/2022] Open
Abstract
Background: Probiotic preparations are heavily promoted in the United Kingdom and are widely available to purchase. Probiotics have multiple effects on gastrointestinal functions and may have beneficial or even harmful effects in inflammatory bowel disease (IBD). Various complementary and alternative medicines are commonly used by IBD patients but there is much less data specifically on the use of probiotics. Aim: To examine the current use of probiotics by IBD patients and determine the factors associated with probiotic use. Methods: Subjects with IBD undergoing routine care at a UK teaching hospital underwent a standardized structured questionnaire-interview. Current use of probiotics was explored and patient- and disease-related factors examined. IBD-related quality of life was assessed with the short inflammatory bowel disease questionnaire (S-IBDQ). Logistical regression was used to explore factors associated with probiotic use. Results: Forty subjects were interviewed. Probiotic use was common, 40% of subjects being regular users. Probiotic use was significantly associated with a shorter duration of IBD since diagnosis, a diagnosis of Crohn’s disease, formal post-18 education and lower quality of life as assessed by the S-IBDQ. A preference for the taste of the preparation was as common a reason for using probiotics as were potential disease modifying effects. Non-users reported that the costs of the preparations and doubts about efficacy were the primary reasons for non-use. Conclusions: In this study probiotic use was common in IBD patients. Several patient- and disease- related factors, including a lower perceived quality of life, were associated with the use of probiotics.
Collapse
Affiliation(s)
| | - Ian Lp Beales
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK ; Department of Gastroenterology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, NR4 7UZ, UK
| |
Collapse
|
41
|
Fiocchi A, Burks W, Bahna SL, Bielory L, Boyle RJ, Cocco R, Dreborg S, Goodman R, Kuitunen M, Haahtela T, Heine RG, Lack G, Osborn DA, Sampson H, Tannock GW, Lee BW. Clinical Use of Probiotics in Pediatric Allergy (CUPPA): A World Allergy Organization Position Paper. World Allergy Organ J 2012; 5:148-67. [PMID: 23282383 PMCID: PMC3651185 DOI: 10.1097/wox.0b013e3182784ee0] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND : Probiotic administration has been proposed for the prevention and treatment of specific allergic manifestations such as eczema, rhinitis, gastrointestinal allergy, food allergy, and asthma. However, published statements and scientific opinions disagree about the clinical usefulness. OBJECTIVE : A World Allergy Organization Special Committee on Food Allergy and Nutrition review of the evidence regarding the use of probiotics for the prevention and treatment of allergy. METHODS : A qualitative and narrative review of the literature on probiotic treatment of allergic disease was carried out to address the diversity and variable quality of relevant studies. This variability precluded systematization, and an expert panel group discussion method was used to evaluate the literature. In the absence of systematic reviews of treatment, meta-analyses of prevention studies were used to provide data in support of probiotic applications. RESULTS : Despite the plethora of literature, probiotic research is still in its infancy. There is a need for basic microbiology research on the resident human microbiota. Mechanistic studies from biology, immunology, and genetics are needed before we can claim to harness the potential of immune modulatory effects of microbiota. Meanwhile, clinicians must take a step back and try to link disease state with alterations of the microbiota through well-controlled long-term studies to identify clinical indications. CONCLUSIONS : Probiotics do not have an established role in the prevention or treatment of allergy. No single probiotic supplement or class of supplements has been demonstrated to efficiently influence the course of any allergic manifestation or long-term disease or to be sufficient to do so. Further epidemiologic, immunologic, microbiologic, genetic, and clinical studies are necessary to determine whether probiotic supplements will be useful in preventing allergy. Until then, supplementation with probiotics remains empirical in allergy medicine. In the future, basic research should focus on homoeostatic studies, and clinical research should focus on preventive medicine applications, not only in allergy. Collaborations between allergo-immunologists and microbiologists in basic research and a multidisciplinary approach in clinical research are likely to be the most fruitful.
Collapse
Affiliation(s)
- Alessandro Fiocchi
- Department of Pediatrics - Division of Allergy - Pediatric Hospital Bambino Gesù - Rome, Vatican City
| | - Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Sami L Bahna
- Department of Pediatrics and Medicine, Section of Allergy and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Leonard Bielory
- Department of Medicine, University of Medicine and Dentistry of New Jersey Medical School, Newark, NJ
| | - Robert J Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - Renata Cocco
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | - Sten Dreborg
- Department of Pediatric Allergology, Women's and Children's Health, University of Uppsala, Uppsala, Sweden
| | - Richard Goodman
- Department of Food Science & Technology University of Nebraska, Lincoln, NE, USA
| | - Mikael Kuitunen
- Skin and Allergy Hospital, University of Helsinki, Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, University of Helsinki, Helsinki, Finland
| | - Ralf G Heine
- Department of Allergy and Immunology, Royal Children's Hospital, University of Melbourne, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Gideon Lack
- King's College London, Asthma-UK Centre in Allergic Mechanisms of Asthma, Department of Paediatric Allergy, St Thomas' Hospital, London, UK
| | - David A Osborn
- Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Hugh Sampson
- Jaffe Food Allergy Institute, Mount Sinai School of Medicine, New York, NY
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Bee Wah Lee
- Department of Paediatrics, National University of Singapore, Singapore
| |
Collapse
|
42
|
Akiyama T, Shinzawa M, Akiyama N. RANKL-RANK interaction in immune regulatory systems. World J Orthop 2012; 3:142-50. [PMID: 23173110 PMCID: PMC3502610 DOI: 10.5312/wjo.v3.i9.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/21/2012] [Accepted: 09/15/2012] [Indexed: 02/06/2023] Open
Abstract
The interaction between the receptor activator of NF-κB ligand (RANKL) and its receptor RANK plays a critical role in the development and function of diverse tissues. This review summarizes the studies regarding the functions of RANKL signaling in immune regulatory systems. Previous in vitro and in vivo studies have indicated that the RANKL signal promotes the survival of dendritic cells (DCs), thereby activating the immune response. In addition, RANKL signaling to DCs in the body surface barriers controls self-tolerance and oral-tolerance through regulatory T cell functions. In addition to regulating DC functions, the RANKL and RANK interaction is critical for the development and organization of several lymphoid organs. The RANKL signal initiates the formation of clusters of lymphoid tissue inducer cells, which is crucial for lymph node organogenesis. Moreover, the RANKL-RANK interaction controls the differentiation of M cells, specialized epithelial cells in mucosal tissues, that take up and transcytose antigen particles to control the immune response to pathogens or commensal bacterium. The development of epithelial cells localized in the thymic medulla (mTECs) is also regulated by the RANKL-RANK signal. Given that the unique property of mTECs to express a wide variety of tissue-specific self-antigens is critical for the elimination of self-antigen reactive T cells in the thymus, the RANKL-RANK interaction contributes to the suppression of autoimmunity. Future studies on the roles of the RANKL-RANK system in immune regulatory functions would be informative for the development and application of inhibitors of RANKL signaling for disease treatment.
Collapse
|
43
|
Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Front Immunol 2012; 3:274. [PMID: 22969767 PMCID: PMC3432880 DOI: 10.3389/fimmu.2012.00274] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022] Open
Abstract
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Collapse
Affiliation(s)
- Susanne V Schmidt
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn Bonn, Germany
| | | | | |
Collapse
|
44
|
Martínez C, González-Castro A, Vicario M, Santos J. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome. Gut Liver 2012; 6:305-15. [PMID: 22844557 PMCID: PMC3404166 DOI: 10.5009/gnl.2012.6.3.305] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/07/2012] [Accepted: 04/12/2012] [Indexed: 12/12/2022] Open
Abstract
The etiopathogenesis of the irritable bowel syndrome (IBS), one of the most prevalent gastrointestinal disorders, is not well known. The most accepted hypothesis is that IBS is the result of the disturbance of the 'brain-gut axis.' Although the pathophysiological mechanisms of intestinal dysfunction are complex and not completely understood, stress, infections, gut flora, and altered immune response are thought to play a role in IBS development. The intestinal barrier, composed of a single-cell layer, forms a physical barrier that separates the intestinal lumen from the internal milieu. The loss of integrity of this barrier is related with mucosal immune activation and intestinal dysfunction in IBS. The number of mast cells and T lymphocytes is increased in the intestinal mucosa of certain IBS patients, and the mediators released by these cells could compromise the epithelial barrier function and alter nerve signaling within the enteric nervous system. The association of clinical symptoms to structural and functional abnormalities of the mucosal barrier in IBS patients highlights the importance of understanding the physiological role of the gut barrier in the pathogenesis of this disorder. This review summarizes the clinical and experimental evidences indicating the cellular and molecular mechanisms of IBS symptomatology, and its relevance for future translational research.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Gastroenterology, Digestive System Research Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND AND AIM Gut flora/host interactions are fundamental for the maintenance of homeostasis. Evidence of possible regulatory effect of commensal bacteria on proliferative disorders of the colon is mounting. In this study, we explored the hypothesis that precancerous lesions, such as adenomas, present alteration of the local microflora and lead to an overproduction of antibacterial molecules of the innate immunity, namely α-defensins. Thus, the host-bacteria misbalance could represent a potential procarcinogenic factor. METHODS Biopsies from adenomatous polyps and normal mucosa, in the rectum-sigmoid colon, were collected from 51 patients. Concentration of mucosal bacteria was evaluated by real-time polymerase chain reaction after extraction of total DNA. Total RNA was also extracted, and the defensin α-1, defensin-5, and defensin-6 gene expressions were evaluated by real-time polymerase chain reaction. Immunohistochemical study has been carried out to evaluate protein production and location. Antibacterial activity of adenomatous polyps mucosa was evaluated in vitro. RESULTS Biopsies from adenomatous polyps had a significant relative reduction of mucosa adherent bacteria compared with normal tissue (20-fold relative reduction, P<0.05). Concomitantly, α-defensin expression and production were significantly increased in adenomas. Adenoma mucosa showed increased antibacterial activity in vitro compared with normal mucosa. CONCLUSIONS Microflora dysbiosis occurs at the mucosal surface in colonic adenomas, and may represent a potential factor for dysplastic cell proliferation. Further studies are needed to confirm and define the role of this mechanism in colon carcinogenesis and the potential applications in the clinical setting.
Collapse
|
46
|
Luz KG, Tuon FF, Duarte MIS, Maia GM, Matos P, Ramos AMDO, Nicodemo AC. Cytokine expression in the duodenal mucosa of patients with visceral leishmaniasis. Rev Soc Bras Med Trop 2011; 43:393-5. [PMID: 20802937 DOI: 10.1590/s0037-86822010000400011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 04/29/2010] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a neglected tropical disease with a complex immune response in different organs. This pattern of organ-specific immune response has never been evaluated in the gastrointestinal tract. The aim of this study was to determine the in situ immune response in duodenal biopsies on patients with VL. METHODS A case-control study was conducted on 13 patients with VL in comparison with nine controls. The immune response was evaluated using immunohistochemistry, for CD4, CD8, CD68, IL-4, IFN-gamma, TNF-alpha and IL-10. Histological findings from the villi, crypts and inflammatory process were analyzed. RESULTS All the cases of VL presented Leishmania antigens. No antigen was detected in the control group. The villus size was greater in the VL patients (p < 0.05). CD68 (macrophages) and CD4 levels were higher in the VL patients (p < 0.05). No differences in the expression of CD8, TNF-alpha, IL-10 or IL-4 were demonstrated. The number of cells expressing IFN-gamma was lower in the VL patients (p < 0.05). CONCLUSIONS Low levels of cytokines were found in the gastrointestinal tract of patients with VL. This pattern was not found in other organs affected by the disease. Immunotolerance of this tissue against Leishmania could explain these findings, as occurs with intestinal bacteria.
Collapse
Affiliation(s)
- Kleber Giovanni Luz
- Department of Infectious Diseases, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | | | | | | | | | | |
Collapse
|
47
|
Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G. Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy 2011; 66:499-508. [PMID: 21058959 DOI: 10.1111/j.1398-9995.2010.02501.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND No effective treatment is available for food allergy and its primary management still consists of avoiding relevant allergens. Probiotics are claimed to beneficially affect the immune system. We sought to investigate the therapeutic potential of VSL#3 probiotic mixture on specific immune responses and anaphylactic reaction induced in mice by the major food allergen shrimp tropomyosin (ST). METHODS The cytokine production by spleen cell from ST-sensitized mice upon allergen re-stimulation in the presence of VSL#3 was analysed. Next, the effects of oral administration of VSL#3 on allergen-induced anaphylaxis and Th2 response in the murine model of food allergy to ST was investigated by evaluating symptom score and histamine content in the faeces after allergen challenge, antibody response in serum and faeces, and cytokine and transcription factor expression in the jejunum. RESULTS The in vitro studies on mouse spleen cells indicates that the VSL#3 preparation has the capacity to shift a polarized Th2 response to a Th1/T regulatory-type profile. Oral therapeutic administration of VSL#3 to ST-sensitized mice significantly reduces symptom score and histamine release in the faeces following allergen challenge, as well as specific IgE response. In the jejunum, IL-4, IL-5 and IL-13 tissue content was significantly reduced, whereas FOXP3 and IL-27 mRNA expression, IL-10, TGF-β and IFN-γ tissue content were up-regulated. CONCLUSIONS Oral therapeutic treatment with the probiotic mixture VSL#3 is effective in redirecting allergen-specific Th2-polarized immune responses towards Th1-T regulatory responses and in the protection against anaphylactic reactions induced by the allergen in a murine model of food allergy.
Collapse
Affiliation(s)
- E Schiavi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Bourke MG, Salwa S, Harrington KJ, Kucharczyk MJ, Forde PF, de Kruijf M, Soden D, Tangney M, Collins JK, O'Sullivan GC. The emerging role of viruses in the treatment of solid tumours. Cancer Treat Rev 2011; 37:618-32. [PMID: 21232872 DOI: 10.1016/j.ctrv.2010.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
There is increasing optimism for the use of non-pathogenic viruses in the treatment of many cancers. Initial interest in oncolytic virotherapy was based on the observation of an occasional clinical resolution of a lymphoma after a systemic viral infection. In many cancers, by comparison with normal tissues, the competency of the cellular anti-viral mechanism is impaired, thus creating an exploitable difference between the tumour and normal cells, as an unimpeded viral proliferation in cancer cells is eventually cytocidal. In addition to their oncolytic capability, these particular viruses may be engineered to facilitate gene delivery to tumour cells to produce therapeutic effects such as cytokine secretion and anti -tumour immune responses prior to the eventual cytolysis. There is now promising clinical experience with these viral strategies, particularly as part of multimodal studies, and already several clinical trials are in progress. The limitations of standard cancer chemotherapies, including their lack of specificity with consequent collateral toxicity and the development of cross-resistance, do not appear to apply to viral-based therapies. Furthermore, virotherapy frequently restores chemoradiosensitivity to resistant tumours and has also demonstrated efficacy against cancers that historically have a dismal prognosis. While there is cause for optimism, through continued improvements in the efficiency and safety of systemic delivery, through the emergence of alternative viral agents and through favourable clinical experiences, clinical trials as part of multimodal protocols will be necessary to define clinical utility. Significant progress has been made and this is now a major research area with an increasing annual bibliography.
Collapse
Affiliation(s)
- M G Bourke
- Cork Cancer Research Centre, Leslie C. Quick Jnr. Laboratory, Biosciences Institute, University College Cork, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lui KO, Boyd AS, Cobbold SP, Waldmann H, Fairchild PJ. A Role for Regulatory T Cells in Acceptance of ESC-Derived Tissues Transplanted Across an Major Histocompatibility Complex Barrier. Stem Cells 2010; 28:1905-14. [DOI: 10.1002/stem.506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Kunisawa J, Kiyono H. Aberrant interaction of the gut immune system with environmental factors in the development of food allergies. Curr Allergy Asthma Rep 2010; 10:215-21. [PMID: 20424996 DOI: 10.1007/s11882-010-0097-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gastrointestinal immune system is a major component of the mucosal barrier, which maintains an immunologic homeostasis between the host and the harsh environment of the gut. This homeostasis is achieved by immunologic quiescence, and its dysregulation is thought to result from the development of immune diseases such as food allergies. Recent findings have revealed versatile pathways in the development of intestinal allergies to certain food antigens. In this review, we summarize the regulatory and quiescence mechanisms in the gut immune system and describe aberrant interactions between the host immune system and the gut environment in the development of food allergies.
Collapse
Affiliation(s)
- Jun Kunisawa
- Division of Mucosal Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | | |
Collapse
|