1
|
Nakamura T, Shimizu T, Nishinakama N, Takahashi R, Arasaki K, Uda A, Watanabe K, Watarai M. A novel method of Francisella infection of epithelial cells using HeLa cells expressing fc gamma receptor. BMC Infect Dis 2024; 24:1171. [PMID: 39420255 PMCID: PMC11488177 DOI: 10.1186/s12879-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a facultative intracellular bacterium. Although the life cycle of this bacterium inside phagocytic cells (e.g., macrophages, neutrophils) has been well analyzed, the difficulty of gene silencing and editing genes in phagocytic cells makes it difficult to analyze host factors important for the infection. On the other hand, epithelial cell lines, such as HeLa, have been established as cell lines that are easy to perform gene editing. However, the infection efficiency of Francisella into these epithelial cells is extremely low. METHODS In order to facilitate the molecular biological analysis of Francisella infection using epithelial cells, we constructed an efficient infection model of F. tularensis subsp. novicida (F. novicida) in HeLa cells expressing mouse FcγRII (HeLa-FcγRII), and the system was applied to evaluate the role of host GLS1 on Francisella infection. RESULTS As a result of colony forming unit count, HeLa-FcγRII cells uptake F. novicida in a serum-dependent manner and demonstrated an approximately 100-fold increase in intracellular bacterial infection compared to parental HeLa cells. Furthermore, taking advantage of the gene silencing capability of HeLa-FcγRII cells, we developed GLS1, a gene encoding glutaminase, knockdown cells using lentiviral sh RNA vector and assessed the impact of GLS1 on F. novicida infection. LDH assay revealed that GLS1-knockdown HeLa-FcγRII cells exhibited increased cytotoxicity during infection with F. novicida compared with control HeLa-FcγRII cells. Furthermore, the cell death was inhibited by the addition of ammonia, the metabolite produced through glutaminase activity. These results suggest that ammonia plays an important role in the proliferation of F. novicida. CONCLUSIONS In this report, we proposed a new cell-based infection system for Francisella infection using HeLa-FcγRII cells and demonstrated its effectiveness. This system has the potential to accelerate cell-based infection assays, such as large-scale genetic screening, and to provide new insights into Francisella infection in epithelial cells, which has been difficult to analyze in phagocytic cells.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Naho Nishinakama
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Reika Takahashi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Harrell JE, Roy CJ, Gunn JS, McLachlan JB. Current vaccine strategies and novel approaches to combatting Francisella infection. Vaccine 2024; 42:2171-2180. [PMID: 38461051 DOI: 10.1016/j.vaccine.2024.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Mlynek KD, Cline CR, Biryukov SS, Toothman RG, Bachert BA, Klimko CP, Shoe JL, Hunter M, Hedrick ZM, Dankmeyer JL, Mou S, Fetterer DP, Qiu J, Lee ED, Cote CK, Jia Q, Horwitz MA, Bozue JA. The rLVS Δ capB/ iglABC vaccine provides potent protection in Fischer rats against inhalational tularemia caused by various virulent Francisella tularensis strains. Hum Vaccin Immunother 2023; 19:2277083. [PMID: 37975637 PMCID: PMC10760400 DOI: 10.1080/21645515.2023.2277083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Curtis R. Cline
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sergei S. Biryukov
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Beth A. Bachert
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher P. Klimko
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Shoe
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Melissa Hunter
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Zander M. Hedrick
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sherry Mou
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - David P. Fetterer
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Eric D. Lee
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher K. Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joel A. Bozue
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
4
|
Vozandychova V, Rehulka P, Hercik K, Spidlova P, Pavlik P, Hanus J, Hadravova R, Stulik J. Modified activities of macrophages' deubiquitinating enzymes after Francisella infection. Front Immunol 2023; 14:1252827. [PMID: 37841261 PMCID: PMC10570801 DOI: 10.3389/fimmu.2023.1252827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jaroslav Hanus
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czechia
| | - Romana Hadravova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
5
|
Bach H, Lorenzo-Leal AC. Use of niosomes for the treatment of intracellular pathogens infecting the lungs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1891. [PMID: 37032602 DOI: 10.1002/wnan.1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The delivery of drugs in an encapsulated environment is designed to precisely target specific tissues, avoiding a systemic circulation of the drug. Lungs are organs exposed to the environment with multiple defense barriers. However, many pathogens can still colonize and infect the airways bypassing the hostile environment of the lungs. In more complicated situations, some pathogens have developed strategies to multiply and survive within macrophages, one of the first immune cell responses to clearing infections in mammals. Niosomes are artificial vesicles that can be loaded with drugs, offering an alternative strategy to treat intracellular pathogens as nanocarriers. Members of the mycobacteria genus are intracellular pathogens that have evolved to escape the immunological response, specifically in macrophages, the white cells responsible for the clearance of pathogens. This review analyzed the state-of-the-art niosome synthesis aimed at tackling the problem of intracellular pathogen therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana C Lorenzo-Leal
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Lindgren H, Eklund J, Eneslätt K, Sjöstedt A. Kinetics of the serological response up to one year after tularemia. Front Cell Infect Microbiol 2023; 12:1072703. [PMID: 36683705 PMCID: PMC9853284 DOI: 10.3389/fcimb.2022.1072703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 01/08/2023] Open
Abstract
Serological analysis is the predominant method used to diagnose tularemia, a zoonotic disease caused by the highly virulent bacterium F. tularensis. We determined F. tularensis-specific IgM and IgG antibody titers by an LPS-based ELISA assay on five occasions one to twelve months after onset of ulceroglandular tularemia in 19 individuals. Peak IgM antibody titers were observed at the one-month time point and peak IgG antibody titers at the two-month time point. Both IgG and IgM antibody levels declined linearly thereafter with rather similar kinetics. Compared to the average one-month antibody titers, average IgG titers were not significantly lower before the 12-month time point and IgM titers before the 4-month time point. All, but one average titer, were significantly increased compared to the cut-off of the assay. Average IgG and IgM titers were significantly lower for the group = 69 years old compared to the group < 69 years. Collectively, the data demonstrate a persistence of F. tularensis-specific IgM and IgG antibody titers for at least 12 months after ulceroglandular tularemia. Thus, low, but significantly elevated F. tularensis-specific antibody titers are of limited diagnostic value since they are not indicative of ongoing tularemia.
Collapse
Affiliation(s)
- Helena Lindgren
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Eklund
- Ljusdal-Ramsjö Primary Care Centre, Ljusdal, Sweden
| | - Kjell Eneslätt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden,*Correspondence: Anders Sjöstedt,
| |
Collapse
|
7
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
8
|
Senevirathne A, Hewawaduge C, Lee JH. Immunization of chickens with Salmonella gallinarium ghosts expressing Salmonella Enteritidis NFliC-FimA C and CD40L C fusion antigen enhances cell-mediated immune responses and protects against wild-type challenges with both species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104265. [PMID: 34555416 DOI: 10.1016/j.dci.2021.104265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This study describes the construction and immunological characterization of a novel Salmonella gallinarium ghost vaccine to protect against S. gallinarium (SG) and S. Enteritidis (SE) serotypes. The SG ghost was designed to express N-terminus FliC (D0-D1 domain) and FimA retrieved from the SE genome, and the receptor-binding domain (RBD) of CD40L from the chicken as a single fusion construct. The construct was built in pJHL184, a phage lysis gene E-mediated ghost plasmid and the expression was confirmed by western blot resulting in an 85-kDa band. Chicken immunization was conducted by intramuscular route with SG ghost FliC-FimA-CD40L, vector control, or PBS alone in a prime-boost schedule. Antibody responses, cell-mediated immune responses (CMI), and cytokine induction was assessed in chicken demonstrating significantly high levels of IgY, CMI, cytokine responses in ghost immunized group delivering partial protection against SG wild type challenge and near complete protection against SE challenge wild type challenge.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, South Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Iksan, South Korea.
| |
Collapse
|
9
|
Kubelkova K, Macela A. Francisella and Antibodies. Microorganisms 2021; 9:microorganisms9102136. [PMID: 34683457 PMCID: PMC8538966 DOI: 10.3390/microorganisms9102136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023] Open
Abstract
Immune responses to intracellular pathogens depend largely upon the activation of T helper type 1-dependent mechanisms. The contribution of B cells to establishing protective immunity has long been underestimated. Francisella tularensis, including a number of subspecies, provides a suitable model for the study of immune responses against intracellular bacterial pathogens. We previously demonstrated that Francisella infects B cells and activates B-cell subtypes to produce a number of cytokines and express the activation markers. Recently, we documented the early production of natural antibodies as a consequence of Francisella infection in mice. Here, we summarize current knowledge on the innate and acquired humoral immune responses initiated by Francisella infection and their relationships with the immune defense systems.
Collapse
|
10
|
Barbosa CHD, Lantier L, Reynolds J, Wang J, Re F. Critical role of IL-25-ILC2-IL-5 axis in the production of anti-Francisella LPS IgM by B1 B cells. PLoS Pathog 2021; 17:e1009905. [PMID: 34449811 PMCID: PMC8428711 DOI: 10.1371/journal.ppat.1009905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of “natural” IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens. B1 cells are a subset of B lymphocytes that participate in the immune response to infection by producing antibodies of the IgM class. Here we investigate the mechanisms that control B1 cells activation and production of IgM directed against the lipopolysaccharide (LPS) of Francisella tularensis, a Gram-negative bacterium that causes tularemia. Using a mouse model of tularemia, our results revealed that Francisella LPS elicits production of the cytokine IL-25 that in turn activates blood cells called Innate Lymphoid Cells 2 (ILC2). Once activated, ILC2 produce the cytokine IL-5 that is required for activation of B1 cells and production of IgM. Mice unresponsive to IL-25 are more susceptible to F. tularensis infection. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against bacteria.
Collapse
Affiliation(s)
- Carlos Henrique D. Barbosa
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Louis Lantier
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Joseph Reynolds
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Jinyong Wang
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Fabio Re
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Aim2 and Nlrp3 Are Dispensable for Vaccine-Induced Immunity against Francisella tularensis Live Vaccine Strain. Infect Immun 2021; 89:e0013421. [PMID: 33875472 DOI: 10.1128/iai.00134-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis is a facultative, intracellular, Gram-negative bacterium that causes a fatal disease known as tularemia. Due to its extremely high virulence, ease of spread by aerosolization, and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a tier 1 category A select agent. Previous studies have demonstrated the roles of the inflammasome sensors absent in melanoma 2 (AIM2) and NLRP3 in the generation of innate immune responses to F. tularensis infection. However, contributions of both the AIM2 and NLRP3 to the development of vaccine-induced adaptive immune responses against F. tularensis are not known. This study determined the contributions of Aim2 and Nlrp3 inflammasome sensors to vaccine-induced immune responses in a mouse model of respiratory tularemia. We developed a model to vaccinate Aim2- and Nlrp3-deficient (Aim2-/- and Nlrp3-/-) mice using the emrA1 mutant of the F. tularensis live vaccine strain (LVS). The results demonstrate that the innate immune responses in Aim2-/- and Nlrp3-/- mice vaccinated with the emrA1 mutant differ from those of their wild-type counterparts. However, despite these differences in the innate immune responses, both Aim2-/- and Nlrp3-/- mice are fully protected against an intranasal lethal challenge dose of F. tularensis LVS. Moreover, the lack of both Aim2 and Nlrp3 inflammasome sensors does not affect the production of vaccination-induced antibody and cell-mediated responses. Overall, this study reports a novel finding that both Aim2 and Nlrp3 are dispensable for vaccination-induced immunity against respiratory tularemia caused by F. tularensis.
Collapse
|
12
|
Differential Immune Response Following Intranasal and Intradermal Infection with Francisella tularensis: Implications for Vaccine Development. Microorganisms 2021; 9:microorganisms9050973. [PMID: 33946283 PMCID: PMC8145380 DOI: 10.3390/microorganisms9050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular coccobacillus that is the etiological agent of tularemia. Interestingly, the disease tularemia has variable clinical presentations that are dependent upon the route of infection with Ft. Two of the most likely routes of Ft infection include intranasal and intradermal, which result in pneumonic and ulceroglandular tularemia, respectively. While there are several differences between these two forms of tularemia, the most notable disparity is between mortality rates: the mortality rate following pneumonic tularemia is over ten times that of the ulceroglandular disease. Understanding the differences between intradermal and intranasal Ft infections is important not only for clinical diagnoses and treatment but also for the development of a safe and effective vaccine. However, the immune correlates of protection against Ft, especially within the context of infection by disparate routes, are not yet fully understood. Recent advances in different animal models have revealed new insights in the complex interplay of innate and adaptive immune responses, indicating dissimilar patterns in both responses following infection with Ft via different routes. Further investigation of these differences will be crucial to predicting disease outcomes and inducing protective immunity via vaccination or natural infection.
Collapse
|
13
|
Acanthamoeba - pathogen and vector of highly pathogenic bacteria strains to healthy and immunocompromised individuals. Cent Eur J Immunol 2021; 45:228-232. [PMID: 33456336 PMCID: PMC7792437 DOI: 10.5114/ceji.2020.97667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Acanthamoeba is a free-living protist pathogen, which is present in every place on Earth. 50 to 100 percent of the adult population has serum antibodies, specific for Acanthamoeba antigens. Acanthamoeba is an etiological agent of keratitis and encephalitis diagnosed in human. Acanthamoeba keratitis occurs in healthy persons and may lead to visual impairment and blindness, because corneal infection with this parasite fails to induce cell-mediated immune response due to the absence of resident antigen-presenting cells in the cornea. Systemic immunization with Acanthamoeba antigens induces Th1 cell-mediated immunity and serum IgG antibody, but do not prevent the development of keratitis. Immunization via mucosal surfaces stimulates IgA antibodies in tears and protects against the development of keratitis. Amoebae feed mainly on bacteria, fungi, and algae. By transferring intracellular bacteria, amoeba contributes to the spread of diseases dangerous to humans. Some microorganisms have evolved to become resistant to protist, since they are not internalized or able to survive, grow, and exit free-living protists after internalization. In many cases, the bacteria inside living amoebae survive longer, and multiply better, showing higher virulence. There is a hypothesis, which assumes that Acanthamoeba and symbiontic bacteria survive and multiply better in moist soil, rich in nitrogen compounds, particularly in the vicinity of the root systems of Alnus glutinosa, infected with nitrogen-fixing bacteria Frankia alni. Impact of soil environment created by nitrogen-fixing bacterium Frankia alni on specific relations between protists Acanthamoeba and highly pathogenic bacteria strains in Alnus glutinosa habitats in Poland continue to be established.
Collapse
|
14
|
Systems Vaccinology for a Live Attenuated Tularemia Vaccine Reveals Unique Transcriptional Signatures That Predict Humoral and Cellular Immune Responses. Vaccines (Basel) 2019; 8:vaccines8010004. [PMID: 31878161 PMCID: PMC7158697 DOI: 10.3390/vaccines8010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses.
Collapse
|
15
|
Inhibition of Francisella tularensis phagocytosis using a novel anti-LPS scFv antibody fragment. Sci Rep 2019; 9:11418. [PMID: 31388083 PMCID: PMC6684794 DOI: 10.1038/s41598-019-47931-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis (Ft), the causative agent of lethal tularemia, is classified as a category A biological warfare threat agent. While Ft infection is treatable by antibiotics, many failed antibiotic treatments were reported, highlighting the need for effective new treatments. It has been demonstrated that binding of antibody-coated bacteria to the Fc receptor located on phagocytic cells is a key process needed for efficient protection against Ft. Yet, Ft utilizes the same receptor to enter the phagocytic cells in order to escape the immune system. To address the question whether an anti-Ft LPS antibody lacking the ability to bind the Fc receptor may inhibit the entry of Ft into host cells, a soluble scFv (TL1-scFv) was constructed from an anti Ft-LPS antibody (TL1) that was isolated from an immune single-chain (scFv) phage-display library. Bacterial uptake was assessed upon infection of macrophages with Ft live attenuated strain (LVS) in the presence of either TL1 or TL1-scFv. While incubation of LVS in the presence of TL1 greatly enhanced bacterial uptake, LVS uptake was significantly inhibited in the presence of TL1-scFv. These results prompt further experiments probing the therapeutic efficacy of TL1-scFv, alone or in combination with antibiotic treatment.
Collapse
|
16
|
Vargas-Lagos C, Martínez D, Oyarzún R, Avendaño-Herrera R, Yáñez AJ, Pontigo JP, Vargas-Chacoff L. High doses of Francisella noatunensis induces an immune response in Eleginops maclovinus. FISH & SHELLFISH IMMUNOLOGY 2019; 90:1-11. [PMID: 31015063 DOI: 10.1016/j.fsi.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/μL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.
Collapse
Affiliation(s)
- C Vargas-Lagos
- Programa de Magíster en Ciencias, Mención Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Avendaño-Herrera
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña Del Mar, Chile
| | - A J Yáñez
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
17
|
Soto-Dávila M, Hossain A, Chakraborty S, Rise ML, Santander J. Aeromonas salmonicida subsp. salmonicida Early Infection and Immune Response of Atlantic Cod ( Gadus morhua L.) Primary Macrophages. Front Immunol 2019; 10:1237. [PMID: 31231379 PMCID: PMC6559310 DOI: 10.3389/fimmu.2019.01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
In contrast to other teleosts, Atlantic cod (Gadus morhua) has an expanded repertoire of MHC-I and TLR components, but lacks the MHC-II, the invariant chain/CD74, and CD4+ T cell response, essential for production of antibodies and prevention of bacterial infectious diseases. The mechanisms by which G. morhua fight bacterial infections are not well understood. Aeromonas salmonicida subsp. salmonicida is a recurrent pathogen in cultured and wild fish, and has been reported in Atlantic cod. Macrophages are some of the first responders to bacterial infection and the link between innate and adaptive immune response. Here, we evaluated the viability, reactive oxygen species (ROS) production, cell morphology, and gene expression of cod primary macrophages in response to A. salmonicida infection. We found that A. salmonicida infects cod primary macrophages without killing the cod cells. Likewise, infected Atlantic cod macrophages up-regulated key genes involved in the inflammatory response (e.g., IL-1β and IL-8) and bacterial recognition (e.g., BPI/LBP). Nevertheless, our results showed a down-regulation of genes related to antimicrobial peptide and ROS production, suggesting that A. salmonicida utilizes its virulence mechanisms to control and prevent macrophage anti-bacterial activity. Our results also indicate that Atlantic cod has a basal ROS production in non-infected cells, and this was not increased after contact with A. salmonicida. Transmission electron microscopy results showed that A. salmonicida was able to infect the macrophages in a high number, and release outer membrane vesicles (OMV) during intracellular infection. These results suggest that Atlantic cod macrophage innate immunity is able to detect A. salmonicida and trigger an anti-inflammatory response, however A. salmonicida controls the cell immune response to prevent bacterial clearance, during early infection.
Collapse
Affiliation(s)
- Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Ocean Science Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
18
|
Shahin K, Shinn AP, Metselaar M, Ramirez-Paredes JG, Monaghan SJ, Thompson KD, Hoare R, Adams A. Efficacy of an inactivated whole-cell injection vaccine for nile tilapia, Oreochromis niloticus (L), against multiple isolates of Francisella noatunensis subsp. orientalis from diverse geographical regions. FISH & SHELLFISH IMMUNOLOGY 2019; 89:217-227. [PMID: 30951851 DOI: 10.1016/j.fsi.2019.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Francisellosis, induced by Francisella noatunensis subsp. orientalis (Fno), is an emerging bacterial disease representing a major threat to the global tilapia industry. There are no commercialised vaccines presently available against francisellosis for use in farmed tilapia, and the only available therapeutic practices used in the field are either the prolonged use of antibiotics or increasing water temperature. Recently, an autogenous whole cell-adjuvanted injectable vaccine was developed that gave 100% relative percent survival (RPS) in tilapia challenged with a homologous isolate of Fno. In this study, we evaluated the efficacy of this vaccine against challenge with heterologous Fno isolates. Healthy Nile tilapia, Oreochromis niloticus (∼15 g) were injected intraperitoneally (i.p.) with the vaccine, adjuvant-alone or phosphate buffer saline (PBS) followed by an i.p. challenge with three Fno isolates from geographically distinct locations. The vaccine provided significant protection in all groups of vaccinated tilapia, with a significantly higher RPS of 82.3% obtained against homologous challenge, compared to 69.8% and 65.9% with the heterologous challenges. Protection correlated with significantly higher specific antibody responses, and western blot analysis demonstrated cross-isolate antigenicity with fish sera post-vaccination and post-challenge. Moreover, a significantly lower bacterial burden was detected by qPCR in conjunction with significantly greater expression of IgM, IL-1 β, TNF-α and MHCII, 72 h post-vaccination (hpv) in spleen samples from vaccinated tilapia compared to fish injected with adjuvant-alone and PBS. The Fno vaccine described in this study may provide a starting point for development a broad-spectrum highly protective vaccine against francisellosis in tilapia.
Collapse
Affiliation(s)
- Khalid Shahin
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK; Aquatic Animal Diseases Lab, Aquaculture Department, National Institute of Oceanography and Fisheries (NIOF), P.O. Box 43511, Suez, Egypt.
| | - Andrew P Shinn
- Fish Vet Group Asia, 21/359 Premjairard Road, Chonburi, 20130, Thailand
| | - Matthijs Metselaar
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Midlothian, Edinburgh, EH26 0BB, UK
| | | | - Sean J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Rowena Hoare
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| |
Collapse
|
19
|
Das S, Chowdhury R, Pal A, Okamoto K, Das S. Salmonella Typhi outer membrane protein STIV is a potential candidate for vaccine development against typhoid and paratyphoid fever. Immunobiology 2019; 224:371-382. [DOI: 10.1016/j.imbio.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
|
20
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
21
|
O’Malley KJ, Bowling JL, Stinson E, Cole KS, Mann BJ, Namjoshi P, Hazlett KRO, Barry EM, Reed DS. Aerosol prime-boost vaccination provides strong protection in outbred rabbits against virulent type A Francisella tularensis. PLoS One 2018; 13:e0205928. [PMID: 30346998 PMCID: PMC6197691 DOI: 10.1371/journal.pone.0205928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tularemia, also known as rabbit fever, is a severe zoonotic disease in humans caused by the gram-negative bacterium Francisella tularensis (Ft). While there have been a number of attempts to develop a vaccine for Ft, few candidates have advanced beyond experiments in inbred mice. We report here that a prime-boost strategy with aerosol delivery of recombinant live attenuated candidate Ft S4ΔaroD offers significant protection (83% survival) in an outbred animal model, New Zealand White rabbits, against aerosol challenge with 248 cfu (11 LD50) of virulent type A Ft SCHU S4. Surviving rabbits given two doses of the attenuated strains by aerosol did not exhibit substantial post-challenge fevers, changes in erythrocyte sedimentation rate or in complete blood counts. At a higher challenge dose (3,186 cfu; 139 LD50), protection was still good with 66% of S4ΔaroD-vaccinated rabbits surviving while 50% of S4ΔguaBA vaccinated rabbits also survived challenge. Pre-challenge plasma IgG titers against Ft SCHU S4 corresponded with survival time after challenge. Western blot analysis found that plasma antibody shifted from predominantly targeting Ft O-antigen after the prime vaccination to other antigens after the boost. These results demonstrate the superior protection conferred by a live attenuated derivative of virulent F. tularensis, particularly when given in an aerosol prime-boost regimen.
Collapse
Affiliation(s)
- Katherine J. O’Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jennifer L. Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Elizabeth Stinson
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelly S. Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Barbara J. Mann
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States of America
| | - Prachi Namjoshi
- Department for Immunology & Microbial Diseases, Albany Medical College, Albany, NY, United States of America
| | - Karsten R. O. Hazlett
- Department for Immunology & Microbial Diseases, Albany Medical College, Albany, NY, United States of America
| | - Eileen M. Barry
- Center for Vaccine Development, University of Maryland Baltimore, Baltimore, MD, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sunagar R, Kumar S, Rosa SJ, Hazlett KRO, Gosselin EJ. Differential In Vitro Cultivation of Francisella tularensis Influences Live Vaccine Protective Efficacy by Altering the Immune Response. Front Immunol 2018; 9:1594. [PMID: 30042767 PMCID: PMC6048226 DOI: 10.3389/fimmu.2018.01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and improved tools to assess these vaccines. Ft expresses distinct sets of antigens (Ags) in vivo as compared to those expressed in vitro. Importantly, Ft grown in brain-heart infusion medium (BHIM) more closely mimics the antigenic profile of macrophage-grown Ft when compared to Mueller-Hinton medium (MHM)-grown Ft. Thus, we predicted that when used as a live vaccine BHIM-grown Ft (BHIM-Ft) would provide better protection, as compared to MHM-Ft. We first determined if there was a difference in growth kinetics between BHIM and MHM-Ft. We found that BHIM-Ft exhibited an initial growth advantage ex vivo that manifests as slightly hastened intracellular replication as compared to MHM-Ft. We also observed that BHIM-Ft exhibited an initial growth advantage in vivo represented by rapid bacterial expansion and systemic dissemination associated with a slightly shorter mean survival time of naive animals. Next, using two distinct strains of Ft LVS (WT and sodB), we observed that mice vaccinated with live BHIM-Ft LVS exhibited significantly better protection against Ft SchuS4 respiratory challenge compared to MHM-Ft-immunized mice. This enhanced protection correlated with lower bacterial burden, reduced tissue inflammation, and reduced pro-inflammatory cytokine production late in infection. Splenocytes from BHIM-Ft sodB-immunized mice contained more CD4+, effector, memory T-cells, and were more effective at limiting intracellular replication of Ft LVS in vitro. Concurrent with enhanced killing of Ft LVS, BHIM-Ft sodB-immune splenocytes produced significantly higher levels of IFN-γ and IL-17A cytokines than their MHM-Ft sodB-immunized counterparts indicating development of a more effective T cell memory response when immunizing mice with BHIM-Ft.
Collapse
Affiliation(s)
- Raju Sunagar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Sarah J Rosa
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Karsten R O Hazlett
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
23
|
Pandey RK, Ali M, Ojha R, Bhatt TK, Prajapati VK. Development of multi-epitope driven subunit vaccine in secretory and membrane protein of Plasmodium falciparum to convey protection against malaria infection. Vaccine 2018; 36:4555-4565. [PMID: 29921492 DOI: 10.1016/j.vaccine.2018.05.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 10/28/2022]
Abstract
Malaria infection is the severe health concern for a long time. As per the WHO reports, the malarial infection causes huge mortality all around the world and is incomparable with any other infectious diseases. The absence of effective treatment options and increasing drug resistance to the available therapeutics like artemisinin and other derivatives demand an efficient alternative to overcome this death burden. Here, we performed the literature survey and sorted the Plasmodium falciparum secretory and membrane proteins to design multi-epitope subunit vaccine using an adjuvant, B-cell- and T-cell epitopes. Every helper T-lymphocyte (HTL) epitope was IFN-γ positive and IL-4 non-inducer. The physicochemical properties, allergenicity, and antigenicity of designed vaccine were analyzed for the safety concern. Homology modeling and refinement were performed to obtain the functional tertiary structure of vaccine protein followed by its molecular docking with the toll-like receptor-4 (TLR-4) immune receptor. Molecular dynamics simulation was performed to check the interaction and stability of the receptor-ligand complex. Lastly, in silico cloning was performed to generate the restriction clone of designed vaccine for the futuristic expression in a microbial expression system. This way, we designed the multi-epitope subunit vaccine to serve the people living in the global endemic zone.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Mudassar Ali
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
24
|
Champion AE, Bandara AB, Mohapatra N, Fulton KM, Twine SM, Inzana TJ. Further Characterization of the Capsule-Like Complex (CLC) Produced by Francisella tularensis Subspecies tularensis: Protective Efficacy and Similarity to Outer Membrane Vesicles. Front Cell Infect Microbiol 2018; 8:182. [PMID: 29963499 PMCID: PMC6013578 DOI: 10.3389/fcimb.2018.00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia, and subspecies tularensis (type A) is the most virulent subspecies. The live vaccine strain (LVS) of subspecies holarctica produces a capsule-like complex (CLC) that consists of a large variety of glycoproteins. Expression of the CLC is greatly enhanced when the bacteria are subcultured in and grown on chemically defined medium. Deletion of two genes responsible for CLC glycosylation in LVS results in an attenuated mutant that is protective against respiratory tularemia in a mouse model. We sought to further characterize the CLC composition and to determine if a type A CLC glycosylation mutant would be attenuated in mice. The CLCs isolated from LVS extracted with 0.5% phenol or 1 M urea were similar, as determined by gel electrophoresis and Western blotting, but the CLC extracted with urea was more water-soluble. The CLC extracted with either 0.5% phenol or 1 M urea from type A strains was also similar to the CLC of LVS in antigenic properties, electrophoretic profile, and by transmission electron microscopy (TEM). The solubility of the CLC could be further enhanced by fractionation with Triton X-114 followed by N-Lauroylsarcosine detergents; the largest (>250 kDa) molecular size component appeared to be an aggregate of smaller components. Outer membrane vesicles/tubules (OMV/T) isolated by differential centrifugation and micro-filtration appeared similar to the CLC by TEM, and many of the proteins present in the OMV/T were also identified in soluble and insoluble fractions of the CLC. Further investigation is warranted to assess the relationship between OMV/T and the CLC. The CLC conjugated to keyhole limpet hemocyanin or flagellin was highly protective against high-dose LVS intradermal challenge and partially protective against intranasal challenge. A protective response was associated with a significant rise in cytokines IL-12, IL-10, and IFN-γ. However, a type A CLC glycosylation mutant remained virulent in BALB/c mice, and immunization with the CLC did not protect mice against high dose respiratory challenge with type A strain SCHU S4.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Capsules/genetics
- Bacterial Capsules/immunology
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Flagellin/genetics
- Flagellin/immunology
- Francisella tularensis/genetics
- Francisella tularensis/metabolism
- Francisella tularensis/pathogenicity
- Genes, Bacterial/genetics
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/isolation & purification
- Hemocyanins/genetics
- Hemocyanins/immunology
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Interleukin-12/metabolism
- Mice, Inbred BALB C
- Mutagenesis
- Sequence Deletion
- Tularemia/immunology
- Tularemia/prevention & control
- Vaccination
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Conjugate/genetics
- Vaccines, Conjugate/immunology
- Virulence Factors/genetics
- Virulence Factors/immunology
Collapse
Affiliation(s)
- Anna E. Champion
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aloka B. Bandara
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Nrusingh Mohapatra
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Kelly M. Fulton
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada
| | - Susan M. Twine
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada
| | - Thomas J. Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
25
|
Mansour AA, Banik S, Suresh RV, Kaur H, Malik M, McCormick AA, Bakshi CS. An Improved Tobacco Mosaic Virus (TMV)-Conjugated Multiantigen Subunit Vaccine Against Respiratory Tularemia. Front Microbiol 2018; 9:1195. [PMID: 29922267 PMCID: PMC5996085 DOI: 10.3389/fmicb.2018.01195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis, the causative agent of the fatal human disease known as tularemia is classified as a Category A Select Agent by the Centers for Disease Control. No licensed vaccine is currently available for prevention of tularemia in the United States. Previously, we published that a tri-antigen tobacco mosaic virus (TMV) vaccine confers 50% protection in immunized mice against respiratory tularemia caused by F. tularensis. In this study, we refined the TMV-vaccine formulation to improve the level of protection in immunized C57BL/6 mice against respiratory tularemia. We developed a tetra-antigen vaccine by conjugating OmpA, DnaK, Tul4, and SucB proteins of Francisella to TMV. CpG was also included in the vaccine formulation as an adjuvant. Primary intranasal (i.n.) immunization followed by two booster immunizations with the tetra-antigen TMV vaccine protected 100% mice against i.n. 10LD100 challenges dose of F. tularensis live vaccine strain (LVS). Mice receiving three immunization doses of tetra-antigen TMV vaccine showed only transient body weight loss, cleared the infection rapidly, and showed minimal histopathological lesions in lungs, liver, and spleen following a lethal respiratory challenge with F. tularensis LVS. Mice immunized with the tetra-antigen TMV vaccine also induced strong ex vivo recall responses and were protected against a lethal challenge as late as 163 days post-primary immunization. Three immunization with the tetra-antigen TMV vaccine also induced a stronger humoral immune response predominated by IgG1, IgG2b, and IgG2c antibodies than mice receiving only a single or two immunizations. Remarkably, a single dose protected 40% of mice, while two doses protected 80% of mice from lethal pathogen challenge. Immunization of Interferon-gamma (IFN-γ)-deficient mice with the tetra-antigen TMV vaccine demonstrated an absolute requirement of IFN-γ for the generation of protective immune response against a lethal respiratory challenge with F. tularensis LVS. Collectively, this study further demonstrates the feasibility of TMV as an efficient platform for the delivery of multiple F. tularensis antigens and that tetra-antigen TMV vaccine formulation provides complete protection, and induces long-lasting protective and memory immune responses against respiratory tularemia caused by F. tularensis LVS.
Collapse
Affiliation(s)
- Ahd A Mansour
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Sukalyani Banik
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ragavan V Suresh
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Hardeep Kaur
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Alison A McCormick
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Chandra S Bakshi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
26
|
Roberts LM, Powell DA, Frelinger JA. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development. Front Cell Infect Microbiol 2018; 8:115. [PMID: 29682484 PMCID: PMC5898179 DOI: 10.3389/fcimb.2018.00115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Daniel A Powell
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
27
|
Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun 2018; 86:IAI.00787-17. [PMID: 29311236 DOI: 10.1128/iai.00787-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
Opsonizing antibody is a critical component of the host protective immune response against many respiratory pathogens. However, the role of antibodies in protection against pulmonary infection with highly virulent Francisella tularensis strain SchuS4 is unclear, and the mechanism that allows F. tularensis to evade antibody-mediated bacterial clearance is not fully understood. We have now found that depletion of alveolar macrophages reveals an otherwise cryptic protective effect of opsonizing antibody. While antibody opsonization alone failed to confer any survival benefit against SchuS4 lung infection, significant protection was observed when mice were depleted of alveolar macrophages prior to infection. Blood immune signature analyses and bacterial burden measurements indicated that the treatment regimen blocked establishment of productive, systemic infection. In addition, protection was found to be dependent upon neutrophils. The results show for the first time a protective effect of opsonizing antibodies against highly virulent F. tularensis SchuS4 pulmonary infection through depletion of alveolar macrophages, the primary bacterial reservoir, and prevention of systemic dissemination. These findings have important implications for the potential use of therapeutic antibodies against intracellular pathogens that may escape clearance by residing within mucosal macrophages.
Collapse
|
28
|
Rozas-Serri M, Peña A, Arriagada G, Enríquez R, Maldonado L. Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. JOURNAL OF FISH DISEASES 2018; 41:539-552. [PMID: 29143962 DOI: 10.1111/jfd.12756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The aim of this study was to describe and comparatively quantify the immune response of post-smolt Atlantic salmon infected by cohabitation with fish bearing LF-89-like and EM-90-like Piscirickettsia salmonis. The expression of 17 genes related to the immune response was studied in head kidney from cohabitant fish by RT-qPCR. Our results at the transcriptomic level suggest that P. salmonis is able to manipulate the kinetics of cytokine production in a way that might constitute a virulence mechanism that promotes intracellular bacterial replication in cells of Atlantic salmon. This strategy involves the creation of an ideal environment for the microorganism based on induction of the inflammatory and IFN-mediated response, modulation of Th1 polarization, reduced antigen processing and presentation, modulation of the evasion of the immune response mediated by CD8+ T cells and promotion of the CD4+ T-cell response during the late stage of infection as a mechanism to escape host defences. This response was significantly exacerbated in fish infected by PS-EM-90 compared with fish infected by PS-LF-89, a finding that is probably associated with the higher pathogenicity of PS-EM-90.
Collapse
Affiliation(s)
- M Rozas-Serri
- Pathovet Laboratory Ltd., Puerto Montt, Chile
- Faculty of Veterinary Sciences, Graduate School, Austral University of Chile, Valdivia, Chile
| | - A Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| | - G Arriagada
- EPI-data Research & Consulting, Santiago, Chile
| | - R Enríquez
- Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - L Maldonado
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| |
Collapse
|
29
|
Tian D, Uda A, Park ES, Hotta A, Fujita O, Yamada A, Hirayama K, Hotta K, Koyama Y, Azaki M, Morikawa S. Evaluation of Francisella tularensis ΔpdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiol Immunol 2018; 62:24-33. [PMID: 29171073 DOI: 10.1111/1348-0421.12555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Francisella tularensis, which causes tularemia, is an intracellular gram-negative bacterium. F. tularensis has received significant attention in recent decades because of its history as a biological weapon. Thus, development of novel vaccines against tularemia has been an important goal. The attenuated F. tularensis strain ΔpdpC, in which the pathogenicity determinant protein C gene (pdpC) has been disrupted by TargeTron mutagenesis, was investigated as a potential vaccine candidate for tularemia in the present study. C57BL/6J mice immunized s.c. with 1 × 106 CFUs of ΔpdpC were challenged intranasally with 100× the median lethal dose (LD50 ) of a virulent SCHU P9 strain 21 days post immunization. Protection against this challenge was achieved in 38% of immunized C57BL/6J mice administered 100 LD50 of this strain. Conversely, all unimmunized mice succumbed to death 6 days post challenge. Survival rates were significantly higher in vaccinated than in unimmunized mice. In addition, ΔpdpC was passaged serially in mice to confirm its stable attenuation. Low bacterial loads persisted in mouse spleens during the first to tenth passages. No statistically significant changes in the number of CFUs were observed during in vivo passage of ΔpdpC. The inserted intron sequences for disrupting pdpC were completely maintained even after the tenth passage in mice. Considering the stable attenuation and intron sequences, it is suggested that ΔpdpC is a promising tularemia vaccine candidate.
Collapse
Affiliation(s)
- Deyu Tian
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kozue Hotta
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuuki Koyama
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mika Azaki
- Department of Integrated Science in Physics and Biology College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
30
|
Post DMB, Slütter B, Schilling B, Chande AT, Rasmussen JA, Jones BD, D'Souza AK, Reinders LM, Harty JT, Gibson BW, Apicella MA. Characterization of Inner and Outer Membrane Proteins from Francisella tularensis Strains LVS and Schu S4 and Identification of Potential Subunit Vaccine Candidates. mBio 2017; 8:e01592-17. [PMID: 29018123 PMCID: PMC5635693 DOI: 10.1128/mbio.01592-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a potential bioterrorism agent. In the present study, we isolated, identified, and quantified the proteins present in the membranes of the virulent type A strain, Schu S4, and the attenuated type B strain, LVS (live vaccine strain). Spectral counting of mass spectrometric data showed enrichment for membrane proteins in both strains. Mice vaccinated with whole LVS membranes encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing the adjuvant polyinosinic-polycytidylic acid [poly(I·C)] showed significant protection against a challenge with LVS compared to the results seen with naive mice or mice vaccinated with either membranes or poly(I·C) alone. The PLGA-encapsulated Schu S4 membranes with poly(I·C) alone did not significantly protect mice from a lethal intraperitoneal challenge with Schu S4; however, this vaccination strategy provided protection from LVS challenge. Mice that received the encapsulated Schu S4 membranes followed by a booster of LVS bacteria showed significant protection with respect to a lethal Schu S4 challenge compared to control mice. Western blot analyses of the sera from the Schu S4-vaccinated mice that received an LVS booster showed four immunoreactive bands. One of these bands from the corresponding one-dimensional (1D) SDS-PAGE experiment represented capsule. The remaining bands were excised, digested with trypsin, and analyzed using mass spectrometry. The most abundant proteins present in these immunoreactive samples were an outer membrane OmpA-like protein, FopA; the type IV pilus fiber building block protein; a hypothetical membrane protein; and lipoproteins LpnA and Lpp3. These proteins should serve as potential targets for future recombinant protein vaccination studies.IMPORTANCE The low infectious dose, the high potential mortality/morbidity rates, and the ability to be disseminated as an aerosol make Francisella tularensis a potential agent for bioterrorism. These characteristics led the Centers for Disease Control (CDC) to classify F. tularensis as a Tier 1 pathogen. Currently, there is no vaccine approved for general use in the United States.
Collapse
Affiliation(s)
| | - Bram Slütter
- Department of Microbiology, the University of Iowa, Iowa City, Iowa, USA
| | | | - Aroon T Chande
- Department of Microbiology, the University of Iowa, Iowa City, Iowa, USA
| | - Jed A Rasmussen
- Department of Microbiology, the University of Iowa, Iowa City, Iowa, USA
| | - Bradley D Jones
- Department of Microbiology, the University of Iowa, Iowa City, Iowa, USA
| | | | | | - John T Harty
- Department of Microbiology, the University of Iowa, Iowa City, Iowa, USA
| | - Bradford W Gibson
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Michael A Apicella
- Department of Microbiology, the University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
31
|
Increased Resistance to Intradermal Francisella tularensis LVS Infection by Inactivation of the Sts Phosphatases. Infect Immun 2017. [PMID: 28630061 DOI: 10.1128/iai.00406-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Suppressor of TCR signaling proteins (Sts-1 and Sts-2) are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic lineages, including T lymphocytes. Mice lacking Sts expression are characterized by enhanced T cell responses. Additionally, a recent study demonstrated that Sts-/- mice are profoundly resistant to systemic infection by Candida albicans, with resistance characterized by enhanced survival, more rapid fungal clearance in key peripheral organs, and an altered inflammatory response. To investigate the role of Sts in the primary host response to infection by a bacterial pathogen, we evaluated the response of Sts-/- mice to infection by a Gram-negative bacterial pathogen. Francisella tularensis is a facultative bacterial pathogen that replicates intracellularly within a variety of cell types and is the causative agent of tularemia. Francisella infections are characterized by a delayed immune response, followed by an intense inflammatory reaction that causes widespread tissue damage and septic shock. Herein, we demonstrate that mice lacking Sts expression are significantly resistant to infection by the live vaccine strain (LVS) of F. tularensis Resistance is characterized by reduced lethality following high-dose intradermal infection, an altered cytokine response in the spleen, and enhanced bacterial clearance in multiple peripheral organs. Sts-/- bone marrow-derived monocytes and neutrophils, infected with F. tularensis LVS ex vivo, display enhanced restriction of intracellular bacteria. These observations suggest the Sts proteins play an important regulatory role in the host response to bacterial infection, and they underscore a role for Sts in regulating functionally relevant immune response pathways.
Collapse
|
32
|
Tandberg J, Oliver C, Lagos L, Gaarder M, Yáñez AJ, Ropstad E, Winther-Larsen HC. Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2017; 67:189-198. [PMID: 28600194 DOI: 10.1016/j.fsi.2017.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Infections caused by the facultative intracellular bacterial pathogen Piscirickettsia salmonis remains an unsolved problem for the aquaculture as no efficient treatments have been developed. As a result, substantial amounts of antibiotic have been used to limit salmonid rickettsial septicemia (SRS) disease outbreaks. The antibiotic usage has not reduced the occurrence, but lead to an increase in resistant strains, underlining the need for new treatment strategies. P. salmonis produce membrane vesicles (MVs); small spherical structures know to contain a variety of bacterial components, including proteins, lipopolysaccharides (LPS), DNA and RNA. MVs mimics' in many aspects their mother cell, and has been reported as alternative vaccine candidates. Here, MVs from P. salmonis was isolated and evaluated as a vaccine candidate against SRS in an adult zebrafish infection model. When zebrafish was immunized with MVs they were protected from subsequent challenge with a lethal dose of P. salmonis. Histological analysis showed a reduced bacterial load upon challenge in the MV immunized group, and the mRNA expression levels of several immune related genes altered, including mpeg1.1, tnfα, il1b, il10 and il6. The MVs induced the secretion of IgM upon immunization, indicating an immunogenic effect of the vesicles. Taken together, the data demonstrate a vaccine potential of MVs against P. salmonis.
Collapse
Affiliation(s)
- Julia Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Cristian Oliver
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Department of Biological Science, Faculty of Biological Science, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Leidy Lagos
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Alejandro J Yáñez
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Austral-OMICS, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Hanne C Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
33
|
Protective Role for Macrophages in Respiratory Francisella tularensis Infection. Infect Immun 2017; 85:IAI.00064-17. [PMID: 28373354 DOI: 10.1128/iai.00064-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022] Open
Abstract
Francisella tularensis causes lethal pneumonia following infection of the lungs by targeting macrophages for intracellular replication; however, macrophages stimulated with interferon gamma (IFN-γ) can resist infection in vitro We therefore hypothesized that the protective effect of IFN-γ against F. tularensisin vivo requires macrophages receptive to stimulation. We found that the lethality of pulmonary F. tularensis LVS infection was exacerbated under conditions of alveolar macrophage depletion and in mice with a macrophage-specific defect in IFN-γ signaling (termed mice with macrophages insensitive to IFN-γ [MIIG mice]). We previously found that treatment with exogenous interleukin 12 (IL-12) protects against F. tularensis infection; this protection was lost in MIIG mice. MIIG mice also exhibited reduced neutrophil recruitment to the lungs following infection. Systemic neutrophil depletion was found to render wild-type mice highly sensitive to respiratory F. tularensis infection, and depletion beginning at 3 days postinfection led to more pronounced sensitivity than depletion beginning prior to infection. Furthermore, IL-12-mediated protection required NADPH oxidase activity. These results indicate that lung macrophages serve a critical protective role in respiratory F. tularensis LVS infection. Macrophages require IFN-γ signaling to mediate protection, which ultimately results in recruitment of neutrophils to further aid in survival from infection.
Collapse
|
34
|
Gaur R, Alam SI, Kamboj DV. Immunoproteomic Analysis of Antibody Response of Rabbit Host Against Heat-Killed Francisella tularensis Live Vaccine Strain. Curr Microbiol 2017; 74:499-507. [PMID: 28233060 DOI: 10.1007/s00284-017-1217-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Francisella tularensis, the causative agent of tularemia, has attained the status of one of the high priority agents that could be used in the act of bioterrorism. Currently, there is no licensed vaccine for this highly infectious intracellular pathogen. Being a listed 'Category A' agent of the U.S. Center for Disease Control and Prevention (CDC), vaccines and therapeutics are immediately required against this pathogen. In this study, an immunoproteomic approach based on the techniques of 2-dimensional gel electrophoresis (2DE) and immunoblotting combined with mass spectrometry (MS) was used for elucidation of immunogenic components and putative vaccine candidates. Whole-cell soluble protein extract of F. tularensis LVS (Ft LVS) was separated by 2DE, and immunoblots were developed with sera raised in rabbit after immunization with heat-killed Ft LVS. A total of 28 immunoreactive proteins were identified by tandem mass spectrometry. Rabbit immunoproteome of F. tularensis was compared with those previously reported using sera from human patients and in murine model. Out of 28 immunoreactive proteins identified in this study, 12 and 17 overlapping proteins were recognized by human and murine sera, respectively. Nine proteins were found immunogenic in all the three hosts, while eight new immunogenic proteins were found in this study. Identified immunoreactive proteins may find application in design and development of protein subunit vaccine for tularemia.
Collapse
Affiliation(s)
- Ritu Gaur
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
35
|
Duffy EB, Periasamy S, Hunt D, Drake JR, Harton JA. FcγR mediates TLR2- and Syk-dependent NLRP3 inflammasome activation by inactivated Francisella tularensis LVS immune complexes. J Leukoc Biol 2016; 100:1335-1347. [PMID: 27365531 PMCID: PMC5110000 DOI: 10.1189/jlb.2a1215-555rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/08/2023] Open
Abstract
IgG (mAb)-opsonized, inactivated Francisella tularensis LVS (iFt-mAb) enhances TLR2-dependent IL-6 production by macrophages via Fcγ receptors (FcγR). In mice, vaccination with iFt-mAb provides IgA-dependent protection against lethal challenge with Ft LVS. Because inflammasome maturation of IL-1β is thought important for antibody-mediated immunity, we considered the possibility that iFt-mAb elicits an FcγR-dependent myeloid cell inflammasome response. Herein, we find that iFt-mAb enhances macrophage and dendritic cell IL-1β responses in a TLR2- and FcγR-dependent fashion. Although iFt-mAb complexes bind FcγR and are internalized, sensing of cytosolic DNA by absent in melanoma 2 (AIM2) is not required for the IL-1β response. In contrast, ASC, caspase-1, and NLR family pyrin domain-containing 3 (NLRP3) are indispensable. Further, FcγR-mediated spleen tyrosine kinase (Syk) signaling is required for this NLRP3-dependent IL-1β response, but the alternative IL-1β convertase caspase-8 is insufficient. Finally, iFt-mAb-vaccinated wild-type mice exhibit a significant delay in time to death, but IL-1R1- or Nlrp3-deficient mice vaccinated in this way are not protected and lack appreciable Francisella-specific antibodies. This study demonstrates that FcγR-mediated Syk activation leads to NLRP3 inflammasome-dependent IL-1β production in macrophages and suggests that an Nlrp3- and IL-1R-dependent process contributes to the IgA response important for protection against Ft LVS. These findings extend our understanding of cellular responses to inactivated pathogen-opsonized vaccine, establish FcγR-elicited Syk kinase-mediated NLRP3 inflammasome activation, and provide additional insight toward understanding crosstalk between TLR and FcγR signals.
Collapse
Affiliation(s)
- Ellen B Duffy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sivakumar Periasamy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Danielle Hunt
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - James R Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jonathan A Harton
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
36
|
Stinson E, Smith LP, Cole KS, Barry EM, Reed DS. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model. Pathog Dis 2016; 74:ftw079. [PMID: 27511964 DOI: 10.1093/femspd/ftw079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/19/2023] Open
Abstract
Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge.
Collapse
Affiliation(s)
- Elizabeth Stinson
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Le'Kneitah P Smith
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kelly Stefano Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland, Baltimore, MD 21201, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
37
|
Propst CN, Pylypko SL, Blower RJ, Ahmad S, Mansoor M, van Hoek ML. Francisella philomiragia Infection and Lethality in Mammalian Tissue Culture Cell Models, Galleria mellonella, and BALB/c Mice. Front Microbiol 2016; 7:696. [PMID: 27252681 PMCID: PMC4877389 DOI: 10.3389/fmicb.2016.00696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Francisella (F.) philomiragia is a Gram-negative bacterium with a preference for brackish environments that has been implicated in causing bacterial infections in near-drowning victims. The purpose of this study was to characterize the ability of F. philomiragia to infect cultured mammalian cells, a commonly used invertebrate model, and, finally, to characterize the ability of F. philomiragia to infect BALB/c mice via the pulmonary (intranasal) route of infection. This study shows that F. philomiragia infects J774A.1 murine macrophage cells, HepG2 cells and A549 human Type II alveolar epithelial cells. However, replication rates vary depending on strain at 24 h. F. philomiragia infection after 24 h was found to be cytotoxic in human U937 macrophage-like cells and J774A.1 cells. This is in contrast to the findings that F. philomiragia was non-cytotoxic to human hepatocellular carcinoma cells, HepG2 cells and A549 cells. Differential cytotoxicity is a point for further study. Here, it was demonstrated that F. philomiragia grown in host-adapted conditions (BHI, pH 6.8) is sensitive to levofloxacin but shows increased resistance to the human cathelicidin LL-37 and murine cathelicidin mCRAMP when compared to related the Francisella species, F. tularensis subsp. novicida and F. tularensis subsp. LVS. Previous findings that LL-37 is strongly upregulated in A549 cells following F. tularensis subsp. novicida infection suggest that the level of antimicrobial peptide expression is not sufficient in cells to eradicate the intracellular bacteria. Finally, this study demonstrates that F. philomiragia is lethal in two in vivo models; Galleria mellonella via hemocoel injection, with a LD50 of 1.8 × 103, and BALB/c mice by intranasal infection, with a LD50 of 3.45 × 103. In conclusion, F. philomiragia may be a useful model organism to study the genus Francisella, particularly for those researchers with interest in studying microbial ecology or environmental strains of Francisella. Additionally, the Biosafety level 2 status of F. philomiragia makes it an attractive model for virulence and pathogenesis studies.
Collapse
Affiliation(s)
- Crystal N Propst
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Ryan J Blower
- School of Systems Biology, George Mason University, Manassas, VA USA
| | - Saira Ahmad
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VAUSA; National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VAUSA
| |
Collapse
|
38
|
Inhibitors of Ribosome Rescue Arrest Growth of Francisella tularensis at All Stages of Intracellular Replication. Antimicrob Agents Chemother 2016; 60:3276-82. [PMID: 26953190 DOI: 10.1128/aac.03089-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Bacteria require at least one pathway to rescue ribosomes stalled at the ends of mRNAs. The primary pathway for ribosome rescue is trans-translation, which is conserved in >99% of sequenced bacterial genomes. Some species also have backup systems, such as ArfA or ArfB, which can rescue ribosomes in the absence of sufficient trans-translation activity. Small-molecule inhibitors of ribosome rescue have broad-spectrum antimicrobial activity against bacteria grown in liquid culture. These compounds were tested against the tier 1 select agent Francisella tularensis to determine if they can limit bacterial proliferation during infection of eukaryotic cells. The inhibitors KKL-10 and KKL-40 exhibited exceptional antimicrobial activity against both attenuated and fully virulent strains of F. tularensis in vitro and during ex vivo infection. Addition of KKL-10 or KKL-40 to macrophages or liver cells at any time after infection by F. tularensis prevented further bacterial proliferation. When macrophages were stimulated with the proinflammatory cytokine gamma interferon before being infected by F. tularensis, addition of KKL-10 or KKL-40 reduced intracellular bacteria by >99%, indicating that the combination of cytokine-induced stress and a nonfunctional ribosome rescue pathway is fatal to F. tularensis Neither KKL-10 nor KKL-40 was cytotoxic to eukaryotic cells in culture. These results demonstrate that ribosome rescue is required for F. tularensis growth at all stages of its infection cycle and suggest that KKL-10 and KKL-40 are good lead compounds for antibiotic development.
Collapse
|
39
|
Sunagar R, Kumar S, Franz BJ, Gosselin EJ. Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice. Vaccine 2016; 34:3396-404. [PMID: 27182819 DOI: 10.1016/j.vaccine.2016.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022]
Abstract
Francisella tularensis (Ft) is a Category A biothreat agent for which there currently is no FDA-approved vaccine. Thus, there is a substantial effort underway to develop an effective tularemia vaccine. While it is well established that gender can significantly impact susceptibility to primary infection, the impact of gender on vaccine efficacy is not well established. Thus, development of a successful vaccine against tularemia will require an understanding of the impact gender has on vaccine-induced protection against this organism. In this study, a role for gender in vaccine-induced protection following Ft challenge is identified for the first time. In the present study, mucosal vaccination with inactivated Ft (iFt) LVS elicited gender-based protection in C57BL/6Tac mice against respiratory challenge with Ft LVS. Specifically, vaccinated male mice were more susceptible to subsequent Ft LVS challenge. This increased susceptibility in male mice correlated with increased bacterial burden, increased tissue inflammation, and increased proinflammatory cytokine production late in post-challenge infection. In contrast, improved survival of iFt-vaccinated female mice correlated with reduced bacterial burden and enhanced levels of Ft-specific Abs in serum and broncho-alveolar lavage (BAL) fluid post-challenge. Furthermore, vaccination with a live attenuated vaccine consisting of an Ft LVS superoxide dismutase (SodB) mutant, which has proven efficacious against the highly virulent Ft SchuS4 strain, demonstrated similar gender bias in protection post-Ft SchuS4 challenge. Of particular significance is the fact that these are the first studies to demonstrate that gender differences impact disease outcome in the case of lethal respiratory tularemia following mucosal vaccination. In addition, these studies further emphasize the fact that gender differences must be a serious consideration in any future tularemia vaccine development studies.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
40
|
Abstract
Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
41
|
Periasamy S, Avram D, McCabe A, MacNamara KC, Sellati TJ, Harton JA. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia. PLoS Pathog 2016; 12:e1005517. [PMID: 27015566 PMCID: PMC4807818 DOI: 10.1371/journal.ppat.1005517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.
Collapse
Affiliation(s)
- Sivakumar Periasamy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Katherine C. MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jonathan A. Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Lu Z, Rynkiewicz MJ, Yang CY, Madico G, Perkins HM, Roche MI, Seaton BA, Sharon J. Functional and structural characterization of Francisella tularensis O-antigen antibodies at the low end of antigen reactivity. Monoclon Antib Immunodiagn Immunother 2015; 33:235-45. [PMID: 25171003 DOI: 10.1089/mab.2014.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The O-antigen (OAg) of the Gram-negative bacterium Francisella tularensis (Ft), which is both a capsular polysaccharide and a component of lipopolysaccharide, is comprised of tetrasaccharide repeats and induces antibodies mainly against repeating internal epitopes. We previously reported on several BALB/c mouse monoclonal antibodies (MAbs) that bind to internal Ft OAg epitopes and are protective in mouse models of respiratory tularemia. We now characterize three new internal Ft OAg IgG2a MAbs, N203, N77, and N24, with 10- to 100-fold lower binding potency than previously characterized internal-OAg IgG2a MAbs, despite sharing one or more variable region germline genes with some of them. In a mouse model of respiratory tularemia with the highly virulent Ft type A strain SchuS4, the three new MAbs reduced blood bacterial burden with potencies that mirror their antigen-binding strength; the best binder of the new MAbs, N203, prolonged survival in a dose-dependent manner, but was at least 10-fold less potent than the best previously characterized IgG2a MAb, Ab52. X-ray crystallographic studies of N203 Fab showed a flexible binding site in the form of a partitioned groove, which cannot provide as many contacts to OAg as does the Ab52 binding site. These results reveal structural features of antibodies at the low end of reactivity with multi-repeat microbial carbohydrates and demonstrate that such antibodies still have substantial protective effects against infection.
Collapse
Affiliation(s)
- Zhaohua Lu
- 1 Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Downmodulation of vaccine-induced immunity and protection against the intracellular bacterium Francisella tularensis by the inhibitory receptor FcγRIIB. J Immunol Res 2015; 2015:840842. [PMID: 25961064 PMCID: PMC4417568 DOI: 10.1155/2015/840842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
Fc gamma receptor IIB (FcγRIIB) is the only Fc gamma receptor (FcγR) which negatively regulates the immune response, when engaged by antigen- (Ag-) antibody (Ab) complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft), a Category A biothreat agent. We utilized inactivated Ft (iFt) as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO) or wildtype (WT) mice were challenged with Ft-live vaccine strain (LVS). While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.
Collapse
|
44
|
Immune responses in macaques to a prototype recombinant adenovirus live oral human papillomavirus 16 vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1224-31. [PMID: 24990902 DOI: 10.1128/cvi.00197-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines.
Collapse
|
45
|
Lu Z, Rynkiewicz MJ, Madico G, Li S, Yang CY, Perkins HM, Sompuram SR, Kodela V, Liu T, Morris T, Wang D, Roche MI, Seaton BA, Sharon J. B-cell epitopes in GroEL of Francisella tularensis. PLoS One 2014; 9:e99847. [PMID: 24968190 PMCID: PMC4072690 DOI: 10.1371/journal.pone.0099847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 01/01/2023] Open
Abstract
The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guillermo Madico
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sheng Li
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hillary M. Perkins
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Seshi R. Sompuram
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Vani Kodela
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Tong Liu
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Timothy Morris
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Daphne Wang
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Marly I. Roche
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Boisset S, Caspar Y, Sutera V, Maurin M. New therapeutic approaches for treatment of tularaemia: a review. Front Cell Infect Microbiol 2014; 4:40. [PMID: 24734221 PMCID: PMC3975101 DOI: 10.3389/fcimb.2014.00040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/13/2014] [Indexed: 12/23/2022] Open
Abstract
Antibiotic treatment of tularaemia is based on a few drugs, including the fluoroquinolones (e.g., ciprofloxacin), the tetracyclines (e.g., doxycycline), and the aminoglycosides (streptomycin and gentamicin). Because no effective and safe vaccine is currently available, tularaemia prophylaxis following proven exposure to F. tularensis also relies on administration of antibiotics. A number of reasons make it necessary to search for new therapeutic alternatives: the potential toxicity of first-line drugs, especially in children and pregnant women; a high rate of treatment relapses and failures, especially for severe and/or suppurated forms of the disease; and the possible use of antibiotic-resistant strains in the context of a biological threat. This review presents novel therapeutic approaches that have been explored in recent years to improve tularaemia patients' management and prognosis. These new strategies have been evaluated in vitro, in axenic media and cell culture systems and/or in animal models. First, the activities of newly available antibiotic compounds were evaluated against F. tularensis, including tigecycline (a glycylcycline), ketolides (telithromycin and cethromycin), and fluoroquinolones (moxifloxacin, gatifloxacin, trovafloxacin and grepafloxacin). The liposome delivery of some antibiotics was evaluated. The effect of antimicrobial peptides against F. tularensis was also considered. Other drugs were evaluated for their ability to suppress the intracellular multiplication of F. tularensis. The effects of the modulation of the innate immune response (especially via TLR receptors) on the course of F. tularensis infection was characterized. Another approach was the administration of specific antibodies to induce passive resistance to F. tularensis infection. All of these studies highlight the need to develop new therapeutic strategies to improve the management of patients with tularaemia. Many possibilities exist, some unexplored. Moreover, it is likely that new therapeutic alternatives that are effective against this intracellular pathogen could be, at least partially, extrapolated to other human pathogens.
Collapse
Affiliation(s)
- Sandrine Boisset
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| | - Yvan Caspar
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| | - Vivien Sutera
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| | - Max Maurin
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| |
Collapse
|
47
|
Live attenuated mutants of Francisella tularensis protect rabbits against aerosol challenge with a virulent type A strain. Infect Immun 2014; 82:2098-105. [PMID: 24614653 DOI: 10.1128/iai.01498-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium, is the causative agent of tularemia. No licensed vaccine is currently available for protection against tularemia, although an attenuated strain, dubbed the live vaccine strain (LVS), is given to at-risk laboratory personnel as an investigational new drug (IND). In an effort to develop a vaccine that offers better protection, recombinant attenuated derivatives of a virulent type A strain, SCHU S4, were evaluated in New Zealand White (NZW) rabbits. Rabbits vaccinated via scarification with the three attenuated derivatives (SCHU S4 ΔguaBA, ΔaroD, and ΔfipB strains) or with LVS developed a mild fever, but no weight loss was detected. Twenty-one days after vaccination, all vaccinated rabbits were seropositive for IgG to F. tularensis lipopolysaccharide (LPS). Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4 at doses ranging from 50 to 500 50% lethal doses (LD50). All rabbits developed fevers and weight loss after challenge, but the severity was greater for mock-vaccinated rabbits. The ΔguaBA and ΔaroD SCHU S4 derivatives provided partial protection against death (27 to 36%) and a prolonged time to death compared to results for the mock-vaccinated group. In contrast, LVS and the ΔfipB strain both prolonged the time to death, but there were no survivors from the challenge. This is the first demonstration of vaccine efficacy against aerosol challenge with virulent type A F. tularensis in a species other than a rodent since the original work with LVS in the 1960s. The ΔguaBA and ΔaroD SCHU S4 derivatives warrant further evaluation and consideration as potential vaccines for tularemia and for identification of immunological correlates of protection.
Collapse
|
48
|
TolC-dependent modulation of host cell death by the Francisella tularensis live vaccine strain. Infect Immun 2014; 82:2068-78. [PMID: 24614652 DOI: 10.1128/iai.00044-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of the F. tularensis live vaccine strain (LVS) and demonstrated that a ΔtolC mutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required for F. tularensis to preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolC mutant. These findings support a model wherein the immunomodulatory capacity of F. tularensis relies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolC LVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolC mutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection by F. tularensis and highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.
Collapse
|
49
|
Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS, Lam L, Mukundan L, Chawla A, Monack DM. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 2014; 14:171-182. [PMID: 23954156 DOI: 10.1016/j.chom.2013.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/10/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Host-adapted Salmonella strains are responsible for a number of disease manifestations in mammals, including an asymptomatic chronic infection in which bacteria survive within macrophages located in systemic sites. However, the host cell physiology and metabolic requirements supporting bacterial persistence are poorly understood. In a mouse model of long-term infection, we found that S. typhimurium preferentially associates with anti-inflammatory/M2 macrophages at later stages of infection. Further, PPARδ, a eukaryotic transcription factor involved in sustaining fatty acid metabolism, is upregulated in Salmonella-infected macrophages. PPARδ deficiency dramatically inhibits Salmonella replication, which is linked to the metabolic state of macrophages and the level of intracellular glucose available to bacteria. Pharmacological activation of PPARδ increases glucose availability and enhances bacterial replication in macrophages and mice, while Salmonella fail to persist in Pparδ null mice. These data suggest that M2 macrophages represent a unique niche for long-term intracellular bacterial survival and link the PPARδ-regulated metabolic state of the host cell to persistent bacterial infection.
Collapse
Affiliation(s)
- Nicholas A Eisele
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Ruby
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Jacobson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo S Manzanillo
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense. University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffery S Cox
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense. University of California San Francisco, San Francisco, CA 94143, USA
| | - Lilian Lam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lata Mukundan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|