1
|
Mkhikian H, Zhou RW, Saryan H, Sánchez CD, Balakrishnan A, Dang J, Mortales CL, Demetriou M. N-Glycan Branching Regulates BTLA Opposite to PD-1 to Limit T Cell Hyperactivity Induced by Branching Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1329-1337. [PMID: 39269653 DOI: 10.4049/jimmunol.2300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin-glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4. However, the role of N-glycan branching in regulating cell surface levels of other checkpoint receptors such as BTLA (B and T lymphocyte attenuator) and PD-1 (programmed cell death protein 1) is unknown. In this study, we report that whereas branching significantly enhances PD-1 cell surface expression by reducing loss from endocytosis, the opposite occurs with BTLA in both T cells and B cells. T cell hyperactivity induced by branching deficiency was opposed by BTLA ligation proportional to increased BTLA expression. Other members of the BTLA/HVEM (herpesvirus entry mediator) signaling axis in T cells, including HVEM, LIGHT, and CD160, are largely unaltered by branching. Thus, branching-mediated endocytosis of BTLA is opposite of branching-induced inhibition of PD-1 endocytosis. In this manner, branching deficiency-induced upregulation of BTLA appears to serve as a checkpoint to limit extreme T cell hyperactivity and proinflammatory outcomes in T cells with low branching.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Aswath Balakrishnan
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Justin Dang
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA
| |
Collapse
|
2
|
Li M, Wang H, Zhao H, Jiang M, Cui M, Jia K, Lei D, Wang F. Effect of the Sho1 gene on the pathogenicity of Candida albicans and immune function in vivo. Heliyon 2024; 10:e38219. [PMID: 39397919 PMCID: PMC11467569 DOI: 10.1016/j.heliyon.2024.e38219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Sho1, a ubiquitous membrane protein in fungi, plays a pivotal role in various physiological processes, such as osmotic stress, oxidative stress, temperature response, and virulence regulation across different fungal species. This study aimed to investigate the effect of the Sho1 gene on the pathogenicity of Candida albicans and its immune function in vivo. Materials and methods Ninety-nine clinical strains from various infection sites were collected to investigate the expression levels of the Sho1 gene compared to its levels in the standard strain (SC5314). Sho1-knockout strains (Sho1Δ/Δ) were constructed to investigate the impact of the Sho1 gene deletion on the biofilm formation, adhesion, and flocculation abilities of C. albicans. A mouse model of systemic infection was established to evaluate the impact of Sho1 deletion on survival, organ pathology, and immune cell function, as assessed by flow cytometry. Results The expression level of the Sho1 gene was found to be higher in clinical strains derived from sterile fluids, sputum, and secretions compared to that in the standard strains. Deletion of the Sho1 gene diminished the biofilm-formation capacity of C. albicans, leading to a sparse structure and reduced thickness, as well as diminished adhesion and flocculation abilities. Deletion of the Sho1 gene prolonged mouse survival; decreased the fungal load in the liver, kidney, and spleen; and reduced inflammatory cell infiltration into the kidney. In the spleens of mice injected with the Sho1Δ/Δ strain, a decrease was observed in the percentage of M1-type macrophages and an increase in M2-type macrophages, resulting in a decreased M1/M2 macrophage ratio. Additionally, an increase was observed in the number of Th1 cells and a decrease in the number of Th2 and Th17 cells, leading to an increased Th1/Th2 ratio. Conclusion The Sho1 gene significantly contributes to the pathogenesis of C. albicans by influencing its biological behaviour and immune response in vivo.
Collapse
Affiliation(s)
| | | | - Huihai Zhao
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Mengyu Jiang
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Mengge Cui
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Keran Jia
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Daxin Lei
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Fukun Wang
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| |
Collapse
|
3
|
Yang Y, Qin S, Yang M, Wang T, Feng R, Zhang C, Zheng E, Li Q, Xiang P, Ning S, Xu X, Zuo X, Zhang S, Yun X, Zhou X, Wang Y, He L, Shang Y, Sun L, Liu H. Reconstitution of the Multiple Myeloma Microenvironment Following Lymphodepletion with BCMA CAR-T Therapy. Clin Cancer Res 2024; 30:4201-4214. [PMID: 39024031 PMCID: PMC11393544 DOI: 10.1158/1078-0432.ccr-24-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The purpose of this study was to investigate the remodeling of the multiple myeloma microenvironment after B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy. EXPERIMENTAL DESIGN We performed single-cell RNA sequencing on paired bone marrow specimens (n = 14) from seven patients with multiple myeloma before (i.e., baseline, "day -4") and after (i.e., "day 28") lymphodepleted BCMA CAR-T cell therapy. RESULTS Our analysis revealed heterogeneity in gene expression profiles among multiple myeloma cells, even those harboring the same cytogenetic abnormalities. The best overall responses of patients over the 15-month follow-up are positively correlated with the abundance and targeted cytotoxic activity of CD8+ effector CAR-T cells on day 28 after CAR-T cell infusion. Additionally, favorable responses are associated with attenuated immunosuppression mediated by regulatory T cells, enhanced CD8+ effector T-cell cytotoxic activity, and elevated type 1 conventional dendritic cell (DC) antigen presentation ability. DC re-clustering inferred intramedullary-originated type 3 conventional DCs with extramedullary migration. Cell-cell communication network analysis indicated that BCMA CAR-T therapy mitigates BAFF/GALECTIN/MK pathway-mediated immunosuppression and activates MIF pathway-mediated anti-multiple myeloma immunity. CONCLUSIONS Our study sheds light on multiple myeloma microenvironment dynamics after BCMA CAR-T therapy, offering clues for predicting treatment responsivity.
Collapse
Affiliation(s)
- Yazi Yang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Mengyu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Enrun Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Qinghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Pengyu Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Shangyong Ning
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Xu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zuo
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoya Yun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Stevenson FK, Forconi F. The essential microenvironmental role of oligomannoses specifically inserted into the antigen-binding sites of lymphoma cells. Blood 2024; 143:1091-1100. [PMID: 37992212 DOI: 10.1182/blood.2023022703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT There are 2 mandatory features added sequentially en route to classical follicular lymphoma (FL): first, the t(14;18) translocation, which upregulates BCL2, and second, the introduction of sequence motifs into the antigen-binding sites of the B-cell receptor (BCR), to which oligomannose-type glycan is added. Further processing of the glycan is blocked by complementarity-determining region-specific steric hindrance, leading to exposure of mannosylated immunoglobulin (Ig) to the microenvironment. This allows for interaction with the local lectin, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), expressed by tissue macrophages and follicular dendritic cells. The major function of DC-SIGN is to engage pathogens, but this is subverted by FL cells. DC-SIGN induces tumor-specific low-level BCR signaling in FL cells and promotes membrane changes with increased adhesion to VCAM-1 via proximal kinases and actin regulators but, in contrast to engagement by anti-Ig, avoids endocytosis and apoptosis. These interactions appear mandatory for the early development of FL, before the acquisition of other accelerating mutations. BCR-associated mannosylation can be found in a subset of germinal center B-cell-like diffuse large B-cell lymphoma with t(14;18), tracking these cases back to FL. This category was associated with more aggressive behavior: both FL and transformed cases and, potentially, a significant number of cases of Burkitt lymphoma, which also has sites for N-glycan addition, could benefit from antibody-mediated blockade of the interaction with DC-SIGN.
Collapse
Affiliation(s)
- Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Radulova G, Kapogianni A, Cholakova G, Iliev S, Ivanova A, Bogoeva V, Tsacheva I. Galectin-3 - A novel ligand of complement protein C1q. Int J Biol Macromol 2024; 262:129930. [PMID: 38325676 DOI: 10.1016/j.ijbiomac.2024.129930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
In the present study we report a novel interaction of human C1q, a primary activator of the Complement system, with human Galectin-3 (Gal-3). We investigated the potential recognition between C1q and Gal-3 on a solid hydrophobic surface by ELISA, by fluorescence spectroscopy, molecular docking and molecular dynamics (MD). The data showed that C1q and Gal-3 had a pronounced affinity for protein-protein interaction and supramolecular binding, locating the binding sites within the globular domains of C1q (gC1q) and on the backside of the carbohydrate recognition domain (CRD) of Gal-3. Fluorescence spectroscopy gave quantitative assessment of the recognition with KD value of 0.04 μM. MD analysis showed that when the active AAs of the two proteins interacted, electrostatic attraction, aided by a large number of hydrogen bonds, was dominant for the stabilization of the complex. When the contact of C1q and Gal-3 was not limited to active residues, the complex between them was stabilized mainly by Van der Waals interactions and smaller in number but stronger hydrogen bonds. This is the first report analyzing the interaction of Gal-3 with C1q, which could open the way to new applications of this protein-protein complex.
Collapse
Affiliation(s)
- Gabriela Radulova
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Bulgaria
| | | | - Ginka Cholakova
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Bulgaria
| | - Stoyan Iliev
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Bulgaria
| | - Anela Ivanova
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Bulgaria
| | - Vanya Bogoeva
- Bulgarian Academy of Sciences, Institute of Molecular biology "Rumen Tsanev", Bulgaria
| | - Ivanka Tsacheva
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Bulgaria.
| |
Collapse
|
7
|
Abdelbary M, Nolz JC. N-linked glycans: an underappreciated key determinant of T cell development, activation, and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00035. [PMID: 38027254 PMCID: PMC10662610 DOI: 10.1097/in9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Zhao F, Tallarek AC, Wang Y, Xie Y, Diemert A, Lu-Culligan A, Vijayakumar P, Kittmann E, Urbschat C, Bayo J, Arck PC, Farhadian SF, Dveksler GS, Garcia MG, Blois SM. A unique maternal and placental galectin signature upon SARS-CoV-2 infection suggests galectin-1 as a key alarmin at the maternal-fetal interface. Front Immunol 2023; 14:1196395. [PMID: 37475853 PMCID: PMC10354452 DOI: 10.3389/fimmu.2023.1196395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of β-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.
Collapse
Affiliation(s)
- Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Tallarek
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiru Wang
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Pavithra Vijayakumar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Enrico Kittmann
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Austral, Buenos Aires, Argentina
| | - Petra C. Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shelli F. Farhadian
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriela S. Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mariana G. Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M. Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Alves I, Santos-Pereira B, de la Cruz N, Campar A, Pinto V, Rodrigues PM, Araújo M, Santos S, Ramos-Soriano J, Vasconcelos C, Silva R, Afonso N, Mira F, Barrias CC, Alves NL, Rojo J, Santos L, Marinho A, Pinho SS. Host-derived mannose glycans trigger a pathogenic γδ T cell/IL-17a axis in autoimmunity. Sci Transl Med 2023; 15:eabo1930. [PMID: 36921032 DOI: 10.1126/scitranslmed.abo1930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking Mgat5, which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. N-acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.
Collapse
Affiliation(s)
- Inês Alves
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Beatriz Santos-Pereira
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Noelia de la Cruz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ana Campar
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Vanda Pinto
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Pedro M Rodrigues
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Marco Araújo
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Sofia Santos
- Nephrology Department, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carlos Vasconcelos
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Roberto Silva
- Department of Pathology, Hospital Universitário São João do Porto, 4200-319 Porto, Portugal
| | - Nuno Afonso
- Department of Nephrology, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Filipe Mira
- Department of Nephrology, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Cristina C Barrias
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Nuno L Alves
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Lélita Santos
- Department of Internal Medicine, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - António Marinho
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Salomé S Pinho
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.,ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Yang J, Guo F, Chin HS, Chen GB, Ang CH, Lin Q, Hong W, Fu NY. Sequential genome-wide CRISPR-Cas9 screens identify genes regulating cell-surface expression of tetraspanins. Cell Rep 2023; 42:112065. [PMID: 36724073 DOI: 10.1016/j.celrep.2023.112065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Tetraspanins, a superfamily of membrane proteins, mediate diverse biological processes through tetraspanin-enriched microdomains in the plasma membrane. However, how their cell-surface presentation is controlled remains unclear. To identify the regulators of tetraspanin trafficking, we conduct sequential genome-wide loss-of-function CRISPR-Cas9 screens based on cell-surface expression of a tetraspanin member, TSPAN8. Several genes potentially involved in endoplasmic reticulum (ER) targeting, different biological processes in the Golgi apparatus, and protein trafficking are identified and functionally validated. Importantly, we find that biantennary N-glycans generated by MGAT1/2, but not more complex glycan structures, are important for cell-surface tetraspanin expression. Moreover, we unravel that SPPL3, a Golgi intramembrane-cleaving protease reported previously to act as a sheddase of multiple glycan-modifying enzymes, controls cell-surface tetraspanin expression through a mechanism associated with lacto-series glycolipid biosynthesis. Our study provides critical insights into the molecular regulation of cell-surface presentation of tetraspanins with implications for strategies to manipulate their functions, including cancer cell invasion.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hui San Chin
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gao Bin Chen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chow Hiang Ang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Physiology, National University of Singapore, Singapore 117593, Singapore; Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Ramos-Martínez I, Ramos-Martínez E, Cerbón M, Pérez-Torres A, Pérez-Campos Mayoral L, Hernández-Huerta MT, Martínez-Cruz M, Pérez-Santiago AD, Sánchez-Medina MA, García-Montalvo IA, Zenteno E, Matias-Cervantes CA, Ojeda-Meixueiro V, Pérez-Campos E. The Role of B Cell and T Cell Glycosylation in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24010863. [PMID: 36614306 PMCID: PMC9820943 DOI: 10.3390/ijms24010863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Glycosylation is a post-translational modification that affects the stability, structure, antigenicity and charge of proteins. In the immune system, glycosylation is involved in the regulation of ligand-receptor interactions, such as in B-cell and T-cell activating receptors. Alterations in glycosylation have been described in several autoimmune diseases, such as systemic lupus erythematosus (SLE), in which alterations have been found mainly in the glycosylation of B lymphocytes, T lymphocytes and immunoglobulins. In immunoglobulin G of lupus patients, a decrease in galactosylation, sialylation, and nucleotide fucose, as well as an increase in the N-acetylglucosamine bisector, are observed. These changes in glycoisolation affect the interactions of immunoglobulins with Fc receptors and are associated with pericarditis, proteinuria, nephritis, and the presence of antinuclear antibodies. In T cells, alterations have been described in the glycosylation of receptors involved in activation, such as the T cell receptor; these changes affect the affinity with their ligands and modulate the binding to endogenous lectins such as galectins. In T cells from lupus patients, a decrease in galectin 1 binding is observed, which could favor activation and reduce apoptosis. Furthermore, these alterations in glycosylation correlate with disease activity and clinical manifestations, and thus have potential use as biomarkers. In this review, we summarize findings on glycosylation alterations in SLE and how they relate to immune system defects and their clinical manifestations.
Collapse
Affiliation(s)
- Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”—Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - María Teresa Hernández-Huerta
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | | | | |
Collapse
|
14
|
Fei F, Zhang M, Tarighat SS, Joo EJ, Yang L, Heisterkamp N. Galectin-1 and Galectin-3 in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms232214359. [PMID: 36430839 PMCID: PMC9694201 DOI: 10.3390/ijms232214359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acute lymphoblastic leukemias arising from the malignant transformation of B-cell precursors (BCP-ALLs) are protected against chemotherapy by both intrinsic factors as well as by interactions with bone marrow stromal cells. Galectin-1 and Galectin-3 are lectins with overlapping specificity for binding polyLacNAc glycans. Both are expressed by bone marrow stromal cells and by hematopoietic cells but show different patterns of expression, with Galectin-3 dynamically regulated by extrinsic factors such as chemotherapy. In a comparison of Galectin-1 x Galectin-3 double null mutant to wild-type murine BCP-ALL cells, we found reduced migration, inhibition of proliferation, and increased sensitivity to drug treatment in the double knockout cells. Plant-derived carbohydrates GM-CT-01 and GR-MD-02 were used to inhibit extracellular Galectin-1/-3 binding to BCP-ALL cells in co-culture with stromal cells. Treatment with these compounds attenuated migration of the BCP-ALL cells to stromal cells and sensitized human BCP-ALL cells to vincristine and the targeted tyrosine kinase inhibitor nilotinib. Because N-glycan sialylation catalyzed by the enzyme ST6Gal1 can regulate Galectin cell-surface binding, we also compared the ability of BCP-ALL wild-type and ST6Gal1 knockdown cells to resist vincristine treatment when they were co-cultured with Galectin-1 or Galectin-3 knockout stromal cells. Consistent with previous results, stromal Galectin-3 was important for maintaining BCP-ALL fitness during chemotherapy exposure. In contrast, stromal Galectin-1 did not significantly contribute to drug resistance, and there was no clear effect of ST6Gal1-catalysed N-glycan sialylation. Taken together, our results indicate a complicated joint contribution of Galectin-1 and Galectin-3 to BCP-ALL survival, with different roles for endogenous and stromal produced Galectins. These data indicate it will be important to efficiently block both extracellular and intracellular Galectin-1 and Galectin-3 with the goal of reducing BCP-ALL persistence in the protective bone marrow niche during chemotherapy.
Collapse
Affiliation(s)
- Fei Fei
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
- Correspondence: ; Tel.: +1-626-218-7503
| |
Collapse
|
15
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
16
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Nielsen MA, Juul-Madsen K, Stegmayr J, Gao C, Mehta AY, Greisen SR, Kragstrup TW, Hvid M, Vorup-Jensen T, Cummings RD, Leffler H, Deleuran BW. Galectin-3 Decreases 4-1BBL Bioactivity by Crosslinking Soluble and Membrane Expressed 4-1BB. Front Immunol 2022; 13:915890. [PMID: 35812455 PMCID: PMC9263355 DOI: 10.3389/fimmu.2022.915890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/22/2023] Open
Abstract
4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL’s bioactivity.
Collapse
Affiliation(s)
- Morten Aagaard Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - John Stegmayr
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Akul Y. Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Stinne Ravn Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Hakon Leffler
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Bent Winding Deleuran,
| |
Collapse
|
18
|
Blenda AV, Kamili NA, Wu SC, Abel WF, Ayona D, Gerner-Smidt C, Ho AD, Benian GM, Cummings RD, Arthur CM, Stowell SR. Galectin-9 recognizes and exhibits antimicrobial activity toward microbes expressing blood group-like antigens. J Biol Chem 2022; 298:101704. [PMID: 35148986 PMCID: PMC9019251 DOI: 10.1016/j.jbc.2022.101704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022] Open
Abstract
While adaptive immunity recognizes a nearly infinite range of antigenic determinants, immune tolerance renders adaptive immunity vulnerable to microbes decorated in self-like antigens. Recent studies suggest that sugar-binding proteins galectin-4 and galectin-8 bind microbes expressing blood group antigens. However, the binding profile and potential antimicrobial activity of other galectins, particularly galectin-9 (Gal-9), has remained incompletely defined. Here, we demonstrate that while Gal-9 possesses strong binding preference for ABO(H) blood group antigens, each domain exhibits distinct binding patterns, with the C-terminal domain (Gal-9C) exhibiting higher binding to blood group B than the N-terminal domain (Gal-9N). Despite this binding preference, Gal-9 readily killed blood group B–positive Escherichia coli, whereas Gal-9N displayed higher killing activity against this microbe than Gal-9C. Utilization of microarrays populated with blood group O antigens from a diverse array of microbes revealed that Gal-9 can bind various microbial glycans, whereas Gal-9N and Gal-9C displayed distinct and overlapping binding preferences. Flow cytometric examination of intact microbes corroborated the microbial glycan microarray findings, demonstrating that Gal-9, Gal-9N, and Gal-9C also possess the capacity to recognize distinct strains of Providencia alcalifaciens and Klebsiella pneumoniae that express mammalian blood group–like antigens while failing to bind related strains that do not express mammalian-like glycans. In each case of microbial binding, Gal-9, Gal-9N, and Gal-9C induced microbial death. In contrast, while Gal-9, Gal-9N, and Gal-9C engaged red blood cells, each failed to induce hemolysis. These data suggest that Gal-9 recognition of distinct microbial strains may provide antimicrobial activity against molecular mimicry.
Collapse
Affiliation(s)
- Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nourine A Kamili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William F Abel
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerner-Smidt
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guy M Benian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, Massachusetts, USA
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
21
|
Wang H, Zhao Y, Ren B, Qin Y, Li G, Kong D, Qin H, Hao J, Sun D, Wang H. Endometrial regenerative cells with galectin-9 high-expression attenuate experimental autoimmune hepatitis. Stem Cell Res Ther 2021; 12:541. [PMID: 34654474 PMCID: PMC8518235 DOI: 10.1186/s13287-021-02604-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Autoimmune hepatitis (AIH) is a T cell-mediated immune disease that activates abnormally against hepatic antigens. We have previously reported that endometrial regenerative cells (ERCs) were a novel source of adult stem cells, which exhibiting with powerful immunomodulatory effects. Galectin-9 (Gal-9) is expressed in ERCs and plays an important role in regulating T cell response. This study aims to explore the role of ERCs in attenuation of AIH and to determine the potential mechanism of Gal-9 in ERC-mediated immune regulation. Methods ERCs were obtained from menstrual blood of healthy female volunteers. In vitro, ERCs were transfected with lentivirus vectors carrying LGALS9 gene and encoding green fluoresce protein (GFP-Gal-9-LVs) at a MOI 50, Gal-9 expression in ERCs was detected by ELISA and Q-PCR. CD4+ T cells isolated from C57BL/6 mouse spleen were co-cultured with ERCs. The proliferation of CD4+ T cells was detected by CCK-8 kit and the level of Lck/zap-70/LAT protein was measured by western blot. Furthermore, AIH was induced by ConA in C57BL/6 mice which were randomly assigned to untreated, unmodified ERC-treated and Gal-9 high-expressing ERC-treated groups. Histopathological score, liver function, CD4+/CD8+ cell infiltration in liver tissues, the proportion of immune cells in the spleen and liver, and ERC tracking were performed accordingly to assess the progression degree of AIH. Results After transfecting with GFP-Gal-9-LVs, Gal-9 expression in ERCs was significantly increased. Additionally, Gal-9 high-expressing ERCs effectively inhibited CD4+ T cell proliferation and downregulated CD4+ T cell active related proteins p-Lck/p-ZAP70/p-LAT in vitro. Furthermore, treatment with Gal-9 high-expressing ERCs restored liver function, ameliorated liver pathological damage, inhibit CD4+ and CD8+ T cell proliferation and suppress Th1 and Th17 cell response in the hepatitis mice. In addition, Gal-9 high-expressing ERCs further markedly enhanced the level of IL-10 but reduced the levels of IFN-γ, TNF-α, and IL-4 in mouse sera and liver. Cell tracking also showed that ERCs could migrate to the damaged liver organs. Conclusions The results suggested that Gal-9 was an essential modulator, which was required by ERCs in regulating T cell response and attenuating ConA-induced experimental hepatitis. And also, it provides a novel idea for the clinical treatment of AIH.
Collapse
Affiliation(s)
- Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Ren
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
22
|
Alves I, Vicente MM, Gaifem J, Fernandes Â, Dias AM, Rodrigues CS, Oliveira JC, Seixas N, Malheiro L, Abreu MA, Sarmento E Castro R, Pinho SS. SARS-CoV-2 Infection Drives a Glycan Switch of Peripheral T Cells at Diagnosis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1591-1598. [PMID: 34417260 DOI: 10.4049/jimmunol.2100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023]
Abstract
COVID-19 is a highly selective disease in which SARS-CoV-2 infection can result in different clinical manifestations ranging from asymptomatic/mild to severe disease that requires hospitalization. In this study, we demonstrated that SARS-CoV-2 infection results in a glycosylation reprogramming of circulating lymphocytes at diagnosis. We identified a specific glycosignature of T cells, defined upon SARS-CoV-2 infection and apparently triggered by a serological factor. This specific glycan switch of T cells is detected at diagnosis being more pronounced in asymptomatic patients. We further demonstrated that asymptomatic patients display an increased expression of a viral-sensing receptor through the upregulation of DC-SIGN in monocytes. We showed that higher levels of DC-SIGN in monocytes at diagnosis correlates with better COVID-19 prognosis. This new evidence pave the way to the identification of a novel glycan-based response in T cells that may confer protection against SARS-CoV-2 infection in asymptomatic patients, highlighting a novel prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Inês Alves
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Machado Vicente
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana Mendes Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Cláudia Sousa Rodrigues
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - José Carlos Oliveira
- Departamento de Patologia Clínica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Nair Seixas
- Departamento de Patologia Clínica, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal
| | - Luis Malheiro
- Departamento de Doenças Infeciosas, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal; and
| | - Miguel Araújo Abreu
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Departmento de Doenças Infeciosas, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Rui Sarmento E Castro
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Departmento de Doenças Infeciosas, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Salomé Soares Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; .,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Valle-Argos B, Chiodin G, Bryant DJ, Taylor J, Lemm E, Duriez PJ, Rock PJ, Strefford JC, Forconi F, Burack RW, Packham G, Stevenson FK. DC-SIGN binding to mannosylated B-cell receptors in follicular lymphoma down-modulates receptor signaling capacity. Sci Rep 2021; 11:11676. [PMID: 34083646 PMCID: PMC8175722 DOI: 10.1038/s41598-021-91112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In follicular lymphoma (FL), surface immunoglobulin (sIg) carries mandatory N-glycosylation sites in the variable regions, inserted during somatic hypermutation. These glycosylation sites are tumor-specific, indicating a critical function in FL. Added glycan unexpectedly terminates at high mannose (Mann) and confers capability for sIg-mediated interaction with local macrophage-expressed DC-SIGN lectin resulting in low-level activation of upstream B-cell receptor signaling responses. Here we show that despite being of low-level, DC-SIGN induces a similar downstream transcriptional response to anti-IgM in primary FL cells, characterized by activation of pathways associated with B-cell survival, proliferation and cell-cell communication. Lectin binding was also able to engage post-transcriptional receptor cross-talk pathways since, like anti-IgM, DC-SIGN down-modulated cell surface expression of CXCR4. Importantly, pre-exposure of a FL-derived cell line expressing sIgM-Mann or primary FL cells to DC-SIGN, which does not block anti-IgM binding, reversibly paralyzed the subsequent Ca2+ response to anti-IgM. These novel findings indicate that modulation of sIg function occurs in FL via lectin binding to acquired mannoses. The B-cell receptor alternative engagement described here provides two advantages to lymphoma cells: (i) activation of signaling, which, albeit of low-level, is sufficient to trigger canonical lymphoma-promoting responses, and (ii) protection from exogenous antigen by paralyzing anti-IgM-induced signaling. Blockade of this alternative engagement could offer a new therapeutic strategy.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium Signaling
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Glycosylation
- Humans
- Immunoglobulin M/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/metabolism
- Protein Binding
- Receptors, Antigen, B-Cell/metabolism
- Receptors, CXCR4/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Giorgia Chiodin
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Dean J Bryant
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Joe Taylor
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Elizabeth Lemm
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Patrick J Duriez
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Philip J Rock
- Pathology Department, University of Rochester Medical Center, NY, USA
| | - Jonathan C Strefford
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Richard W Burack
- Pathology Department, University of Rochester Medical Center, NY, USA
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| |
Collapse
|
24
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
25
|
Mortales CL, Lee SU, Manousadjian A, Hayama KL, Demetriou M. N-Glycan Branching Decouples B Cell Innate and Adaptive Immunity to Control Inflammatory Demyelination. iScience 2020; 23:101380. [PMID: 32745987 PMCID: PMC7398982 DOI: 10.1016/j.isci.2020.101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
B cell depletion potently reduces episodes of inflammatory demyelination in multiple sclerosis (MS), predominantly through loss of innate rather than adaptive immunity. However, molecular mechanisms controlling innate versus adaptive B cell function are poorly understood. N-glycan branching, via interactions with galectins, controls endocytosis and signaling of cell surface receptors to control cell function. Here we report that N-glycan branching in B cells dose dependently reduces pro-inflammatory innate responses by titrating decreases in Toll-like receptor-4 (TLR4) and TLR2 surface expression via endocytosis. In contrast, a minimal level of N-glycan branching maximizes surface retention of the B cell receptor (BCR) and the CD19 co-receptor to promote adaptive immunity. Branched N-glycans inhibit antigen presentation by B cells to reduce T helper cell-17 (TH17)/TH1 differentiation and inflammatory demyelination in mice. Thus, N-glycan branching negatively regulates B cell innate function while promoting/maintaining adaptive immunity via BCR, providing an attractive therapeutic target for MS.
Collapse
Affiliation(s)
- Christie-Lynn Mortales
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Sung-Uk Lee
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Armen Manousadjian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Ken L Hayama
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, CA 92617, USA; Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
26
|
Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020; 32:154-175. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Amino acids are fundamental building blocks supporting life. Their role in protein synthesis is well defined, but they contribute to a host of other intracellular metabolic pathways, including ATP generation, nucleotide synthesis, and redox balance, to support cellular and organismal function. Immune cells critically depend on such pathways to acquire energy and biomass and to reprogram their metabolism upon activation to support growth, proliferation, and effector functions. Amino acid metabolism plays a key role in this metabolic rewiring, and it supports various immune cell functions beyond increased protein synthesis. Here, we review the mechanisms by which amino acid metabolism promotes immune cell function, and how these processes could be targeted to improve immunity in pathological conditions.
Collapse
Affiliation(s)
- Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
27
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Mortales CL, Lee SU, Demetriou M. N-Glycan Branching Is Required for Development of Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:630-636. [PMID: 32591389 DOI: 10.4049/jimmunol.2000101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Galectins have been implicated in inhibiting BCR signaling in mature B cells but promoting pre-BCR signaling during early development. Galectins bind to branched N-glycans attached to cell surface glycoproteins to control the distribution, clustering, endocytosis, and signaling of surface glycoproteins. During T cell development, N-glycan branching is required for positive selection of thymocytes, inhibiting both death by neglect and negative selection via enhanced surface retention of the CD4/CD8 coreceptors and limiting TCR clustering/signaling, respectively. The role of N-glycan branching in B cell development is unknown. In this study, we report that N-glycan branching is absolutely required for development of mature B cells in mice. Elimination of branched N-glycans in developing B cells via targeted deletion of N-acetylglucosaminyl transferase I (Mgat1) markedly reduced cellularity in the bone marrow and/or spleen and inhibited maturation of pre-, immature, and transitional stage 2 B cells. Branching deficiency markedly reduced surface expression of the pre-BCR/BCR coreceptor CD19 and promoted spontaneous death of pre-B cells and immature B cells in vitro. Death was rescued by low-dose pre-BCR/BCR stimulation but exacerbated by high-dose pre-BCR/BCR stimulation as well as antiapoptotic BclxL overexpression in pre-B cells. Branching deficiency also enhanced Nur77 induction, a marker of negative selection. Together, these data suggest that, as in T cells, N-glycan branching promotes positive selection of B cells by augmenting pre-BCR/BCR signaling via CD19 surface retention, whereas limiting negative selection from excessive BCR engagement.
Collapse
Affiliation(s)
- Christie-Lynn Mortales
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697; and
| | - Sung-Uk Lee
- Department of Neurology, University of California, Irvine, Irvine, CA 92697
| | - Michael Demetriou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697; and .,Department of Neurology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
29
|
De Bousser E, Meuris L, Callewaert N, Festjens N. Human T cell glycosylation and implications on immune therapy for cancer. Hum Vaccin Immunother 2020; 16:2374-2388. [PMID: 32186959 PMCID: PMC7644206 DOI: 10.1080/21645515.2020.1730658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification, giving rise to a diverse and abundant repertoire of glycans on the cell surface, collectively known as the glycome. When focusing on immunity, glycans are indispensable in virtually all signaling and cell-cell interactions. More specifically, glycans have been shown to regulate key pathophysiological steps within T cell biology such as T cell development, thymocyte selection, T cell activity and signaling as well as T cell differentiation and proliferation. They are of major importance in determining the interaction of human T cells with tumor cells. In this review, we will describe the role of glycosylation of human T cells in more depth, elaborate on the importance of glycosylation in the interaction of human T cells with tumor cells and discuss the potential of cancer immunotherapies that are based on manipulating the glycome functions at the tumor immune interface.1,2
Collapse
Affiliation(s)
- Elien De Bousser
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Leander Meuris
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| | - Nele Festjens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University , Ghent, Belgium
| |
Collapse
|
30
|
Vitamin D and Demyelinating Diseases: Neuromyelitis Optica (NMO) and Multiple Sclerosis (MS). Autoimmune Dis 2020; 2020:8718736. [PMID: 32373353 PMCID: PMC7187724 DOI: 10.1155/2020/8718736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin D deficiency is prevalent in all ages regardless of climate or geographical location and evidence is emerging that the incidence of autoimmune diseases is increasing worldwide. Women make up a large proportion of autoimmune disease diagnoses, underscoring the importance of fully elucidating the complex synergistic relationships between estrogens and vitamin D. Vitamin D receptor-activating drugs appear to enhance remyelination in patients diagnosed with multiple sclerosis (MS) and other demyelinating diseases such as neuromyelitis optica (NMO). This review is intended to update health practitioners about the potential role of vitamin D deficiency demyelination and to motivate future research on dietary recommendations for vitamin D in preventing and treating demyel1nating diseases.
Collapse
|
31
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
32
|
Binding of Gold(III) Porphyrin by the Pro-metastatic Regulatory Protein Human Galectin-3. Molecules 2019; 24:molecules24244561. [PMID: 31842510 PMCID: PMC6943629 DOI: 10.3390/molecules24244561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Gold(III) porphyrin presents an attractive alternative to the use of, for example, cisplatin in chemotherapy. However, approaches that allow to selectively target cancer cells are highly sought. Many plant and mammalian lectins have been shown to bind oligosaccharide sequences of the aberrant glycosylation pattern found on cancerous tumors. For example human galectin-3, of the galectin family specific for β-galactoside, is overexpressed in the extracellular matrix of tumorigenous and metastatic tissues. We searched for non-carbohydrate ligands for galectin-3 that can guide a cytotoxic drug to the cancer cells by maintaining its affinity for tumor associated carbohydrate antigens. Previous findings showed that zinc tetrasulfonatophenylporphyrin can bind galectin-3 with sub-micromolar affinity without disturbing lactose binding. Gold(III) porphyrin is not only cytotoxic to cancer cells, it knows also a potential application as photosensitiser in photodynamic therapy. We investigated the binding of gold(III) porphyrin to galectin-3 using different biophysical interaction techniques and demonstrated a low micromolar affinity of human galectin-3 for the cytotoxic compound. Co-crystallization attempts in order to understand the binding mode of gold porphyrin to galectin-3 failed, but molecular docking emphasized a highly populated secondary binding site that does not hinder lactose or Thomsen Friendenreich disaccharide binding. This suggests that gold(III) porphyrin might significantly enhance its concentration and delivery to cancer cells by binding to human galectin-3 that keeps its orientation towards tumor associated carbohydrate antigens.
Collapse
|
33
|
Lyons JJ, Milner JD. The clinical and mechanistic intersection of primary atopic disorders and inborn errors of growth and metabolism. Immunol Rev 2019; 287:135-144. [PMID: 30565252 DOI: 10.1111/imr.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Abstract
Dynamic changes in metabolism have long been understood as critical for both the initiation and maintenance of innate and adaptive immune responses. A number of recent advances have clarified details of how metabolic pathways can specifically affect cellular function in immune cells. Critical to this understanding is ongoing study of the congenital disorders of glycosylation and other genetic disorders of metabolism that lead to altered immune function in humans. While there are a number of immune phenotypes associated with metabolic derangements caused by single gene disorders, several genetic mutations have begun to link discrete alterations in metabolism and growth specifically with allergic disease. This subset of primary atopic disorders is of particular interest as they illuminate how hypomorphic mutations which allow for some residual function of mutated protein products permit the "abnormal" allergic response. This review will highlight how mutations altering sugar metabolism and mTOR activation place similar constraints on T lymphocyte metabolism to engender atopy, and how alterations in JAK/STAT signaling can impair growth and cellular metabolism while concomitantly promoting allergic diseases and reactions in humans.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Fettis MM, Farhadi SA, Hudalla GA. A chimeric, multivalent assembly of galectin-1 and galectin-3 with enhanced extracellular activity. Biomater Sci 2019; 7:1852-1862. [PMID: 30899922 DOI: 10.1039/c8bm01631c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Galectins are attractive therapeutic candidates to control aberrant immune system activation because they can alter the phenotype and function of various innate and adaptive immune cells. However, use of exogenous galectin-1 ("G1") and galectin-3 ("G3") as immunomodulators is challenged by their high dosing requirements and dynamic quaternary structures. Here we report a chimeric assembly of G1 and G3 with enhanced extracellular activity ("G1/G3 Zipper"), which was created by recombinant fusion of G1 and G3 via a peptide linker that forms a two-stranded α-helical coiled-coil. G1/G3 Zipper had higher apparent binding affinity for immobilized lactose and a lower concentration threshold for inducing soluble glycoprotein crosslinking than G1, a recombinant fusion of G1 and G3 with a flexible peptide linker ("G1/G3"), or a recently reported stable G1 dimer crosslinked by poly(ethylene glycol) diacrylate ("G1-PEG-G1"). As a result, G1/G3 Zipper was more effective at inducing Jurkat T cell apoptosis in media containing serum, and was the only variant that could induce apoptosis at low concentrations under serum-free conditions. The monomeric G1/G3 fusion protein lacked extracellular activity under all conditions tested, suggesting that the enhanced activity of G1/G3 Zipper was due to its quaternary structure and increased carbohydrate-recognition domain valency. Thus, combining G1 and G3 into a non-native chimeric assembly provides a new candidate therapeutic with greater immunomodulatory potency than the wild-type proteins and previously reported engineered variants.
Collapse
Affiliation(s)
- Margaret M Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA 32611.
| | | | | |
Collapse
|
35
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Lee SU, Li CF, Mortales CL, Pawling J, Dennis JW, Grigorian A, Demetriou M. Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity. PLoS One 2019; 14:e0214253. [PMID: 30913278 PMCID: PMC6435169 DOI: 10.1371/journal.pone.0214253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) branching of Asn (N)-linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6-acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Sung-Uk Lee
- Department of Neurology, University of California, Irvine, Irvine, California, United States of America
- Glixis Therapeutics, LLC, Santa Rosa, California, United States of America
| | - Carey F. Li
- Department of Neurology, University of California, Irvine, Irvine, California, United States of America
| | - Christie-Lynn Mortales
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, California, United States of America
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ani Grigorian
- Glixis Therapeutics, LLC, Santa Rosa, California, United States of America
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
37
|
Mesenchymal stem cells alleviate experimental autoimmune cholangitis through immunosuppression and cytoprotective function mediated by galectin-9. Stem Cell Res Ther 2018; 9:237. [PMID: 30223894 PMCID: PMC6142687 DOI: 10.1186/s13287-018-0979-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) play an anti-inflammatory role by secreting certain bioactive molecules to exert their therapeutic effects for disease treatment. However, the underlying mechanism of MSCs in chronic autoimmune liver diseases—primary biliary cholangitis (PBC), for example—remains to be elucidated. Methods Human umbilical cord–derived MSCs (UC-MSCs) were injected intravenously into 2-octynoic acid coupled to bovine serum albumin (2OA-BSA)-induced autoimmune cholangitis mice. Serum levels of biomarkers and autoantibodies, histologic changes in the liver, diverse CD4+ T-cell subsets in different tissues, and chemokine activities were analyzed. Moreover, we investigated galectin-9 (Gal-9) expression and its function in UC-MSCs. Results In this study, UC-MSC transplantation (UC-MSCT) significantly ameliorated liver inflammation, primarily by diminishing T helper 1 (Th1) and Th17 responses as well as modifying liver chemokine activities in experimental autoimmune cholangitis mice. Mechanistically, UC-MSCs significantly repressed the proliferation of CD4+ T cells and suppressed the differentiation of Th1 and Th17 cells, which was likely dependent on Gal-9. Furthermore, the signal transducer and activator of transcription (STAT) and c-Jun N-terminal kinase (JNK) signaling pathways were involved in the production of Gal-9 in UC-MSCs. Conclusions These results suggest that Gal-9 contributes significantly to UC-MSC–mediated therapeutic effects and improve our understanding of the immunomodulatory mechanisms of MSCs in the treatment of PBC. Electronic supplementary material The online version of this article (10.1186/s13287-018-0979-x) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Tai Y, Wang Q, Korner H, Zhang L, Wei W. Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Front Pharmacol 2018; 9:642. [PMID: 29997500 PMCID: PMC6028573 DOI: 10.3389/fphar.2018.00642] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
The interaction between T cell and dendritic cells (DCs) that leads to T cell activation affects the progression of the immune response including autoimmune diseases. Antigen presentation on immune cell surface, formation of an immunological synapse (IS), and specific identification of complex by T cells including two activating signals are necessary steps that lead to T cell activation. The formation of stimulatory IS involves the inclusion of costimulatory molecules, such as ICAM-1/LFA-1 and CD28/B7-1, and so on. Some fusion proteins and monoclonal antibodies targeting costimulatory molecules have been developed and approved to treat autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), type I diabetes (T1D), inflammatory bowel disease (IBD), and psoriasis. These biological agents, including CTLA-4- and LFA-3-Ig, anti-CD3 monoclonal antibody, could prevent the successful engagement of DCs by T cell with significant efficacy and safety profile. In this article, we reviewed the molecular mechanisms of T cell activation during the interaction between T cells and DCs, and summarized some biological agents that target costimulatory molecules involved in the regulation of T cell activation.
Collapse
Affiliation(s)
- Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Heinrich Korner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Hayen SM, den Hartog Jager CF, Knulst AC, Knol EF, Garssen J, Willemsen LEM, Otten HG. Non-Digestible Oligosaccharides Can Suppress Basophil Degranulation in Whole Blood of Peanut-Allergic Patients. Front Immunol 2018; 9:1265. [PMID: 29942305 PMCID: PMC6004414 DOI: 10.3389/fimmu.2018.01265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022] Open
Abstract
Background Dietary non-digestible oligosaccharides (NDOs) have a protective effect against allergic manifestations in children at risk. Dietary intervention with NDOs promotes the colonization of beneficial bacteria in the gut and enhances serum galectin-9 levels in mice and atopic children. Next to this, NDOs also directly affect immune cells and low amounts may reach the blood. We investigated whether pre-incubation of whole blood from peanut-allergic patients with NDOs or galectin-9 can affect basophil degranulation. Methods Heparinized blood samples from 15 peanut-allergic adult patients were pre-incubated with a mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS), scFOS/lcFOS, or galectin-9 (1 or 5 µg/mL) at 37°C in the presence of IL-3 (0.75 ng/mL). After 2, 6, or 24 h, a basophil activation test was performed. Expression of FcεRI on basophils, plasma cytokine, and chemokine concentrations before degranulation were determined after 24 h. Results Pre-incubation with scGOS/lcFOS, scFOS/lcFOS, or galectin-9 reduced anti-IgE-mediated basophil degranulation. scFOS/lcFOS or 5 µg/mL galectin-9 also decreased peanut-specific basophil degranulation by approximately 20%, mainly in whole blood from female patients. Inhibitory effects were not related to diminished FcεRI expression on basophils. Galectin-9 was increased in plasma after pre-incubation with scGOS/lcFOS, and both NDOs and 5 µg/mL galectin-9 increased MCP-1 production. Conclusion and clinical relevance The prebiotic mixture scFOS/lcFOS and galectin-9 can contribute to decreased degranulation of basophils in vitro in peanut-allergic patients. The exact mechanism needs to be elucidated, but these NDOs might be useful in reducing allergic symptoms.
Collapse
Affiliation(s)
- Simone M Hayen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Constance F den Hartog Jager
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - André C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Edward F Knol
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Immunology, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
40
|
Wang L, Zhao Y, Wang Y, Wu X. The Role of Galectins in Cervical Cancer Biology and Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2175927. [PMID: 29854732 PMCID: PMC5964433 DOI: 10.1155/2018/2175927] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Cervical cancer is one of the malignant tumors with high incidence and high mortality among women in developing countries. The main factors affecting the prognosis of cervical cancer are the late recurrence and metastasis and the effective adjuvant treatment, which is radiation and chemotherapy or combination therapy. Galectins, a family containing many carbohydrate binding proteins, are closely involved in the occurrence and development of tumor. They are involved in tumor cells transformation, angiogenesis, metastasis, immune escape, and sensitivity against radiation and chemotherapy. Therefore, galectins are deemed as the targets of multifunctional cancer treatment. In this review, we mainly focus on the role of galectins, especially galectin-1, galectin-3, galectin-7, and galectin-9 in cervical cancer, and provide theoretical basis for potential targeted treatment of cervical cancer.
Collapse
Affiliation(s)
- Lufang Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanyan Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanshi Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
Weng IC, Chen HL, Lo TH, Lin WH, Chen HY, Hsu DK, Liu FT. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology 2018; 28:392-405. [DOI: 10.1093/glycob/cwy017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/23/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
42
|
Barroso A, Giménez E, Konijnenberg A, Sancho J, Sanz-Nebot V, Sobott F. Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. J Proteomics 2017; 173:22-31. [PMID: 29197583 DOI: 10.1016/j.jprot.2017.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
The study of protein glycosylation can be regarded as an intricate but very important task, making glycomics one of the most challenging and interesting, albeit under-researched, type of "omics" science. Complexity escalates remarkably when considering that carbohydrates can form severely branched structures with many different constituents, which often leads to the formation of multiple isomers. In this regard, ion mobility (IM) spectrometry has recently demonstrated its power for the separation of isomeric compounds. In the present work, the potential of traveling wave IM (TWIMS) for the separation of isomeric glycoconjugates was evaluated, using mouse transferrin (mTf) as model glycoprotein. Particularly, we aim to assess the performance of this platform for the separation of isomeric glycoconjugates due to the type of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. Straightforward separation of isomers was achieved with the analysis of released glycans, as opposed to the glycopeptides which showed a more complex pattern. Finally, the developed methodology was applied to serum samples of mice, to investigate its robustness when analyzing real complex samples. BIOLOGICAL SIGNIFICANCE Ion mobility mass spectrometry is a promising analytical technique for the separation of glycoconjugate isomers due to type of sialic acid linkage. The impact of such a small modification in the glycan structure is more evident in smaller analytes, reason why the analysis of free glycans was easier compared to the intact protein or the glycopeptides. The established methodology could be regarded as starting point in the separation of highly decorated glycoconjugates. This is an important topic nowadays, as differences in the abundance of some glycan isomers could be the key for the early diagnosis, control or differentiation of certain diseases, such as inflammation or cancer.
Collapse
Affiliation(s)
- Albert Barroso
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jaime Sancho
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Armilla, Granada, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
43
|
Intracellular galectin-7 expression in cancer cells results from an autocrine transcriptional mechanism and endocytosis of extracellular galectin-7. PLoS One 2017; 12:e0187194. [PMID: 29117220 PMCID: PMC5678874 DOI: 10.1371/journal.pone.0187194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/16/2017] [Indexed: 11/19/2022] Open
Abstract
The β-galactoside binding protein galectin-7 (gal-7) is constitutively expressed at abnormally high levels in the outside milieu and intracellular compartments of many types of epithelial cancer cells, most notably in aggressive forms of ovarian and breast cancer. It is thus of utmost importance to understand how gal-7 traffics between both intracellular and extracellular compartments to develop novel drugs that target the protumorigenic functions of galectin-7. In the present work, we report that extracellular gal-7 plays a central role in controlling intracellular gal-7 in cells. It does so via two distinct yet complementary mechanisms: firstly by increasing the transcriptional activation of lgals7 gene transcription, and secondly via re-entry into the cells. Increased mRNA levels were dose- and time-dependent and occur in all cell lines tested, including ovarian and breast cancer cell lines. Addition of recombinant gal-7 to MDA-MB-231 transfected with a luciferase reporter vector containing response elements of the lgals7 promoter indicated that increased mRNA level of lgals7 occurs via de novo gene transcription. Re-entry of extracellular gal-7 inside cells was rapid, and reached cytosolic and mitochondrial compartments. Taken together, these findings reveal the existence of a positive self-amplification pathway that regulates intracellular gal-7 expression in breast and ovarian cancer cells.
Collapse
|
44
|
How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules 2017; 22:molecules22111818. [PMID: 29072623 PMCID: PMC6150347 DOI: 10.3390/molecules22111818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
It is now suggested that the inhibition of biological programs that are associated with the tumor microenvironment may be critical to the diagnostics, prevention and treatment of cancer. On the other hand, a suitable wound microenvironment would accelerate tissue repair and prevent extensive scar formation. In the present review paper, we define key signaling molecules (growth factors, cytokines, chemokines, and galectins) involved in the formation of the tumor microenvironment that decrease overall survival and increase drug resistance in cancer suffering patients. Additional attention will also be given to show whether targeted modulation of these regulators promote tissue regeneration and wound management. Whole-genome transcriptome profiling, in vitro and animal experiments revealed that interleukin 6, interleukin 8, chemokine (C-X-C motif) ligand 1, galectin-1, and selected proteins of the extracellular matrix (e.g., fibronectin) do have similar regulation during wound healing and tumor growth. Published data demonstrate remarkable similarities between the tumor and wound microenvironments. Therefore, tailor made manipulation of cancer stroma can have important therapeutic consequences. Moreover, better understanding of cancer cell-stroma interaction can help to improve wound healing by supporting granulation tissue formation and process of reepithelization of extensive and chronic wounds as well as prevention of hypertrophic scars and formation of keloids.
Collapse
|
45
|
Yang EH, Rode J, Howlader MA, Eckermann M, Santos JT, Hernandez Armada D, Zheng R, Zou C, Cairo CW. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors. PLoS One 2017; 12:e0184378. [PMID: 29016609 PMCID: PMC5634555 DOI: 10.1371/journal.pone.0184378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023] Open
Abstract
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3-integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins.
Collapse
Affiliation(s)
- Esther H. Yang
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Julia Rode
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Md. Amran Howlader
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Marina Eckermann
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Jobette T. Santos
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Daniel Hernandez Armada
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, Canada
- * E-mail:
| |
Collapse
|
46
|
Cabral J, Hanley SA, Gerlach JQ, O'Leary N, Cunningham S, Ritter T, Ceredig R, Joshi L, Griffin MD. Distinctive Surface Glycosylation Patterns Associated With Mouse and Human CD4 + Regulatory T Cells and Their Suppressive Function. Front Immunol 2017; 8:987. [PMID: 28871258 PMCID: PMC5566562 DOI: 10.3389/fimmu.2017.00987] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022] Open
Abstract
Regulatory T-cells (Treg) are essential for maintaining immune homeostasis and tolerance. Surface glycosylation is ubiquitous on mammalian cells and regulates diverse biological processes. While it is currently well accepted that surface glycan expression influences multiple aspects of T-cell function, little is known about the relevance of glycosylation to Treg biology. This study aimed to profile the surface glycosylation characteristics of Treg in various lymphoid compartments of mouse and in human peripheral blood with comparison to non-regulatory, conventional CD4+ T-cells (Tconv). It also sought to determine the relationship between the surface glycosylation characteristics and suppressive potency of Treg. Lectin-based flow cytometric profiling demonstrated that Treg surface glycosylation differs significantly from that of Tconv in the resting state and is further modified by activation stimuli. In mouse, the surface glycosylation profiles of FoxP3+ Treg from spleen and lymph nodes were closely comparable but greater variability was observed for Treg in thymus, bone marrow, and blood. Surface levels of tri/tetra-antennary N-glycans correlated with expression of proteins known to be involved in Treg suppressive functions, including GITR, PD-1, PD-L1, CD73, CTLA-4, and ICOS. In coculture experiments involving purified Treg subpopulations and CD4+ or CD8+ Tconv, higher surface tri/tetra-antennary N-glycans was associated with greater Treg suppressive potency. Enzymatic manipulation of mouse Treg surface glycosylation resulting in a temporary reduction of surface N-glycans significantly reduced Treg capacity to suppress Tconv activation through contact-dependent mechanisms. Overall, these findings demonstrate that Treg have distinctive surface glycan characteristics that show variability across anatomical locations and are modulated by activation events. They also provide evidence of an important role for surface glycosylation in determining Treg phenotype and suppressive potency. These insights may prove relevant to the analysis of Treg in disease settings and to the further development of Treg-based immunotherapies.
Collapse
Affiliation(s)
- Joana Cabral
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Shirley A Hanley
- Flow Cytometry Core Facility, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Neil O'Leary
- HRB Clinical Research Facility, National University of Ireland, Galway, Ireland
| | - Stephen Cunningham
- Glycoscience Group, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Rhodri Ceredig
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
47
|
Secretion of IFN-γ Associated with Galectin-9 Production by Pleural Fluid Cells from a Patient with Extrapulmonary Tuberculosis. Int J Mol Sci 2017; 18:ijms18071382. [PMID: 28657598 PMCID: PMC5535875 DOI: 10.3390/ijms18071382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 01/04/2023] Open
Abstract
In this study, we investigated the role of a matricellular protein galectin-9 (Gal-9) in pleural effusion related to tuberculosis (TB). Plasma and pleural fluid of a patient with extrapulmonary TB were analyzed for cytokine content by ELISA and Luminex. Peripheral blood mononuclear cells (PBMCs) and pleural fluid cells (PFCs) were examined for interferon-γ (IFN-γ) secretion by the enzyme-linked immunospot (ELISPOT) assay or IFN-γ ELISA, for apoptosis and necrosis by Cell Death Detection ELISA, and also underwent cell sorting. The results indicate that compared to plasma, pleural fluid had increased levels of IFN-γ (1.6 vs. 55.5 pg/mL), IL-10, IL-12p40, vascular endothelial growth factor (VEGF), and Gal-9 (3.0 vs. 936.0 pg/mL), respectively. PFCs culture supernatant exhibited higher concentration of Gal-9 compared to PBMCs in culture, consistent with enriched Gal-9 staining in the granuloma that is in closer vicinity to PFCs compared to PBMCs. PFCS displayed higher IFN-γ secretion after stimulation with TB antigens ESAT-6/CFP-10. Furthermore, in PFCs, Gal-9 alone could stimulate IFN-γ synthesis in culture or ELISPOT, which was inhibited by a Gal-9 antagonist lactose, and which may promote apoptosis and necrosis. These findings suggest that Gal-9 could modulate immune responses and participate in immunopathology of pleural effusion during TB.
Collapse
|
48
|
Farhadi SA, Hudalla GA. Engineering galectin-glycan interactions for immunotherapy and immunomodulation. Exp Biol Med (Maywood) 2017; 241:1074-83. [PMID: 27229902 DOI: 10.1177/1535370216650055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Galectins, a 15-member family of soluble carbohydrate-binding proteins, are receiving increasing interest as therapeutic targets for immunotherapy and immunomodulation due to their role as extracellular signals that regulate innate and adaptive immune cell phenotype and function. However, different galectins can have redundant, synergistic, or antagonistic signaling activity in normal immunological responses, such as resolution of inflammation and induction of antigen-specific tolerance. In addition, certain galectins can be hijacked to promote progression of immunopathologies, such as tumor immune privilege, metastasis, and viral infection, while others can inhibit these processes. Thus, eliciting a desired immunological outcome will likely necessitate therapeutics that can precisely enhance or inhibit particular galectin-glycan interactions. Multivalency is an important determinant of the affinity and specificity of natural galectin-glycan interactions, and is emerging as a key design element for therapeutics that can effectively manipulate galectin bioactivity. This minireview surveys current molecular and biomaterial engineering approaches to create therapeutics that can stabilize galectin multivalency or recapitulate natural glycan multivalency (i.e. "the glycocluster effect"). In particular, we highlight examples of using natural and engineered multivalent galectins for immunosuppression and immune tolerance, with a particular emphasis on treating autoimmune diseases or avoiding transplant rejection. In addition, we present examples of multivalent inhibitors of galectin-glycan interactions to maintain or restore T-cell function, with a particular emphasis on promoting antitumor immunity. Finally, we discuss emerging opportunities to further engineer galectin-glycan interactions for immunotherapy and immunomodulation.
Collapse
Affiliation(s)
- Shaheen A Farhadi
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
49
|
Ramos-Martínez E, Lascurain R, Tenorio EP, Sánchez-González A, Chávez-Rueda K, Chávez-Sánchez L, Jara-Quezada LJ, Chávez-Sánchez R, Zenteno E, Blanco-Favela F. Differential Expression of O-Glycans in CD4(+) T Lymphocytes from Patients with Systemic Lupus Erythematosus. TOHOKU J EXP MED 2017; 240:79-89. [PMID: 27600584 DOI: 10.1620/tjem.240.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
T cells from patients with systemic lupus erythematosus (SLE) show a decreased activation threshold and increased apoptosis. These processes seem to be regulated by glycosylated molecules on the T cell surface. Here, we determined through flow cytometry the expression of mucin-type O-glycans on T helper cells in peripheral blood mononuclear cells (PBMC) from 23 SLE patients and its relation with disease activity. We used lectins specific for the disaccharide Gal-GalNAc, such as Amaranthus leucocarpus lectin (ALL), Artocarpus integrifolia lectin (jacalin) and Arachis hypogaea lectin (peanut agglutinin, PNA), as well as lectins for sialic acid such as Sambucus nigra agglutinin (SNA) and Maakia amurensis agglutinin (MAA). The results showed that ALL, but not jacalin or PNA, identified significant differences in O-glycan expression on T helper cells from active SLE patients (n = 10). Moreover, an inverse correlation was found between the frequency of T helper cells recognized by ALL and SLE Disease Activity Index (SLEDAI) score in SLE patients. In contrast, SNA and MAA lectins did not identify any differences between CD4(+) T cells from SLE patients. There was no difference in the recognition by ALL on activated T helper cells and T regulatory (Treg) cells. Our findings point out that activation of SLE disease diminishes the expression of O-glycans in T helper cells; ALL could be considered as a marker to determine activity of the disease.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zarif JC, Yang W, Hernandez JR, Zhang H, Pienta KJ. The Identification of Macrophage-enriched Glycoproteins Using Glycoproteomics. Mol Cell Proteomics 2017; 16:1029-1037. [PMID: 28348171 DOI: 10.1074/mcp.m116.064444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/24/2017] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-related deaths of men in the United States. Whereas the localized disease is highly treatable by surgical resection and radiation, cancer that has metastasized remains incurable. Immune cells that primarily scavenge debris and promote prostate cancer angiogenesis and wound repair are M2 macrophages. They are phenotypically similar to M2 tumor-associated macrophages (M2-TAMs) and have been reported to associate with solid tumors and aide in proliferation, metastasis, and resistance to therapy. As an invasive species within the tumor microenvironment, this makes M2-TAMs an ideal therapeutic target in prostate cancer. To identify novel surface glycoproteins expressed on M2 macrophages, we developed a novel method of creating homogeneous populations of human macrophages from human CD14+ monocytes in vitro These homogeneous M1 macrophages secrete pro-inflammatory cytokines, and our M2 macrophages secrete anti-inflammatory cytokines as well as vascular endothelial growth factor (VEGF). To identify enriched surface glycoproteins, we then performed solid-phase extraction of N-linked glycopeptides followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on our homogeneous macrophage populations. We discovered five novel peptides that are enriched exclusively on human M2 macrophages relative to human M1 macrophages and human CD14+ monocytes. Finally, we determined whether these surface glycoproteins, found enriched on M2 macrophages, were also expressed in human metastatic castrate-resistant prostate cancer (mCRPC) tissues. Using mCRPC tissues from rapid autopsies, we were able to determine M2 macrophage infiltration by using immunohistochemistry and flow cytometry. These findings highlight the presence of macrophage infiltration in human mCRPC but also surface glycoproteins that could be used for prognosis of localized disease and for targeting strategies.
Collapse
Affiliation(s)
- Jelani C Zarif
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287;
| | - Weiming Yang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - James R Hernandez
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Hui Zhang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - Kenneth J Pienta
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.,the ¶Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, and.,‖Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|