1
|
Beerweiler CC, Salvermoser M, Theodorou J, Böck A, Sattler F, Kulig P, Tosevski V, Schaub B. Farm-dust mediated protection of childhood asthma: Mass cytometry reveals novel cellular regulation. Allergy 2024. [PMID: 39400913 DOI: 10.1111/all.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Farm-dust mediated asthma protection in childhood was replicated in numerous epidemiological studies. Central immune mechanisms are not fully understood. This exploratory study aimed to disentangle underlying immunological regulation of farm-dust mediated protection in peripheral blood on a single-cell level. METHODS Single-cell protein expression of in vitro farm-dust stimulated and unstimulated cells from allergic asthmatics and healthy controls were measured using mass cytometry. Analysis of innate and adaptive cellular proportions (linear regression) and T-cell proliferation was performed. Functional marker intensity was investigated using Earth Mover's Distance and the Monte Carlo permutation test. RESULTS Farm-dust stimulation induced cell type-specific regulation: Key-features of farm-dust stimulation comprised opposing regulation of immune-cell frequencies (downregulated innate cell populations (monocytes/DCs (p < .001), NK-cells (p < .05)) and upregulated adaptive populations (B-cells, CD4+ T-cells (both p < .05)), reduced CD4+ CD25- T-cell proliferation, and differential cell type-specific functional marker expression. Following stimulation, functional marker analysis revealed induced activation (CD25) in T-cells and NK-T-cells in both phenotypes even after correction for multiple testing. Cytotoxicity (GZMB) and inflammation (pERK1/2, pp38) related markers were reduced in T-cells exclusively in asthmatic children. Asthma-associated markers (Gata3, RORγ, and HLA-DR) were reduced in T- and innate- cell populations of asthmatics following stimulation. B-cells displayed a phenotypically independent increase of diverse functional markers upon farm-dust stimulation. CONCLUSIONS This study mimicking in vivo environmental exposure identified a novel profile of immune-regulatory markers using mass cytometry demonstrating decreased asthma-associated markers following farm-dust stimulation. These findings may be key for further studies on asthma prevention in childhood.
Collapse
Affiliation(s)
- Claudia Carina Beerweiler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johanna Theodorou
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Andreas Böck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany
| | - Franziska Sattler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paulina Kulig
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Bianca Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany
| |
Collapse
|
2
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Asiedu K, Tummanapalli SS, Alotaibi S, Wang LL, Dhanapalaratnam R, Kwai N, Poynten A, Markoulli M, Krishnan AV. Impact of SGLT2 Inhibitors on Corneal Nerve Morphology and Dendritic Cell Density in Type 2 Diabetes. Ocul Immunol Inflamm 2024; 32:234-241. [PMID: 37801679 DOI: 10.1080/09273948.2023.2263789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE This study aims to determine the effects of SGLT2 inhibitors on corneal dendritic cell density and corneal nerve measures in type 2 diabetes. METHODS Corneal dendritic cell densities and nerve parameters were measured in people with type 2 diabetes treated with SGLT2 inhibitors (T2DM-SGLT2i) [n = 23] and those not treated with SGLT2 inhibitors (T2DM-no SGLT2i) [n = 23], along with 24 age and sex-matched healthy controls. RESULTS There was a reduction in all corneal nerve parameters in type 2 diabetes groups compared to healthy controls (All parameters: p < 0.05). No significant differences in corneal nerve parameters were observed between T2DM-SGLT2i and T2DM-no SGLT2i groups (All parameters: p > 0.05). Central corneal dendritic cells were significantly reduced [mature (p = 0.03), immature (p = 0.06) and total (p = 0.002)] in the T2DM-SGLT2i group compared to the T2DM-no SGLT2i group. Significantly, higher mature (p = 0.04), immature (p = 0.004), total (p = 0.002) dendritic cell densities in the T2DM-no SGLT2i group were observed compared to the healthy controls. In the inferior whorl, no significant difference in immature (p = 0.27) and total dendritic cell densities (p = 0.16) between T2DM-SGLT2i and T2DM-no SGLT2i were observed except mature dendritic cell density (p = 0.018). No differences in total dendritic cell density were observed in the central (p > 0.09) and inferior whorl (p = 0.88) between T2DM-SGLT2i and healthy controls. CONCLUSION The present study showed a reduced dendritic cell density in people with type 2 diabetes taking SGLT2 inhibitors compared to those not taking these medications.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | | | - Sultan Alotaibi
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Leiao Leon Wang
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | | | - Natalie Kwai
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Vale GC, Mota BIS, Ando-Suguimoto ES, Mayer MPA. Lactobacilli Probiotics Modulate Antibacterial Response Gene Transcription of Dendritic Cells Challenged with LPS. Probiotics Antimicrob Proteins 2024; 16:293-307. [PMID: 36696085 DOI: 10.1007/s12602-023-10043-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Probiotics are beneficial bacteria that may modulate the immune response by altering the maturation and function of antigen-presenting cells, such as dendritic cells. This study aimed to evaluate the antibacterial gene expression of dendritic cells challenged with LPS and probiotics. Immature dendritic cells were obtained from human CD14+ monocytes and challenged with E. coli LPS and probiotics Lacticaseibacillus rhamnosus (LR-32) and Lactobacillus acidophilus (LA-5) at a ratio DC:bacteria of 1:10. The analysis of gene expression was performed by RT-qPCR using the Kit RT2 human antibacterial response. In the supernatant, the cytokines secretion was determined by ELISA. Tukey post-ANOVA with p at 5% was used for statistical analysis. LPS showed the higher upregulation of 29 genes compared with the groups where probiotics were added to LPS, including genes related to an inflammatory response like BIRC3, CASP1, CCL5, CXCL1, IL12B, IL18, MYD88, NLRP3, RIPK1, and TIRAP. Similarly, LPS increased the transcription of genes enrolled with apoptosis such as CARD6, CASP1, IRF5, MAP2K1, MAP2K4, MAPK1, MYD88, NLRP3, RIPK2, TNF, TNFRSF1A, and XIAP when compared to probiotics groups (p < 0.05). Although probiotics decrease several genes upregulated by LPS, the transcription of encoded cytokines IL12A, IL12B, IL1B, IL6, CXCL8, and TNF genes was maintained upregulated by probiotics, except for IL18, which was downregulated by LA-5. LA-5 led to a higher transcription of IL1B, IL6, and CXCL-8 which was followed by the secretion of these proteins by ELISA. The results suggest that probiotics attenuate the transcription of inflammatory and immune response genes caused by LPS.
Collapse
Affiliation(s)
- Glauber Campos Vale
- Restorative Dentistry Department, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, CEP: 64049-550, Teresina, Brazil.
| | - Brenda Izabela Santana Mota
- Restorative Dentistry Department, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, CEP: 64049-550, Teresina, Brazil
| | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Niu MT, Chen QW, Chen Z, Liu X, Huang QX, Liang JL, Zhong Z, Cheng H, Zhang XZ. Immunoadjuvant-Modified Rhodobacter sphaeroides Potentiate Cancer Photothermal Immunotherapy. NANO LETTERS 2024; 24:130-139. [PMID: 38150297 DOI: 10.1021/acs.nanolett.3c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.
Collapse
Affiliation(s)
- Mei-Ting Niu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhu Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xinhua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhenlin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
6
|
López Malizia A, Merlotti A, Bonte PE, Sager M, Arribas De Sandoval Y, Goudot C, Erra Díaz F, Pereyra-Gerber P, Ceballos A, Amigorena S, Geffner J, Sabatte J. Clusterin protects mature dendritic cells from reactive oxygen species mediated cell death. Oncoimmunology 2023; 13:2294564. [PMID: 38125724 PMCID: PMC10730137 DOI: 10.1080/2162402x.2023.2294564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.
Collapse
Affiliation(s)
- Alvaro López Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | | | - Melina Sager
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Christel Goudot
- Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Juan Sabatte
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
7
|
Krangvichian P, Techawiwattanaboon T, Palaga T, Ritprajak P, Kueanjinda P, Kaewraemruaen C, Patarakul K. Impaired functions of human monocyte-derived dendritic cells and induction of regulatory T cells by pathogenic Leptospira. PLoS Negl Trop Dis 2023; 17:e0011781. [PMID: 37983293 PMCID: PMC10695387 DOI: 10.1371/journal.pntd.0011781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/04/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Leptospirosis is a global zoonosis caused by pathogenic Leptospira. The disease outcome is influenced by the interplay between innate and adaptive immune responses. Dendritic cells (DCs) play a crucial role in shaping the adaptive immune response. A recent study revealed that pathogenic Leptospira limited the activation of human monocyte-derived dendritic cells (MoDCs) compared to non-pathogenic Leptospira, but their impact on T-cell responses has not been investigated. Our study is the first to explore how viable pathogenic and non-pathogenic Leptospira affect the interaction between human MoDCs and T cells. We found that MoDCs infected with pathogenic leptospires (L. interrogans serovar Pomona and a clinical isolate, MoDCs-P) exhibited lower levels of CD80 and CD83 expression, suggesting partially impaired MoDC maturation, induced regulatory T cells (Tregs) while failing to induce CD4+ T cell proliferation, compared to MoDCs infected with non-pathogenic leptospires (L. biflexa serovar Patoc and L. meyeri serovar Ranarum, MoDCs-NP). In contrast, non-pathogenic leptospires enhanced MoDC maturation and induced higher T cell proliferation including IFN-γ-producing CD4+ T cells, indicative of a Th1-type response. Furthermore, pathogenic leptospires induced higher MoDC apoptosis through a cysteine aspartic acid-specific protease-3 (caspase-3)-dependent pathway and upregulated expression of the prostaglandin-endoperoxide synthase 2 (PTGS2) gene. Notably, prostaglandin E2 (PGE2), a product of the PTGS2 pathway, was found at higher levels in the sera of patients with acute leptospirosis and in the supernatant of MoDCs-P, possibly contributing to Treg induction, compared to those of healthy donors and MoDCs-NP, respectively. In conclusion, this study reveals a novel immunosuppressive strategy employed by pathogenic Leptospira to evade host immunity by partially impairing MoDC maturation and inducing Tregs. These findings deepen our understanding of leptospirosis pathogenesis in humans and may provide a novel strategy to modulate DCs for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Pratomporn Krangvichian
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chamraj Kaewraemruaen
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Jung H, Joo HG. Dendritic cells resist to disulfiram-induced cytotoxicity, but reduced interleukin-12/23(p40) production. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:471-479. [PMID: 37641809 PMCID: PMC10466071 DOI: 10.4196/kjpp.2023.27.5.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/31/2023]
Abstract
Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.
Collapse
Affiliation(s)
- Haebeen Jung
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Hong-Gu Joo
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
9
|
Lellahi SM, Azeem W, Hua Y, Gabriel B, Paulsen Rye K, Reikvam H, Kalland KH. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol 2023; 13:1058963. [PMID: 36713392 PMCID: PMC9880532 DOI: 10.3389/fimmu.2022.1058963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) have attracted increasing attention as alternatives to monocyte-derived dendritic cells (moDCs) in cancer immunotherapy. Use of cDCs for therapy has been hindered by their low numbers in peripheral blood. In the present study, we found that extensive spontaneous apoptosis and cDC death in culture within 24hrs represent an additional challenge. Different media conditions that maintain cDC viability and function were investigated. CD141+ cDC1 and CD1c+ cDC2 were isolated from healthy blood donor buffy coats. Low viabilities were found with CellGenix DC, RPMI-1640, and X-VIVO 15 standard culture media and with several supplements at 24hrs and 48hrs. Among multiple factors it was found that GM-CSF improved both cDC1 and cDC2 viability, whereas Flt3-L and IL-4 only increased viability of cDC1 and cDC2, respectively. Combinations of these three cytokines improved viability of both cDCs further, both at 24hrs and 48hrs time points. Although these cytokines have been extensively investigated for their role in myeloid cell differentiation, and are also used clinically, their effects on mature cDCs remain incompletely known, in particular effects on pro-inflammatory or tolerogenic cDC features. HLA-DR, CD80, CD83, CD86, PD-L1 and PD-L2 cDC membrane expressions were relatively little affected by GM-CSF, IL-4 and Flt3-L cytokine supplements compared to the strong induction following Toll-like receptor (TLR) stimulation for 24hrs. With minor exceptions the three cytokines appeared to be permissive to the TLR-induced marker expression. Allogeneic mixed leukocyte reaction showed that the cytokines promoted T-cell proliferation and revealed a potential to boost both Th1 and Th2 polarizing cytokines. GM-CSF and Flt3-L and their combination improved the capability of cDC1 for dextran uptake, while in cDC2, dextran capture was improved by GM-CSF. The data suggest that GM-CSF, IL-4 and Flt3-L and combinations might be beneficial for DC viability and function in vitro. Limited viability of cDCs could be a confounding variable experimentally and in immunotherapy.
Collapse
Affiliation(s)
- Seyed Mohammad Lellahi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Helse Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Gabriel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
10
|
Klimova N, Holubova J, Streparola G, Tomala J, Brazdilova L, Stanek O, Bumba L, Sebo P. Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathog 2022; 18:e1010577. [PMID: 35666769 PMCID: PMC9216613 DOI: 10.1371/journal.ppat.1010577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/22/2022] [Accepted: 05/08/2022] [Indexed: 11/18/2022] Open
Abstract
The adenylate cyclase (ACT) and the pertussis (PT) toxins of Bordetella pertussis exert potent immunomodulatory activities that synergize to suppress host defense in the course of whooping cough pathogenesis. We compared the mouse lung infection capacities of B. pertussis (Bp) mutants (Bp AC− or Bp PT–) producing enzymatically inactive toxoids and confirm that ACT action is required for maximal bacterial proliferation in the first days of infection, whereas PT action is crucial for persistence of B. pertussis in mouse lungs. Despite accelerated and near complete clearance from the lungs by day 14 of infection, the PT− bacteria accumulated within the lymphoid tissue of lung-draining mediastinal lymph nodes (mLNs). In contrast, the wild type or AC− bacteria colonized the lungs but did not enter into mLNs. Lung infection by the PT− mutant triggered an early arrival of migratory conventional dendritic cells with associated bacteria into mLNs, where the PT− bacteria entered the T cell-rich paracortex of mLNs by day 5 and proliferated in clusters within the B-cell zone (cortex) of mLNs by day 14, being eventually phagocytosed by infiltrating neutrophils. Finally, only infection by the PT− bacteria triggered an early production of anti-B. pertussis serum IgG antibodies already within 14 days of infection. These results reveal that action of the pertussis toxin blocks DC-mediated delivery of B. pertussis bacteria into mLNs and prevents bacterial colonization of mLNs, thus hampering early adaptive immune response to B. pertussis infection. Of the three classical Bordetella species causing respiratory infections in mammals, only the human-specialized whooping cough agent B. pertussis produces the pertussis toxin (PT) as its major virulence factor. Human pertussis is an acute respiratory illness and the pleiotropic activities of pertussis toxin account for the characteristic systemic manifestations of the disease, such as hyperleukocytosis, histamine sensitization, hyperinsulinemia, or inflammatory lung pathology. We found that PT activity inhibits the migration of infected dendritic cells from the lungs into the draining mediastinal lymph nodes (mLNs). This prevents mLN infection by bacteria evading from migratory cells and delivery of bacterial antigens into mLNs. As a result, the induction of adaptive serum antibody responses to infection is delayed. We thus propose that PT action serves to create a time window for proliferation of B. pertussis on airway mucosa to facilitate transmission of the pathogen among humans.
Collapse
Affiliation(s)
- Nela Klimova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
| | - Gaia Streparola
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Czech Centre for Phenogenomics BIOCEV, Vestec, Czech Republic
| | - Jakub Tomala
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- * E-mail: (LB); (PS)
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- * E-mail: (LB); (PS)
| |
Collapse
|
11
|
Hwang J, An EK, Kim SJ, Zhang W, Jin JO. Escherichia coli Mimetic Gold Nanorod-Mediated Photo- and Immunotherapy for Treating Cancer and Its Metastasis. ACS NANO 2022; 16:8472-8483. [PMID: 35466668 DOI: 10.1021/acsnano.2c03379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most cancer-related deaths are due to metastasis or recurrence. Therefore, the ultimate goal of cancer therapy will be to treat metastatic and recurrent cancers. Combination therapy for cancer will be one of trial for effective treating metastasis and recurrence. In this study, Escherichia coli-mimetic nanomaterials are synthesized using Escherichia coli membrane proteins, adhesion proteins, and gold nanorods, which are named E. coli mimetic AuNRs (ECA), for combination therapy against cancer and its recurrence. ECA treatment with 808 nm laser irradiation eliminates CT-26 or 4T1 tumors via a photothermal effect. ECA with laser irradiation induces activation of immune cells in the tumor-draining lymph nodes. The mice cured from CT-26 or 4T1 tumor by ECA are rechallenged with those cancer in the lung metastatic form, and the results showed that ECA treatment for the first CT-26 or 4T1 tumor challenge prevents cancer infiltration to the lung in the second challenge. This preventive effect of ECA against tumor growth in the second challenge is aided by cancer antigen-specific T cell immunity. Overall, these findings show that ECA is a nanomaterial with dual functions as a photothermal therapy for treating primary cancers and as immunotherapy for preventing recurrence and metastasis.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
12
|
McDaniel MM, Meibers HE, Pasare C. Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information. Curr Opin Immunol 2021; 73:25-33. [PMID: 34425435 PMCID: PMC8648974 DOI: 10.1016/j.coi.2021.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
The ability of the innate and adaptive immune systems to communicate with each other is central to protective immune responses and maintenance of host health. Myeloid cells of the innate immune system are able to sense microbial ligands, perturbations in cellular homeostasis, and virulence factors, thereby allowing them to relay distinct pathogen-specific information to naïve T cells in the form of pathogen-derived peptides and a unique cytokine milieu. Once primed, effector T helper cells produce lineage-defining cytokines to help combat the original pathogen, and a subset of these cells persist as memory or effector-memory populations. These memory T cells then play a dual role in host protection by not only responding rapidly to reinfection, but by also directly instructing myeloid cells to express licensing cytokines. This means there is a bi-directional flow of information first from the innate to the adaptive immune system, and then from the adaptive back to innate immune system. Here, we focus on how signals, first from pathogens and then from primed effector and memory T cells, are integrated by myeloid cells and its consequences for protective immunity or systemic inflammation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Hannah E Meibers
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, United States
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220, United States.
| |
Collapse
|
13
|
The immunogenic maturation of goat monocyte-derived dendritic cells and upregulation of toll-like receptors by five antigens of Haemonchus contortus in-vitro. Res Vet Sci 2021; 136:247-258. [PMID: 33721712 DOI: 10.1016/j.rvsc.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.
Collapse
|
14
|
Prokopi A, Tripp CH, Tummers B, Hornsteiner F, Spoeck S, Crawford JC, Clements DR, Efremova M, Hutter K, Bellmann L, Cappellano G, Cadilha BL, Kobold S, Boon L, Ortner D, Trajanoski Z, Chen S, de Gruijl TD, Idoyaga J, Green DR, Stoitzner P. Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy. J Immunother Cancer 2021; 9:jitc-2020-000832. [PMID: 33408092 PMCID: PMC7789456 DOI: 10.1136/jitc-2020-000832] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Immunotherapy with checkpoint inhibitors has shown impressive results in patients with melanoma, but still many do not benefit from this line of treatment. A lack of tumor-infiltrating T cells is a common reason for therapy failure but also a loss of intratumoral dendritic cells (DCs) has been described. METHODS We used the transgenic tg(Grm1)EPv melanoma mouse strain that develops spontaneous, slow-growing tumors to perform immunological analysis during tumor progression. With flow cytometry, the frequencies of DCs and T cells at different tumor stages and the expression of the inhibitory molecules programmed cell death protein-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells were analyzed. This was complemented with RNA-sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR) analysis to investigate the immune status of the tumors. To boost DC numbers and function, we administered Fms-related tyrosine 3 ligand (Flt3L) plus an adjuvant mix of polyI:C and anti-CD40. To enhance T cell function, we tested several checkpoint blockade antibodies. Immunological alterations were characterized in tumor and tumor-draining lymph nodes (LNs) by flow cytometry, CyTOF, microarray and RT-qPCR to understand how immune cells can control tumor growth. The specific role of migratory skin DCs was investigated by coculture of sorted DC subsets with melanoma-specific CD8+ T cells. RESULTS Our study revealed that tumor progression is characterized by upregulation of checkpoint molecules and a gradual loss of the dermal conventional DC (cDC) 2 subset. Monotherapy with checkpoint blockade could not restore antitumor immunity, whereas boosting DC numbers and activation increased tumor immunogenicity. This was reflected by higher numbers of activated cDC1 and cDC2 as well as CD4+ and CD8+ T cells in treated tumors. At the same time, the DC boost approach reinforced migratory dermal DC subsets to prime gp100-specific CD8+ T cells in tumor-draining LNs that expressed PD-1/TIM-3 and produced interferon γ (IFNγ)/tumor necrosis factor α (TNFα). As a consequence, the combination of the DC boost with antibodies against PD-1 and TIM-3 released the brake from T cells, leading to improved function within the tumors and delayed tumor growth. CONCLUSIONS Our results set forth the importance of skin DC in cancer immunotherapy, and demonstrates that restoring DC function is key to enhancing tumor immunogenicity and subsequently responsiveness to checkpoint blockade therapy.
Collapse
Affiliation(s)
- Anastasia Prokopi
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Spoeck
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek R Clements
- Department of Micobiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Mirjana Efremova
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Hutter
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Bellmann
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany.,Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany.,Member of the German Center for Lung Research (DZL), Munich, Germany.,German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | | | - Daniela Ortner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Suzie Chen
- Ernest Mario School of Pharmacy and Rutgers Cancer Institute, Rutgers University, New Brunswick, New Jersey, USA
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juliana Idoyaga
- Department of Micobiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Khan S, Raj D, Jaiswal K, Lahiri A. Modulation of host mitochondrial dynamics during bacterial infection. Mitochondrion 2020; 53:140-149. [PMID: 32470613 DOI: 10.1016/j.mito.2020.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria is a dynamic organelle of the cell that can regulate and maintain cellular ATP level, ROS production, calcium signaling and immune response. In order to retain their shape and distribution, mitochondria go through coordinated cycles of fission and fusion. Further, dysfunctional mitochondria are selectively eliminated from the cell via mitophagy to synchronize mitochondrial quality control and cellular homeostasis. In addition, mitochondria when in close proximity with the endoplasmic reticulum can alter the signaling pathways and some recent findings also reveal a direct correlation between the mitochondrial localization in the cell to the immune response elicited against the invading pathogen. These modulations in the mitochondrial network are collectively termed as 'mitochondrial dynamics'. Diverse bacteria, virus and parasitic pathogens upon infecting a cell can alter the host mitochondrial dynamics in favor of their multiplication and this in turn can be a major determinant of the disease outcome. Pharmacological perturbations in these pathways thus could lead to generation of additional therapeutic opportunities. This review will focus on the pathogenic modulation of the host mitochondrial dynamics, specifically during the bacterial infections and describes how dysregulated mitochondrial dynamics facilitates the pathogen's ability to establish efficient infection.
Collapse
Affiliation(s)
- Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Kritika Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
16
|
Crosstalk between Dendritic Cells and Immune Modulatory Agents against Sepsis. Genes (Basel) 2020; 11:genes11030323. [PMID: 32197507 PMCID: PMC7140865 DOI: 10.3390/genes11030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.
Collapse
|
17
|
Diaz-Dinamarca DA, Manzo RA, Soto DA, Avendaño-Valenzuela MJ, Bastias DN, Soto PI, Escobar DF, Vasquez-Saez V, Carrión F, Pizarro-Ortega MS, Wilson CAM, Berrios J, Kalergis AM, Vasquez AE. Surface Immunogenic Protein of Streptococcus Group B is an Agonist of Toll-Like Receptors 2 and 4 and a Potential Immune Adjuvant. Vaccines (Basel) 2020; 8:vaccines8010029. [PMID: 31963234 PMCID: PMC7157747 DOI: 10.3390/vaccines8010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Vaccine-induced protection against pathogens, especially subunit-based vaccines, are related to antigen properties but mainly in their ability to stimulate the immune system by the use of an adjuvant. Modern vaccines are formulated with a high level of antigen purity, where an efficient adjuvant is necessary. In this context, the use of protein Toll-Like Receptor (TLR) agonists as vaccine adjuvants has been highlighted because of their optimal immunogenicity and minimal toxicity. The Surface Immunogenic Protein (SIP) from Group B Streptococcus (GBS) has gained importance as a new potential protein-based vaccine. Recently, we reported that recombinant SIP (rSIP) expressed by E. coli and purified by High Performance Liquid Chromatography (HPLC) alone induces a protective humoral immune response. In this study, we present the immunomodulatory properties of rSIP as a protein-based adjuvant, as an agonist of TLR. To this end, we showed that C57BL/6 bone marrow-derived dendritic cells pulsed by rSIP resulted in enhanced CD40, CD80, CD86, and Major Histocompatibility Complex (MHC) class II as well as increased secretion proinflammatory cytokines Interleukin (IL)-6, Interferon (IFN)-γ, Tumor Necrosis Factor (TNF)-α, and IL-10. Next, we investigated the in vivo effect of rSIP in the absence or presence of ovalbumin (OVA) on antigen-specific antibody secretion in C57BL/6 mice. Immunization with rSIP plus OVA showed that anti-OVA IgG2a and IgG1a increased significantly compared with OVA alone in C57BL/6 mice. Also, the immunization of rSIP plus OVA generates increased serum cytokines levels characterized by IL-12p70, IL-10, IL-4, and IFN-γ. Interestingly, we observed that rSIP stimulate Toll Like Receptor (TLR)2 and TLR4, individually expressed by Human embryonic kidney (HEK) 293-derived TLR reporter cells. These findings suggest that rSIP is a new potential protein TLR agonist adjuvant and may be employed in the development of new vaccines.
Collapse
Affiliation(s)
- Diego A. Diaz-Dinamarca
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Ricardo A. Manzo
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Daniel A. Soto
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - María José Avendaño-Valenzuela
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Diego N. Bastias
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
| | - Paulina I. Soto
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Daniel F. Escobar
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Valeria Vasquez-Saez
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8320000, Chile;
| | - Julio Berrios
- Escuela de Ingeniería en Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (M.S.P.-O.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Abel E. Vasquez
- Seccion de Biotecnologia, Instituto de Salud Publica de Chile, Santiago 7780050, Chile; (D.A.D.-D.); (R.A.M.); (D.A.S.); (M.J.A.-V.); (D.N.B.); (P.I.S.); (D.F.E.); (V.V.-S.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago 8320000, Chile
- Facultad de Ciencia, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-2575-5513
| |
Collapse
|
18
|
Carstensen LS, Lie-Andersen O, Obers A, Crowther MD, Svane IM, Hansen M. Long-Term Exposure to Inflammation Induces Differential Cytokine Patterns and Apoptosis in Dendritic Cells. Front Immunol 2019; 10:2702. [PMID: 31824496 PMCID: PMC6882286 DOI: 10.3389/fimmu.2019.02702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
The activation of dendritic cells (DCs) has profound implications and governs the control of adaptive immunity. However, long-term activation might drive exhaustion of immune cells and negatively affect functionality. Here, long-term vs. short-term exposure to bacterial lipopolysaccharide and interferon (IFN)γ was evaluated on human monocyte-derived DCs. Long-term activated DC1s began to undergo apoptosis concomitant with a profound TAM-receptor and efferocytosis-dependent induction of interleukin (IL)-10. Whereas, levels of IL-12p70 and IL-10 were positively correlated upon short-term activation, an inverse association occured upon long-term activation and, while short-term activated CD1a+ DCs were main producers of IL-12p70, CD1a− DCs were the main fraction that underwent apoptosis and released IL-10 upon long-term activation. Moreover, pre-apoptotic long-term activated DCs were no longer able to activate alloreactive IFNγ-responsive T cells present in peripheral blood mononuclear cells from healthy volunteers. The IFNγ response was mediated by IL-12p70, as a strong reduction in IFNγ was observed following blockade with an IL-12p70 neutralizing antibody. Finally, multiplex analysis of DC supernatants revealed a particular pattern of proteins associated with apoptosis, cancer and chronic inflammation partly overlapping with gold standard DCs well-known for their inability to secrete IL-12p70. In conclusion, long-term activated DC1s significantly changed their profile toward a non-functional, tumor-promoting and anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Laura Stentoft Carstensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Olivia Lie-Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark.,Immunitrack ApS, Copenhagen, Denmark
| | - Andreas Obers
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Michael Douglas Crowther
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| |
Collapse
|
19
|
Prolonged exposure to simulated microgravity diminishes dendritic cell immunogenicity. Sci Rep 2019; 9:13825. [PMID: 31554863 PMCID: PMC6761163 DOI: 10.1038/s41598-019-50311-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/10/2019] [Indexed: 01/13/2023] Open
Abstract
Immune dysfunction due to microgravity remains a hurdle in the next step of human space exploration. Dendritic cells (DC) represent a critical component of immunity, given their role in the detection of invaders and the subsequent task of activating T cells to respond and eliminate the threat. Upon encounter with microbes, DC undergo a process of maturation, whereby the cells upregulate the expression of surface proteins and secrete cytokines, both required for the optimal activation of CD4+ and CD8+ T cells. In this study, DC were cultured from 2–14 days in a rotary cell culture system, which generates a simulated microgravity (SMG) environment, and then the cells were assessed for maturation status and the capacity to activate T cells. Short-term culture (<72 h) of DC in SMG resulted in an increased expression of surface proteins associated with maturation and interleukin-6 production. Subsequently, the SMG exposed DC were superior to Static control DC at activating both CD4+ and CD8+ T cells as measured by interleukin-2 and interferon-γ production, respectively. However, long-term culture (4–14 d) of DC in SMG reduced the expression of maturation markers and the capacity to activate T cells as compared to Static DC controls.
Collapse
|
20
|
Diagnostic role of kidney injury molecule-1 in renal cell carcinoma. Int Urol Nephrol 2019; 51:1893-1902. [DOI: 10.1007/s11255-019-02231-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
21
|
Meyers JL, Winans B, Kelsaw E, Murthy A, Gerber S, Lawrence BP. Environmental cues received during development shape dendritic cell responses later in life. PLoS One 2018; 13:e0207007. [PMID: 30412605 PMCID: PMC6226176 DOI: 10.1371/journal.pone.0207007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Environmental signals mediated via the aryl hydrocarbon receptor (AHR) shape the developing immune system and influence immune function. Developmental exposure to AHR binding chemicals causes persistent changes in CD4+ and CD8+ T cell responses later in life, including dampened clonal expansion and differentiation during influenza A virus (IAV) infection. Naïve T cells require activation by dendritic cells (DCs), and AHR ligands modulate the function of DCs from adult organisms. Yet, the consequences of developmental AHR activation by exogenous ligands on DCs later in life has not been examined. We report here that early life activation of AHR durably reduces the ability of DC to activate naïve IAV-specific CD8+ T cells; however, activation of naïve CD4+ T cells was not impaired. Also, DCs from developmentally exposed offspring migrated more poorly than DCs from control dams in both in vivo and ex vivo assessments of DC migration. Conditional knockout mice, which lack Ahr in CD11c lineage cells, suggest that dampened DC emigration is intrinsic to DCs. Yet, levels of chemokine receptor 7 (CCR7), a key regulator of DC trafficking, were generally unaffected. Gene expression analyses reveal changes in Lrp1, Itgam, and Fcgr1 expression, and point to alterations in genes that regulate DC migration and antigen processing and presentation as being among pathways disrupted by inappropriate AHR signaling during development. These studies establish that AHR activation during development causes long-lasting changes to DCs, and provide new information regarding how early life environmental cues shape immune function later in life.
Collapse
Affiliation(s)
- Jessica L. Meyers
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Erin Kelsaw
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Scott Gerber
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Surgery, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| |
Collapse
|
22
|
Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, Martín-Cófreces NB, Jaso-Tamame ÁL, Iborra S, Jorge I, González-Aseguinolaza G, Garaude J, Vicente-Manzanares M, Enríquez JA, Mittelbrunn M, Sánchez-Madrid F. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 2018; 9:2658. [PMID: 29985392 PMCID: PMC6037695 DOI: 10.1038/s41467-018-05077-9] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Interaction of T cell with antigen-bearing dendritic cells (DC) results in T cell activation, but whether this interaction has physiological consequences on DC function is largely unexplored. Here we show that when antigen-bearing DCs contact T cells, DCs initiate anti-pathogenic programs. Signals of this interaction are transmitted from the T cell to the DC, through extracellular vesicles (EV) that contain genomic and mitochondrial DNA, to induce antiviral responses via the cGAS/STING cytosolic DNA-sensing pathway and expression of IRF3-dependent interferon regulated genes. Moreover, EV-treated DCs are more resistant to subsequent viral infections. In summary, our results show that T cells prime DCs through the transfer of exosomal DNA, supporting a specific role for antigen-dependent contacts in conferring protection to DCs against pathogen infection. The reciprocal communication between innate and adaptive immune cells thus allow efficacious responses to unknown threats.
Collapse
Affiliation(s)
- Daniel Torralba
- Vascular Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.,Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006, Madrid, Spain
| | - Francesc Baixauli
- Vascular Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.,Immunometabolism Department, Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Carolina Villarroya-Beltri
- Vascular Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.,Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006, Madrid, Spain
| | - Irene Fernández-Delgado
- Vascular Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.,Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006, Madrid, Spain
| | - Ana Latorre-Pellicer
- Grupo de Medicina Xenómica, CIBERER, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rebeca Acín-Pérez
- Myocardial Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Noa B Martín-Cófreces
- Vascular Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.,Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | | | - Salvador Iborra
- Myocardial Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Inmaculada Jorge
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - Johan Garaude
- Myocardial Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - José Antonio Enríquez
- Myocardial Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.,Centro de Investigaciones en RED (CIBERFES), Melchor Fernández Almagro 9, 28029, Madrid, Spain
| | - María Mittelbrunn
- Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12), 28041, Madrid, Spain.,Centro de Biología Molecular, UAM-CSIC, Departamento de Biología Celular e Inflamación, 28049, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Research Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain. .,Servicio de Inmunología, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006, Madrid, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
23
|
Affiliation(s)
- Tae Jin Kim
- Division of Immunobiology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
24
|
Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci 2017; 74:761-776. [PMID: 27491428 PMCID: PMC11107728 DOI: 10.1007/s00018-016-2317-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.
Collapse
Affiliation(s)
- Michael Tang
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Jun Diao
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
25
|
Tsc1 expression by dendritic cells is required to preserve T-cell homeostasis and response. Cell Death Dis 2017; 8:e2553. [PMID: 28079897 PMCID: PMC5386387 DOI: 10.1038/cddis.2016.487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DCs) are pivotal to the induction of adaptive T-cell immune responses. Recent evidence highlights a critical role of tuberous sclerosis complex 1 (Tsc1), a primarily upstream negative regulator of mammalian target of rapamycin (mTOR), in DC development, but whether and how Tsc1 directly regulate mature DC function in vivo remains elusive. Here we show that selective disruption of Tsc1 in DCs results in a lymphoproliferative disorder with the spontaneous activation of T cells. Tsc1 deficiency results in the activation of mTORC1-PPARγ pathway, which leads to the upregulation of neuropilin-1 (Nrp1) expression on DCs to stimulate naive T-cell proliferation. However, Tsc1-deficient DCs have defects in the ability to induce antigen-specific T-cell responses in vitro and in vivo owing to impaired survival during antigen transportation and presentation. Indeed, Tsc1 promotes DC survival through restraining independent mTORC1 and ROS-Bim pathways. Our study identifies Tsc1 as a crucial signaling checkpoint in DCs essential for preserving T-cell homeostasis and response.
Collapse
|
26
|
Edwards DK, Jasny E, Yoon H, Horscroft N, Schanen B, Geter T, Fotin-Mleczek M, Petsch B, Wittman V. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med 2017; 15:1. [PMID: 28049494 PMCID: PMC5210268 DOI: 10.1186/s12967-016-1111-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background Prophylactic and therapeutic vaccines often depend upon a strong activation of the innate immune system to drive a potent adaptive immune response, often mediated by a strong adjuvant. For a number of adjuvants immunological readouts may not be consistent across species. Methods In this study, we evaluated the innate immunostimulatory potential of mRNA vaccines in both humans and mice, using a novel mRNA-based vaccine encoding influenza A hemagglutinin of the pandemic strain H1N1pdm09 as a model. This evaluation was performed using an in vitro model of human innate immunity and in vivo in mice after intradermal injection. Results Results suggest that immunostimulation from the mRNA vaccine in humans is similar to that in mice and acts through cellular RNA sensors, with genes for RLRs [ddx58 (RIG-1) and ifih1 (MDA-5)], TLRs (tlr3, tlr7, and tlr8-human only), and CLRs (clec4gp1, clec2d, cledl1) all significantly up-regulated by the mRNA vaccine. The up-regulation of TLR8 and TLR7 points to the involvement of both mDCs and pDCs in the response to the mRNA vaccine in humans. In both humans and mice activation of these pathways drove maturation and activation of immune cells as well as production of cytokines and chemokines known to attract and activate key players of the innate and adaptive immune system. Conclusion This translational approach not only allowed for identification of the basic mechanisms of self-adjuvantation from the mRNA vaccine but also for comparison of the response across species, a response that appears relatively conserved or at least convergent between the in vitro human and in vivo mouse models. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1111-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darin K Edwards
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA.
| | - Edith Jasny
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Heesik Yoon
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| | | | - Brian Schanen
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| | - Tanya Geter
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| | | | | | - Vaughan Wittman
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL, USA
| |
Collapse
|
27
|
Trahtemberg U, Grau A, Tabib A, Atallah M, Krispin A, Mevorach D. Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death. PLoS One 2016; 11:e0162984. [PMID: 27690130 PMCID: PMC5045195 DOI: 10.1371/journal.pone.0162984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a variety of tissues and contexts, we asked whether they can give rise to different subpopulations. In this work we set out to characterize two human mdDC subpopulations that we identified and termed small (DC-S) and large (DC-L). Morphologically, DC-L are larger, more granular and have a more complex cell membrane. Phenotypically, DC-L show higher expression of a wide panel of surface molecules and stronger responses to maturation stimuli. Transcriptomic analysis confirmed their separate identities and findings were consistent with the phenotypes observed. Although they show similar apoptotic cell uptake, DC-L have different capabilities for phagocytosis, demonstrate better antigen processing, and have significantly better necrotic cell uptake. These subpopulations also have different patterns of cell death, with DC-L presenting an inflammatory, "dangerous" phenotype while DC-S mostly downregulate their surface markers upon cell death. Apoptotic cells induce an immune-suppressed phenotype, which becomes more pronounced among DC-L, especially after the addition of lipopolysaccharide. We propose that these two subpopulations correspond to inflammatory (DC-L) and steady-state (DC-S) DC classes that have been previously described in mice and humans.
Collapse
Affiliation(s)
- Uriel Trahtemberg
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Grau
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Tabib
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mizhir Atallah
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alon Krispin
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
28
|
Liu Q, Wen W, Tang L, Qin CJ, Lin Y, Zhang HL, Wu H, Ashton C, Wu HP, Ding J, Dong W, Yu LX, Yang W, Huang DD, Wu MC, Wang HY, Yan HX. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. Oncoimmunology 2016; 5:e1183850. [PMID: 27757296 DOI: 10.1080/2162402x.2016.1183850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 12/23/2022] Open
Abstract
Despite their central function in tumor immunity, dendritic cells (DCs) can respond to inhibitory signals and become tolerogenic, curtailing T cell responses in vivo. Here, we provide the evidence for an inhibitory function of signal regulatory protein (SIRP) α in DC survival and activation. In tumors from human liver cancer patients, infiltrative DCs expressed elevated levels of SIRPα, which is correlated with the induction of immune tolerance within the tumors. Silencing of SIRPα resulted in a significant increase in the longevity of antigen-pulsed DCs in the draining lymph nodes. In addition, SIRPα controls the activation and output of DCs. Silencing of DC-expressed SIRPα induced spontaneous and enhanced production of IL12 and costimulatory molecules, resulting in more potent cytotoxic T lymphocyte responses, including the eradication of previously established solid tumors. SIRPα exerted such effects, at least in part, via the association and sequestration of p85 subunit of PI3K. Thus, SIRPα is a critical regulator of DC lifespan and activity, and its inhibition might improve the clinical efficacy of DC-based tumor vaccines.
Collapse
Affiliation(s)
- Qiong Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, P.R. China; Naval Medical Research Institute, Shanghai, China
| | - Wen Wen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Liang Tang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Chen-Jie Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Yan Lin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Hui-Lu Zhang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Han Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Charles Ashton
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California , Los Angeles, CA, USA
| | - Hong-Ping Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Le-Xing Yu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Dan-Dan Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Meng-Chao Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| | - He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University , Shanghai, P.R. China
| |
Collapse
|
29
|
Uzureau S, Coquerelle C, Vermeiren C, Uzureau P, Van Acker A, Pilotte L, Monteyne D, Acolty V, Vanhollebeke B, Van den Eynde B, Pérez-Morga D, Moser M, Pays E. Apolipoproteins L control cell death triggered by TLR3/TRIF signaling in dendritic cells. Eur J Immunol 2016; 46:1854-66. [PMID: 27198486 DOI: 10.1002/eji.201546252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 02/01/2023]
Abstract
Apolipoproteins L (ApoLs) are Bcl-2-like proteins expressed under inflammatory conditions in myeloid and endothelial cells. We found that Toll-like receptor (TLR) stimuli, particularly the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), specifically induce ApoLs7/11 subfamilies in murine CD8α(+) dendritic cells (DCs). This induction requires the TLR3/TRIF (where TRIF is TIR domain containing adapter-inducing interferon β) signaling pathway and is dependent on IFN-β in all ApoLs subfamilies except for ApoL7c. Poly(I:C) treatment of DCs is also associated with induction of both cell death and autophagy. ApoLs expression is related to promotion of DC death by poly(I:C), as ApoLs7/11 knockdown increases DC survival and ApoLs7 are associated with the anti-apoptotic protein Bcl-xL (where Bcl-xL is B-cell lymphoma extra large). Similarly, in human monocyte-derived DCs poly(I:C) induces both cell death and the expression of ApoLs, principally ApoL3. Finally, the BH3-like peptide of ApoLs appears to be involved in the DC death-promoting activity. We would like to propose that ApoLs are involved in cell death linked to activation of DCs by viral stimuli.
Collapse
Affiliation(s)
- Sophie Uzureau
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Caroline Coquerelle
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Corentin Vermeiren
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium.,Laboratoire de Médecine Expérimentale, Hôpital Vésale, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Annette Van Acker
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Luc Pilotte
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valérie Acolty
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Moser
- Laboratoire d'Immunobiologie, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Etienne Pays
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
30
|
Schwiebs A, Friesen O, Katzy E, Ferreirós N, Pfeilschifter JM, Radeke HH. Activation-Induced Cell Death of Dendritic Cells Is Dependent on Sphingosine Kinase 1. Front Pharmacol 2016; 7:94. [PMID: 27148053 PMCID: PMC4832589 DOI: 10.3389/fphar.2016.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/22/2016] [Indexed: 01/20/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is an immune modulatory lipid mediator and has been implicated in numerous pathophysiological processes. S1P is produced by sphingosine kinase 1 (Sphk1) and Sphk2. Dendritic cells (DCs) are central for the direction of immune responses and crucially involved in autoimmunity and cancerogenesis. In this study we examined the function and survival of bone marrow-derived DCs under long-term inflammatory stimulation. We observed that differentiated cells undergo activation-induced cell death (AICD) upon LPS stimulation with an increased metabolic activity shortly after stimulation, followed by a rapid activation of caspase 3 and subsequent augmented apoptosis. Importantly, we highlight a profound role of Sphk1 in secretion of inflammatory cytokines and survival of dendritic cells that might be mediated by a change in sphingolipid levels as well as by a change in STAT3 expression. Cell growth during differentiation of Sphk1-deficient cells treated with the functional S1P receptor antagonist FTYP was reduced. Importantly, in dendritic cells we did not observe a compensatory regulation of Sphk2 mRNA in Sphk1-deficient cells. Instead, we discovered a massive increase in Sphk1 mRNA concentration upon long-term stimulation with LPS in wild type cells that might function as an attempt to rescue from inflammation-caused cell death. Taken together, in this investigation we describe details of a crucial involvement of sphingolipids and Sphk1 in AICD during long-term immunogenic activity of DCs that might play an important role in autoimmunity and might explain the differences in immune response observed in in vivo studies of Sphk1 modulation.
Collapse
Affiliation(s)
- Anja Schwiebs
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Olga Friesen
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Elisabeth Katzy
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Nerea Ferreirós
- Department of Clinical Pharmacology, Pharmazentrum Frankfurt, Clinic of the Goethe University Frankfurt, Germany
| | - Josef M Pfeilschifter
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Heinfried H Radeke
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| |
Collapse
|
31
|
Slatter TL, Wilson M, Tang C, Campbell HG, Ward VK, Young VL, Van Ly D, Fleming NI, Braithwaite AW, Baird MA. Antitumor cytotoxicity induced by bone-marrow-derived antigen-presenting cells is facilitated by the tumor suppressor protein p53 via regulation of IL-12. Oncoimmunology 2015; 5:e1112941. [PMID: 27141366 DOI: 10.1080/2162402x.2015.1112941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022] Open
Abstract
Activated antigen-presenting cells (APC) deliver the three signals cytotoxic T cells require to differentiate into effector cells that destroy the tumor. These comprise antigen, co-stimulatory signals and cytokines. Once these cells have carried out their function, they apoptose. We hypothesized that the tumor suppressor protein, p53, played an important role in generating the antitumor response facilitated by APC. CD11c+ APC derived from p53 wild-type (wt) mouse (wt p53) GM-CSF bone marrow cultures (BMAPC) and activated had reduced survival compared to BMAPC from p53 null consistent with p53-mediated apoptosis following activation. There was a lower percentage of antigenic peptide/MHC I complexes on antigen-pulsed p53 null cells suggesting p53 played a role in antigen processing but there was no difference in antigen-specific T cell proliferative responses to these cells in vivo. In contrast, antigen-specific cytotoxicity in vivo was markedly reduced in response to p53 null BMAPC. When these cells were pulsed with a model tumor antigen and delivered as a prophylactic vaccination, they provided no protection against melanoma cell growth whereas wt BMAPC were very effective. This suggested that p53 might regulate the requisite third signal and, indeed, we found that p53 null BMAPC produced less IL-12 than wt p53 BMAPC and that p53 bound to the promoter region of IL-12. This work suggests that p53 in activated BMAPC is associated with the generation of IL-12 required for the differentiation of cytotoxic immune responses and an effective antitumor response. This is a completely new role for this protein that has implications for BMAPC-mediated immunotherapy.
Collapse
Affiliation(s)
- Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | - Michelle Wilson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Chingwen Tang
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago , Dunedin, New Zealand
| | - Hamish G Campbell
- Children's Medical Research Institute, University of Sydney , Westmead, Australia
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago , Dunedin, New Zealand
| | - Vivienne L Young
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago , Dunedin, New Zealand
| | - David Van Ly
- Children's Medical Research Institute, University of Sydney , Westmead, Australia
| | - Nicholas I Fleming
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | - Antony W Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Children's Medical Research Institute, University of Sydney, Westmead, Australia; Maurice Wilkins Center, Auckland, New Zealand
| | - Margaret A Baird
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Center, Auckland, New Zealand
| |
Collapse
|
32
|
Sehgal M, Zeremski M, Talal AH, Ginwala R, Elrod E, Grakoui A, Li QG, Philip R, Khan ZK, Jain P. IFN-α-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment. J Interferon Cytokine Res 2015; 35:698-709. [PMID: 26090579 PMCID: PMC4560851 DOI: 10.1089/jir.2014.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/19/2015] [Indexed: 12/19/2022] Open
Abstract
Although interferon (IFN)-α is known to exert immunomodulatory and antiproliferative effects on dendritic cells (DCs) through induction of protein-coding IFN-stimulated genes (ISGs), little is known about IFN-α-regulated miRNAs in DCs. Since several miRNAs are involved in regulating DC functions, it is important to investigate whether IFN-α's effects on DCs are mediated through miRNAs as well. In this study, we examined miRNA expression patterns in myeloid DCs (mDCs) and plasmacytoid DCs after exposing them to IFN-α. We report that IFN-α downregulates miR-221 in both DC subsets via inhibition of STAT3. We validated proapoptotic proteins BCL2L11 and CDKN1C as miR-221 targets suggesting that IFN-α can induce DC apoptosis via miR-221 downregulation. In addition, we validated another miR-221 target, SOCS1, which is known to be a negative regulator of JAK/STAT signaling. Consistent with this, miR-221 overexpression in mDCs enhanced the secretion of proinflammatory cytokines IL-6 and TNF-α. In peripheral blood mononuclear cells (PBMCs) of HIV-1/HCV co-infected individuals undergoing IFN-α-based treatment the baseline miR-221 expression was lower in non-responders compared with responders; and miR-221 expression directly correlated with DC frequency and IL-6/TNF-α secretion. In addition to PBMCs, we isolated total liver cells and kupffer cells from HCV-infected individuals and individuals with alcoholic cirrhosis. We found that both total liver cells and kupffer cells from HCV-infected individuals had significantly higher miR-221 levels compared with individuals with cirrhosis. Overall, we demonstrate that IFN-α exerts both antiproliferative and immunomodulatory effects on mDCs via miR-221 downregulation; and IFN-miR-221 axis can play important role in HCV pathogenesis and treatment.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Andrew H. Talal
- School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | - Qi-Ging Li
- Duke University Medical Center, Durham, North Carolina
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Balachander A, Nabti S, Sobota RM, Foo S, Zolezzi F, Lee BTK, Poidinger M, Ricciardi-Castagnoli P. Dendritic cell derived IL-2 inhibits survival of terminally mature cells via an autocrine signaling pathway. Eur J Immunol 2015; 45:1494-9. [PMID: 25652593 DOI: 10.1002/eji.201445050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/06/2015] [Accepted: 01/30/2015] [Indexed: 01/22/2023]
Abstract
DCs are crucial for sensing pathogens and triggering immune response. Upon activation by pathogen-associated molecular pattern (PAMP) ligands, GM-CSF myeloid DCs (GM-DCs) secrete several cytokines, including IL-2. DC IL-2 has been shown to be important for innate and adaptive immune responses; however, IL-2 importance in DC physiology has never been demonstrated. Here, we show that autocrine IL-2 signaling is functional in murine GM-DCs in an early time window after PAMPs stimulation. IL-2 signaling selectively activates the JAK/STAT5 pathway by assembling holo-receptor complexes at the cell surface. Using the sensitivity of targeted mass spectrometry, we show conclusively that GM-DCs express CD122, the IL-2 receptor β-chain, at steady state. In myeloid DCs, this cytokine pathway inhibits survival of PAMP-matured GM-DCs which is crucial for maintaining immune tolerance and preventing autoimmunity. Our findings suggest that immune regulation by this novel autocrine signaling pathway can potentially be used in DC immunotherapy.
Collapse
Affiliation(s)
- Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sabrina Nabti
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radoslaw M Sobota
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bernett T K Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Paola Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
34
|
Park H, Huang X, Lu C, Cairo MS, Zhou X. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem 2014; 290:2831-41. [PMID: 25505246 DOI: 10.1074/jbc.m114.591420] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.
Collapse
Affiliation(s)
- Haein Park
- From the Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, and
| | - Xin Huang
- From the Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, and
| | - Changming Lu
- the Institute of Oral Health, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35233
| | - Mitchell S Cairo
- From the Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, and the Departments of Microbiology and Immunology, Cell Biology and Anatomy, Pathology, and Medicine, New York Medical College, Valhalla, New York 10595 and
| | - Xianzheng Zhou
- From the Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, and the Departments of Microbiology and Immunology, Cell Biology and Anatomy,
| |
Collapse
|
35
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
36
|
Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc Natl Acad Sci U S A 2013; 110:E4894-903. [PMID: 24282297 DOI: 10.1073/pnas.1308905110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coordination of cell metabolism and immune signals is crucial for lymphocyte priming. Emerging evidence also highlights the importance of cell metabolism for the activation of innate immunity upon pathogen challenge, but there is little evidence of how this process contributes to immune cell development. Here we show that differentiation of dendritic cells (DCs) from bone marrow precursors is associated with dynamic regulation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling and cell metabolism. Unexpectedly, enhancing mTORC1 activity via ablation of its negative regulator tuberous sclerosis 1 (Tsc1) impaired DC development in vivo and in vitro, associated with defective cell survival and proliferation. Moreover, Tsc1 deficiency caused DC spontaneous maturation but a propensity to differentiate into other lineages, and attenuated DC-mediated effector TH1 responses. Mechanistically, Tsc1-deficient DCs exhibited increased glycolysis, mitochondrial respiration, and lipid synthesis that were partly mediated by the transcription factor Myc, highlighting a key role of Tsc1 in modulating metabolic programming of DC differentiation. Further, Tsc1 signaled through Rheb to down-regulate mTORC1 for proper DC development, whereas its effect at modulating mTOR complex 2 (mTORC2) activity was largely dispensable. Our results demonstrate that the interplay between Tsc1-Rheb-mTORC1 signaling and Myc-dependent bioenergetic and biosynthetic activities constitutes a key metabolic checkpoint to orchestrate DC development.
Collapse
|
37
|
Filkor K, Hegedűs Z, Szász A, Tubak V, Kemény L, Kondorosi É, Nagy I. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis. PLoS One 2013. [PMID: 24039940 DOI: 10.71371/journal.pone.0073435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFN-primed iDCs.
Collapse
Affiliation(s)
- Kata Filkor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
38
|
Filkor K, Hegedűs Z, Szász A, Tubak V, Kemény L, Kondorosi É, Nagy I. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis. PLoS One 2013; 8:e73435. [PMID: 24039940 PMCID: PMC3767820 DOI: 10.1371/journal.pone.0073435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022] Open
Abstract
Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFN-primed iDCs.
Collapse
Affiliation(s)
- Kata Filkor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Zenon Bio Ltd., Szeged, Hungary
| | - András Szász
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Dermatological Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
39
|
Challier J, Bruniquel D, Sewell AK, Laugel B. Adenosine and cAMP signalling skew human dendritic cell differentiation towards a tolerogenic phenotype with defective CD8(+) T-cell priming capacity. Immunology 2013; 138:402-10. [PMID: 23278551 DOI: 10.1111/imm.12053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022] Open
Abstract
Multiple endogenous mechanisms that regulate immune and inflammatory processes contribute to the maintenance of peripheral tolerance and prevent chronic inflammation in mammals. Yet pathogens and tumours are able to exploit these homeostatic pathways to foster immunosuppressive microenvironments and evade immune surveillance. The release of adenosine in the extracellular space contributes to these phenomena by exerting a broad range of immunomodulatory effects. Here we document the influence of adenosine receptor triggering on human dendritic cell differentiation and functions. We show that the expression of several immunomodulatory proteins and myeloid/monocytic lineage markers was affected by adenosine receptors and the cAMP pathway. These changes were reminiscent of the phenotype associated with tolerogenic dendritic cells and, functionally, translated into a defective capacity to prime CD8(+) T-cells with a common tumour antigen in vitro. These results establish a novel mechanism by which adenosine hampers CD8(+) T-cell immunity via dendritic cells that may contribute to peripheral tolerance as well as to the establishment of immunosuppressive microenvironments relevant to tumour biology.
Collapse
Affiliation(s)
- John Challier
- Geneva Research Centre, Merck Serono S.A., Geneva, Switzerland
| | | | | | | |
Collapse
|
40
|
Signature miRNAs involved in the innate immunity of invertebrates. PLoS One 2012; 7:e39015. [PMID: 22723921 PMCID: PMC3378607 DOI: 10.1371/journal.pone.0039015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/15/2012] [Indexed: 11/18/2022] Open
Abstract
The innate immune system, including the cell-based immunity (mainly apoptosis and phagocytosis) and the humoral immunity (such as pro-phenoloxidase system), is the first defense line of animals against the infection of pathogens in a non-specific manner, which is fine regulated through the gene expression regulations. The microRNAs (miRNAs) are recognized as important regulators of gene expression. To date, however, a comprehensive view about the regulation of innate immunity by miRNAs is not available. To address this issue, the signature miRNAs involved in the innate immunity were characterized in this study. The phagocytosis, apoptosis and phenoloxidase (PO), a key enzyme in the pro-phenoloxidase system, of invertebrate shrimp were activated or inhibited, followed by the small RNA sequencing. The results showed that a total of 24 miRNAs took great effects on phagocytosis, apoptosis or the pro-phenoloxidase system, which were further confirmed by Northern blots. Among the 24 innate immunity-associated miRNAs, 21 miRNAs were conserved in animals, suggesting that these miRNAs might share the similar or the same functions in different species of animals. Based on degradome sequencing and prediction of target genes, it was found that the miRNAs might mediate the regulations of phagocytosis, apoptosis or pro-phenoloxidase system by targeting different genes. Therefore our study presented the first comprehensive view of the miRNAs associated with innate immunity, which would facilitate to reveal the molecular events in the regulation of innate immunity.
Collapse
|
41
|
Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012; 119:3383-93. [PMID: 22323450 DOI: 10.1182/blood-2011-11-370130] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset–specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF–induced signaling provide a molecular explanation for GM-CSF–dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF–differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF–dependent DC-based strategies to regulate immunity.
Collapse
|
42
|
Gasparini C, Tommasini A, Zauli G. The MDM2 inhibitor Nutlin-3 modulates dendritic cell-induced T cell proliferation. Hum Immunol 2012; 73:342-5. [PMID: 22374325 DOI: 10.1016/j.humimm.2012.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
Nutlin-3, a small molecule inhibitor of the MDM2/p53 interaction, has been recently taken into consideration as a promising therapeutic tool for tumor treatment based on its ability to stabilize and activate the p53 transcription factor pathway. Since Nutlin-3 displays non cell-autonomous tumor-suppressor activities, we wanted to investigate its effect on dendritic cell functions, given the central role of these cells in the modulation of the immune response. We found that Nutlin-3 alone slightly affected the levels of major histocompatibility complex and costimulatory molecules and significantly promoted the ability of dendritic cells to stimulate T cells in the mixed lymphocyte reaction. Taken together, our findings suggest that the ability of Nutlin-3 to modulate dendritic cell functions and therefore lymphocyte proliferation might represent an additional important mechanism by which Nutlin-3 exerts its non cell-autonomous tumor-suppression function.
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy.
| | | | | |
Collapse
|
43
|
Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function. Proc Natl Acad Sci U S A 2012; 109:E343-52. [PMID: 22308391 DOI: 10.1073/pnas.1115635109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.
Collapse
|
44
|
Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S, Carraro F. Hypoxia affects dendritic cell survival: Role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol 2011; 227:587-95. [DOI: 10.1002/jcp.22761] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Swiecki M, Wang Y, Vermi W, Gilfillan S, Schreiber RD, Colonna M. Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. ACTA ACUST UNITED AC 2011; 208:2367-74. [PMID: 22084408 PMCID: PMC3256963 DOI: 10.1084/jem.20110654] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Production of type I interferon in response to virus infection reduces plasmacytoid dendritic cell numbers, thus creating a negative feedback loop. Plasmacytoid dendritic cells (pDCs) specialize in the secretion of type I interferons (IFN-I) and thus are considered critical mediators of antiviral responses. We recently reported that pDCs have a very early but limited and transient capacity to curtail viral infections. Additionally, pDC numbers are not sustained in human infections caused by Hepatitis B or C viruses (HBV and HCV) and HIV. Thus, the numbers and/or function of pDCs appear to be regulated during the course of viral infection. In this study, we show that splenic pDCs are reduced in vivo during several systemic viral infections and after administration of synthetic toll-like receptor ligands. We demonstrate that IFN-I, regardless of the source, contributes to this decline and mediates pDC death via the intrinsic apoptosis pathway. These findings demonstrate a feedback control mechanism by which IFN-I modulates pDC numbers, thus fine-tuning systemic IFN-I response to viruses. IFN-I–mediated control of pDCs may explain the loss of pDCs during human infections caused by HBV, HCV, or HIV and has important therapeutic implications for settings in which IFN-I is used to treat infections and autoimmune diseases.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
46
|
Emerging role of PPAR-β/δ in inflammatory process associated to experimental periodontitis. Mediators Inflamm 2011; 2011:787159. [PMID: 22131647 PMCID: PMC3206391 DOI: 10.1155/2011/787159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to evaluate the contribution of peroxisome proliferator-activated receptor (PPAR-β/δ) in animal model of periodontitis. Male Sprague-Dawley rats were lightly anaesthetized with pentobarbitone (35 mg/kg). Sterile, 2-0 black braided silk thread was placed around the cervix of the lower left first molar and knotted medially. Animals received GW0742 (0.3 mg/kg, 10% DMSO, i.p. after the ligature placement and daily for eight days). At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed. One the eighth day after placement of the ligature, we evaluated (1) NF-κB expression, (2) cytokines expression, (3) iNOS expression, (5) the nitration of tyrosine, (6) apoptosis, and (8) the degree of gingivomucosal tissues injury. Administration of GW0742 significantly decreased all of the parameters of inflammation as described above. Taken together, these results demonstrate that GW0742 exerts an anti-inflammatory role during experimental periodontitis and is able to ameliorate the tissue damage.
Collapse
|
47
|
Chen M, Felix K, Wang J. Immune regulation through mitochondrion-dependent dendritic cell death induced by T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:5684-92. [PMID: 22031758 DOI: 10.4049/jimmunol.1101834] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) harbor an active mitochondrion-dependent cell death pathway regulated by Bcl-2 family members and undergo rapid turnover in vivo. However, the functions for mitochondrion-dependent cell death of DCs in immune regulation remain to be elucidated. In this article, we show that DC-specific knockout of proapoptotic Bcl-2 family members, Bax and Bak, induced spontaneous T cell activation and autoimmunity in mice. In addition to a defect in spontaneous cell death, Bax(-/-)Bak(-/-) DCs were resistant to killing by CD4(+)Foxp3(+) T regulatory cells (Tregs) compared with wild-type DCs. Tregs inhibited the activation of T effector cells by wild-type, but not Bax(-/-)Bak(-/-), DCs. Bax(-/-)Bak(-/-) DCs showed increased propensity for inducing autoantibodies. Moreover, the autoimmune potential of Bax(-/-)Bak(-/-) DCs was resistant to suppression by Tregs. Our data suggested that Bax and Bak mediate intrinsic spontaneous cell death in DCs, as well as regulate DC killing triggered by Tregs. Bax- and Bak-dependent cell death mechanisms help to maintain DC homeostasis and contribute to the regulation of T cell activation and the suppression of autoimmunity.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
48
|
Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. Blood 2011; 117:4226-33. [PMID: 21357764 DOI: 10.1182/blood-2010-07-298232] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The low frequency of hematopoietic stem and progenitor cells (HSPCs) in human BM has precluded analysis of the direct biochemical effects elicited by cytokines in these populations, and their functional consequences. Here, single-cell phospho-specific flow cytometry was used to define the signaling networks active in 5 previously defined human HSPC subsets. This analysis revealed that the currently defined HSC compartment is composed of biochemically distinct subsets with the ability to respond rapidly and directly in vitro to a broader array of cytokines than previously appreciated, including G-CSF. The G-CSF response was physiologically relevant-driving cell-cycle entry and increased proliferation in a subset of single cells within the HSC compartment. The heterogeneity in the single-cell signaling and proliferation responses prompted subfractionation of the adult BM HSC compartment by expression of CD114 (G-CSF receptor). Xenotransplantation assays revealed that HSC activity is significantly enriched in the CD114(neg/lo) compartment, and almost completely absent in the CD114(pos) subfraction. The single-cell analyses used here can be adapted for further refinement of HSPC surface immunophenotypes, and for examining the direct regulatory effects of other factors on the homeostasis of stem and progenitor populations in normal or diseased states.
Collapse
|
49
|
miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 2011; 117:4293-303. [PMID: 21355095 DOI: 10.1182/blood-2010-12-322503] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells derived from hematopoietic progenitor cells and circulating monocytes. To investigate the role of microRNAs (miRNAs) during DC differentiation, maturation, and function, we profiled miRNA expression in human monocytes, immature DCs (imDCs), and mature DCs (mDCs). Stage-specific, differential expression of 27 miRNAs was found during monocyte differentiation into imDCs and mDCs. Among them, decreased miR-221 and increased miR-155 expression correlated with p27(kip1) accumulation in DCs. Silencing of miR-221 or overexpressing of miR-155 in DCs resulted in p27(kip1) protein increase and DC apoptosis. Moreover, mDCs from miR-155(-/-) mice were less apoptotic than those from wild-type mice. Silencing of miR-155 expression had little effect on DC maturation but reduced IL-12p70 production, whereas miR-155 overexpression in mDCs enhanced IL-12p70 production. Kip1 ubiquitination-promoting complex 1, suppressor of cytokine signaling 1, and CD115 (M-CSFR) were functional targets of miR-155. Furthermore, we provide evidence that miR-155 indirectly regulated p27(kip1) protein level by targeting Kip1 ubiquitination-promoting complex 1. Thus, our study uncovered miRNA signatures during monocyte differentiation into DCs and the new regulatory role of miR-221 and miR-155 in DC apoptosis and IL-12p70 production.
Collapse
|
50
|
Paterniti I, Briguglio E, Mazzon E, Galuppo M, Oteri G, Cordasco G, Cuzzocrea S. Effects of Hypericum Perforatum, in a rodent model of periodontitis. Altern Ther Health Med 2010; 10:73. [PMID: 21092263 PMCID: PMC3000377 DOI: 10.1186/1472-6882-10-73] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely flavonoids and phenolic acids. In this study we evaluate the effect of Hypericum perforatum in animal model of periodontitis. METHODS Periodontitis was induced in adult male Sprague-Dawley rats by placing a nylon thread ligature around the lower 1st molars. Hypericum perforatum was administered at the dose of 2 mg/kg os, daily for eight days. At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed. RESULTS Periodontitis in rats resulted in an inflammatory process characterized by edema, neutrophil infiltration and cytokine production that was followed by the recruitment of other inflammatory cells, production of a range of inflammatory mediators such as NF-κB and iNOS expression, the nitration of tyrosine residues and activation of the nuclear enzyme poly (ADP-ribose) polymerase; apoptosis and the degree of gingivomucosal tissues injury. We report here that Hypericum perforatum exerts potent anti-inflammatory effects significantly reducing all of the parameters of inflammation as described above. CONCLUSIONS Taken together, our results clearly demonstrate that treatment with Hypericum reduces the development of inflammation and tissue injury, events associated with periodontitis.
Collapse
|