1
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1-14. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
3
|
Giudice GC, Sonpavde GP. Vaccine approaches to treat urothelial cancer. Hum Vaccin Immunother 2024; 20:2379086. [PMID: 39043175 PMCID: PMC11268260 DOI: 10.1080/21645515.2024.2379086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Bladder cancer (BC) accounts for about 4% of all malignancies. Non-muscle-invasive BC, 75% of cases, is treated with transurethral resection and adjuvant intravesical instillation, while muscle-invasive BC warrants cisplatin-based perioperative chemotherapy. Although immune-checkpoint inhibitors, antibody drug conjugates and targeted agents have provided dramatic advances, metastatic BC remains a generally incurable disease and clinical trials continue to vigorously evaluate novel molecules. Cancer vaccines aim at activating the patient's immune system against tumor cells. Several means of delivering neoantigens have been developed, including peptides, antigen-presenting cells, virus, or nucleic acids. Various improvements are constantly being explored, such as adjuvants use and combination strategies. Nucleic acids-based vaccines are increasingly gaining attention in recent years, with promising results in other malignancies. However, despite the recent advantages, numerous obstacles persist. This review is aimed at describing the different types of cancer vaccines, their evaluations in UC patients and the more recent innovations in this field.
Collapse
Affiliation(s)
- Giulia Claire Giudice
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Guru P. Sonpavde
- AdventHealth Cancer Institute, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Tan Y, Mu J, Chen J. IL-36 Gamma: A Novel Adjuvant Cytokine Enhancing Protective Immunity Induced by DNA Immunization with TGIST and TGNSM Against Toxoplasma gondii Infection in Mice. Microorganisms 2024; 12:2258. [PMID: 39597646 PMCID: PMC11596725 DOI: 10.3390/microorganisms12112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Toxoplasma gondii can cause congenital infections and abortions in humans. TgIST and TgNSM play critical roles in intracellular cyst formation and chronic infection. However, no studies have explored their potential to induce protective immunity against T. gondii infection. OBJECTIVE To evaluate the immune efficacy of DNA vaccines encoding TgNSM and TgIST genes against T. gondii infection, using the acute and chronic ME49 strain (Type II). METHODS DNA vaccines, including eukaryotic plasmids pVAX-IST and pVAX-NSM, were constructed. A cocktail DNA vaccine combining these two genes was formulated. The expression and immunogenicity were determined using the indirect immunofluorescence assay (IFA). Mice were immunized with DNA vaccines encoding either TgIST or TgNSM, as well as with the cocktail DNA vaccine. Humoral and cellular immune responses were analyzed by detecting antibody levels, cytotoxic T cell (CTL) responses, cytokines, and lymphocyte surface markers. Mouse survival and brain cyst counts were assessed 1 to 2 months post-vaccination in experimental toxoplasmosis models. The adjuvant efficacy of plasmid pVAX-IL-36γ in enhancing DNA vaccine-induced protective immunity was also evaluated. RESULTS DNA immunization with pVAX-IST and pVAX-NSM elicited strong humoral and cellular immune responses, characterized by increased Toxoplasma-specific IgG2a titers, Th1 responses (including production of IFN-γ, IL-2, IL-12p40, and IL-12p70), and cell-mediated activity with elevated frequencies of CD8+ and CD4+ T cells, and CTL responses. This provided significant protective efficacy against acute and chronic T. gondii infection. Mice immunized with the two-gene cocktail (pVAX-IST + pVAX-NSM) showed greater protection than those immunized with single-gene vaccines. Co-administration of the molecular adjuvant pVAX-IL-36γ further enhanced the protective immunity induced by the cocktail DNA vaccine. CONCLUSIONS TgIST and TgNSM induce effective immunity against T. gondii infection, making them promising vaccine candidates against toxoplasmosis. Additionally, IL-36γ is a promising genetic adjuvant that enhances protective immunity in a vaccine setting against T. gondii, and it should be evaluated in strategies against other apicomplexan parasites.
Collapse
Affiliation(s)
| | | | - Jia Chen
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.T.); (J.M.)
| |
Collapse
|
5
|
Yew JS, Ong SK, Lim HX, Tan SH, Ong KC, Wong KT, Poh CL. Immunogenicity of trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against EV-A71 and CV-A16. Nanomedicine (Lond) 2024; 19:1779-1799. [PMID: 39140594 PMCID: PMC11418279 DOI: 10.1080/17435889.2024.2372243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice.Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed.Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells.Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.
Collapse
Affiliation(s)
- Jia Sheng Yew
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Seng-Kai Ong
- Department of Biological science, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Hui Xuan Lim
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
- Sunway Microbiome Centre, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Chit Laa Poh
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
- ALPS Global Holding Berhad, The ICON, No.1, Off Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
| |
Collapse
|
6
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
7
|
Tao Y, Zhang Y, Li Y, Liu Q, Zhu J, Ji M, Feng G, Xu Z. Computer-aided designing of a novel multi‑epitope DNA vaccine against severe fever with thrombocytopenia syndrome virus. BMC Infect Dis 2024; 24:476. [PMID: 38714948 PMCID: PMC11077804 DOI: 10.1186/s12879-024-09361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.
Collapse
Affiliation(s)
- Yiran Tao
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Zhang
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yumeng Li
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, People's Republic of China
| | - Minjun Ji
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, People's Republic of China
| | - Gaoqian Feng
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhipeng Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China.
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
9
|
Moradkasani S, Maurin M, Farrokhi AS, Esmaeili S. Development, Strategies, and Challenges for Tularemia Vaccine. Curr Microbiol 2024; 81:126. [PMID: 38564047 DOI: 10.1007/s00284-024-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen that affects both humans and animals. It was developed into a biological warfare weapon as a result. In this article, the current status of tularemia vaccine development is presented. A live-attenuated vaccine that was designed over 50 years ago using the less virulent F. tularensis subspecies holarctica is the only prophylactic currently available, but it has not been approved for use in humans or animals. Other promising live, killed, and subunit vaccine candidates have recently been developed and tested in animal models. This study will investigate some possible vaccines and the challenges they face during development.
Collapse
Affiliation(s)
- Safoura Moradkasani
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Universite Grenoble Alpes, 38000, Grenoble, France
| | | | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran.
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Oelkrug C. Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development. Clin Exp Vaccine Res 2024; 13:73-82. [PMID: 38752006 PMCID: PMC11091436 DOI: 10.7774/cevr.2024.13.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.
Collapse
|
11
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
12
|
Malik S, Asghar M, Waheed Y. Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine X 2024; 17:100452. [PMID: 38328274 PMCID: PMC10848012 DOI: 10.1016/j.jvacx.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Influenza virus has presented a considerable healthcare challenge during the past years, particularly in vulnerable groups with compromised immune systems. Therapeutics and vaccination have always been in research annals since the spread of influenza. Efforts have been going on to develop an antiviral therapeutic approach that could assist in better disease management and reduce the overall disease complexity, resistance development, and fatality rates. On the other hand, vaccination presents a chance for effective, long-term, cost-benefit, and preventive response against the morbidity and mortality associated with the influenza. However, the issues of resistance development, strain mutation, antigenic variability, and inability to cure wide-spectrum and large-scale strains of the virus by available vaccines remain there. The article gathers the updated data for the therapeutics and available influenza vaccines, their mechanism of action, shortcomings, and trials under clinical experimentation. A methodological approach has been adopted to identify the prospective therapeutics and available vaccines approved and within the clinical trials against the influenza virus. Review contains influenza therapeutics, including traditional and novel antiviral drugs and inhibitor therapies against influenza virus as well as research trials based on newer drug combinations and latest technologies such as nanotechnology and organic and plant-based natural products. Most recent development of influenza vaccine has been discussed including some updates on traditional vaccination protocols and discussion on next-generation and upgraded novel technologies. This review will help the readers to understand the righteous approach for dealing with influenza virus infection and for deducing futuristic approaches for novel therapeutic and vaccine trials against Influenza.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
13
|
Mobasher M, Ansari R, Castejon AM, Barar J, Omidi Y. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochim Biophys Acta Gen Subj 2024; 1868:130558. [PMID: 38185238 DOI: 10.1016/j.bbagen.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.
Collapse
Affiliation(s)
- Maha Mobasher
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
14
|
Sood S, Matar MM, Kim J, Kinsella M, Rayavara K, Signer O, Henderson J, Rogers J, Chawla B, Narvaez B, Van Ry A, Kar S, Arnold A, Rice JS, Smith AM, Su D, Sparks J, Le Goff C, Boyer JD, Anwer K. Strong immunogenicity & protection in mice with PlaCCine: A COVID-19 DNA vaccine formulated with a functional polymer. Vaccine 2024; 42:1300-1310. [PMID: 38302336 DOI: 10.1016/j.vaccine.2024.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
DNA- based vaccines have demonstrated the potential as a safe and effective modality. PlaCCine, a DNA-based vaccine approach described subsequently relies on a synthetic DNA delivery system and is independent of virus or device. The synthetic functionalized polymer combined with DNA demonstrated stability over 12 months at 4C and for one month at 25C. Transfection efficiency compared to naked DNA increased by 5-15-fold in murine skeletal muscle. Studies of DNA vaccines expressing spike proteins from variants D614G (pVAC15), Delta (pVAC16), or a D614G + Delta combination (pVAC17) were conducted. Mice immunized intramuscular injection (IM) with pVAC15, pVAC16 or pVAC17 formulated with functionalized polymer and adjuvant resulted in induction of spike-specific humoral and cellular responses. Antibody responses were observed after one immunization. And endpoint IgG titers increased to greater than 1x 105 two weeks after the second injection. Neutralizing antibodies as determined by a pseudovirus competition assay were observed following vaccination with pVAC15, pVAC16 or pVAC17. Spike specific T cell immune responses were also observed following vaccination and flow cytometry analysis demonstrated the cellular immune responses included both CD4 and CD8 spike specific T cells. The immune responses in vaccinated mice were maintained for up to 14 months after vaccination. In an immunization and challenge study of K18 hACE2 transgenic mice pVAC15, pVAC16 and pVAC17 induced immune responses lead to decreased lung viral loads by greater than 90 % along with improved clinical score. These findings suggest that PlaCCine DNA vaccines are effective and stable and further development against emerging SARS-CoV-2 variants is warranted.
Collapse
Affiliation(s)
| | | | - Jessica Kim
- Imunon Inc., Lawrenceville, NJ, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Daishui Su
- Imunon Inc., Lawrenceville, NJ, United States
| | - Jeff Sparks
- Imunon Inc., Lawrenceville, NJ, United States
| | | | | | | |
Collapse
|
15
|
Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, Al-malky HS, Kumarasamy V, Subramaniyan V, Abdel-Daim MM, Uti DE. Revolutionizing Cancer Treatment: Unleashing the Power of Viral Vaccines, Monoclonal Antibodies, and Proteolysis-Targeting Chimeras in the New Era of Immunotherapy. ACS OMEGA 2024; 9:7277-7295. [PMID: 38405458 PMCID: PMC10882662 DOI: 10.1021/acsomega.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
Collapse
Affiliation(s)
- Popat Mohite
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Vaishnavi Yadav
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Ramdas Pandhare
- MESs
College of Pharmacy, Sonai Tal-Newasa, Maharashtra 414105, India
| | - Swastika Maitra
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
- Department
of Microbiology, Adamas University, Kolkata 700 126, West Bengal, India
| | - Fayez M. Saleh
- Department
of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department
of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65431, Saudi Arabia
| | - Hamdan S. Al-malky
- Regional
Drug Information Center, Ministry of Health, Jeddah 11176, Saudi Arabia
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Savetha
Dental College, Savetha Institute of Medical and Technical Sciences, Savetha University, Chennai, Tamil Nadu 600077, India
| | - Mohamed M. Abdel-Daim
- Department
of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box
6231, Jeddah 21442, Saudi Arabia
- Pharmacology
Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel E. Uti
- Department
of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State 970001, Nigeria
| |
Collapse
|
16
|
Ferslew BC, Smulders R, Zhu T, Blauwet MB, Kusawake T, Spence A, Aldridge K, DeBerg HA, Khosa S, Wambre E, Chichili GR. Safety and immunopharmacology of ASP0892 in adults or adolescents with peanut allergy: two randomized trials. Allergy 2024; 79:456-470. [PMID: 38010254 DOI: 10.1111/all.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND New treatment options with improved safety and novel mechanisms of actions are needed for patients with peanut allergy. OBJECTIVES To evaluate the safety, tolerability, and immunogenicity of ASP0892, a peanut DNA vaccine, after intradermal (id) or intramuscular (im) administration in adult or adolescent patients with peanut allergy in two phase 1 studies. METHODS ASP0892 or placebo was administered every 2 weeks for a total of 4 doses. The doses were 1 mg or 4 mg id or 4 mg im for adults, and 1 mg or 4 mg id for adolescents. Immunologic parameters were assessed longitudinally. RESULTS Thirty-one adults (mean age 24.3 years, 17 males) received ASP0892 (9, 8, 8 patients for 1 mg id, 4 mg id or 4 mg im, respectively) or placebo (2 patients/group). Twenty adolescents (mean age 14.2 years, 11 males) received ASP0892 (8 patients/group) or placebo (2 patients/group). In both studies, the most common treatment-emergent adverse event (TEAE) was injection site pruritus. No deaths or treatment withdrawal were related to TEAEs. No serious TEAEs related to treatment were observed in adult or adolescent patients. ASP0892 treatment led to modest increases in allergen-specific IgG and/or IgG4 in adults (1 mg id, 4 mg im) and adolescents (1 mg id, 4 mg id). No improvements in clinical outcomes, including double-blind placebo-controlled food challenge, were found after ASP0892 treatment. CONCLUSIONS In two phase 1 studies, ASP0892 was well tolerated with modest but not clinically relevant changes in immune responses. CLINICALTRIALS GOV IDENTIFIERS NCT02851277, NCT03755713.
Collapse
Affiliation(s)
- Brian C Ferslew
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Ronald Smulders
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Tong Zhu
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Mary B Blauwet
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | | | - Anna Spence
- Astellas Pharma Global Development Inc., Northbrook, Illinois, USA
| | - Kelly Aldridge
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Hannah A DeBerg
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Sugandhika Khosa
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
17
|
Wang Y, Song W, Xu Q, Liu Y, Liu H, Guo R, Chiou CJ, Gao K, Jin B, Chen C, Li Z, Yan J, Yu J. Adjuvant DNA vaccine pNMM promotes enhanced specific immunity and anti-tumor effects. Hum Vaccin Immunother 2023; 19:2202127. [PMID: 37128699 PMCID: PMC10142307 DOI: 10.1080/21645515.2023.2202127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Collapse
Affiliation(s)
| | | | | | - Yachao Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Hezhong Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Runzi Guo
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Chuang-Jiun Chiou
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Kun Gao
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Baofeng Jin
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Changfeng Chen
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Zhongming Li
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jinqi Yan
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jiyun Yu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| |
Collapse
|
18
|
Anayyat U, Ahad F, Muluh TA, Zaidi SAA, Usmani F, Yang H, Li M, Hassan HA, Wang X. Immunotherapy: Constructive Approach for Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:925-951. [PMID: 38116189 PMCID: PMC10729681 DOI: 10.2147/bctt.s424624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
A novel and rapid therapeutic approach is the treatment of human breast cancer by enhancing the host's immune system. In initial findings, program death one (PD-1) and program cell death ligand one (PD-L1) showed positive results towards solid tumors, but tumor relapse and drug resistance are the major concerns. Breast cancer therapy has been transformed by the advent of immune checkpoint blockades (ICBs). Triple-negative breast cancers (TNBCs) have exhibited enduring responses to clinical usage of immune checkpoint inhibitors (ICBs) like atezolizumab and pembrolizumab. Nonetheless, a notable proportion of individuals with TNBC do not experience advantages from these treatments, and there is limited comprehension of the resistance mechanisms. Another approach to overcome resistance is cancer stem cells (CSCs), as these cells are crucial for the initiation and growth of tumors in the body. Various cancer vaccines are created using stem cells (dendritic, whole cell, bacterial) and focus primarily on targeting tumor-related antigens. The ultimate objective of cancer vaccines is to immunize the patients by active artificial immunity against cancer, though. In this review, we primarily focused on existing immunotherapeutic options, immune checkpoint blockers, the latest progress in understanding the molecular mechanisms underlying resistance to immune checkpoint inhibitors (ICBs), advanced strategies to overcome resistance to ICBs, cancer stem cell antigens and molecular markers, ongoing clinical trials for BCs and cancer vaccines for breast cancer.
Collapse
Affiliation(s)
- Umer Anayyat
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Faiza Ahad
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Tobias Achu Muluh
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Syed Aqib Ali Zaidi
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Faiza Usmani
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Hammad Ali Hassan
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| |
Collapse
|
19
|
Shi Y, Li J, Yang W, Chen J. Protective immunity induced by DNA vaccine containing Tg GRA35, Tg GRA42, and Tg GRA43 against Toxoplasma gondii infection in Kunming mice. Front Cell Infect Microbiol 2023; 13:1236130. [PMID: 38029261 PMCID: PMC10644269 DOI: 10.3389/fcimb.2023.1236130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Toxoplasma gondii can cause congenital infection and abortion in humans and warm-blooded animals. T. gondii dense granule proteins, GRA35, GRA42, and GRA43, play a critical role in the establishment of chronic infection. However, their potential to induce protective immunity against T. gondii infection remains unexplored. Objective This study aimed to test the efficacy of a DNA vaccine encompassing GRA35, GRA42, and GRA43 in inducing protective immunity against the highly virulent T. gondii RH strain (type I) and the brain cyst-forming PRU strain (type II). Methods The eukaryotic plasmids pVAX-GRA35, pVAX-GRA42, and pVAX-GRA43 were constructed and formulated into two- or three-gene cocktail DNA vaccines. The indirect immunofluorescence assay (IFA) was used to analyze their expression and immunogenicity. Mice were immunized with a single-gene, two-genes, or multicomponent eukaryotic plasmid, intramuscularly. We assessed antibody levels, cytotoxic T-cell (CTL) responses, cytokines, and lymphocyte surface markers by using flow cytometry. Additionally, mouse survival and cyst numbers in the brain of mice challenged 1 to 2 months postvaccination were determined. Results Specific humoral and cellular immune responses were elicited in mice immunized with single-, two-, or three-gene cocktail DNA vaccine, as indicated by significant increases in serum antibody concentrations of total IgG, IgG2a/IgG1 ratio, cytokine levels (IFN-γ, IL-2, IL-12, IL-4, and IL-10), lymphocyte proliferation, lymphocyte populations (CD4+ and CD8+ T lymphocytes), CTL activities, and survival, as well as decreased brain cysts, in comparison with control mice. Moreover, compared with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43, multicomponent DNA vaccine with three genes (pVAX-GRA35 + pVAX-GRA42 + pVAX-GRA43) induced the higher humoral and cellular immune responses, including serum antibody concentrations, cytokine levels, lymphocyte proliferation, lymphocyte populations, CTL activities and survival, resulting in prolonged survival time and reduced brain cyst loads. Furthermore, mice immunized with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43 showed greater Th1 immune responses and protective efficacy than the single-gene-vaccinated groups. Conclusion These results demonstrate that TgGRA35, TgGRA42, or TgGRA43 are vaccine candidates against T. gondii infection, and the three-gene DNA vaccine cocktail conferred the strongest protection against T. gondii infection.
Collapse
Affiliation(s)
- Youbo Shi
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Jianbing Li
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Weili Yang
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Jia Chen
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
Franck CO, Bistrovic Popov A, Ahmed I, Hewitt RE, Franslau L, Tyagi P, Fruk L. A catch-and-release nano-based gene delivery system. NANOSCALE HORIZONS 2023; 8:1588-1594. [PMID: 37691551 DOI: 10.1039/d3nh00269a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The design of nanomaterial-based nucleic acid formulations is one of the biggest endeavours in the search for clinically applicable gene delivery systems. Biopolymers represent a promising subclass of gene carriers due to their physicochemical properties, biodegradability and biocompatibility. By modifying melanin-like polydopamine nanoparticles with poly-L-arginine and poly-L-histidine blends, we obtained a novel catch-and-release gene delivery system for efficient trafficking of pDNA to human cells. A synergistic interplay of nanoparticle-bound poly-L-arginine and poly-L-histidine was observed and evaluated for pDNA binding affinity, cell viability, gene release and transfection. Although the functionalisation with poly-L-arginine was crucial for pDNA binding, the resulting nanocarriers failed to release pDNA intracellularly, resulting in limited protein expression. However, optimal pDNA release was achieved through the co-formulation with poly-L-histidine, essential for pDNA release. This effect enabled the design of gene delivery systems, which were comparable to Lipofectamine in terms of transfection efficacy and the catch-and-release surface modification strategy can be translated to other nanocarriers and surfaces.
Collapse
Affiliation(s)
- Christoph O Franck
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Andrea Bistrovic Popov
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Ishtiaq Ahmed
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Luise Franslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammanstraße 6, Göttingen 37077, Germany
| | - Puneet Tyagi
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Ljiljana Fruk
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
21
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Silva TA, Aguiar RB, Mori M, Machado GE, Hamaguchi B, Machado MFM, Moraes JZ. Potential of an anti-bevacizumab idiotype scFv DNA-based immunization to elicit VEGF-binding antibody response. Gene Ther 2023; 30:598-602. [PMID: 36482074 PMCID: PMC9734904 DOI: 10.1038/s41434-022-00376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Anti-idiotype antibodies have been considered for vaccination approaches against different diseases, including cancers. Based on that, we previously described an anti-bevacizumab idiotype monoclonal antibody, 10.D7, that revealed detectable antitumor effects on a vascular endothelial growth factor (VEGF)-dependent tumor model. Herein, we evaluated the possible applicability of a single-chain variable fragment (scFv) for the 10.D7 antibody in a gene immunization strategy. After checking that mammalian cells transfected to express the 10.D7 scFv are recognized by bevacizumab, it was explored the ability of our scFv construction, in a gene-based scheme, to elicit an immune response containing VEGF-binding antibodies. The results provide evidence that the designed 10.D7 scFv construct maintains the anti-bevacizumab idiotype features and has potential to activate an immune response recognizing VEGF.
Collapse
Affiliation(s)
- Tábata Almeida Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Barbosa Aguiar
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Marcelo Mori
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gabriel Esquitini Machado
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Barbara Hamaguchi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Jane Zveiter Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Werninghaus IC, Hinke DM, Fossum E, Bogen B, Braathen R. Neuraminidase delivered as an APC-targeted DNA vaccine induces protective antibodies against influenza. Mol Ther 2023; 31:2188-2205. [PMID: 36926694 PMCID: PMC10362400 DOI: 10.1016/j.ymthe.2023.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/01/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Conventional influenza vaccines focus on hemagglutinin (HA). However, antibody responses to neuraminidase (NA) have been established as an independent correlate of protection. Here, we introduced the ectodomain of NA into DNA vaccines that, as translated dimeric vaccine proteins, target antigen-presenting cells (APCs). The targeting was mediated by an single-chain variable fragment specific for major histocompatibility complex (MHC) class II, which is genetically linked to NA via a dimerization motif. A single immunization of BALB/c mice elicited strong and long-lasting NA-specific antibodies that inhibited NA enzymatic activity and reduced viral replication. Vaccine-induced NA immunity completely protected against a homologous influenza virus and out-competed NA immunity induced by a conventional inactivated virus vaccine. The protection was mainly mediated by antibodies, although NA-specific T cells also contributed. APC-targeting and antigen bivalency were crucial for vaccine efficacy. The APC-targeted vaccine was potent at low doses of DNA, indicating a dose-sparing effect. Similar results were obtained with NA vaccines that targeted different surface molecules on dendritic cells. Interestingly, the protective efficacy of NA as antigen compared favorably with HA and therefore ought to receive more attention in influenza vaccine research.
Collapse
Affiliation(s)
- Ina Charlotta Werninghaus
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway.
| | - Daniëla Maria Hinke
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Even Fossum
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Ranveig Braathen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway.
| |
Collapse
|
24
|
Sang X, Li X, Chen R, Feng Y, He T, Zhang X, El-Ashram S, Al-Olayan E, Yang N. Co-Immunization with DNA Vaccines Expressing SABP1 and SAG1 Proteins Effectively Enhanced Mice Resistance to Toxoplasma gondii Acute Infection. Vaccines (Basel) 2023; 11:1190. [PMID: 37515006 PMCID: PMC10384583 DOI: 10.3390/vaccines11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toxoplasma gondii (T. gondii) has many intermediate hosts, obligately invades nucleated cells, and seriously threatens human and animal health due to a lack of effective drugs and vaccines. Sialic acid-binding protein 1 (SABP1) is a novel invasion-related protein that, like surface antigen 1 (SAG1), is found on the plasma membrane of T. gondii. To investigate the immunogenicity and protective efficacy of DNA vaccines expressing SABP1 and SAG1 proteins against T. gondii acute infection, the recombinant plasmids pVAX1-SABP1 and pVAX1-SAG1 were produced and administered intramuscularly in Balb/c mice. Serum antibody levels and subtypes, lymphocyte proliferation, and cytokines were used to assess immunized mice's humoral and cellular immune responses. Furthermore, the ability of DNA vaccines to protect mice against T. gondii RH tachyzoites was tested. Immunized mice exhibited substantially higher IgG levels, with IgG2a titers higher than IgG1. When the immune group mice's splenocytes were stimulated with T. gondii lysate antigen, Th1-type cytokines (IL-12p70, IFN-γ, and IL-2) and Th2-type cytokine (IL-4) increased significantly. The combined DNA vaccine significantly increased the immunized mouse survival compared to the control group, with an average death time extended by 4.33 ± 0.6 days (p < 0.0001). These findings show that DNA vaccines based on the SABP1 and SAG1 genes induced robust humoral and cellular immunity in mice, effectively protecting against acute toxoplasmosis and potentially serving as a viable option for vaccination to prevent T. gondii infection.
Collapse
Affiliation(s)
- Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Li
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting He
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohan Zhang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Saeed El-Ashram
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ebtsam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
25
|
Lozano D, Larraga V, Vallet-Regí M, Manzano M. An Overview of the Use of Nanoparticles in Vaccine Development. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1828. [PMID: 37368258 DOI: 10.3390/nano13121828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Vaccines represent one of the most significant advancements in public health since they prevented morbidity and mortality in millions of people every year. Conventionally, vaccine technology focused on either live attenuated or inactivated vaccines. However, the application of nanotechnology to vaccine development revolutionized the field. Nanoparticles emerged in both academia and the pharmaceutical industry as promising vectors to develop future vaccines. Regardless of the striking development of nanoparticles vaccines research and the variety of conceptually and structurally different formulations proposed, only a few of them advanced to clinical investigation and usage in the clinic so far. This review covered some of the most important developments of nanotechnology applied to vaccine technologies in the last few years, focusing on the successful race for the preparation of lipid nanoparticles employed in the successful anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Unidad de Desarrollo de Fármacos Biológicos, Inmunológicos y Químicos para la Salud Global (BICS), Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIBMS-CSIC), 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
26
|
Ding Y, Fan F, Xu X, Zhao G, Zhang X, Zhao H, Wang L, Wang B, Gao XM. A COVID-19 DNA Vaccine Candidate Elicits Broadly Neutralizing Antibodies against Multiple SARS-CoV-2 Variants including the Currently Circulating Omicron BA.5, BF.7, BQ.1 and XBB. Vaccines (Basel) 2023; 11:vaccines11040778. [PMID: 37112691 PMCID: PMC10144402 DOI: 10.3390/vaccines11040778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Waves of breakthrough infections by SARS-CoV-2 Omicron subvariants currently pose a global challenge to the control of the COVID-19 pandemic. We previously reported a pVAX1-based DNA vaccine candidate, pAD1002, that encodes a receptor-binding domain (RBD) chimera of SARS-CoV-1 and Omicron BA.1. In mouse and rabbit models, pAD1002 plasmid induced cross-neutralizing Abs against heterologous sarbecoviruses, including SARS-CoV-1 and SARS-CoV-2 wildtype, Delta and Omicron variants. However, these antisera failed to block the recent emerging Omicron subvariants BF.7 and BQ.1. To solve this problem, we replaced the BA.1 RBD-encoding DNA sequence in pAD1002 with that of BA.4/5. The resulting construct, namely pAD1016, elicited SARS-CoV-1 and SARS-CoV-2 RBD-specific IFN-γ+ cellular responses in BALB/c and C57BL/6 mice. More importantly, pAD1016 vaccination in mice, rabbits and pigs generated serum Abs capable of neutralizing pseudoviruses representing multiple SARS-CoV-2 Omicron subvariants including BA.2, BA.4/5, BF.7, BQ.1 and XBB. As a booster vaccine for inactivated SARS-CoV-2 virus preimmunization in mice, pAD1016 broadened the serum Ab neutralization spectrum to cover the Omicron BA.4/5, BF7 and BQ.1 subvariants. These preliminary data highlight the potential benefit of pAD1016 in eliciting neutralizing Abs against broad-spectrum Omicron subvariants in individuals previously vaccinated with inactivated prototype SARS-CoV-2 virus and suggests that pAD1016 is worthy of further translational study as a COVID-19 vaccine candidate.
Collapse
|
27
|
Martins M, do Nascimento GM, Conforti A, Noll JCG, Impellizeri JA, Sanchez E, Wagner B, Lione L, Salvatori E, Pinto E, Compagnone M, Viscount B, Hayward J, Shorrock C, Aurisicchio L, Diel DG. A linear SARS-CoV-2 DNA vaccine candidate reduces virus shedding in ferrets. Arch Virol 2023; 168:124. [PMID: 36988739 PMCID: PMC10052258 DOI: 10.1007/s00705-023-05746-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gabriela M do Nascimento
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Jessica C G Noll
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | | | | | - Brian Viscount
- Applied DNA Sciences, Inc., New York, NY, USA
- LineaRx, Inc. , New York, NY, USA
| | - James Hayward
- Applied DNA Sciences, Inc., New York, NY, USA
- LineaRx, Inc. , New York, NY, USA
| | - Clay Shorrock
- Applied DNA Sciences, Inc., New York, NY, USA
- LineaRx, Inc. , New York, NY, USA
| | - Luigi Aurisicchio
- Takis Biotech, Rome, Italy
- Evvivax Biotech, Rome, Italy
- Neomatrix Biotech, Rome, Italy
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
28
|
D'Alessio F, Lione L, Salvatori E, Bucci F, Muzi A, Roscilli G, Compagnone M, Pinto E, Battistuzzi G, Conforti A, Aurisicchio L, Palombo F. Immunogenicity of COVID-eVax Delivered by Electroporation Is Moderately Impacted by Temperature and Molecular Isoforms. Vaccines (Basel) 2023; 11:vaccines11030678. [PMID: 36992261 DOI: 10.3390/vaccines11030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
DNA integrity is a key issue in gene therapy and genetic vaccine approaches based on plasmid DNA. In contrast to messenger RNA that requires a controlled cold chain for efficacy, DNA molecules are considered to be more stable. In this study, we challenged this concept by characterizing the immunological response induced by a plasmid DNA vaccine delivered using electroporation. As a model, we used COVID-eVax, a plasmid DNA-based vaccine that targets the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Increased nicked DNA was produced by using either an accelerated stability protocol or a lyophilization protocol. Surprisingly, the immune response induced in vivo was only minimally affected by the percentage of open circular DNA. This result suggests that plasmid DNA vaccines, such as COVID-eVax that have recently completed a phase I clinical trial, retain their efficacy upon storage at higher temperatures, and this feature may facilitate their use in low-/middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Luigi Aurisicchio
- Takis, 00128 Rome, Italy
- Neomatrix, 00128 Rome, Italy
- Evvivax, 00128 Rome, Italy
| | - Fabio Palombo
- Takis, 00128 Rome, Italy
- Neomatrix, 00128 Rome, Italy
| |
Collapse
|
29
|
Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, Benival D, Kommineni N. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines (Basel) 2023; 11:661. [PMID: 36992244 PMCID: PMC10051624 DOI: 10.3390/vaccines11030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid-based vaccine delivery systems such as the conventional liposomes, virosomes, bilosomes, vesosomes, pH-fusogenic liposomes, transferosomes, immuno-liposomes, ethosomes, and lipid nanoparticles have gained a remarkable interest in vaccine delivery due to their ability to render antigens in vesicular structures, that in turn prevents its enzymatic degradation in vivo. The particulate form of lipid-based nanocarriers confers immunostimulatory potential, making them ideal antigen carriers. Facilitation in the uptake of antigen-loaded nanocarriers, by the antigen-presenting cells and its subsequent presentation through the major histocompatibility complex molecules, leads to the activation of a cascade of immune responses. Further, such nanocarriers can be tailored to achieve the desired characteristics such as charge, size, size distribution, entrapment, and site-specificity through modifications in the composition of lipids and the selection of the appropriate method of preparation. This ultimately adds to its versatility as an effective vaccine delivery carrier. The current review focuses on the various lipid-based carriers that have been investigated to date as potential vaccine delivery systems, the factors that affect their efficacy, and their various methods of preparation. The emerging trends in lipid-based mRNA vaccines and lipid-based DNA vaccines have also been summarized.
Collapse
Affiliation(s)
- Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
30
|
Rana R, Kant R, Kumra T, Gupta S, Rana DS, Ganguly NK. An update on SARS-CoV-2 immunization and future directions. Front Pharmacol 2023; 14:1125305. [PMID: 36969857 PMCID: PMC10033701 DOI: 10.3389/fphar.2023.1125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Millions of people have died as a result of SARS-CoV-2, which was first discovered in China and has since spread globally. Patients with SARS-CoV-2 infection may show a range of symptoms, including fever, coughing, and shortness of breath, or they may show no symptoms at all. To treat COVID-19 symptoms and avoid serious infections, many medications and vaccinations have been employed. However, to entirely eradicate COVID-19 from the world, next-generation vaccine research is required because of the devastating consequences it is having for humanity and every nation's economy. Scientists are working hard to eradicate this dangerous virus across the world. SARS-CoV-2 has also undergone significant mutation, leading to distinct viral types such as the alpha, beta, gamma, delta, and omicron variants. This has sparked discussion about the effectiveness of current vaccines for the newly formed variants. A proper comparison of these vaccinations is required to compare their efficacy as the number of people immunized against SARS-CoV-2 globally increases. Population-level statistics evaluating the capacity of these vaccines to reduce infection are therefore being developed. In this paper, we analyze the many vaccines on the market in terms of their production process, price, dosage needed, and efficacy. This article also discusses the challenges of achieving herd immunity, the likelihood of reinfection, and the importance of convalescent plasma therapy in reducing infection.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Tanya Kumra
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Sneha Gupta
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
31
|
Ali H, Akbar M, Iqbal B, Ali F, Kant Sharma N, Kumar N, Najmi A, Albratty M, Alhazmi HA, Madkhali OA, Zoghebi K, Shamsher Alam M. Virosome: An engineered virus for vaccine delivery. Saudi Pharm J 2023; 31:752-764. [PMID: 37181145 PMCID: PMC10172599 DOI: 10.1016/j.jsps.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
The purpose of immunization is the effective cellular and humoral immune response against antigens. Several studies on novel vaccine delivery approaches such as micro-particles, liposomes & nanoparticles, etc. against infectious diseases have been investigated so far. In contrast to the conventional approaches in vaccine development, a virosomes-based vaccine represents the next generation in the field of immunization because of its balance between efficacy and tolerability by virtue of its mechanism of immune instigation. The versatility of virosomes as a vaccine adjuvant, and delivery vehicle of molecules of different nature, such as peptides, nucleic acids, and proteins, as well as provide an insight into the prospect of drug targeting using virosomes. This article focuses on the basics of virosomes, structure, composition formulation and development, advantages, interplay with the immune system, current clinical status, different patents highlighting the applications of virosomes and their status, recent advances, and research associated with virosomes, the efficacy, safety, and tolerability of virosomes based vaccines and the future prospective.
Collapse
|
32
|
Yi Y, Yu M, Li W, Zhu D, Mei L, Ou M. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release 2023; 355:760-778. [PMID: 36822241 DOI: 10.1016/j.jconrel.2023.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The successful clinical application of immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapeutics has attracted extensive attention to immunotherapy, however, their drawbacks such as limited specificity, persistence and toxicity haven't met the high expectations on efficient cancer treatments. Therapeutic cancer vaccines which instruct the immune system to capture tumor specific antigens, generate long-term immune memory and specifically eliminate cancer cells gradually become the most promising strategies to eradicate tumor. However, the disadvantages of some existing vaccines such as weak immunogenicity and in vivo instability have restricted their development. Nanotechnology has been recently incorporated into vaccine fabrication and exhibited promising results for cancer immunotherapy. Nanoparticles promote the stability of vaccines, as well as enhance antigen recognition and presentation owing to their nanometer size which promotes internalization of antigens by phagocytic cells. The surface modification with targeting units further permits the delivery of vaccines to specific cells. Meanwhile, nanocarriers with adjuvant effect can improve the efficacy of vaccines. In addition to classic vaccines composed of antigens and adjuvants, the nanoparticle-mediated chemotherapy, radiotherapy and certain other therapeutics could induce the release of tumor antigens in situ, which therefore effectively simulate antitumor immune responses. Such vaccine-like nanomedicine not only kills primary tumors, but also prevents tumor recurrence and helps eliminate metastatic tumors. Herein, we introduce recent developments in nanoparticle-based delivery systems for antigen delivery and in situ antitumor vaccination. We will also discuss the remaining opportunities and challenges of nanovaccine in clinical translation towards cancer treatment.
Collapse
Affiliation(s)
- Yunfei Yi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
33
|
Improved DNA Vaccine Delivery with Needle-Free Injection Systems. Vaccines (Basel) 2023; 11:vaccines11020280. [PMID: 36851159 PMCID: PMC9964240 DOI: 10.3390/vaccines11020280] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.
Collapse
|
34
|
Improved Targeting of Therapeutics by Nanocarrier-Based Delivery in Cancer Immunotherapy and Their Future Perspectives. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Hossaini Alhashemi S, Ahmadi F, Dehshahri A. Lessons learned from COVID-19 pandemic: Vaccine platform is a key player. Process Biochem 2023; 124:269-279. [PMID: 36514356 PMCID: PMC9731819 DOI: 10.1016/j.procbio.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak and emergence of COVID-19 resulted in the development of different vaccines based on various platforms to combat the disease. While the conventional platforms of inactivated/live attenuated, subunit proteins and virus-like particles (VLPs) have provided efficient and safe vaccines, novel platforms of viral vector- and nucleic acid-based vaccines opened up new horizons for vaccine development. The emergence of COVID-19 pandemic showed that the availability of platforms with high possibility of quick translation from bench to bedside is a prerequisite step in vaccine development in pandemics. Moreover, parallel development of different platforms as well as considering the shipping, storage condition, distribution infrastructure and route of administration are key players for successful and robust response. This review highlights the lessons learned from the current COVID-19 pandemic in terms of vaccine development to provide quick response to future outbreaks of infectious diseases and the importance of vaccine platform in its storage condition and shipping. Finally, the potential application of current COVID-19 vaccine platforms in the treatment of non-infectious diseases has been discussed.
Collapse
Affiliation(s)
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Cagigi A, Douradinha B. Have mRNA vaccines sentenced DNA vaccines to death? Expert Rev Vaccines 2023; 22:1154-1167. [PMID: 37941101 DOI: 10.1080/14760584.2023.2282065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION After receiving emergency approval during the COVID-19 pandemic, mRNA vaccines have taken center stage in the quest to enhance future vaccination strategies for both infectious diseases and cancer. Indeed, they have significantly overshadowed another facet of genetic vaccination, specifically DNA vaccines. Nevertheless, it is important to acknowledge that both types of genetic vaccines have distinct advantages and disadvantages that set them apart from each other. AREAS COVERED In this work, we delve extensively into the history of genetic vaccines, their mechanisms of action, their strengths, and limitations, and ultimately highlight ongoing research in key areas for potential enhancement of both DNA and mRNA vaccines. EXPERT OPINION Here, we assess the significance of the primary benefits and drawbacks associated with DNA and mRNA vaccination. We challenge the current lines of thought by highlighting that the existing drawbacks of DNA vaccination could potentially be more straightforward to address compared to those linked with mRNA vaccination. In our view, this suggests that DNA vaccines should remain viable contenders in the pursuit of the future of vaccination.
Collapse
Affiliation(s)
- Alberto Cagigi
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| | | |
Collapse
|
37
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
38
|
Papukashvili D, Rcheulishvili N, Liu C, Wang X, He Y, Wang PG. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates. Front Immunol 2022; 13:1050309. [PMID: 36389680 PMCID: PMC9646902 DOI: 10.3389/fimmu.2022.1050309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 08/08/2023] Open
Abstract
Until May 2022, zoonotic infectious disease monkeypox (MPX) caused by the monkeypox virus (MPXV) was one of the forgotten viruses considered to be geographically limited in African countries even though few cases outside of Africa were identified. Central and West African countries are known to be endemic for MPXV. However, since the number of human MPX cases has rapidly increased outside of Africa the global interest in this virus has markedly grown. The majority of infected people with MPXV have never been vaccinated against smallpox virus. Noteworthily, the MPXV spreads fast in men who have sex with men (MSM). Preventive measures against MPXV are essential to be taken, indeed, vaccination is the key. Due to the antigenic similarities, the smallpox vaccine is efficient against MPXV. Nevertheless, there is no specific MPXV vaccine until now. Nucleic acid vaccines deserve special attention since the emergency approval of two messenger RNA (mRNA)-based coronavirus disease 2019 (COVID-19) vaccines in 2020. This milestone in vaccinology has opened a new platform for developing more mRNA- or DNA-based vaccines. Certainly, this type of vaccine has a number of advantages including time- and cost-effectiveness over conventional vaccines. The platform of nucleic acid-based vaccines gives humankind a huge opportunity. Ultimately, there is a strong need for developing a universal vaccine against MPXV. This review will shed the light on the strategies for developing nucleic acid vaccines against MPXV in a timely manner. Consequently, developing nucleic acid-based vaccines may alleviate the global threat against MPXV.
Collapse
Affiliation(s)
| | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
39
|
Rao X, Chen S, Alfadhl Y, Chen X, Sun L, Yu L, Zhou J. Pulse width and intensity effects of pulsed electric fields on cancerous and normal skin cells. Sci Rep 2022; 12:18039. [PMID: 36302879 PMCID: PMC9613658 DOI: 10.1038/s41598-022-22874-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Microsecond pulsed electric fields (PEF) have previously been used for various tumour therapies, such as gene therapy, electrochemotherapy and irreversible electroporation (IRE), due to its demonstrated ability. However, recently nanosecond pulsed electric fields (nsPEF) have also been used as a potential tumor therapy via inducing cell apoptosis or immunogenic cell death to prevent recurrence and metastasis by interacting with intracellular organelles. A large proportion of the existing in-vitro studies of nsPEF on cells also suggests cell necrosis and swelling/blebbing can be induced, but the replicability and potential for other effects on cells suggesting a complicated process which requires further investigation. Therefore, this study investigated the effects of pulse width and intensity of nsPEF on the murine melanoma cells (B16) and normal murine fibroblast cells (L929) through electromagnetic simulation and in-vitro experiments. Through examining the evolution patterns of potential difference and electric fields on the intracellular compartments, the simulation has shown a differential effect of nsPEF on normal and cancerous skin cells, which explains well the results observed in the reported experiments. In addition, the modelling has provided a clear evidence that a few hundreds of ns PEF may have caused a mixed mode of effects, i.e. a 'cocktail effect', including cell electroporation and IRE due to an over their threshold voltage induced on the plasma membrane, as well as cell apoptosis and other biological effects caused by its interaction with the intracellular compartments. The in-vitro experiments in the pulse range of the hundreds of nanoseconds showed a possible differential cytotoxicity threshold of electric field intensity between B16 cells and L929 cells.
Collapse
Affiliation(s)
- Xin Rao
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Sophia Chen
- grid.7445.20000 0001 2113 8111School of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Yasir Alfadhl
- grid.4868.20000 0001 2171 1133School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS UK
| | - Xiaodong Chen
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China ,grid.4868.20000 0001 2171 1133School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS UK
| | - Lingling Sun
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Liyang Yu
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Jun Zhou
- grid.54549.390000 0004 0369 4060School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 China
| |
Collapse
|
40
|
Hasan T, Nishikawa Y. Advances in vaccine development and the immune response against toxoplasmosis in sheep and goats. Front Vet Sci 2022; 9:951584. [PMID: 36090161 PMCID: PMC9453163 DOI: 10.3389/fvets.2022.951584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a zoonotic, parasitic infection caused by the intracellular, apicomplexan parasite Toxoplasma gondii, which infects all homeothermic animals including humans. The parasite has a major economic impact on the livestock industry. This is especially true for small ruminants (sheep, goats) as it is one of the most likely reasons for reproductive disorders in these animals. Primary infection in sheep and goats can result in a fetus that is mummified or macerated, fetal embryonic death, abortion, stillbirth, or the postnatal death of neonates, all of which threaten sheep and goat rearing globally. Humans can also become infected by ingesting bradyzoite-containing chevon or mutton, or the contaminated milk of sheep or goats, highlighting the zoonotic significance of this parasite. This article reviews the advances in vaccine development over recent decades and our current understanding of the immune response to toxoplasmosis in small ruminants (sheep, and goats).
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Yoshifumi Nishikawa
| |
Collapse
|
41
|
Nishikawa T, Chang CY, Tai JA, Hayashi H, Sun J, Torii S, Ono C, Matsuura Y, Ide R, Mineno J, Sasai M, Yamamoto M, Nakagami H, Yamashita K. Immune response induced in rodents by anti-CoVid19 plasmid DNA vaccine via pyro-drive jet injector inoculation. Immunol Med 2022; 45:251-264. [PMID: 36001011 DOI: 10.1080/25785826.2022.2111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
There is an urgent need to stop the coronavirus disease 2019 (COVID-19) pandemic through the development of efficient and safe vaccination methods. Over the short term, plasmid DNA vaccines can be developed as they are molecularly stable, thus facilitating easy transport and storage. pVAX1-SARS-CoV2-co was designed for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) S protein. The antibodies produced led to immunoreactions against the S protein, an anti-receptor-binding-domain, and a neutralizing action of the pVAX1-SARS-CoV2-co, as previously confirmed. To promote the efficacy of the pVAX1-SARS-CoV2-co vaccine a pyro-drive jet injector (PJI) was used. An intradermally adjusted PJI demonstrated that the pVAX1-SARS-CoV2-co vaccine injection caused a high production of anti-S protein antibodies, triggered immunoreactions, and neutralized the actions against SARS-CoV-2. A high-dose pVAX1-SARS-CoV2-co intradermal injection using PJI did not cause any serious disorders in the rat model. A viral challenge confirmed that intradermally immunized mice were potently protected from COVID-19. A pVAX1-SARS-CoV2-co intradermal injection using PJI is a safe and promising vaccination method for overcoming the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tomoyuki Nishikawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Chin Yang Chang
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiayu A Tai
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiao Sun
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Medical Device Research, Industry Business Unit, Daicel Corporation, Osaka, Japan
| |
Collapse
|
42
|
Xia J, Miao Y, Wang X, Huang X, Dai J. Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomed Pharmacother 2022; 152:113250. [PMID: 35700679 DOI: 10.1016/j.biopha.2022.113250] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Although cancer vaccines such as dendritic cell (DC) vaccines and peptide vaccines have become appealing and attractive anticancer immunotherapy options in recent decades, some obstacles have hindered their successful application in the clinical setting. The difficulties associated with the high cost of DC preparation, storage of DC vaccines, tumor-mediated immunosuppressive environment, identification of specific tumor antigens, and high degradation of antigen peptides in vivo limit the clinical application and affect the outcomes of these cancer vaccines. Recently, nanocarriers have been considered as a new approach for vaccine delivery. As biogenic nanocarriers, exosomes are small membrane vesicles secreted by cells that carry various proteins, RNAs, and lipids. More importantly, DC-derived exosomes (Dex) express tumor antigens, MHC molecules, and co-stimulatory molecules on their surface, which trigger the release of antigen-specific CD4+ and CD8+ T cells. With their membrane structure, Dex can avoid high degradation while ensuring favorable biocompatibility and biosafety in vivo. In addition, Dex can be stored in vitro for a longer period, which facilitates a significant reduction in production costs. Furthermore, they have shown better antitumor efficacy in preclinical studies compared with DC vaccines owing to their higher immunogenicity and stronger resistance to immunosuppressive effects. However, the clinical efficacy of Dex vaccines remains limited. In this review, we aimed to evaluate the efficacy of Dex as an anticancer nanovaccine.
Collapse
Affiliation(s)
- Jingyi Xia
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Yangbao Miao
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Xi Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Xiaobing Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| | - Jingying Dai
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China.
| |
Collapse
|
43
|
Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022; 14:v14081684. [PMID: 36016306 PMCID: PMC9415875 DOI: 10.3390/v14081684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
44
|
Conforti A, Salvatori E, Lione L, Compagnone M, Pinto E, Shorrock C, Hayward JA, Sun Y, Liang BM, Palombo F, Viscount B, Aurisicchio L. Linear DNA amplicons as a novel cancer vaccine strategy. J Exp Clin Cancer Res 2022; 41:195. [PMID: 35668533 PMCID: PMC9169303 DOI: 10.1186/s13046-022-02402-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA-based vaccines represent a simple, safe and promising strategy for harnessing the immune system to fight infectious diseases as well as various forms of cancer and thus are considered an important tool in the cancer immunotherapy toolbox. Nonetheless, the manufacture of plasmid DNA vaccines has several drawbacks, including long lead times and the need to remove impurities from bacterial cultures. Here we report the development of polymerase chain reaction (PCR)-produced amplicon expression vectors as DNA vaccines and their in vivo application to elicit antigen-specific immune responses in animal cancer models. METHODS Plasmid DNA and amplicon expression was assessed both in vitro, by Hela cells transfection, and in vivo, by evaluating luciferase expression in wild-type mice through optical imaging. Immunogenicity induced by DNA amplicons was assessed by vaccinating wild-type mice against a tumor-associated antigen, whereas the antitumoral effect of DNA amplicons was evaluated in a murine cancer model in combination with immune-checkpoint inhibitors (ICIs). RESULTS Amplicons encoding tumor-associated-antigens, such as telomerase reverse transcriptase or neoantigens expressed by murine tumor cell lines, were able to elicit antigen-specific immune responses and proved to significantly impact tumor growth when administered in combination with ICIs. CONCLUSIONS These results strongly support the further exploration of the use of PCR-based amplicons as an innovative immunotherapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Antonella Conforti
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Evvivax, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Lucia Lione
- Takis, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | - Clay Shorrock
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - James A. Hayward
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Yuhua Sun
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Ben Minghwa Liang
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Fabio Palombo
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Neomatrix, Via Castel Romano 100, 00128 Rome, Italy
| | - Brian Viscount
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Luigi Aurisicchio
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Evvivax, Via Castel Romano 100, 00128 Rome, Italy
- Neomatrix, Via Castel Romano 100, 00128 Rome, Italy
| |
Collapse
|
45
|
Wang X, Rcheulishvili N, Cai J, Liu C, Xie F, Hu X, Yang N, Hou M, Papukashvili D, He Y, Wang PG. Development of DNA Vaccine Candidate against SARS-CoV-2. Viruses 2022; 14:1049. [PMID: 35632789 PMCID: PMC9144758 DOI: 10.3390/v14051049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Despite the existence of various types of vaccines and the involvement of the world's leading pharmaceutical companies, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains the most challenging health threat in this century. Along with the increased transmissibility, new strains continue to emerge leading to the need for more vaccines that would elicit protectiveness and safety against the new strains of the virus. Nucleic acid vaccines seem to be the most effective approach in case of a sudden outbreak of infection or the emergence of a new strain as it requires less time than any conventional vaccine development. Hence, in the current study, a DNA vaccine encoding the trimeric prefusion-stabilized ectodomain (S1+S2) of SARS-CoV-2 S-protein was designed by introducing six additional prolines mutation, termed HexaPro. The three-dose regimen of designed DNA vaccine immunization in mice demonstrated the generation of protective antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (X.W.); (N.R.); (J.C.); (C.L.); (F.X.); (X.H.); (N.Y.); (M.H.); (D.P.)
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (X.W.); (N.R.); (J.C.); (C.L.); (F.X.); (X.H.); (N.Y.); (M.H.); (D.P.)
| |
Collapse
|
46
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Jawalagatti V, Kirthika P, Lee JH. Oral mRNA Vaccines Against Infectious Diseases- A Bacterial Perspective [Invited]. Front Immunol 2022; 13:884862. [PMID: 35592330 PMCID: PMC9110646 DOI: 10.3389/fimmu.2022.884862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
The mRNA vaccines from Pfizer/BioNTech and Moderna were granted emergency approval in record time in the history of vaccinology and played an instrumental role in limiting the pandemic caused by SARS-CoV-2. The success of these vaccines resulted from over 3 decades of research from many scientists. However, the development of orally administrable mRNA vaccine development is surprisingly underexplored. Our group specializing in Salmonella-based vaccines explored the possibility of oral mRNA vaccine development. Oral delivery was made possible by the exploitation of the Semliki Forest viral replicon and Salmonella vehicle for transgene amplification and gene delivery, respectively. Herein we highlight the prospect of developing oral replicon-based mRNA vaccines against infectious diseases based on our recent primary studies on SARS-CoV-2. Further, we discuss the potential advantages and limitations of bacterial gene delivery.
Collapse
Affiliation(s)
| | | | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
48
|
Chuang ST, Conklin B, Stein JB, Pan G, Lee KB. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. NANO CONVERGENCE 2022; 9:19. [PMID: 35482149 PMCID: PMC9047473 DOI: 10.1186/s40580-022-00310-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 05/24/2023]
Abstract
Immunotherapy has reached clinical success in the last decade, with the emergence of new and effective treatments such as checkpoint blockade therapy and CAR T-cell therapy that have drastically improved patient outcomes. Still, these therapies can be improved to limit off-target effects, mitigate systemic toxicities, and increase overall efficacies. Nanoscale engineering offers strategies that enable researchers to attain these goals through the manipulation of immune cell functions, such as enhancing immunity against cancers and pathogens, controlling the site of immune response, and promoting tolerance via the delivery of small molecule drugs or biologics. By tuning the properties of the nanomaterials, such as size, shape, charge, and surface chemistry, different types of immune cells can be targeted and engineered, such as dendritic cells for immunization, or T cells for promoting adaptive immunity. Researchers have come to better understand the critical role the immune system plays in the progression of pathologies besides cancer, and developing nanoengineering approaches that seek to harness the potential of immune cell activities can lead to favorable outcomes for the treatment of injuries and diseases.
Collapse
Affiliation(s)
- Skylar T Chuang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joshua B Stein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - George Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
49
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
50
|
Middle East Respiratory Syndrome coronavirus vaccine development: updating clinical studies using platform technologies. J Microbiol 2022; 60:238-246. [PMID: 35089585 PMCID: PMC8795722 DOI: 10.1007/s12275-022-1547-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022]
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV), a contagious zoonotic virus, causes severe respiratory infection with a case fatality rate of approximately 35% in humans. Intermittent sporadic cases in communities and healthcare facility outbreaks have continued to occur since its first identification in 2012. The World Health Organization has declared MERS-CoV a priority pathogen for worldwide research and vaccine development due to its epidemic potential and the insufficient countermeasures available. The Coalition for Epidemic Preparedness Innovations is supporting vaccine development against emerging diseases, including MERS-CoV, based on platform technologies using DNA, mRNA, viral vector, and protein subunit vaccines. In this paper, we review the usefulness and structure of a spike glycoprotein as a MERS-CoV vaccine candidate molecule, and provide an update on the status of MERS-CoV vaccine development. Vaccine candidates based on both DNA and viral vectors coding MERS-CoV spike gene have completed early phase clinical trials. A harmonized approach is required to assess the immunogenicity of various candidate vaccine platforms. Platform technologies accelerated COVID-19 vaccine development and can also be applied to developing vaccines against other emerging viral diseases.
Collapse
|