1
|
Bertolesi GE, Debnath N, Heshami N, Bui R, Zadeh‐Haghighi H, Simon C, McFarlane S. Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation. Pigment Cell Melanoma Res 2025; 38:e13220. [PMID: 39825699 PMCID: PMC11742648 DOI: 10.1111/pcmr.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025]
Abstract
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells. We studied light/dark cycles and melatonin coordination in melanin synthesis and cell proliferation of Xenopus laevis melanophores. In vivo, tadpole pigmentation shows robust circadian regulation mainly hormone-driven, in that isolated melanophores respond strongly to melatonin but only slightly to light. Melanophore proliferation is faster in the dark and slower with melatonin as compared to a 12/12 light/dark cycle. Expression of circadian core genes (clock, bmal1, per1, per2, per3, cry1, cry2, and cry4) in melatonin-treated cells during the light phase mimics dark phase expression. Overexpression of individual Crys did not affect melanization or cell proliferation, likely due to their cooperative actions. Melanin synthesis was inhibited by circadian cycle deregulation through (a) pharmacological inhibition of Cry1 and Cry2 degradation with KL001, (b) continuous light or dark conditions, and (c) melatonin treatment. Our findings suggest that circadian cycle regulation, rather than proliferative capacity, alters melanization of melanophores.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Nilakshi Debnath
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Neda Heshami
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryan Bui
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Hadi Zadeh‐Haghighi
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Christoph Simon
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
2
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad‐Kazan H, Thiébaud P, Rezvani H. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2025; 38:e13178. [PMID: 38849973 PMCID: PMC11681847 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| | - Hussein Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular ImmunologyLebanese UniversityHadathLebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Hamid‐Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| |
Collapse
|
3
|
Zhai R, Chang L, Jiang J, Wang B, Zhu W. Cellular and Molecular Basis of Environment-Induced Color Change in a Tree Frog. Animals (Basel) 2024; 14:3472. [PMID: 39682437 DOI: 10.3390/ani14233472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background color matching is essential for camouflage and thermoregulation in ectothermic vertebrates, yet several key cellular-level questions remain unresolved. For instance, it is unclear whether the number of chromatophores or the activity of individual chromatophores plays a more critical role in this process. Using single-cell RNA sequencing (scRNA-seq), we investigated the cellular and molecular mechanisms underlying color change in Rhacophorus dugritei, which adapted to its background by displaying light-green skin on white and black skin on black within two days. We identified two types of chromatophores in their skin, both responsible for the observed color differences. Our findings reveal that morphological color change (MCC) is the dominant process, with the number of chromatophores being more influential in driving color change than the transcriptional activity of melanogenesis in individual cells. Additionally, melanophores from darker individuals exhibited increased activity in energy metabolism pathways, while those from lighter individuals showed stronger immune-related gene expression, suggesting that background adaptation involves more than just morphological changes. Overall, this study successfully applied single-cell sequencing technology to investigate skin pigmentation in a non-model organism. Our results suggest that MCC driven by chromatophore proliferation is a key mechanism of background adaptation, offering new insights into amphibian color adaptation and environmental adaptation in other vertebrates.
Collapse
Affiliation(s)
- Runliang Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
5
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
6
|
McKenzie EKG, Kwan GT, Tresguerres M, Matthews PGD. A pH-powered mechanochemical engine regulates the buoyancy of Chaoborus midge larvae. Curr Biol 2022; 32:927-933.e5. [PMID: 35081331 DOI: 10.1016/j.cub.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
The freshwater aquatic larvae of the Chaoborus midge are the world's only truly planktonic insects, regulating their buoyancy using two pairs of internal air-filled sacs, one in the thorax and the other in the seventh abdominal segment. In 1911, August Krogh demonstrated the larvae's ability to control their buoyancy by exposing them to an increase in hydrostatic pressure.1 However, how these insects control the volume of their air-sacs has remained a mystery. Gas is not secreted into the air-sacs, as the luminal gas composition is always the same as that dissolved in the surrounding water.1,2 Instead, the air-sac wall was thought to play some role.3-6 Here we reveal that bands of resilin in the air-sac's wall are responsible for the changes in volume. These bands expand and contract in response to changes in pH generated by an endothelium that envelops the air-sac. Vacuolar type H+ V-ATPase (VHA) in the endothelium acidifies and shrinks the air-sac, while alkalinization and expansion are regulated by the cyclic adenosine monophosphate signal transduction pathway. Thus, Chaoborus air-sacs function as mechanochemical engines, transforming pH changes into mechanical work against hydrostatic pressure. As the resilin bands interlaminate with bands of cuticle, changes in resilin volume are constrained to a single direction along the air-sac's longitudinal axis. This makes the air-sac functionally equivalent to a cross-striated pH muscle and demonstrates a unique biological role for resilin as an active structural element.
Collapse
Affiliation(s)
- Evan K G McKenzie
- Department of Zoology, The University of British Columbia, Vancouver, Canada.
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Philip G D Matthews
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Abstract
Cross-talk between the microtubule and actin networks has come under intense scrutiny following the realization that it is crucial for numerous essential processes, ranging from cytokinesis to cell migration. It is becoming increasingly clear that proteins long-considered highly specific for one or the other cytoskeletal system do, in fact, make use of both filament types. How this functional duality of "shared proteins" has evolved and how their coadaptation enables cross-talk at the molecular level remain largely unknown. We previously discovered that the mammalian adaptor protein melanophilin of the actin-associated myosin motor is one such "shared protein," which also interacts with microtubules in vitro. In a hypothesis-driven in vitro and in silico approach, we turn to early and lower vertebrates and ask two fundamental questions. First, is the capability of interacting with microtubules and actin filaments unique to mammalian melanophilin or did it evolve over time? Second, what is the functional consequence of being able to interact with both filament types at the cellular level? We describe the emergence of a protein domain that confers the capability of interacting with both filament types onto melanophilin. Strikingly, our computational modeling demonstrates that the regulatory power of this domain on the microscopic scale alone is sufficient to recapitulate previously observed behavior of pigment organelles in amphibian melanophores. Collectively, our dissection provides a molecular framework for explaining the underpinnings of functional cross-talk and its potential to orchestrate the cell-wide redistribution of organelles on the cytoskeleton.
Collapse
|
8
|
Bruk TM, Terekhov PA, Litvin FB, Verlin SV. Physiological mechanisms of the low-intensity laser radiation impact on the highly qualified athletes’ special physical performance. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the context of strengthening the fight against doping and limiting the use of synthetic pharmaceuticals, the effective remedies to increase physical performance and accelerate the recovery of athletes are being sought. One of such remedies is exposure to low-level laser radiation (LLLR, LLLT). The study was aimed to investigate the physiological response of highly qualified female rowers’ functional systems to the LLLR irradiation course. To monitor the body of athletes, we used laser Doppler flowmetry (LDF), mathematical analysis of heart rate, neuroenergy mapping, as well as pedagogical testing using the Concept 2 simulator. After irradiation of the neck in the projection of the carotid arteries with pulsed infrared LLLR, the blood perfusion rate increased by 38% (р < 0.05) and cell oxygen utilization rate increased by 48% (р < 0.05). The decrease in the hemoglobin oxygen saturation by 16% (р < 0.05) was also observed. Due to LLLT, the activity of the autonomous regulation mechanism increased with an increase in the total power of the heart rate variability spectrum (TP) by 41% (р < 0.05), and in high-frequency power (HF) by 73% (р < 0.05). The influence of central mechanism decreased with a decrease in amplitude mode (AMo) by 71% (р < 0.05), and in stress-index (SI) by 175% (р < 0.05). Irradiation by LLLR promoted the efficiency of oxygen delivery to certain cerebral cortex areas with the increase of SPL. Аfter LLLT, the speed of 2000 meters distance "passing" by athletes also increased by 3.32% (p > 0.05). The discovered effects of LLLT allow one to expand the range of physiotherapeutic agents that enhance the special physical performance of athletes and accelerate recovery.
Collapse
Affiliation(s)
- TM Bruk
- Smolensk State Academy of Physical Culture, Sport and Tourism, Smolensk, Russia
| | - PA Terekhov
- Smolensk State Academy of Physical Culture, Sport and Tourism, Smolensk, Russia
| | - FB Litvin
- Smolensk State Academy of Physical Culture, Sport and Tourism, Smolensk, Russia
| | - SV Verlin
- Rehabilitation Center of the State School of the Olympic reserve, Bronnitsy, Moscow region, Russia
| |
Collapse
|
9
|
Lauri A, Soliman D, Omar M, Stelzl A, Ntziachristos V, Westmeyer GG. Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization. ACS Sens 2019; 4:603-612. [PMID: 30663315 PMCID: PMC6434508 DOI: 10.1021/acssensors.8b01319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Photoacoustic
(optoacoustic) imaging can extract molecular information
with deeper tissue penetration than possible by fluorescence microscopy
techniques. However, there is currently still a lack of robust genetically
controlled contrast agents and molecular sensors that can dynamically
detect biological analytes of interest with photoacoustics. In a biomimetic
approach, we took inspiration from cuttlefish who can change their
color by relocalizing pigment-filled organelles in so-called chromatophore
cells under neurohumoral control. Analogously, we tested the use of
melanophore cells from Xenopus laevis, containing compartments (melanosomes) filled with strongly absorbing
melanin, as whole-cell sensors for optoacoustic imaging. Our results
show that pigment relocalization in these cells, which is dependent
on binding of a ligand of interest to a specific G protein-coupled
receptor (GPCR), can be monitored in vitro and in vivo using photoacoustic
mesoscopy. In addition to changes in the photoacoustic signal amplitudes,
we could furthermore detect the melanosome aggregation process by
a change in the frequency content of the photoacoustic signals. Using
bioinspired engineering, we thus introduce a photoacoustic pigment
relocalization sensor (PaPiReS) for molecular photoacoustic imaging
of GPCR-mediated signaling molecules.
Collapse
Affiliation(s)
- Antonella Lauri
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Dominik Soliman
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Anja Stelzl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Gil G. Westmeyer
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg D-85764, Germany
| |
Collapse
|
10
|
De novo transcriptomics reveal distinct phototransduction signaling components in the retina and skin of a color-changing vertebrate, the hogfish (Lachnolaimus maximus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:475-485. [PMID: 29492668 DOI: 10.1007/s00359-018-1254-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Across diverse taxa, an increasing number of photoreceptive systems are being discovered in tissues outside of the eye, such as in the skin. Dermal photoreception is believed to serve a variety of functions, including rapid color change via specialized cells called chromatophores. In vitro studies of this system among color-changing fish have suggested the use of a phototransduction signaling cascade that fundamentally differs from that of the retina. Thus, the goal of this study was to identify phototransduction genes and compare their expression in the retina and skin of a color-changing fish, the hogfish Lachnolaimus maximus. De novo transcriptomics revealed the expression of genes that may underlie distinct, yet complete phototransduction cascades in L. maximus retina and skin. In contrast to the five visual opsin genes and cGMP-dependent phototransduction components expressed in the retina of L. maximus, only a single short-wavelength sensitive opsin (SWS1) and putative cAMP-dependent phototransduction components were expressed in the skin. These data suggest a separate evolutionary history of phototransduction in the retina and skin of certain vertebrates and, for the first time, indicate an expression repertoire of genes that underlie a non-retinal phototransduction pathway in the skin of a color-changing fish.
Collapse
|
11
|
Bertolesi GE, McFarlane S. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res 2018; 31:354-373. [PMID: 29239123 DOI: 10.1111/pcmr.12678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to "see the light" in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land-dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light-controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin-expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface-reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin-expressing eye cells in mammals, and by as yet unknown non-visual opsins in the pineal gland of non-mammals.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Bertolesi GE, Song YN, Atkinson-Leadbeater K, Yang JLJ, McFarlane S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res 2017; 30:413-423. [PMID: 28371026 DOI: 10.1111/pcmr.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/20/2017] [Indexed: 01/03/2023]
Abstract
Lower vertebrates use rapid light-regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha-melanocyte-stimulating hormone (α-MSH) and the pineal complex/melatonin circuits, regulate the process through their respective dispersion and aggregation of pigment granules (melanosomes) in skin melanophores. During development, Xenopus laevis tadpoles raised on a black background or in the dark perceive less light sensed by the eye and darken in response to increased α-MSH secretion. As embryogenesis proceeds, the pineal complex/melatonin circuit becomes the dominant regulator in the dark and induces lightening of the skin of larvae. The eye/α-MSH circuit continues to mediate darkening of embryos on a black background, but we propose the circuit is shut down in complete darkness in part by melatonin acting on receptors expressed by pituitary cells to inhibit the expression of pomc, the precursor of α-MSH.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Yi N Song
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | - Jung-Lynn J Yang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Myosin Va's adaptor protein melanophilin enforces track selection on the microtubule and actin networks in vitro. Proc Natl Acad Sci U S A 2017; 114:E4714-E4723. [PMID: 28559319 DOI: 10.1073/pnas.1619473114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles, or melanosomes, are transported by kinesin, dynein, and myosin motors. As such, melanosome transport is an excellent model system to study the functional relationship between the microtubule- and actin-based transport systems. In mammalian melanocytes, it is well known that the Rab27a/melanophilin/myosin Va complex mediates actin-based transport in vivo. However, pathways that regulate the overall directionality of melanosomes on the actin/microtubule networks have not yet been delineated. Here, we investigated the role of PKA-dependent phosphorylation on the activity of the actin-based Rab27a/melanophilin/myosin Va transport complex in vitro. We found that melanophilin, specifically its C-terminal actin-binding domain (ABD), is a target of PKA. Notably, in vitro phosphorylation of the ABD closely recapitulated the previously described in vivo phosphorylation pattern. Unexpectedly, we found that phosphorylation of the ABD affected neither the interaction of the complex with actin nor its movement along actin tracks. Surprisingly, the phosphorylation state of melanophilin was instead important for reversible association with microtubules in vitro. Dephosphorylated melanophilin preferred binding to microtubules even in the presence of actin, whereas phosphorylated melanophilin associated with actin. Indeed, when actin and microtubules were present simultaneously, melanophilin's phosphorylation state enforced track selection of the Rab27a/melanophilin/myosin Va transport complex. Collectively, our results unmasked the regulatory dominance of the melanophilin adaptor protein over its associated motor and offer an unexpected mechanism by which filaments of the cytoskeletal network compete for the moving organelles to accomplish directional transport on the cytoskeleton in vivo.
Collapse
|
14
|
Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus. Sci Rep 2017; 7:41339. [PMID: 28128301 PMCID: PMC5269672 DOI: 10.1038/srep41339] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Progress in regenerative medicine requires reverse-engineering cellular control networks to infer perturbations with desired systems-level outcomes. Such dynamic models allow phenotypic predictions for novel perturbations to be rapidly assessed in silico. Here, we analyzed a Xenopus model of conversion of melanocytes to a metastatic-like phenotype only previously observed in an all-or-none manner. Prior in vivo genetic and pharmacological experiments showed that individual animals either fully convert or remain normal, at some characteristic frequency after a given perturbation. We developed a Machine Learning method which inferred a model explaining this complex, stochastic all-or-none dataset. We then used this model to ask how a new phenotype could be generated: animals in which only some of the melanocytes converted. Systematically performing in silico perturbations, the model predicted that a combination of altanserin (5HTR2 inhibitor), reserpine (VMAT inhibitor), and VP16-XlCreb1 (constitutively active CREB) would break the all-or-none concordance. Remarkably, applying the predicted combination of three reagents in vivo revealed precisely the expected novel outcome, resulting in partial conversion of melanocytes within individuals. This work demonstrates the capability of automated analysis of dynamic models of signaling networks to discover novel phenotypes and predictively identify specific manipulations that can reach them.
Collapse
|
15
|
Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V. Regulation of microtubule-based transport by MAP4. Mol Biol Cell 2014; 25:3119-32. [PMID: 25143402 PMCID: PMC4196864 DOI: 10.1091/mbc.e14-01-0022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2-dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2-based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2-dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.
Collapse
Affiliation(s)
- Irina Semenova
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Kazuho Ikeda
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Karim Resaul
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Pavel Kraikivski
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557
| | - Ann Cowan
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Vladimir Rodionov
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
16
|
Magalhães Moraes MNDC, de Oliveira Poletini M, Ribeiro Ramos BC, de Lima LHRG, de Lauro Castrucci AM. Effect of light on expression of clock genes in Xenopus laevis melanophores. Photochem Photobiol 2014; 90:696-701. [PMID: 24438110 DOI: 10.1111/php.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
Light-dark cycles are considered important cues to entrain biological clocks. A feedback loop of clock gene transcription and translation is the molecular basis underlying the mechanism of both central and peripheral clocks. Xenopus laevis embryonic melanophores respond to light with melanin granule dispersion, response possibly mediated by the photopigment melanopsin. To test whether light modulates clock gene expression in Xenopus melanophores, we used qPCR to evaluate the relative mRNA levels of Per1, Per2, Clock and Bmal1 in cultured melanophores exposed to light-dark (LD) cycle or constant darkness (DD). LD cycles elicited temporal changes in the expression of Per1, Per2 and Bmal1. A 10-min pulse of blue light was able to increases the expression of Per1 and Per2. Red light had no effect on the expression of these clock genes. These data suggest the participation of a blue-wavelength sensitive pigment in the light-dark cycle-mediated oscillation of the endogenous clock. Our results add an important contribution to the emerging field of peripheral clocks, which in nonmammalian vertebrates have been mostly studied in Drosophila and Danio rerio. Within this context, we show that X. laevis melanophores, which have already led to melanopsin discovery, represent an ideal model to understanding circadian rhythms.
Collapse
|
17
|
Chen SC, Robertson RM, Hawryshyn CW. Possible involvement of cone opsins in distinct photoresponses of intrinsically photosensitive dermal chromatophores in tilapia Oreochromis niloticus. PLoS One 2013; 8:e70342. [PMID: 23940562 PMCID: PMC3734035 DOI: 10.1371/journal.pone.0070342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023] Open
Abstract
Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biology, Queen's University, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
18
|
Iyengar B. The melanocyte photosensory system in the human skin. SPRINGERPLUS 2013; 2:158. [PMID: 23807911 PMCID: PMC3685707 DOI: 10.1186/2193-1801-2-158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022]
Abstract
The pigment cells form the largest population of neural crest cells to migrate into the epidermis and hair follicle along each dermatomic area from the neural folds. The melanopsin system responsible for photoentrainment, was isolated from the photosensitive dermal melanophores of frogs Xenopus laevis responding to light. Melanocytes form a photoresponsive network which reads the environmental seasonal variations in the light cycles in the same manner. The present work was undertaken to study the organization of this system by: I. Experimental assessment of photoresponse and II. Evidence of an organized system of photoreception in the skin. Melanocytes, in whole skin organ cultures and epidermal strips, from margin of vitiligo in G2 phase show prominent dendricity, and express pigment, biogenic amines and hormones on UV exposure. The photoresponse depends on the photosensitive enzymes NAT/HIOMT and dopaoxidase. Melanocytes interact with adjacent keratinocytes, dermal capillaries, and nerve endings. The melanocyte network reads the diurnal and seasonal photophase by the melatonin/serotonin switch like the pineal. Sleep disorders and winter depression are corrected by phototherapy utilising this mechanism. Melanocytes showing photoactivity, aplasia, hypoplasia and hyperplasia, and interactive keratinocytes occupy the trigeminal, brachial and lumbosacral dermatomes, zones of high embryonic induction, forming an ectodermal placodal system. Melanin units and hair follicles serve as photoreceptors. Migration of active melanocytes to defined areas is evident in pigment patterns in guinea pigs. This study identifies defined photoreceptor melanocyte/epidermal domains which read the seasonal photophase and control the sleep waking cycle in response to the environmental light. I. Whole skin organ cultures, and epidermal strips from margin of vitiligo in G2 phase are exposed to UV and IR to study sequential and dose response of marginal melanocytes, using histochemistry, immunohistochemistry to assess pigment, biogenic amines and hormones on UV exposure. II. Dermatomic Distributions: Detailed maps of melanocyte photoresponse in 356 biopsies, lesions in 297 vitiligo, 100 melanosis, 165 melanomas 142 leprosy and 442 basal cell/keratinocytes lesions were assessed for patterns of dermatomic distribution. Embryonal melanocyte migration along dermatomes was assessed in 285 guinea pigs from an inbred colony having black, brown and white patches.
Collapse
Affiliation(s)
- Bhanu Iyengar
- Pigment Cell Centre, Iyengar Farm, Brijwasan Road, PO Kapshera, New Delhi, 110037 India
| |
Collapse
|
19
|
Frost R, Norström E, Bodin L, Langhammer C, Sturve J, Wallin M, Svedhem S. Acoustic detection of melanosome transport in Xenopus laevis melanophores. Anal Biochem 2012; 435:10-8. [PMID: 23262280 DOI: 10.1016/j.ab.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022]
Abstract
Organelle transport studies are often performed using melanophores from lower vertebrates due to the ease of inducing movements of pigment granules (melanosomes) and visualizing them by optical microscopy. Here, we present a novel methodology to monitor melanosome translocation (which is a light-sensitive process) in the dark using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. This acoustic sensing method was used to study dispersion and aggregation of melanosomes in Xenopus laevis melanophores. Reversible sensor responses, correlated to optical reflectance measurements, were obtained by alternating addition and removal of melatonin (leading to melanosome aggregation) and melanocyte-stimulating hormone (MSH) (leading to melanosome dispersion). By confocal microscopy, it was shown that a vertical redistribution of melanosomes occurred during the dispersion/aggregation processes. Furthermore, the transport process was studied in the presence of cytoskeleton-perturbing agents disrupting either actin filaments (latrunculin) or microtubules (nocodazole). Taken together, these experiments suggest that the acoustic responses mainly originate from melanosome transport along actin filaments (located close to the cell membrane), as expected based on the penetration depth of the QCM-D technique. The results clearly indicate the potential of QCM-D for studies of intracellular transport processes in melanophores.
Collapse
Affiliation(s)
- Rickard Frost
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Nilsson Sköld H, Aspengren S, Wallin M. Rapid color change in fish and amphibians - function, regulation, and emerging applications. Pigment Cell Melanoma Res 2012; 26:29-38. [PMID: 23082932 DOI: 10.1111/pcmr.12040] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/17/2012] [Indexed: 01/01/2023]
Abstract
Physiological color change is important for background matching, thermoregulation as well as signaling and is in vertebrates mediated by synchronous intracellular transport of pigmented organelles in chromatophores. We describe functions of and animal situations where color change occurs. A summary of endogenous and external factors that regulate this color change in fish and amphibians is provided, with special emphasis on extracellular stimuli. We describe not only color change in skin, but also highlight studies on color change that occurs using chromatophores in other areas such as iris and on the inside of the body. In addition, we discuss the growing field that applies melanophores and skin color in toxicology and as biosensors, and point out research areas with future potential.
Collapse
Affiliation(s)
- Helen Nilsson Sköld
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
21
|
ON ganglion cells are intrinsically photosensitive in the tiger salamander retina. J Comp Neurol 2011; 520:200-10. [DOI: 10.1002/cne.22746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Ali SA, Salim S, Sahni T, Peter J, Ali AS. 5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, Hoplobatrachus tigerinus. Br J Pharmacol 2011; 165:1515-25. [PMID: 21880033 DOI: 10.1111/j.1476-5381.2011.01630.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance. EXPERIMENTAL APPROACH Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. In vitro responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells. KEY RESULTS 5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1 × 10(-6) g·mL(-1). Specific 5-HT(1) and 5-HT(2) receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT(3) and 5-HT(4) receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT. CONCLUSIONS AND IMPLICATIONS The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian.
Collapse
Affiliation(s)
- Sharique A Ali
- Department of Biotechnology, Saifia College of Science, Bhopal, India.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light in the absence of all rod and cone photoreceptor input. The existence of these ganglion cell photoreceptors, although predicted from observations scattered over many decades, was not established until it was shown that a novel photopigment, melanopsin, was expressed in retinal ganglion cells of rodents and primates. Phototransduction in mammalian ipRGCs more closely resembles that of invertebrate than vertebrate photoreceptors and appears to be mediated by transient receptor potential channels. In the retina, ipRGCs provide excitatory drive to dopaminergic amacrine cells and ipRGCs are coupled to GABAergic amacrine cells via gap junctions. Several subtypes of ipRGC have been identified in rodents based on their morphology, physiology and expression of molecular markers. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions including photoentrainment of the biological clock located in the hypothalamus, the pupillary light reflex, sleep and perhaps some aspects of vision. In addition, ipRGCs may also contribute irradiance signals that interface directly with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. Here we review the early work that provided the motivation for searching for a new mammalian photoreceptor, the ground-breaking discoveries, current progress that continues to reveal the unusual properties of these neuron photoreceptors, and directions for future investigation.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | |
Collapse
|
24
|
Shiraki T, Kojima D, Fukada Y. Light-induced body color change in developing zebrafish. Photochem Photobiol Sci 2010; 9:1498-504. [PMID: 20886157 DOI: 10.1039/c0pp00199f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In response to ambient light levels, many lower vertebrates darken or lighten their body colors by regulating dispersion or aggregation, respectively, of melanin granules (melanosomes) in the melanophore. This physiological reaction is mediated by photoreception in the eyes, the pineal gland, the deep brain and the melanophores themselves, depending on species and their developmental stages. In this study, we established a method for quantitative measurement of the light-induced body color change in zebrafish larvae. From 2 days post-fertilization (dpf), the dermal melanophores responded to light illumination, but the response patterns and temporal profiles changed across the developmental stages. At 2 dpf, light illumination on larvae induced a relatively fast dispersion of the pigments in the melanophores, whereas continuous illumination additionally caused a delayed pigment aggregation at 3 dpf or later stages. Removal of the eyes abolished the light-dependent pigment aggregation but not the pigment dispersion at 5 dpf, while the pigment dispersion at 2 dpf was retained even in the isolated tail. These results suggest that the pigment dispersion is triggered by photoreception intrinsic to the melanophores and that the pigment aggregation is mediated by photoreception in the eyes. The monitoring system developed in this study will be useful to understand the neural mechanisms underlying the body color change depending on the ocular system. We also discussed the putative role(s) of opsin-type photoreceptive molecules in the light-induced body color change of the larval zebrafish.
Collapse
Affiliation(s)
- Tomoya Shiraki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
25
|
Lee HS, Komarova YA, Nadezhdina ES, Anjum R, Peloquin JG, Schober JM, Danciu O, van Haren J, Galjart N, Gygi SP, Akhmanova A, Borisy GG. Phosphorylation controls autoinhibition of cytoplasmic linker protein-170. Mol Biol Cell 2010; 21:2661-73. [PMID: 20519438 PMCID: PMC2912352 DOI: 10.1091/mbc.e09-12-1036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLIP-170 conformational changes are regulated by phosphorylation on S309 and S311 residues resulting in diminished binding of CLIP-170 for growing MT ends and p150Glued. Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an “open” conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the “folded back” conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.
Collapse
Affiliation(s)
- Ho-Sup Lee
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hedberg D, Wallin M. Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores. Toxicol In Vitro 2010; 24:795-802. [PMID: 20036731 DOI: 10.1016/j.tiv.2009.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/17/2009] [Accepted: 12/22/2009] [Indexed: 11/25/2022]
Abstract
Glyphosate containing herbicides, such as Roundup, are commonly used and generally considered to be safe. However, some toxic effects are found on amphibians in vivo and human and mouse cells in vitro. In this study the effects of Roundup, glyphosate, glyphosateisopropylamine and isopropylamine were studied on intracellular transport by measuring aggregation capacity in Xenopus laevis melanophores. The chemicals inhibited retrograde transport of melanosomes in the range of 0.5-5mM. Cellular morphology and localization of microtubules and actin filaments were affected as determined by immunocytochemistry. Both glyphosate and Roundup decreased pH in the media. Acidic pH inhibited melanosome transport and altered microtubule and actin morphology in the absence of chemicals, while transport inhibiting concentrations of glyphosate, Roundup and glyphosateisopropylamine disassembled both microtubules and actin filaments. At physiological pH the effects of Roundup decreased whereas glyphosate failed to inhibit transport. Physiological pH decreases glyphosate lipophilicity and its diffusion into the cytoplasm. The Roundup formulation contains surfactants, such as POEA (polyetylated tallow amine) that increases membrane permeability allowing cellular uptake at physiological pH. Our results show that the effects of glyphosate containing compounds are pH-dependent and that they inhibit intracellular transport through disassembly of the cytoskeleton possibly by interfering with intracellular Ca(2+)-balance.
Collapse
Affiliation(s)
- Daniel Hedberg
- Department of Zoology, University of Gothenburg, PO Box 463, SE-405 30 Göteborg, Sweden
| | | |
Collapse
|
27
|
Ikeda K, Semenova I, Zhapparova O, Rodionov V. Melanophores for microtubule dynamics and motility assays. Methods Cell Biol 2010; 97:401-14. [PMID: 20719282 DOI: 10.1016/s0091-679x(10)97021-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs.
Collapse
Affiliation(s)
- Kazuho Ikeda
- Department of Cell Biology, R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032-1507, USA
| | | | | | | |
Collapse
|
28
|
Isoldi MC, Provencio I, Castrucci AMDL. Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved. Gen Comp Endocrinol 2010; 165:104-10. [PMID: 19539625 DOI: 10.1016/j.ygcen.2009.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/30/2022]
Abstract
Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X. laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane.
Collapse
Affiliation(s)
- Mauro César Isoldi
- Department of Biology, University of Virginia, Charlotesville, VA 22904-4328, USA
| | | | | |
Collapse
|
29
|
G protein-coupled receptor mediated trimethylamine sensing. Biosens Bioelectron 2009; 25:715-20. [PMID: 19734032 DOI: 10.1016/j.bios.2009.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/04/2009] [Accepted: 08/07/2009] [Indexed: 11/20/2022]
Abstract
A new approach for the detection of trimethylamine (TMA) using a recombinant cell line of Xenopus laevis melanophores was developed. The cells were genetically modified to express the mouse trace amine-associated receptor 5 (mTAAR5), a G protein-coupled receptor from the mouse olfactory epithelium, which conferred high sensitivity to TMA. Cellular responses to TMA were analyzed by two different techniques, either by absorbance measurements using a microplate reader or by cellular imaging via an inverted microscope. A focused chemical screen allowed the discovery of additional, previously unknown stimuli of mTAAR5. The developed cell-based sensor demonstrated no sensitivity to trimethylamine N-oxide (TMAO), making it suitable for a straightforward evaluation of TMA levels in fish tissue extracts. For the detection of TMA vapor, the cells were covered with agarose, which allowed for intact cell viability for at least 6h in air. The developed gas measurement platform was able to detect TMA from 1 to 100 ppm within 35 min.
Collapse
|
30
|
Chang L, Barlan K, Chou YH, Grin B, Lakonishok M, Serpinskaya AS, Shumaker DK, Herrmann H, Gelfand VI, Goldman RD. The dynamic properties of intermediate filaments during organelle transport. J Cell Sci 2009; 122:2914-23. [PMID: 19638410 DOI: 10.1242/jcs.046789] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intermediate filament (IF) dynamics during organelle transport and their role in organelle movement were studied using Xenopus laevis melanophores. In these cells, pigment granules (melanosomes) move along microtubules and microfilaments, toward and away from the cell periphery in response to alpha-melanocyte stimulating hormone (alpha-MSH) and melatonin, respectively. In this study we show that melanophores possess a complex network of vimentin IFs which interact with melanosomes. IFs form an intricate, honeycomb-like network that form cages surrounding individual and small clusters of melanosomes, both when they are aggregated and dispersed. Purified melanosome preparations contain a substantial amount of vimentin, suggesting that melanosomes bind to IFs. Analyses of individual melanosome movements in cells with disrupted IF networks show increased movement of granules in both anterograde and retrograde directions, further supporting the notion of a melanosome-IF interaction. Live imaging reveals that IFs, in turn, become highly flexible as melanosomes disperse in response to alpha-MSH. During the height of dispersion there is a marked increase in the rate of fluorescence recovery after photobleaching of GFP-vimentin IFs and an increase in vimentin solubility. These results reveal a dynamic interaction between membrane bound pigment granules and IFs and suggest a role for IFs as modulators of granule movement.
Collapse
Affiliation(s)
- Lynne Chang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eriksson TL, Svensson SPS, Lundström I, Persson K, Andersson TPM, Andersson RGG. Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores. JOURNAL OF ETHNOPHARMACOLOGY 2008; 119:17-23. [PMID: 18639398 DOI: 10.1016/j.jep.2008.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
Melanophores from Xenopus laevis are pigmented cells, capable of quick colour changes through cyclic adenosine 3':5'-monophosphate (cAMP) coordinated transport of their intracellular pigment granules, melanosomes. In this study we use the melanophore cell line to evaluate the effects of Panax ginseng extract G115 on organelle transport. Absorbance readings of melanophore-coated microplates, Correlate-EIA direct cAMP enzyme immunoassay kit, and western blot were used to measure the melanosome movement and changes in intracellular signalling. We show that Panax ginseng induces a fast concentration-dependent anterograde transport of the melanosomes. No significant increase in the cAMP level was seen and pre-incubation of melanophores with the protein kinase C (PKC) inhibitor EGF-R Fragment 651-658 (M-EGF) only partly decreased the ginseng-induced dispersion. We also demonstrate that Panax ginseng, endothelin-3 (ET-3) and alpha-melanocyte stimulating hormone (MSH) stimulate an activation of mitogen activated protein kinase (MAPK). Pre-incubation with M-EGF decreased the MAPK activity induced by ET-3 and MSH, but again only marginally affected the response of Panax ginseng. Thus, in melanophores we suggest that Panax ginseng stimulates an anterograde transport of pigment organelles via a non-cAMP and mainly PKC-independent pathway.
Collapse
Affiliation(s)
- Therese L Eriksson
- Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Andersson TPM, Filippini D, Suska A, Johansson TL, Svensson SPS, Lundström I. Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing. Biosens Bioelectron 2008; 21:111-20. [PMID: 15967358 DOI: 10.1016/j.bios.2004.08.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/23/2004] [Accepted: 08/24/2004] [Indexed: 11/20/2022]
Abstract
Melanophores are pigmented cells in lower vertebrates capable of quick color changes and thereby suitable as whole cell biosensors. In the frog dermis skin layer, the large and dark pigmented melanophore surrounds a core of other pigmented cells. Upon hormonal stimulation the black-brown pigment organelles will redistribute within the melanophore, and thereby cover or uncover the core, making complex color changes possible in the dermis. Previously, melanophores have only been cultured on flat surfaces. Here we mimic the three dimensional biological geometry in the frog dermis by culturing melanophores on fluorescent plastic microbeads. To demonstrate biosensing we use the hormones melatonin and alpha-melanocyte stimulating hormone (alpha-MSH) as lightening or darkening stimuli, respectively. Cellular responses were successfully demonstrated on single cell level by fluorescence microscopy, and in cell suspension by a fluorescence microplate reader and a previously demonstrated computer screen photo-assisted technique. The demonstrated principle is the first step towards "single well/multiple read-out" biosensor arrays based on suspensions of different selective-responding melanophores, each cultured on microbeads with distinctive spectral characteristics. By applying small amount of a clinical sample, or a candidate substance in early drug screening, to a single well containing combinations of melanophores on beads, multiple parameter read-outs will be possible.
Collapse
Affiliation(s)
- Tony P M Andersson
- Division of Applied Physics, Department of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Chapter 6 New Insights into Melanosome Transport in Vertebrate Pigment Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:245-302. [DOI: 10.1016/s1937-6448(08)01606-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment. Curr Biol 2007; 17:2030-4. [PMID: 17997311 DOI: 10.1016/j.cub.2007.10.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 12/30/2022]
Abstract
Intracellular transport is essential for cytoplasm organization, but mechanisms regulating transport are mostly unknown. In Xenopus melanophores, melanosome transport is regulated by cAMP-dependent protein kinase A (PKA). Melanosome aggregation is triggered by melatonin, whereas dispersion is induced by melanocyte-stimulating hormone (MSH). The action of hormones is mediated by cAMP: High cAMP in MSH-treated cells stimulates PKA, whereas low cAMP in melatonin-treated cells inhibits it. PKA activity is typically restricted to specific cell compartments by A-kinase anchoring proteins (AKAPs). Recently, Rab32 has been implicated in protein trafficking to melanosomes and shown to function as an AKAP on mitochondria. Here, we tested the hypothesis that Rab32 is involved in regulation of melanosome transport by PKA. We demonstrated that Rab32 is localized to the surface of melanosomes in a GTP-dependent manner and binds to the regulatory subunit RIIalpha of PKA. Both RIIalpha and Cbeta subunits of PKA are required for transport regulation and are recruited to melanosomes by Rab32. Overexpression of wild-type Rab32, but not mutants unable to bind PKA or melanosomes, inhibits melanosome aggregation by melatonin. Therefore, in melanophores, Rab32 is a melanosome-specific AKAP that is essential for regulation of melanosome transport.
Collapse
|
35
|
Kawasaki A, Kumasaka M, Satoh A, Suzuki M, Tamura K, Goto T, Asashima M, Yamamoto H. ORIGINAL ARTICLE: Mitf contributes to melanosome distribution and melanophore dendricity. Pigment Cell Melanoma Res 2007; 21:56-62. [DOI: 10.1111/j.1755-148x.2007.00420.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Aspengren S, Hedberg D, Wallin M. Melanophores: A model system for neuronal transport and exocytosis? J Neurosci Res 2007; 85:2591-600. [PMID: 17149749 DOI: 10.1002/jnr.21132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Black pigment cells, melanophores, from lower vertebrates are specialized in bidirectional and coordinated translocation of pigment granules, melanosomes, in the cytoplasm. Melanophores develop from the neuronal crest and are most abundant in the dermal and epidermal layers of the skin, where the intracellular distribution of the pigment significantly influences the color of the animal. The transport of pigment is dependent on an intact cytoskeleton and motor proteins associated with cytoskeletal components. The easily cultured melanophores have proved to be excellent models for organelle transport because the intracellular movements of pigment can be visualized via light microscopy, and the granules move in response to defined chemical signals. The ease of achieving a combination of morphological and functional transport studies is the advantage of the melanophore system, and studies on pigment cells have revealed new components of the transport machinery, including molecular motors, their adapters, and transfer of vesicles to other cells. Many cellular components are transported with a combination of the actin- and microtubule-based transport systems, and, since all eukaryotic organisms rely on functional intracellular transport and an intact cytoskeleton, studies on melanophores are important for many aspects of cell biology, including axonal transport. In this review, we present an overview of the research on the pigment transport system and the potential use of pigment cells as a model system.
Collapse
Affiliation(s)
- Sara Aspengren
- Department of Zoology/Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
37
|
Lima LHRG, Scarparo AC, Isoldi MC, Visconti MA, Castrucci AML. Melanopsin in chicken melanocytes and retina. BIOL RHYTHM RES 2006. [DOI: 10.1080/09291010600870230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Aspengren S, Hedberg D, Wallin M. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo. ACTA ACUST UNITED AC 2006; 19:136-45. [PMID: 16524429 DOI: 10.1111/j.1600-0749.2005.00290.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long-term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore-fibroblast co-culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast-derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane-enclosed melanosomes in a process that was upregulated by alpha-melanocyte-stimulating hormone (alpha-MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane-proteins seemed to be of importance, as the cluster-like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long-term colour changes and for studies of factors that affect pigmentation.
Collapse
Affiliation(s)
- Sara Aspengren
- Department of Zoology, Zoophysiology, Göteborg University, Box 463, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
39
|
Tsotinis A, Vlachou M, Papahatjis DP, Calogeropoulou T, Nikas SP, Garratt PJ, Piccio V, Vonhoff S, Davidson K, Teh MT, Sugden D. Mapping the Melatonin Receptor. 7. Subtype Selective Ligands Based on β-SubstitutedN-Acyl-5-methoxytryptamines and β-SubstitutedN-Acyl-5-methoxy-1-methyltryptamines. J Med Chem 2006; 49:3509-19. [PMID: 16759094 DOI: 10.1021/jm0512544] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of beta-substituted and beta,beta-disubstituted N-acyl 5-methoxy-1-methyltryptamines and 5-methoxytryptamines have been prepared as melatonin analogues to investigate the nature of the binding site of the melatonin receptor. The affinity of analogues was determined in a radioligand binding assay using cloned human MT(1) and MT(2) receptor subtypes expressed in NIH 3T3 cells. Agonist and antagonist potency of all analogues was measured using the pigment aggregation response of a clonal line of Xenopus laevis melanophores. beta-Methylmelatonin (17a) and beta,beta-dimethylmelatonin (17b), though showing a slight decrease in binding at human receptors, show an increase in potency on Xenopus. N-Butanoyl 5-methoxy-1-methyl-beta,beta-trimethylenetryptamine (12c) is an antagonist at human MT(1) receptors but an agonist at MT(2), while N-butanoyl 5-methoxy-1-methyl-beta,beta-tetramethylenetryptamine (13c) is an antagonist at MT(1) but had no action at MT(2) and is one of the first examples of an MT(1) selective antagonist.
Collapse
Affiliation(s)
- Andrew Tsotinis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli-Zografou, Athens 157 71, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kashina A, Rodionov V. Intracellular organelle transport: few motors, many signals. Trends Cell Biol 2005; 15:396-8. [PMID: 16005630 DOI: 10.1016/j.tcb.2005.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/27/2005] [Accepted: 06/24/2005] [Indexed: 01/10/2023]
Abstract
Bidirectional microtubule-dependent organelle transport in melanophores is regulated by cAMP through organelle-bound protein kinase A (PKA); however, the mechanisms responsible for this regulation are unknown. A recent study by Gelfand and colleagues demonstrates that, in addition to PKA, transport is regulated by the organelle-bound mitogen-activated protein kinase (MAPK) signaling components ERK and MEK, whose activity is required for bidirectional transport along microtubules. This pathway apparently acts downstream of PKA, suggesting that bidirectional organelle transport is regulated by a hierarchical cascade of signaling pathways.
Collapse
Affiliation(s)
- Anna Kashina
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, 143 Rosenthal, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Ban E, Kasai A, Sato M, Yokozeki A, Hisatomi O, Oshima N. The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia. ACTA ACUST UNITED AC 2005; 18:360-9. [PMID: 16162176 DOI: 10.1111/j.1600-0749.2005.00267.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to increase the synthesis or vary the distribution of pigment in response to light is an important feature of many pigment cells. Unlike other light-sensitive pigment cells, erythrophores of Nile tilapia change the direction of pigment migration depending on the peak wavelength of incident light: light near 365, 400 or 600 nm induces pigment aggregation, while dispersion occurs in response to light at 500 nm. How these phenomena are achieved is currently unknown. In the present study, the phototransduction involved in the pigment dispersion caused by light at 500 nm or the aggregation by light at 600 nm was examined, using pertussis toxin, cholera toxin, blockers of ion channels, various chemicals affecting serial steps of signaling pathways and membrane-permeable cAMP analog. The results show that light-induced bidirectional movements in tilapia erythrophores may be controlled by cytosolic cAMP levels via Gi- or Gs-type G proteins. In addition, RT-PCR demonstrated for the first time the expression of mRNAs encoding red and green opsins in tilapia fins, only where erythrophores exist. Here, we suggest that multiple cone-type visual pigments may be present in the erythrophores, and that unique cascades in which such opsins couple to Gi or Gs-type G proteins are involved in the photoresponses in these pigment cells. Thus, tilapia erythrophore system seems to be a nice model for understanding the photoresponses of cells other than visual cells.
Collapse
Affiliation(s)
- Eiko Ban
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Rondaij MG, Bierings R, Kragt A, Gijzen KA, Sellink E, van Mourik JA, Fernandez-Borja M, Voorberg J. Dynein-dynactin complex mediates protein kinase A-dependent clustering of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 2005; 26:49-55. [PMID: 16239597 DOI: 10.1161/01.atv.0000191639.08082.04] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Perinuclear clustering is observed for several different organelles and illustrates dynamic regulation of the secretory pathway and organelle distribution. Previously, we observed that a subset of Weibel-Palade bodies (WPBs), endothelial cell-specific storage organelles, undergo centralization when endothelial cells are stimulated with cAMP-raising agonists of von Willebrand factor (vWF) secretion. In this study, we investigated this phenomenon of WPB clustering in more detail. METHODS AND RESULTS Our results demonstrate that the clustered WPBs are localized at the microtubule organizing center and that cluster formation depends on an intact microtubule network. Disruption of the microtubules by nocodazole completely abolished clustering, whereas treatment with the actin depolymerizing compound cytochalasin B had no effect on WPB clustering. Interfering with the dynein-dynactin interaction by overexpression of the p50 dynamitin subunit or the CC1 domain of the p150glued subunit of the dynactin complex completely inhibited perinuclear clustering of WPBs, suggesting that dynein activity mediates this process. Furthermore, we found that inhibition of dephosphorylation resulted in an increase in clustering, whereas inhibition of protein kinase A (PKA) markedly reduced WPB clustering. CONCLUSIONS These results suggest that perinuclear clustering of WPBs involves PKA-dependent regulation of the dynein-dynactin complex. Endothelial cell stimulation with epinephrine results in retrograde movement of a subset of WPBs to the microtubule organizing center. This minus-end directed transport requires an intact microtubular network and is mediated by the motor protein dynein. Together, our results suggest that epinephrine-induced clustering of WPBs involves PKA-dependent regulation of the dynein-dynactin complex.
Collapse
Affiliation(s)
- Mariska G Rondaij
- Department of Plasma Proteins, Sanquin Research, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zaliapin I, Semenova I, Kashina A, Rodionov V. Multiscale trend analysis of microtubule transport in melanophores. Biophys J 2005; 88:4008-16. [PMID: 15764663 PMCID: PMC1305632 DOI: 10.1529/biophysj.104.057083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubule-based transport is critical for trafficking of organelles, organization of endomembranes, and mitosis. The driving force for microtubule-based transport is provided by microtubule motors, which move organelles specifically to the plus or minus ends of the microtubules. Motor proteins of opposite polarities are bound to the surface of the same cargo organelle. Transport of organelles along microtubules is discontinuous and involves transitions between movements to plus or minus ends or pauses. Parameters of the movement, such as velocity and length of runs, provide important information about the activity of microtubule motors, but measurement of these parameters is difficult and requires a sophisticated decomposition of the organelle movement trajectories into directional runs and pauses. The existing algorithms are based on establishing threshold values for the length and duration of runs and thus do not allow to distinguish between slow runs and pauses, making the analysis of the organelle transport incomplete. Here we describe a novel algorithm based on multiscale trend analysis for the decomposition of organelle trajectories into plus- or minus-end runs, and pauses. This algorithm is self-adapted to the characteristic durations and velocities of runs, and allows reliable separation of pauses from runs. We apply the proposed algorithm to compare regulation of microtubule transport in fish and Xenopus melanophores and show that the general mechanisms of regulation are similar in the two pigment cell types.
Collapse
Affiliation(s)
- Ilya Zaliapin
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
44
|
Sugden D, Davidson K, Hough KA, Teh MT. Melatonin, melatonin receptors and melanophores: a moving story. ACTA ACUST UNITED AC 2005; 17:454-60. [PMID: 15357831 DOI: 10.1111/j.1600-0749.2004.00185.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin (5-methoxy N-acetyltryptamine) is a hormone synthesized and released from the pineal gland at night, which acts on specific high affinity G-protein coupled receptors to regulate various aspects of physiology and behaviour, including circadian and seasonal responses, and some retinal, cardiovascular and immunological functions. In amphibians, such as Xenopus laevis, another role of melatonin is in the control of skin coloration through an action on melanin-containing pigment granules (melanosomes) in melanophores. In these cells, very low concentrations of melatonin activate the Mel(1c) receptor subtype triggering movement of granules toward the cell centre thus lightening skin colour. Mel(1c) receptor activation reduces intracellular cAMP via a pertussis toxin-sensitive inhibitory G-protein (Gi), but how this and other intracellular signals regulate pigment movement is not yet fully understood. However, melanophores have proven an excellent model for the study of the molecular mechanisms which coordinate intracellular transport. Melanosome transport is reversible and involves both actin- (myosin V) and microtubule-dependent (kinesin II and dynein) motors. Melanosomes retain both kinesin and dynein during anterograde and retrograde transport, but the myosin V motor seems to be recruited to melanosomes during dispersion, where it assists kinesin II in dominating dynein thus driving net dispersion. Recent work suggests an important role for dynactin in coordinating the activity of the opposing microtubule motors. The melanophore pigment aggregation response has also played a vital role in the ongoing effort to devise specific melatonin receptor antagonists. Much of what has been learnt about the parts of the melatonin molecule required for receptor binding and activation has come from detailed structure-activity data using novel melatonin ligands. Work aiming to devise ligands specific for the distinct melatonin receptor subtypes stands poised to deliver selective agonists and antagonists which will be valuable tools in understanding the role of this enigmatic hormone in health and disease.
Collapse
Affiliation(s)
- David Sugden
- Division of Reproductive Health, Endocrinology and Development, School of Biomedical Sciences, New Hunts House, Kings College London, London Bridge, London SE1 1UL, UK.
| | | | | | | |
Collapse
|
45
|
Abstract
The pigment cells of amphibians and fish have provided excellent models for understanding how actin and microtubule motors move organelles along the complex trailway of filaments in the cytoplasm. Recent work provides more evidence that these motors are engaged in a continuous tug-of-war.
Collapse
Affiliation(s)
- Morton Ehrenberg
- University of Rochester, Department of Biomedical Engineering, 601 Elmwood Ave, PO Box 639, Rochester, New York 14642, USA
| | | |
Collapse
|
46
|
Bertolucci C, Foà A. Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol Int 2005; 21:501-19. [PMID: 15470951 DOI: 10.1081/cbi-120039813] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In mammals both the regulation of circadian rhythms and photoperiodic responses depend exclusively upon photic information provided by the lateral eyes; however, nonmammalian vertebrates can also rely on multiple extraocular photoreceptors to perform the same tasks. Extraocular photoreceptors include deep brain photoreceptors located in several distinct brain sites and the pineal complex, involving intracranial (pineal and parapineal) and extracranial (frontal organ and parietal eye) components. This review updates the research field of the most recent acquisitions concerning the roles of extraocular photoreceptors on circadian physiology and behavior, particularly photic entrainment and sun compass orientation.
Collapse
Affiliation(s)
- Cristiano Bertolucci
- Dipartimento di Biologia and Centro di Neuroscienze, Università degli Studi di Ferrara, Ferrara, Italy
| | | |
Collapse
|
47
|
Kashina AS, Semenova IV, Ivanov PA, Potekhina ES, Zaliapin I, Rodionov VI. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr Biol 2005; 14:1877-81. [PMID: 15498498 DOI: 10.1016/j.cub.2004.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/16/2004] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
Major signaling cascades have been shown to play a role in the regulation of intracellular organelle transport . Aggregation and dispersion of pigment granules in melanophores are regulated by the second messenger cAMP through the protein kinase A (PKA) signaling pathway ; however, the exact mechanisms of this regulation are poorly understood. To study the role of signaling molecules in the regulation of pigment transport in melanophores, we have asked the question whether the components of the cAMP-signaling pathway are bound to pigment granules and whether they interact with molecular motors to regulate the granule movement throughout the cytoplasm. We found that purified pigment granules contain PKA and scaffolding proteins and that PKA associates with pigment granules in cells. Furthermore, we found that the PKA regulatory subunit forms two separate complexes, one with cytoplasmic dynein ("aggregation complex") and one with kinesin II and myosin V ("dispersion complex"), and that the removal of PKA from granules causes dissociation of dynein and disruption of dynein-dependent pigment aggregation. We conclude that cytoplasmic organelles contain protein complexes that include motor proteins and signaling molecules involved in different components of intracellular transport. We propose to call such complexes 'regulated motor units' (RMU).
Collapse
Affiliation(s)
- Anna S Kashina
- University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032-1507, USA
| | | | | | | | | | | |
Collapse
|
48
|
Isoldi MC, Rollag MD, Castrucci AMDL, Provencio I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A 2005; 102:1217-21. [PMID: 15653769 PMCID: PMC545850 DOI: 10.1073/pnas.0409252102] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melanopsin is the photopigment that confers light sensitivity on intrinsically photosensitive retinal ganglion cells. Mammalian intrinsically photosensitive retinal ganglion cells are involved in the photic synchronization of circadian rhythms to the day-night cycle. Here, we report molecular components of melanopsin signaling using the cultured Xenopus dermal melanophore system. Photo-activated melanopsin is shown to initiate a phosphoinositide signaling pathway similar to that found in invertebrate photo-transduction. In melanophores, light increases the intracellular level of inositol trisphosphate and causes the dispersion of melanosomes. Inhibition of phospholipase C and protein kinase C and chelation of intracellular calcium block the effect of light on melanophores. At least four proteins, 43, 74, 90, and 134 kDa, are phosphorylated by protein kinase C upon light stimulation. This provides evidence of an invertebrate-like light-activated signaling cascade within vertebrate cells.
Collapse
Affiliation(s)
- Mauro Cesar Isoldi
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
49
|
Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84:1155-228. [PMID: 15383650 DOI: 10.1152/physrev.00044.2003] [Citation(s) in RCA: 1382] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.
Collapse
Affiliation(s)
- Andrzej Slominski
- Dept. of Pathology, Suite 599, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
50
|
Sato M, Ishikura R, Oshima N. Direct Effects of Visible and UVA Light on Pigment Migration in Erythrophores of Nile Tilapia. ACTA ACUST UNITED AC 2004; 17:519-24. [PMID: 15357839 DOI: 10.1111/j.1600-0749.2004.00178.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Erythrophores derived from Nile tilapia (Oreochromis niloticus) are sensitive to visible light of defined wavelengths in primary culture in the same manner as erythrophores in the skin. Cultured erythrophores aggregate their pigment in response to light with peak wavelengths near 400 or 600 nm, while dispersion is caused by light near 500 nm. In this study, we report that ultraviolet A (UVA) with a peak wavelength near 365 nm also induces pigment aggregation in erythrophores in the skin and in primary culture. The responses of erythrophores in the skin or in culture depend on the light intensity, although the photo-sensitivity differs among individual cells. From the results, we conclude that the action of visible light and UVA light on tilapia erythrophores is direct, and that multiple types of visual pigments may coexist in individual erythrophores.
Collapse
Affiliation(s)
- Masako Sato
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | | | | |
Collapse
|