1
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
2
|
Sun X, Han B, Han Q, Yu Q, Wang S, Feng J, Feng T, Li X, Zhang S, Li H. Similarity of Chinese and Pakistani oral microbiome. Antonie Van Leeuwenhoek 2024; 117:38. [PMID: 38372789 DOI: 10.1007/s10482-024-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Oral microbiota is vital for human health and can be affected by various factors (i.e. diets, ethnicity). However, few studies have compared oral microbiota of individuals from different nationalities in the same environment. Here, we explored the assembly and interaction of oral microbial communities of Chinese and Pakistanis in one university. Firmicutes and Proteobacteria were the predominant microorganisms in the oral cavity of Chinese and Pakistanis. Streptococcus and Neisseria were the dominant genera of China, while Streptococcus and Haemophilus were the dominant genera of Pakistanis. In addition, the oral community membership and structure were not influenced by season, Chinese/Pakistani student and gender, reflecting the stability of the human oral microbiome. The beta diversity of oral microbiomes between Chinese and Pakistanis significantly differed in winter, but not in spring. The alpha diversity of Chinese students and Pakistani students was similar. Moreover, oral microbial community of both Chinese and Pakistani students was mainly driven by stochastic processes. The microbial network of Chinese was more complexity and stability than that of Pakistanis. Our study uncovers the characteristics of human oral microbiota, which is of great significance for oral and human health.
Collapse
Affiliation(s)
- Xiaofang Sun
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jie Feng
- Department of Digestive, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tianshu Feng
- School of Public Health, Peking University, Beijing, 100871, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404120, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Uzoukwu EU, Phandanouvong-Lozano V, Usman H, Sfeir C, Niepa THR. Droplet-based microsystems as novel assessment tools for oral microbial dynamics. Biotechnol Adv 2022; 55:107903. [PMID: 34990774 DOI: 10.1016/j.biotechadv.2021.107903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
The human microbiome comprises thousands of microbial species that live in and on the body and play critical roles in human health and disease. Recent findings on the interplay among members of the oral microbiome, defined by a personalized set of microorganisms, have elucidated the role of bacteria and yeasts in oral health and diseases including dental caries, halitosis, and periodontal infections. However, the majority of these studies rely on traditional culturing methods which are limited in their ability of replicating the oral microenvironment, and therefore fail to evaluate key microbial interactions in microbiome dynamics. Novel culturing methods have emerged to address this shortcoming. Here, we reviewed the potential of droplet-based microfluidics as an alternative approach for culturing microorganisms and assessing the oral microbiome dynamics. We discussed the state of the art and recent progress in the field of oral microbiology. Although at its infancy, droplet-based microtechnology presents an interesting potential for elucidating oral microbial dynamics and pathophysiology. We highlight how new findings provided by current microfluidic-based methodologies could advance the investigation of the oral microbiome. We anticipate that our work involving the droplet-based microfluidic technique with a semipermeable membrane will lay the foundations for future microbial dynamics studies and further expand the knowledge of the oral microbiome and its implication in oral health.
Collapse
Affiliation(s)
| | | | - Huda Usman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA
| | - Charles Sfeir
- Department of Bioengineering, University of Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, PA, USA; The Center for Craniofacial Regeneration, University of Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Tagbo H R Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, PA, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, PA, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Zorba M, Melidou A, Patsatsi A, Ioannou E, Kolokotronis A. The possible role of oral microbiome in autoimmunity. Int J Womens Dermatol 2020; 6:357-364. [PMID: 33898698 PMCID: PMC8060669 DOI: 10.1016/j.ijwd.2020.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The human microbiome refers to the entire habitat, including microorganisms, their genomes and the surrounding environmental conditions of the microbial ecosystem. When the equilibrium between microbial habitats and host is disturbed, dysbiosis is caused. The oral microbiome (OMB) has been implicated in the manifestation of many intra- and extraoral diseases. Lately, there has been an intense effort to investigate and specify the relationship between microbial complexes, especially that of the oral cavity and intestine and autoimmunity. This study aimed to review the current literature about the possible role of the OMB in the pathogenesis of autoimmune diseases. METHODS We searched for published articles in English indexed in PubMed, Medline, Research Gate and Google Scholar using a search strategy that included terms for oral microbiome, autoimmune diseases, dysbiosis and next-generation sequencing. RESULTS An important number of articles were gathered and used for the description of the possible impact of dysbiosis of OMB in the pathogenesis of Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis, Behcet's disease, Crohn's disease and psoriasis. CONCLUSION This review article draws attention to the relationship between OMB and the triggering of a number of autoimmune diseases. Although this specific topic has been previously reviewed, herein, the authors review recent literature regarding the full list of nosological entities related to the OMB, point out the interaction between the microbiome and sex hormones with regard to their role in autoimmunity and discuss novel and promising therapeutic approaches for systemic autoimmune diseases. Furthermore, the question arises of whether the OMB is associated with oral bullous autoimmune diseases.
Collapse
Affiliation(s)
- Matina Zorba
- Department of Oral Medicine and Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Angeliki Melidou
- Department of Microbiology, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Aikaterini Patsatsi
- Second Dermatology Department of Papageorgiou General Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Eleftheria Ioannou
- Department of Biological Applications and Technology, Aristotle University of Thessaloniki, Greece
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
5
|
Chen Y, Chen X, Yu H, Zhou H, Xu S. Oral Microbiota as Promising Diagnostic Biomarkers for Gastrointestinal Cancer: A Systematic Review. Onco Targets Ther 2019; 12:11131-11144. [PMID: 31908481 PMCID: PMC6927258 DOI: 10.2147/ott.s230262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence has shown the potential of oral microbiota as a noninvasive diagnostic tool in gastrointestinal (GI) cancer. PubMed, Web of Science, and Embase were systematically searched for eligible studies published until May 31, 2019. Of the 17 included studies published between 2011 and 2019, five kinds of GI cancer, including colorectal cancer (n=6), pancreatic cancer (n=5), gastric cancer (n=4), esophageal cancer (n=2) and liver cancer (n=1), were reported. Generally, the diagnostic performance of the multi-bacteria model for GI cancer was strong with the best area under the receiver operator characteristic curve (AUC) exceeding 0.90, but only one study had a validation phase. Pathogens involved in periodontal disease, such as Porphyromonas gingivalis and Tannerella forsythia, were linked to various kinds of GI cancer. Besides, more oral bacteria significantly differed between cases with upper digestive cancer and healthy controls when compared to colorectal cancer (the most common form of lower digestive cancer), probably indicating a different mechanism due to anatomical and physiological differences in the digestive tract. Oral microbiota changes were associated with risk of various kinds of GI cancer, which could be considered as a potential tool for early prediction and prevention of GI cancer, but validation based on a large population, reproducible protocols for oral microbiota research and oral-gut microbiota transmission patterns are required to be resolved in further studies.
Collapse
Affiliation(s)
- Yanwei Chen
- Infection Control Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Xuechen Chen
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Haixin Yu
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Shu Xu
- Oncology Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| |
Collapse
|
6
|
Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol 2019; 23:122-128. [PMID: 31110428 PMCID: PMC6503789 DOI: 10.4103/jomfp.jomfp_304_18] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The oral cavity has the second largest and diverse microbiota after the gut harboring over 700 species of bacteria. It nurtures numerous microorganisms which include bacteria, fungi, viruses and protozoa. The mouth with its various niches is an exceptionally complex habitat where microbes colonize the hard surfaces of the teeth and the soft tissues of the oral mucosa. In addition to being the initiation point of digestion, the oral microbiome is crucial in maintaining oral as well as systemic health. Because of the ease of sample collection, it has become the most well-studied microbiome till date. Previously, studying the microbiome was limited to the conventional culture-dependent techniques, but the abundant microflora present in the oral cavity could not be cultured. Hence, studying the microbiome was difficult. The emergence of new genomic technologies including next-generation sequencing and bioinformatics has revealed the complexities of the oral microbiome. It has provided a powerful means of studying the microbiome. Understanding the oral microbiome in health and disease will give further directions to explore the functional and metabolic alterations associated with the diseased states and to identify molecular signatures for drug development and targeted therapies which will ultimately help in rendering personalized and precision medicine. This review article is an attempt to explain the different aspects of the oral microbiome in health.
Collapse
Affiliation(s)
- Priya Nimish Deo
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Pune, Maharashtra, India
| | - Revati Deshmukh
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
7
|
Dong L, Yin J, Zhao J, Ma SR, Wang HR, Wang M, Chen W, Wei WQ. Microbial Similarity and Preference for Specific Sites in Healthy Oral Cavity and Esophagus. Front Microbiol 2018; 9:1603. [PMID: 30065718 PMCID: PMC6056649 DOI: 10.3389/fmicb.2018.01603] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Human microbial communities are highly complex ecosystems, but it remains unclear if microbial compositions have any similarity in distinct sites of the oral cavity and esophagus in particular. Clinical samples were collected from three niches (saliva, tongue dorsum and supragingival plaque) of the oral cavity and three segments (upper, middle, and lower) of the esophagus in 27 healthy individuals. Bacterial V3-V4 region of 16S rRNA gene in these samples was amplified and sequenced on Illumina sequencing platform, followed by data analysis using QIIME and LEfSe softwares. Highly diverse bacterial flora with 365 genera belonging to 29 phyla resided in the oral cavity and 594 genera belonging to 29 phyla in the esophagus. The phyla Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, and TM7 were most abundant in both the oral cavity and the esophagus, but the phyla Actinobacteria and Bacteroidetes were preferable in the oral cavity and Firmicutes in the esophagus. The genera Streptococcus, Neisseria, Prevotella, Actinobacillus, and Veillonella were most abundant in both oral cavity and esophagus, but Neisseria was preferable in the oral cavity and Streptococcus in the esophagus. Different niche-specific bacterial signatures were found in the oral cavity, e.g., the class Flavobacteria in the supragingival plaque, class Bacteroides in the saliva and the class Clostridia in the tongue dorsum. By contrast, no site specific bacteria for three different segments of esophagus were found. However, high variability of microbial compositions between individuals was observed. In conclusion, this study confirmed microbial diversity at different taxonomic levels in healthy oral cavity and esophagus, and identified the site-preferable bacterial signatures in six niches of the upper digestive tract. These findings provide a critical baseline for future studies interpreting microbiome-related diseases.
Collapse
Affiliation(s)
- Li Dong
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jian Yin
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan-Rui Ma
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Rui Wang
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Chen
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Qiang Wei
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Abstract
The human microbiome project (HMP) promoted further understanding of human oral microbes. However, research on the human oral microbiota has not made as much progress as research on the gut microbiota. Currently, the causal relationship between the oral microbiota and oral diseases remains unclear, and little is known about the link between the oral microbiota and human systemic diseases. To further understand the contribution of the oral microbiota in oral diseases and systemic diseases, a Human Oral Microbiome Database (HOMD) was established in the US. The HOMD includes 619 taxa in 13 phyla, and most of the microorganisms are from American populations. Due to individual differences in the microbiome, the HOMD does not reflect the Chinese oral microbial status. Herein, we established a new oral microbiome database—the Oral Microbiome Bank of China (OMBC, http://www.sklod.org/ombc). Currently, the OMBC includes information on 289 bacterial strains and 720 clinical samples from the Chinese population, along with lab and clinical information. The OMBC is the first curated description of a Chinese-associated microbiome; it provides tools for use in investigating the role of the oral microbiome in health and diseases, and will give the community abundant data and strain information for future oral microbial studies. A new resource for consolidating oral microbiome data will help researchers explore the relationship between these commensal communities and the health of their hosts. Numerous studies have highlighted apparent connections between alterations in the microbial communities within the human mouth and medical conditions including diabetes and cancer. A recent article from researchers led by Liao Ga at Sichuan University describes the launch of the Oral Microbiome Bank of China, an effort to study such connections by profiling specimens from individuals from across the country. The database currently houses detailed information on 289 bacterial strains and the samples from which they were obtained. The authors are now looking to analyze these data to gain insights into the structure and function of oral ecosystems, and to further expand this database as a resource for Chinese microbiome research.
Collapse
|
9
|
Hunter MC, Pozhitkov AE, Noble PA. Microbial signatures of oral dysbiosis, periodontitis and edentulism revealed by Gene Meter methodology. J Microbiol Methods 2016; 131:85-101. [PMID: 27717873 DOI: 10.1016/j.mimet.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Abstract
Conceptual models suggest that certain microorganisms (e.g., the "red" complex) are indicative of a specific disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of one of the following oral conditions: periodontitis, established caries, edentulism, and oral health. Our goal was to determine if the abundances of certain microorganisms reflect dysbiosis or a specific clinical condition that could be used as a 'signature' for dental research. Microbial abundances were determined by the analysis of 138,718 calibrated probes using Gene Meter methodology. Each 16S rRNA gene was targeted by an average of 194 unique probes (n=25nt). The calibration involved diluting pooled gene target samples, hybridizing each dilution to a DNA microarray, and fitting the probe intensities to adsorption models. The fit of the model to the experimental data was used to assess individual and aggregate probe behavior; good fits (R2>0.90) were retained for back-calculating microbial abundances from patient samples. The abundance of a gene was determined from the median of all calibrated individual probes or from the calibrated abundance of all aggregated probes. With the exception of genes with low abundances (<2 arbitrary units), the abundances determined by the different calibrations were highly correlated (r~1.0). Seventeen genera were classified as 'signatures of dysbiosis' because they had significantly higher abundances in patients with periodontitis and edentulism when contrasted with health. Similarly, 13 genera were classified as 'signatures of periodontitis', and 14 genera were classified as 'signatures of edentulism'. The signatures could be used, individually or in combination, to assess the clinical status of a patient (e.g., evaluating treatments such as antibiotic therapies). Comparisons of the same patient samples revealed high false negatives (45%) for next-generation-sequencing results and low false positives (7%) for Gene Meter results.
Collapse
Affiliation(s)
- M Colby Hunter
- Program in Microbiology, Alabama State University, Montgomery, AL 36101, United States.
| | - Alex E Pozhitkov
- Department of Oral Health, University of Washington, Box 3574444, Seattle, WA, United States.
| | - Peter A Noble
- Department of Periodontics, University of Washington, Box 3574444, Seattle, WA, United States.
| |
Collapse
|
10
|
Schnorr SL, Sankaranarayanan K, Lewis CM, Warinner C. Insights into human evolution from ancient and contemporary microbiome studies. Curr Opin Genet Dev 2016; 41:14-26. [PMID: 27507098 DOI: 10.1016/j.gde.2016.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
Over the past decade, human microbiome research has energized the study of human evolution through a complete shift in our understanding of what it means to be human. The microbiome plays a pivotal role in human biology, performing key functions in digestion, mood and behavior, development and immunity, and a range of acute and chronic diseases. It is therefore critical to understand its evolution and changing ecology through time. Here we review recent findings on the microbiota of diverse human populations, non-human primates, and past human populations and discuss the implications of this research in formulating a deeper evolutionary understanding of the human holobiont.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- Department of Anthropology, University of Oklahoma, 455 W. Lindsey St., Norman, OK 73019, USA
| | | | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, 455 W. Lindsey St., Norman, OK 73019, USA
| | - Christina Warinner
- Department of Anthropology, University of Oklahoma, 455 W. Lindsey St., Norman, OK 73019, USA.
| |
Collapse
|
11
|
Lam RHW, Cui X, Guo W, Thorsen T. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics. LAB ON A CHIP 2016; 16:1652-62. [PMID: 27045372 DOI: 10.1039/c6lc00072j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels.
Collapse
Affiliation(s)
- Raymond H W Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong. and Centre for Robotics and Automation, City University of Hong Kong, Hong Kong and Centre for Biosystems, Neuroscience and Nanotechnology, City University of Hong Kong, Hong Kong
| | - Xin Cui
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Weijin Guo
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong.
| | - Todd Thorsen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, USA.
| |
Collapse
|
12
|
Accuracy of commercial kits and published primer pairs for the detection of periodontopathogens. Clin Oral Investig 2016; 20:2515-2528. [PMID: 27020914 PMCID: PMC5119851 DOI: 10.1007/s00784-016-1748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Despite the input of microbiome research, a group of 20 bacteria continues to be the focus of periodontal diagnostics and therapy. The aim of this study was to compare three commercial kits and laboratory-developed primer pairs for effectiveness in detecting such periodontopathogens. MATERIALS AND METHODS Fourteen bacterial mock communities, consisting of 16 randomly assembled bacterial strains, were used as reference standard for testing kits and primers. Extracted DNA from mock communities was analyzed by PCR in-house with specific primers and forwarded for analysis to the manufacturer's laboratory of each of the following kits: ParoCheck®Kit 20, micro-IDent®plus11, and Carpegen® Perio Diagnostik. RESULTS The kits accurately detected Fusobacterium nucleatum, Prevotella intermedia/Prevotella nigrescens, Parvimonas micra, Aggregatibacter actinomycetemcomitans, Campylobacter rectus/showae, Streptococcus mitis, Streptococcus mutans, and Veillonella parvula. The in-house primers for F.nucleatum were highly specific to subtypes of the respective periopathogen. Other primers repeatedly detected oral pathogens not present in the mock communities, indicating reduced specificity. CONCLUSIONS The commercial kits used in this study are reliable tools to support periodontal diagnostics. Whereas the detection profile of the kits is fixed at a general specificity level, the design of primers can be adjusted to differentiate between highly specific strains. In-house primers are more error-prone. Bacterial mock communities can be established as a reference standard for any similar testing. CLINICAL RELEVANCE The tested kits render good results with selected bacterial species. Primers appear to be less useful for routine clinical diagnostics and of limited applicability in research. Basic information about the periodontopathogens identified in this study supports clinical decision-making.
Collapse
|
13
|
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been considered the most likely etiologic agent in aggressive periodontitis. Implementation of DNA-based microbiologic methodologies has considerably improved our understanding of the composition of subgingival biofilms, and advanced open-ended molecular techniques even allow for genome mapping of the whole bacterial spectrum in a sample and characterization of both the cultivable and not-yet-cultivable microbiota associated with periodontal health and disease. Currently, A. actinomycetemcomitans is regarded as a minor component of the resident oral microbiota and as an opportunistic pathogen in some individuals. Its specific JP2 clone, however, shows properties of a true exogenous pathogen and has an important role in the development of aggressive periodontitis in certain populations. Still, limited data exist on the impact of other microbes specifically in aggressive periodontitis. Despite a wide heterogeneity of bacteria, especially in subgingival samples collected from patients, bacteria of the red complex in particular, and those of the orange complex, are considered as potential pathogens in generalized aggressive periodontitis. These types of bacterial findings closely resemble those found for chronic periodontitis, representing a mixed polymicrobial infection without a clear association with any specific microorganism. In aggressive periodontitis, the role of novel and not-yet-cultivable bacteria has not yet been elucidated. There are geographic and ethnic differences in the carriage of periodontitis-associated microorganisms, and they need to be taken into account when comparing study reports on periodontal microbiology in different study populations. In the present review, we provide an overview on the colonization of potential periodontal pathogens in childhood and adolescence, and on specific microorganisms that have been suspected for their role in the initiation and progression of aggressive forms of periodontal disease.
Collapse
|
14
|
Untch M, Schlagenhauf U. Inter- and intra-test agreement of three commercially available molecular diagnostic tests for the identification of periodontal pathogens. Clin Oral Investig 2015; 19:2045-52. [DOI: 10.1007/s00784-015-1418-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/29/2015] [Indexed: 11/29/2022]
|
15
|
Contreras A, Moreno SM, Jaramillo A, Pelaez M, Duque A, Botero JE, Slots J. Periodontal microbiology in Latin America. Periodontol 2000 2014; 67:58-86. [DOI: 10.1111/prd.12074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
|
16
|
Elabdeen HRZ, Mustafa M, Hasturk H, Klepac-Ceraj V, Ali RW, Paster BJ, Van Dyke T, Bolstad AI. Subgingival microbial profiles of Sudanese patients with aggressive periodontitis. J Periodontal Res 2014; 50:674-82. [PMID: 25487558 PMCID: PMC4646740 DOI: 10.1111/jre.12250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/15/2022]
Abstract
Background and Objective Aggressive periodontitis (AgP) is prevalent and shows a rapid course in African individuals. Although a strong focus has been placed on Aggregatibacter actinomycetemcomitans, new methods support the existence of a complex subgingival microflora in AgP. The purpose of the present study was to map the subgingival microbiota as well as explore the presence of A. actinomycetemcomitans and the JP2 clone in a group of Sudanese individuals with AgP, using different analytical methods. Material and Methods A study population consisting of 19 patients with AgP was recruited from patients seeking treatment at University of Science and Technology (UST) in Khartoum. Fifteen healthy subjects were included as controls. Plaque samples were analyzed for 272 taxa using human oral microbe identification microarrays and for 26 periodontal taxa using DNA-DNA hybridization checkerboard. Conventional polymerase chain reaction (PCR) was applied for the detection of A. actinomycetemcomitans and the JP2 clone in plaque. Saliva from patients with AgP was analyzed using quantitative PCR (qPCR) for the detection of A. actinomycetemcomitans. Results Eubacterium yurii was detected more frequently in patients with AgP than in controls, and E. nodatum was found in patients with AgP only. A. actinomycetemcomitans was found in plaque samples of two (12%) patients by human oral microbe identification microarrays and in five (29%) patients with AgP by conventional PCR, as well as in six (32%) of the AgP saliva samples by qPCR. The JP2 clone was identified in only one patient. Conclusion The classical periodontal pathogens were not present in high amounts in AgP in the population studied here. Species of Eubacterium, which are not typically associated with AgP, were often detected in individuals with disease. Using laboratory methods with different sensitivities and detection levels allowed identification of variances in microbial communities. The findings reported in this study provide a basis for the further understanding of AgP.
Collapse
Affiliation(s)
- H R Z Elabdeen
- Department of Clinical Dentistry, Periodontics, University of Bergen, Bergen, Norway
| | - M Mustafa
- Department of Clinical Dentistry, Periodontics, University of Bergen, Bergen, Norway
| | - H Hasturk
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - V Klepac-Ceraj
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA.,Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - R W Ali
- Faculty of Dentistry, University of Science and Technology, Omdurman, Sudan
| | - B J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - T Van Dyke
- Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - A I Bolstad
- Department of Clinical Dentistry, Periodontics, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Trindade F, Oppenheim FG, Helmerhorst EJ, Amado F, Gomes PS, Vitorino R. Uncovering the molecular networks in periodontitis. Proteomics Clin Appl 2014; 8:748-61. [PMID: 24828325 DOI: 10.1002/prca.201400028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/16/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
Periodontitis is a complex immune-inflammatory disease that results from a preestablished infection in gingiva, mainly due to Gram-negative bacteria that colonize deeper in gingival sulcus and latter periodontal pocket. Host inflammatory and immune responses have both protective and destructive roles. Although cytokines, prostaglandins, and proteases struggle against microbial burden, these molecules promote connective tissue loss and alveolar bone resorption, leading to several histopathological changes, namely destruction of periodontal ligament, deepening of periodontal pocket, and bone loss, which can converge to attain tooth loss. Despite the efforts of genomics, transcriptomics, proteomics/peptidomics, and metabolomics, there is no available biomarker for periodontitis diagnosis, prognosis, and treatment evaluation, which could assist on the established clinical evaluation. Nevertheless, some genes, transcripts, proteins and metabolites have already shown a different expression in healthy subjects and in patients. Though, so far, 'omics approaches only disclosed the host inflammatory response as a consequence of microbial invasion in periodontitis and the diagnosis in periodontitis still relies on clinical parameters, thus a molecular tool for assessing periodontitis lacks in current dental medicine paradigm. Saliva and gingival crevicular fluid have been attracting researchers due to their diagnostic potential, ease, and noninvasive nature of collection. Each one of these fluids has some advantages and disadvantages that are discussed in this review.
Collapse
Affiliation(s)
- Fábio Trindade
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
18
|
Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 2014; 26:781-91. [PMID: 24092855 DOI: 10.1128/cmr.00021-13] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pursuit of timely, cost-effective, accurate, and noninvasive diagnostic methodologies is an endeavor of urgency among clinicians and scientists alike. Detecting pathologies at their earliest stages can significantly affect patient discomfort, prognosis, therapeutic intervention, survival rates, and recurrence. Diagnosis and monitoring often require painful invasive procedures such as biopsies and repeated blood draws, adding undue stress to an already unpleasant experience. The discovery of saliva-based microbial, immunologic, and molecular biomarkers offers unique opportunities to bypass these measures by utilizing oral fluids to evaluate the condition of both healthy and diseased individuals. Here we discuss saliva and its significance as a source of indicators for local, systemic, and infectious disorders. We highlight contemporary innovations and explore recent discoveries that deem saliva a mediator of the body's physiological condition. Additionally, we examine the current state of salivary diagnostics and its associated technologies, future aspirations, and potential as the preferred route of disease detection, monitoring, and prognosis.
Collapse
|
19
|
Abstract
Periodontitis is an infectious disease that affects the tooth-supporting tissues and exhibits a wide range of clinical, microbiological and immunological manifestations. The disease is associated with and is probably caused by a multifaceted dynamic interaction of specific infectious agents, host immune responses, harmful environmental exposure and genetic susceptibility factors. This volume of Periodontology 2000 covers key subdisciplines of periodontology, ranging from etiopathogeny to therapy, with emphasis on diagnosis, classification, epidemiology, risk factors, microbiology, immunology, systemic complications, anti-infective therapy, reparative treatment, self-care and affordability issues. Learned and unlearned concepts of periodontitis over the past 50 years have shaped our current understanding of the etiology of the disease and of clinical practice.
Collapse
|
20
|
Abstract
Periodontitis is a complex infectious disease that affects low-income individuals disproportionately. Periodontitis is associated with specific bacterial species and herpesviruses, and successful prevention and treatment of the disease is contingent upon effective control of these pathogens. This article presents an efficacious, highly safe, minimally invasive, practical and low-cost periodontal therapy that involves professional and patient-administered mechanical therapy and antimicrobial agents. The major components are scaling for calculus removal, periodontal pocket irrigation with potent antiseptics, and treatment with systemic antibiotics for advanced disease. Povidone-iodine and sodium hypochlorite have all the characteristics for becoming the first-choice antiseptics in the management of periodontal diseases. Both agents show excellent antibacterial and antiviral properties, are readily available throughout the world, have been safely used in periodontal therapy for decades, offer significant benefits for individuals with very limited financial resources, and are well accepted by most dental professionals and patients. Four per cent chlorhexidine applied with a toothbrush to the most posterior part to the tongue dorsum can markedly reduce or eliminate halitosis in most individuals. Systemic antibiotics are used to treat periodontopathic bacteria that are not readily reached by topical therapy, such as pathogens within gingival tissue, within furcation defects, at the base of periodontal pockets, and on the tongue, tonsils and buccal mucosae. Valuable antibiotic therapies are amoxicillin-metronidazole (250 mg of amoxicillin and 250 mg of metronidazole, three times daily for 8 days) for young and middle-aged patients, and ciprofloxacin-metronidazole (500 mg of each, twice daily for 8 days) for elderly patients and for patients in developing countries who frequently harbor enteric rods subgingivally. Scaling to remove dental calculus and the prudent use of inexpensive antimicrobial agents can significantly retard or arrest progressive periodontitis in the great majority of patients.
Collapse
|
21
|
Biogeography of the ecosystems of the healthy human body. Genome Biol 2013; 14:R1. [PMID: 23316946 PMCID: PMC4054670 DOI: 10.1186/gb-2013-14-1-r1] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/14/2013] [Indexed: 12/25/2022] Open
Abstract
Background Characterizing the biogeography of the microbiome of healthy humans is essential for understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats from 279 healthy humans. Results We identified 929 genera from more than 24 million 16S rRNA gene sequences of 22 habitats, and we provide a baseline of inter-subject variation for healthy adults. The oral habitat has the most stable microbiota with the highest alpha diversity, while the skin and vaginal microbiota are less stable and show lower alpha diversity. The level of biodiversity in one habitat is independent of the biodiversity of other habitats in the same individual. The abundances of a given genus at a body site in which it dominates do not correlate with the abundances at body sites where it is not dominant. Additionally, we observed the human microbiota exhibit both cosmopolitan and endemic features. Finally, comparing datasets of different projects revealed a project-based clustering pattern, emphasizing the significance of standardization of metagenomic studies. Conclusions The data presented here extend the definition of the human microbiome by providing a more complete and accurate picture of human microbiome biogeography, addressing questions best answered by a large dataset of subjects and body sites that are deeply sampled by sequencing.
Collapse
|
22
|
Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 2012; 23:399-404. [PMID: 22271008 PMCID: PMC3767140 DOI: 10.1007/s10552-011-9892-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/21/2011] [Indexed: 12/15/2022]
Abstract
A growing body of evidence implicates human oral bacteria in the etiology of oral and gastrointestinal cancers. Epidemiological studies consistently report increased risks of these cancers in men and women with periodontal disease or tooth loss, conditions caused by oral bacteria. More than 700 bacterial species inhabit the oral cavity, including at least 11 bacterial phyla and 70 genera. Oral bacteria may activate alcohol and smoking-related carcinogens locally or act systemically, through chronic inflammation. High-throughput genetic-based assays now make it possible to comprehensively survey the human oral microbiome, the totality of bacteria in the oral cavity. Establishing the association of the oral microbiome with cancer risk may lead to significant advances in understanding of cancer etiology, potentially opening a new research paradigm for cancer prevention.
Collapse
Affiliation(s)
- Jiyoung Ahn
- Division of Epidemiology, Department of Environmental Medicine, NYU School of Medicine, 650 First Ave, New York, NY 10016, USA
| | - Calvin Y. Chen
- Division of Epidemiology, Department of Environmental Medicine, NYU School of Medicine, 650 First Ave, New York, NY 10016, USA
| | - Richard B. Hayes
- Division of Epidemiology, Department of Environmental Medicine, NYU School of Medicine, 650 First Ave, New York, NY 10016, USA
| |
Collapse
|
23
|
MALDI-typing of infectious algae of the genus Prototheca using SOM portraits. J Microbiol Methods 2012; 88:83-97. [DOI: 10.1016/j.mimet.2011.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 01/13/2023]
|
24
|
Grant MM. What do 'omic technologies have to offer periodontal clinical practice in the future? J Periodontal Res 2011; 47:2-14. [PMID: 21679186 DOI: 10.1111/j.1600-0765.2011.01387.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal diseases are the most common chronic inflammatory diseases of humans and a major cause of tooth loss. Inflammatory periodontitis is also a complex multifactorial disease involving many cell types, cell products and interactions. It is associated with a dysregulated inflammatory response, which fails to resolve, and which also fails to re-establish a beneficial periodontal microbiota. There is a rich history of biomarker research within the field of periodontology, but exemplary improvements in analytical platform technologies offer exciting opportunities for discovery. These include the 'omic technologies, such as genomics, transcriptomics, proteomics and metabolomics, which provide information on global scales that can match the complexity of the disease. This narrative review focuses on the recent advances made in in vivo human periodontal research by use of 'omic technologies. MATERIAL AND METHODS The Medline database was searched to identify articles currently available on 'omic technologies with regard to periodontal research. RESULTS One hundred and sixty-one articles focusing on biomarkers of and 'omic advances in periodontal research were analysed for their contributions to the understanding of periodontal diseases. CONCLUSION The data generated by the use of 'omic technologies have huge potential to inform paradigm shifts in our understanding of periodontal diseases, but data management, analysis and interpretation require a thoughtful and systematic bioinformatics approach, to ensure meaningful conclusions can be made.
Collapse
Affiliation(s)
- M M Grant
- Periodontal Research Group, School of Dentistry, University of Birmingham, St Chad's Queensway, Birmingham, UK.
| |
Collapse
|
25
|
Saygun I, Nizam N, Keskiner I, Bal V, Kubar A, Açıkel C, Serdar M, Slots J. Salivary infectious agents and periodontal disease status. J Periodontal Res 2011; 46:235-9. [PMID: 21261620 DOI: 10.1111/j.1600-0765.2010.01335.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES The potential of salivary microorganisms to diagnose periodontal disease and to guide periodontal treatment is a research topic of current interest. This study aimed to determine whether the salivary counts of periodontopathic microbes correlated with the periodontal pocket counts of the same infectious agents, and whether the salivary counts of the test infectious agents could distinguish among individuals with periodontal health and various types of periodontal disease. MATERIAL AND METHODS The study included 150 systemically healthy adults, of whom 37 were periodontally healthy, 31 had gingivitis, 46 had chronic periodontitis and 36 had aggressive periodontitis. Each study subject contributed microbial samples from the two deepest periodontal pockets of the dentition and from whole saliva. Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia and Epstein-Barr virus were identified using the TaqMan real-time PCR methodology. Statistical analysis was performed using the Mann-Whitney U-test and the receiver operating characteristic statistics. RESULTS C. rectus, F. nucleatum, P. gingivalis, P. intermedia and T. forsythia occurred with significantly higher copy-counts in salivary samples from patients with gingivitis, chronic periodontitis and aggressive periodontitis than from periodontally healthy individuals. A. actinomycetemcomitans only showed higher salivary copy-counts in subjects with aggressive periodontitis compared with subjects with healthy periodontium, and the salivary copy-counts of Epstein-Barr virus did not reveal any significant difference among the four subject groups studied. The diagnostic sensitivity for periodontitis was 89.19 for P. gingivalis and for T. forsythia and 86.49 for P. intermedia, with specificities ranging from 83.78 to 94.59. The optimal copy-counts per mL saliva for identifying periodontitis were 40,000 for P. gingivalis, 700,000 for T. forsythia and 910,000 for P. intermedia. CONCLUSION Salivary copy-counts of P. gingivalis, T. forsythia and P. intermedia appear to have the potential to identify the presence of periodontitis, whereas the salivary level of the other test infectious agents may possess little or no diagnostic utility. Longitudinal studies are warranted to determine the ability of salivary copy-counts of major periodontopathic bacteria to predict future periodontal breakdown.
Collapse
Affiliation(s)
- I Saygun
- Department of Periodontology, Gülhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|