1
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Hathaway-Schrader JD, Aartun JD, Poulides NA, Kuhn MB, McCormick BE, Chew ME, Huang E, Darveau RP, Westwater C, Novince CM. Commensal oral microbiota induces osteoimmunomodulatory effects separate from systemic microbiome in mice. JCI Insight 2022; 7:140738. [PMID: 35077397 PMCID: PMC8876522 DOI: 10.1172/jci.insight.140738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Commensal microbes critically regulate skeletal homeostasis, yet the impact of specific microbiota communities on osteoimmune response mechanisms is unknown. To discern osteoimmunomodulatory effects imparted by the commensal oral microbiota that are distinct from the systemic microbiota, osteoimmunology studies were performed in both alveolar bone and nonoral skeletal sites of specific pathogen–free (SPF) versus germ-free (GF) mice and SPF mice subjected to saline versus chlorhexidine oral rinses. SPF versus GF mice had reduced cortical/trabecular bone and an enhanced pro-osteoclastic phenotype in alveolar bone. TLR signaling and Th17 cells that have known pro-osteoclastic actions were increased in alveolar BM, but not long BM, of SPF versus GF mice. MHC II antigen presentation genes and activated DCs and CD4+ T cells were elevated in alveolar BM, but not long BM, of SPF versus GF mice. These findings were substantiated by in vitro allostimulation studies demonstrating increased activated DCs derived from alveolar BM, but not long BM, of SPF versus GF mice. Chlorhexidine antiseptic rinse depleted the oral, but not gut, bacteriome in SPF mice. Findings from saline- versus chlorhexidine-treated SPF mice corroborated outcomes from SPF versus GF mice, which reveals that the commensal oral microbiota imparts osteoimmunomodulatory effects separate from the systemic microbiome.
Collapse
Affiliation(s)
- Jessica D. Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Pediatrics-Division of Endocrinology, College of Medicine, and
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | | | | | - Megan B. Kuhn
- Department of Oral Health Sciences, College of Dental Medicine
| | | | - Michael E. Chew
- Department of Oral Health Sciences, College of Dental Medicine
| | - Emily Huang
- Department of Oral Health Sciences, College of Dental Medicine
| | - Richard P. Darveau
- Department of Periodontics, School of Dentistry, and
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Microbiology and Immunology, Hollings Cancer Center, MUSC, Charleston, South Carolina, USA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Pediatrics-Division of Endocrinology, College of Medicine, and
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| |
Collapse
|
4
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Kozak M, Dabrowska-Zamojcin E, Mazurek-Mochol M, Pawlik A. Cytokines and Their Genetic Polymorphisms Related to Periodontal Disease. J Clin Med 2020; 9:E4045. [PMID: 33327639 PMCID: PMC7765090 DOI: 10.3390/jcm9124045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory disease caused by the accumulation of bacterial plaque biofilm on the teeth and the host immune responses. PD pathogenesis is complex and includes genetic, environmental, and autoimmune factors. Numerous studies have suggested that the connection of genetic and environmental factors induces the disease process leading to a response by both T cells and B cells and the increased synthesis of pro-inflammatory mediators such as cytokines. Many studies have shown that pro-inflammatory cytokines play a significant role in the pathogenesis of PD. The studies have also indicated that single nucleotide polymorphisms (SNPs) in cytokine genes may be associated with risk and severity of PD. In this narrative review, we discuss the role of selected cytokines and their gene polymorphisms in the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Małgorzata Kozak
- Chair and Department of Dental Prosthetics, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| | - Ewa Dabrowska-Zamojcin
- Department of Pharmacology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| | - Małgorzata Mazurek-Mochol
- Department of Periodontology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
7
|
Rios-Arce ND, Dagenais A, Feenstra D, Coughlin B, Kang HJ, Mohr S, McCabe LR, Parameswaran N. Loss of interleukin-10 exacerbates early Type-1 diabetes-induced bone loss. J Cell Physiol 2020; 235:2350-2365. [PMID: 31538345 PMCID: PMC6899206 DOI: 10.1002/jcp.29141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Andrew Dagenais
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Derrick Feenstra
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brandon Coughlin
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| |
Collapse
|
8
|
Clinical endodontic procedures modulate periapical cytokine and chemokine gene expressions. Clin Oral Investig 2020; 24:3691-3697. [DOI: 10.1007/s00784-020-03247-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/16/2020] [Indexed: 10/24/2022]
|
9
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
10
|
Varón-González C, Pallares LF, Debat V, Navarro N. Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci. Front Genet 2019; 10:64. [PMID: 30809244 PMCID: PMC6379267 DOI: 10.3389/fgene.2019.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of skull shape has been extensively studied in mice and the results suggest a highly polygenic and additive basis. In contrast few studies have explored the genetic basis of the skull variability. Canalization and developmental stability are the two components of phenotypic robustness. They have been proposed to be emergent properties of the genetic networks underlying the development of the trait itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice to investigate the genetic architecture of canalization of the skull shape by implementing a genome-wide marginal epistatic test on 3D geometric morphometric data. The same data set had been used previously to explore the genetic architecture of the skull mean shape and its developmental stability. Here, we address two questions: (1) Are changes in mean shape and changes in shape variance associated with the same genomic regions? and (2) Do canalization and developmental stability rely on the same loci and genetic architecture and do they involve the same patterns of shape variation? We found that unlike skull mean shape, among-individual shape variance and fluctuating asymmetry (FA) show a total lack of additive effects. They are both associated with complex networks of epistatic interactions involving many genes (protein-coding and regulatory elements). Remarkably, none of the genomic loci affecting mean shape contribute these networks despite their enrichment for genes involved in craniofacial variation and diseases. We also found that the patterns of shape FA and individual variation are largely similar and rely on similar multilocus epistatic genetic networks, suggesting that the processes channeling variation within and among individuals are largely common. However, the loci involved in these two networks are completely different. This in turn underlines the difference in the origin of the variation at these two levels, and points at buffering processes that may be specific to each level.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Dijon, France
| |
Collapse
|
11
|
Cardoso EM, Arosa FA. CD8 + T Cells in Chronic Periodontitis: Roles and Rules. Front Immunol 2017; 8:145. [PMID: 28270813 PMCID: PMC5318426 DOI: 10.3389/fimmu.2017.00145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| |
Collapse
|
12
|
Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontol 2000 2017; 68:66-82. [PMID: 25867980 DOI: 10.1111/prd.12052] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals.
Collapse
|
13
|
Estrela C, Freitas Silva BS, Silva JA, Yamamoto-Silva FP, Pinto-Júnior DDS, Gomez RS. Stem Cell Marker Expression in Persistent Apical Periodontitis. J Endod 2016; 43:63-68. [PMID: 27847139 DOI: 10.1016/j.joen.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/22/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION This study evaluated the expression of CD90 (mesenchymal stem cell) and Sox2 (progenitor stem cell) markers in persistent apical periodontitis (PAP) (n = 16) and primary periapical lesions (PPLs) (n = 10). METHODS All samples were classified histologically according to the intensity of inflammatory cell infiltrate in the periapical lesion. Immunohistochemistry was used to detect CD90 and Sox2 in PAP and PPLs. The Spearman correlation coefficient and the Mann-Whitney U test were used to analyze data at the 5% significance level. RESULTS CD90 expression was found in mesenchymal cells and vascular endothelial cells of 68.5% of all cases of PAP. There was no correlation between CD90 expression and histopathological diagnosis (P = .053) or inflammatory cell infiltrate intensity (P = .112). CD90 staining was predominantly found in the vascular endothelial cells of 30% (n = 3) of PPLs. CD90 expression was significantly higher in PAP than in PPLs (Mann-Whitney U test, P < .05). Sox2 expression was found in all cases of PAP. Eventually, all mesenchymal and chronic inflammatory cells exhibited Sox2 expression. There was no correlation between Sox2 expression and histopathological diagnoses (P = .749), inflammatory cell infiltrate intensity (P = .510), or acute or chronic inflammatory cell infiltrate (P = .256). Sox2 expression was found in 100% of PPLs. There was no difference in Sox2 expression between PAP and PPLs (P = .477). CONCLUSIONS Mesenchymal stem cells may contribute to the immunosuppressive environment in PAP. Additionally, distinct stem cell sources may be associated with the chronic nature of PAP as well as with the development of PPLs.
Collapse
Affiliation(s)
- Carlos Estrela
- Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil.
| | | | - Júlio A Silva
- Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda P Yamamoto-Silva
- Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | | | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Estrela C, Decurcio DDA, Silva JA, Batista AC, de Souza Lima NC, de Freitas Silva BS, de Souza JAC, Souza Costa CA. Immune-Inflammatory Cell Profile and Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin Expression in Persistent Apical Periodontitis after Root Canal Retreatment Failure. J Endod 2016; 42:439-46. [DOI: 10.1016/j.joen.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 11/15/2022]
|
15
|
Inflammation Biomarkers of Advanced Disease in Nongingival Tissues of Chronic Periodontitis Patients. Mediators Inflamm 2015; 2015:983782. [PMID: 26063981 PMCID: PMC4439505 DOI: 10.1155/2015/983782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 01/13/2023] Open
Abstract
Chronic periodontitis is a multifactorial inflammatory disease that affects supporting structures of the teeth. Although the gingival response is largely described, little is known about the immune changes in the alveolar bone and neighboring tissues that could indicate periodontal disease (PD) activity. Then, in this study we identified the ongoing inflammatory changes and novel biomarkers for periodontitis in the tissues directly affected by the destructive disease in PD patients. Samples were collected by osteotomy in 17 control subjects during extraction of third molars and 18 patients with advanced PD, in which alveoloplasty was necessary after extraction of teeth with previous extensive periodontal damage. Patients presented mononuclear cells infiltration in the connective tissue next to the bone and higher fibrosis area, along with increased accumulation of IL-17+ and TRAP+ cells. The levels of TNF-α and MMP-2 mRNA were also elevated compared to controls and a positive and significant correlation was observed between TNF-α and MMP-2 mRNA expression, considering all samples evaluated. In conclusion, nongingival tissues neighboring large periodontal pockets present inflammatory markers that could predict ongoing bone resorption and disease spreading. Therefore, we suggested that the detailed evaluation of these regions could be of great importance to the assessment of disease progression.
Collapse
|
16
|
Okui T, Aoki-Nonaka Y, Nakajima T, Yamazaki K. The Role of Distinct T Cell Subsets in Periodontitis—Studies from Humans and Rodent Models. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40496-014-0013-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Huang S, Huang Q, Huang B, Lu F. The effect of Scutellaria baicalensis Georgi on immune response in mouse model of experimental periodontitis. J Dent Sci 2013. [DOI: 10.1016/j.jds.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Hu Y, Ek-Rylander B, Wendel M, Andersson G. Reciprocal effects of Interferon-γ and IL-4 on differentiation to osteoclast-like cells by RANKL or LPS. Oral Dis 2013; 20:682-92. [PMID: 24118341 DOI: 10.1111/odi.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 01/25/2023]
Abstract
OBJECTIVE LPS can induce differentiation to osteoclast-like cells independent of RANKL. In comparison with RANKL, the effects of Th1 and Th2 cytokines on LPS-induced osteoclastogenesis have not been extensively studied. In this study, we investigated the effects of IFN-γ and IL-4 on RANKL- or LPS-induced osteoclastogenesis. MATERIALS AND METHODS RAW 264.7 cells were induced to differentiate into osteoclast-like cells by RANKL or LPS, in the absence or presence of IFN-γ or IL-4. The number of TRAP-positive, multinucleated (≥ 3 nuclei) cells (MNCs) was counted. mRNA and protein levels of TRAP and cathepsin K were determined by quantitative RT-PCR and Western immunoblot, respectively. Expression of other genes implicated in osteoclast and macrophage differentiation and inflammation was also quantitated and was subsequently assessed in bone marrow-derived macrophages (BMMs). Phagocytic capacity of differentiated RAW264.7 was investigated by the uptake of pHrodo S. aureus bioparticles conjugates. RESULTS In contrast to the RANKL-treated cell population that gained more macrophage-like properties at the level of gene and protein expression as well as phagocytosis in the presence of IFN-γ or IL-4, the LPS-induced population gained more osteoclast-like properties by the addition of the same factors. CONCLUSION These data suggest that the adaptive immune system, through either Th1 or Th2 cytokines, is able to modify the differentiation process of osteoclasts in inflammatory situations. Moreover, the study provides an example of different regulation of osteoclast differentiation during physiological and inflammatory conditions.
Collapse
Affiliation(s)
- Y Hu
- Institution of Dental Medicine, Qilu Hospital, Shandong University, Jinan, China; Department of Dental Medicine, Division of Oral Biology, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
19
|
WU LIZHENG, DUAN DUOMO, LIU YINGFENG, GE XIN, ZHOU ZHIFEI, WANG XIAOJING. Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4+ T cells by upregulating IL-1β. Int J Mol Med 2013; 31:938-42. [DOI: 10.3892/ijmm.2013.1259] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022] Open
|
20
|
de Brito LCN, Fonseca Teles FR, Teles RP, Totola AH, Vieira LQ, Ribeiro Sobrinho AP. T-Lymphocyte and Cytokine Expression in Human Inflammatory Periapical Lesions. J Endod 2012; 38:481-5. [DOI: 10.1016/j.joen.2011.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
21
|
Abstract
Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.
Collapse
|
22
|
Holla LI, Hrdlickova B, Linhartova P, Fassmann A. Interferon-γ +874A/T polymorphism in relation to generalized chronic periodontitis and the presence of periodontopathic bacteria. Arch Oral Biol 2010; 56:153-8. [PMID: 20932510 DOI: 10.1016/j.archoralbio.2010.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Interferon gamma (IFN-γ) is one of the key regulatory cytokines that has a significant effect on immune responses. It may be important in the chronic inflammatory diseases such as periodontitis in which increased IFN-γ levels were found. The aim of this study was to analyze +874A/T polymorphism in the IFN-γ gene and its associations with the presence of periodontopathic bacteria and susceptibility to generalized chronic periodontitis (CP). METHODS A total of 498 unrelated Czech white subjects were included in the present study. Genomic DNA was obtained from the peripheral blood of 244 patients with CP and 254 healthy subjects. The IFN-γ +874A/T polymorphism was determined by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Subgingival bacterial colonization (A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythia, T. denticola, P. micros, F. nucleatum in subgingival pockets) was investigated by the DNA-microarray based periodontal pathogen detection kit in a subgroup of subjects (N=110). RESULTS Our results showed no differences in the allele and genotype frequencies of the IFN-γ +874A/T polymorphism between patients with CP and controls (P>0.05). Although we found significant differences in the occurrence of periodontal bacteria between patients with CP and healthy controls (from P<0.00001 to P<0.05), no significant association between IFN-γ +874A/T polymorphism and periodontal pathogens was observed in any group. CONCLUSIONS In conclusion, these findings indicate that putative functional variant in the IFN-γ is not associated with susceptibility to chronic periodontitis or microbial composition in the Czech population.
Collapse
Affiliation(s)
- L Izakovicova Holla
- Clinic of Stomatology, Faculty of Medicine, Masaryk University Brno and St. Anne's University Hospital Brno, Czech Republic.
| | | | | | | |
Collapse
|
23
|
Choi JI, Seymour GJ. Vaccines against periodontitis: a forward-looking review. J Periodontal Implant Sci 2010; 40:153-63. [PMID: 20827324 PMCID: PMC2931303 DOI: 10.5051/jpis.2010.40.4.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/02/2010] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease, as a polymicrobial disease, is globally endemic as well as being a global epidemic. It is the leading cause for tooth loss in the adult population and has been positively related to life-threatening systemic diseases such as atherosclerosis and diabetes. As a result, it is clear that more sophisticated therapeutic modalities need to be developed, which may include vaccines. Up to now, however, no periodontal vaccine trial has been successful in satisfying all the requirements; to prevent the colonization of a multiple pathogenic biofilm in the subgingival area, to elicit a high level of effector molecules such as immunoglobulin sufficient to opsonize and phagocytose the invading organisms, to suppress the induced alveolar bone loss, or to stimulate helper T-cell polarization that exerts cytokine functions optimal for protection against bacteria and tissue destruction. This article reviews all the vaccine trials so as to construct a more sophisticated strategy which may be relevant in the future. As an innovative strategy to circumvent these barriers, vaccine trials to stimulate antigen-specific T-cells polarized toward helper T-cells with a regulatory phenotype (Tregs, CD4+, CD25+, FoxP3+) have also been introduced. Targeting not only a single pathogen, but polymicrobial organisms, and targeting not only periodontal disease, but also periodontal disease-triggered systemic disease could be a feasible goal.
Collapse
Affiliation(s)
- Jeom-Il Choi
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | | |
Collapse
|
24
|
Claudino M, Garlet TP, Cardoso CRB, de Assis GF, Taga R, Cunha FQ, Silva JS, Garlet GP. Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice. Eur J Oral Sci 2010; 118:19-28. [DOI: 10.1111/j.1600-0722.2009.00706.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Roskamp L, Westphalen VPD, Lima JHC, Carneiro E, Fariniuk LF, Silva Neto UX, Westphalen FH. The influence of atopy in the prognosis of the replantation of avulsed teeth. J Periodontol 2009; 80:1121-4. [PMID: 19563292 DOI: 10.1902/jop.2009.090019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Replantation is the most indicated procedure for traumatic dental avulsion, but it invariably results in a greater or lower degree of root resorption. The outcomes of these cases can be affected by some well-known factors. Because studies have shown the importance of the innate and acquired immune response in the mechanisms involved in the resorption of bone tissues, an endeavor was made to verify if such an influence applies to dental resorption. METHODS Fifty-seven avulsed, endodontically treated teeth were assessed in the Endodontics Clinic, Pontifical Catholic University of Paraná. Follow-up of the replanted teeth included periodical clinical examinations and radiographs, in accordance with the control rules of the International Association of Dental Traumatology. The evaluation of atopy was based on the patient's personal and family history in conjunction with the skin-prick test for five allergen extracts. RESULTS Of the 46 teeth with a favorable outcome, 33 (71.74%) were in atopic patients, and 13 (28.26%) were in non-atopic patients. Of the 11 teeth with an unfavorable outcome, four (36.36%) were in atopic patients, and seven (63.64%) were in non-atopic patients; a greater prevalence of unfavorable prognoses occurred in non-atopic patients. CONCLUSION The outcome after 1 year for avulsed and replanted teeth is more favorable in atopic patients.
Collapse
Affiliation(s)
- Liliane Roskamp
- Department of Endontics, Faculty of Dentistry, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND AND OBJECTIVE Chronic inflammatory bowel disease (IBD) demonstrates some similarities to the dysregulated chronic immunoinflammatory lesion of periodontitis. Trinitrobenzene sulphonic acid (TNBS) and dextran sodium sulphate (DSS) administered to rodents have been shown to elicit inflammatory responses that undermine the integrity of the gut epithelium in a similar manner to IBD in humans. The objective of this study was to evaluate the ability of these chemicals to elicit periodontal inflammation as a novel model for alveolar bone loss. MATERIAL AND METHODS Mice were treated by oral application of TNBS twice a week, or with DSS in the diet over a period of 18 weeks. Alveolar bone loss was assessed on the defleshed skull using morphometric measures for area of bone resorption. RESULTS The TNBS-treated animals tolerated oral administration with no clinical symptoms and gained weight at a similar rate to normal control animals. In contrast, DSS exerted a systemic response, including shortening of colonic tissue and liver enzyme changes. Both TNBS and DSS caused a localized action on periodontal tissues, with alveolar bone loss observed in both maxilla and mandibles, with progression in a time-dependent manner. Bone loss was detected as early as week 7, with more severe periodontitis increasing over the 18 weeks (p < 0.001). Young (7-month-old) and old (12-month-old) mice with severe combined immunodeficiency were treated with TNBS for a period of 7 weeks and did not develop significant bone loss. CONCLUSION These data show that oral administration of TNBS or DSS provokes alveolar bone loss in concert with the autochthonous oral microbiota.
Collapse
Affiliation(s)
- H S Oz
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
27
|
Ozaki Y, Ukai T, Yamaguchi M, Yokoyama M, Haro ERA, Yoshimoto M, Kaneko T, Yoshinaga M, Nakamura H, Shiraishi C, Hara Y. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption. Bone 2009; 44:1169-76. [PMID: 19437611 DOI: 10.1016/j.bone.2009.01.375] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T cells play important roles in bone destruction and osteoclastogenesis and are found in chronic destructive bone lesions. Lipopolysaccharide (LPS) is one of several pathological factors involved in inflammatory bone destruction. We previously described the importance of T cells in the inflammatory bone resorption that occurs after repeated LPS administration. However, whether local or systemic T cells are important for inflammatory bone resorption and whether immunization of host animals influences bone resorption remain unclear. The present study examines the effects of local extant T cells from LPS-immunized mice on LPS-induced bone resorption. T cells from LPS-immunized or non-immunized mice were injected together with LPS into the gingival tissues of mice with severe combined immunodeficiency disease that lack both T and B cells. We histomorphometrically evaluated bone resorption at sites of T cell injections and examined the influence of T cells from LPS-immunized mice on osteoclastogenesis in vitro. We found that locally administered T cells from LPS-immunized but not non-immunized mice accelerated LPS-induced bone resorption in vivo. Moreover, T cells from LPS-immunized mice increased osteoclastogenesis in vitro induced by receptor activator of NF-kappa B ligand and LPS and anti-tumor necrosis factor (TNF)-alpha antibody inhibited this increase. These results demonstrated that local extant T cells accelerate inflammatory bone resorption. Furthermore, T cells from LPS-immunized mice appear to elevate LPS-induced bone resorption using TNF-alpha.
Collapse
Affiliation(s)
- Yukio Ozaki
- Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fukada SY, Silva TA, Garlet GP, Rosa AL, da Silva JS, Cunha FQ. Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases. ACTA ACUST UNITED AC 2009; 24:25-31. [DOI: 10.1111/j.1399-302x.2008.00469.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Trombone APF, Ferreira SB, Raimundo FM, de Moura KCR, Avila-Campos MJ, Silva JS, Campanelli AP, De Franco M, Garlet GP. Experimental periodontitis in mice selected for maximal or minimal inflammatory reactions: increased inflammatory immune responsiveness drives increased alveolar bone loss without enhancing the control of periodontal infection. J Periodontal Res 2008; 44:443-51. [PMID: 18973535 DOI: 10.1111/j.1600-0765.2008.01133.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Inflammatory immune reactions that occur in response to periodontopathogens are thought to protect the host against infection, but may trigger periodontal destruction. However, the molecular and genetic mechanisms underlying host susceptibility to periodontal infection and to periodontitis development have still not been established in detail. MATERIAL AND METHODS In this study, we examined the mechanisms that modulate the outcome of Aggregatibacter (Actinobacillus) actinomycetemcomitans-induced periodontal disease in mice mouse strains selected for maximal (AIRmax) or minimal (AIRmin) inflammatory reactions. RESULTS Our results showed that AIRmax mice developed a more severe periodontitis than AIRmin mice in response to A. actinomycetemcomitans infection, and this periodontitis was characterized by increased alveolar bone loss and inflammatory cell migration to periodontal tissues. In addition, enzyme-linked immunosorbent assays demonstrated that the levels of the cytokines interleukin-1beta, tumor necrosis factor-alpha and interleukin-17 were higher in AIRmax mice, as were the levels of matrix metalloproteinase (MMP)-2, MMP-13 and receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA levels. However, the more intense inflammatory immune reaction raised by the AIRmax strain, in spite of the higher levels of antimicrobial mediators myeloperoxidase and inducible nitric oxide synthase, did not enhance the protective immunity to A. actinomycetemcomitans infection, because both AIRmax and AIRmin strains presented similar bacterial loads in periodontal tissues. In addition, the AIRmax strain presented a trend towards higher levels of serum C-reactive protein during the course of disease. CONCLUSION Our results demonstrate that the intensity of the inflammatory immune reaction is associated with the severity of experimental periodontitis, but not with the control of A. actinomycetemcomitans periodontal infection, suggesting that the occurrence of hyperinflammatory genotypes may not be an evolutionary advantage in the complex host-pathogen interaction observed in periodontal diseases.
Collapse
Affiliation(s)
- A P F Trombone
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, FMRP/USP, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gaffen SL, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res 2008; 87:817-28. [PMID: 18719207 PMCID: PMC2692983 DOI: 10.1177/154405910808700908] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For almost two decades, the Th1/Th2 paradigm has offered a productive conceptual framework for investigating the pathogenesis of periodontitis. However, as with many other inflammatory diseases, the observed role of T-cell-mediated immunity in periodontitis did not readily fit this model. A new subset of CD4+ T-cells was recently discovered that explains many of the discrepancies in the classic Th1/Th2 model, and has been termed "Th17" based on its secretion of the novel pro-inflammatory cytokine IL-17. The identification of Th17 cells as a novel effector T-cell population compels re-examination of periodontitis in the context of the new subset and its signature cytokines. This review aims to offer a clarifying insight into periodontal pathogenesis under the extended Th1/Th2/Th17 paradigm, and is predicated on the principle that periodontal disease activity is determined by a complex interplay between the immune system and periodontal pathogens. The re-examination of existing periodontal literature and further studies in the light of these new discoveries may help explain how the inflammatory response results in damage to the periodontium while generally failing to control the pathogens. This knowledge is essential for the development of immunomodulatory intervention strategies for fine-tuning the host response to maximize the protective and minimize the destructive aspects of the periodontal host response. Moreover, with the advent of anti-cytokine biologic drugs that target the Th1 and Th17 pathways in autoimmunity, the potential consequences to periodontal disease susceptibility in humans need to be understood.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Oral Biology, School of Dental Medicine, 36 Foster Hall, 3435 Main St., State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
31
|
Reichert S, Machulla HK, Klapproth J, Zimmermann U, Reichert Y, Gläser C, Schaller HG, Schulz S. Interferon-Gamma and Interleukin-12 Gene Polymorphisms and Their Relation to Aggressive and Chronic Periodontitis and Key Periodontal Pathogens. J Periodontol 2008; 79:1434-43. [DOI: 10.1902/jop.2008.070637] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Yamaguchi M, Ukai T, Kaneko T, Yoshinaga M, Yokoyama M, Ozaki Y, Hara Y. T cells are able to promote lipopolysaccharide-induced bone resorption in mice in the absence of B cells. J Periodontal Res 2008; 43:549-55. [PMID: 18624940 DOI: 10.1111/j.1600-0765.2008.01083.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE T cells and their cytokines are believed to be key factors in periodontal disease and bone resorption. We previously showed that T cells transferred to nude mice were related to inflammatory bone resorption in vivo. However, it has not been clarified whether T cells can induce bone resorption in the absence of B cells. In this study, we therefore investigated the ability of T cells to induce bone resorption without B cells, using both T cell- and B cell-deficient mice with severe combined immune deficiency (SCID). MATERIAL AND METHODS Escherichia coli lipopolysaccharide (LPS) was injected into the gingivae of SCID mice reconstituted by T cells (SCID + T mice). Wild-type C.B-17 mice and SCID mice were used as control animals. Alveolar bone resorption and production of cytokines in the gingivae were then compared histopathologically and immunohistologically. RESULTS The degree of bone resorption in SCID + T mice was significantly greater than that in SCID mice but less than that in wild-type mice. The same tendency was found for expression of receptor activator of nuclear factor kappaB ligand. The number of interferon-gamma-positive cells in SCID + T mice was the highest of the three groups. In contrast, interleukin-4-positive cells were detected in wild-type mice but not in SCID + T and SCID mice. CONCLUSION The results suggest that T cells are able to promote LPS-induced bone resorption in the absence of B cells. The expressions of cytokines in the presence of B cells are quite different.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Interleukin-4 and interleukin-13 stimulate the osteoclast inhibitor osteoprotegerin by human endothelial cells through the STAT6 pathway. J Bone Miner Res 2008; 23:750-8. [PMID: 18251702 DOI: 10.1359/jbmr.080203] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Endothelial cells of the bone vasculature modulate development, remodeling, and repair of bone by secreting osteotropic cytokines and hormones, which can act on osteoblastic and osteoclastic lineage cells. RANKL is the essential factor for differentiation, activation, and survival of osteoclasts, whereas osteoprotegerin (OPG) is a soluble decoy receptor and inhibitor for RANKL. MATERIALS AND METHODS In this study, we analyzed the regulation of OPG by T helper 2 (Th2) cytokines interleukin (IL)-4 and the closely related IL-13 in human umbilical vein endothelial cells (HUVECs), the underlying signaling pathway, and its functional relevance on osteoclastic resorption. RESULTS IL-4 and IL-13 induced OPG mRNA levels and protein secretion in HUVEC by up to 4-fold in a dose- and time-dependent fashion (maximum effect after 48 h and at 10 ng/ml). Activation of the transcription factor STAT6 preceded IL-4-induced OPG expression, and blockade of IL-4-induced STAT6 activation by the phospholipase C-specific inhibitor D609 decreased OPG expression. Soluble IL-4 receptor (sIL-4R) dose-dependently abolished both IL-4-induced STAT6 phosphorylation and OPG expression. RANKL stimulated the activity of osteoclasts, which was antagonized by HUVEC-derived supernatant containing OPG. The inhibitory effect on osteoclastogenesis was completely and specifically abrogated by a neutralizing OPG antibody in unstimulated HUVEC supernatant and partially in IL-4-stimulated HUVEC supernatant. CONCLUSIONS In summary, IL-4 and IL-13 induced OPG expression through activation of STAT6 in endothelial cells, and HUVEC-derived OPG is an IL-4/IL-13-induced inhibitor of osteoclastic resorption. These data underline the impact of Th2 cytokines on bone resorption through modulation of endothelial cell-derived cytokines.
Collapse
|
34
|
Sasaki H, Suzuki N, Kent R, Kawashima N, Takeda J, Stashenko P. T Cell Response Mediated by Myeloid Cell-Derived IL-12 Is Responsible forPorphyromonas gingivalis-Induced Periodontitis in IL-10-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:6193-8. [DOI: 10.4049/jimmunol.180.9.6193] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Takeuchi-Hatanaka K, Ohyama H, Nishimura F, Kato-Kogoe N, Soga Y, Matsushita S, Nakasho K, Yamanegi K, Yamada N, Terada N, Takashiba S. Polymorphisms in the 5' flanking region of IL12RB2 are associated with susceptibility to periodontal diseases in the Japanese population. J Clin Periodontol 2008; 35:317-23. [DOI: 10.1111/j.1600-051x.2008.01208.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|