1
|
Ukraintseva YV, Saltykov KA. [Effects of slow-wave sleep fragmentation and rapid eye movement sleep fragmentation on melatonin secretion]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:26-32. [PMID: 38934663 DOI: 10.17116/jnevro202412405226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To compare the effect of stage 3 fragmentation and the paradoxical phase of night sleep on melatonin (MT) secretion, and to evaluate the effects of changes in autonomic balance and activation reactions that occur in the orthodox and paradoxical phases of sleep. MATERIAL AND METHODS Fifteen healthy men participated in three sessions: with stage 3 fragmentation, with fragmentation of paradoxical sleep, and in a control experiment in which sleep was not disturbed. In each experiment, 7 saliva samples were collected in the evening, at night and in the morning and the MT content was determined. Heart rate variability was analyzed using an electrocardiogram and autonomic balance was assessed. RESULTS Sleep fragmentation was accompanied by activation reactions and reduced the duration of stage 3 and paradoxical phase sleep by 50% and 51% in the corresponding sessions. Fragmentation of paradoxical sleep also led to an increase in the duration of night wakefulness. Sleep disturbances caused an increase in MT secretion in the second half of the night and in the morning, especially pronounced in sessions with fragmentation of paradoxical sleep, in which upon awakening MT was 1.8 times higher than in the control. Stage 3 fragmentation was accompanied by increased sympathetic activation, while fragmentation of paradoxical sleep did not cause autonomic shifts. The subjects were divided into 2 clusters: with high and low MT in night and morning saliva samples. In all sessions, subjects with high MT had 1.7-2 times longer duration of night wakefulness; in sessions with fragmentation, they had significantly more activations in the paradoxical phase of sleep. CONCLUSION Night sleep disturbances cause an increase in MT secretion, especially pronounced during the fragmentation of the paradoxical phase. An increase in MT levels does not depend on changes in autonomic balance and is apparently associated with activation of the serotonergic system, which accompanies disturbances in the depth and continuity of sleep.
Collapse
Affiliation(s)
- Yu V Ukraintseva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Moscow, Russia
| | - K A Saltykov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Moscow, Russia
| |
Collapse
|
2
|
Meloni M, Figorilli M, Carta M, Tamburrino L, Cannas A, Sanna F, Defazio G, Puligheddu M. Preliminary finding of a randomized, double-blind, placebo-controlled, crossover study to evaluate the safety and efficacy of 5-hydroxytryptophan on REM sleep behavior disorder in Parkinson's disease. Sleep Breath 2022; 26:1023-1031. [PMID: 34403081 PMCID: PMC9418091 DOI: 10.1007/s11325-021-02417-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Altered serotonergic neurotransmission may contribute to the non-motor features commonly associated with Parkinson's disease (PD) such as sleep disorders. The 5-hydroxytryptophan (5-HTP) is the intermediate metabolite of L-tryptophan in the production of serotonin and melatonin. The purpose of this study was to compare the effects of 5-HTP to placebo on REM sleep behavior disorder (RBD) status in patients with PD. METHODS A single-center, randomized, double-blind placebo-controlled crossover trial was performed in a selected population of 18 patients with PD and RBD. The patients received a placebo and 50 mg of 5-HTP daily in a crossover design over a period of 4 weeks. RESULTS 5-HTP produced an increase in the total percentage of stage REM sleep without a related increase of RBD episodes, as well as a marginal, non-significant reduction in both arousal index and wake after sleep onset. The self-reported RBD frequency and clinical global impression (CGI) were improved during 5-HTP and placebo treatment in comparison to baseline. 5-HTP significantly improved our patients' motor experiences of daily living as rated by the Unified Parkinson's Disease Rating Scale (UPDRS) part II. CONCLUSIONS This study provides evidence that 5-HTP is safe and effective in improving sleep stability in PD, contributing to ameliorate patients' global sleep quality. Larger studies with higher doses and longer treatment duration are needed to corroborate these preliminary findings.
Collapse
Affiliation(s)
- Mario Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Michela Figorilli
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 bivio Sestu, Monserrato, 09042, Cagliari, Italy
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ludovica Tamburrino
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 bivio Sestu, Monserrato, 09042, Cagliari, Italy
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Antonino Cannas
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 bivio Sestu, Monserrato, 09042, Cagliari, Italy.
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy.
| |
Collapse
|
3
|
Ukraintseva Y, Liaukovich K. The negative impact of sleep disorders on working memory may be mediated by changes in carbohydrate metabolism. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:11-17. [DOI: 10.17116/jnevro202212205211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Serotonin modulates melatonin synthesis as an autocrine neurotransmitter in the pineal gland. Proc Natl Acad Sci U S A 2021; 118:2113852118. [PMID: 34675083 DOI: 10.1073/pnas.2113852118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 01/23/2023] Open
Abstract
The pineal gland secretes melatonin principally at night. Regulated by norepinephrine released from sympathetic nerve terminals, adrenergic receptors on pinealocytes activate aralkylamine N-acetyltransferase that converts 5-hydroxytryptamine (5-HT, serotonin) to N-acetylserotonin, the precursor of melatonin. Previous studies from our group and others reveal significant constitutive secretion of 5-HT from pinealocytes. Here, using mass spectrometry, we demonstrated that the 5-HT is secreted primarily via a decynium-22-sensitive equilibrative plasma membrane monoamine transporter instead of by typical exocytotic quantal secretion. Activation of the endogenous 5-HT receptors on pinealocytes evoked an intracellular Ca2+ rise that was blocked by RS-102221, an antagonist of 5-HT2C receptors. Applied 5-HT did not evoke melatonin secretion by itself, but it did potentiate melatonin secretion evoked by submaximal norepinephrine. In addition, RS-102221 reduced the norepinephrine-induced melatonin secretion in strips of pineal gland, even when no exogenous 5-HT was added, suggesting that the 5-HT that is constitutively released from pinealocytes accumulates enough in the tissue to act as an autocrine feedback signal sensitizing melatonin release.
Collapse
|
5
|
Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018; 23:molecules23081999. [PMID: 30103453 PMCID: PMC6222335 DOI: 10.3390/molecules23081999] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.
Collapse
|
6
|
Distinct effects of the serotonin-noradrenaline reuptake inhibitors milnacipran and venlafaxine on rat pineal monoamines. Neuroreport 2015; 26:510-4. [PMID: 26016648 DOI: 10.1097/wnr.0000000000000379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Monoamine systems are involved in the pathology and therapeutic mechanism of depression. The pineal gland contains large amounts of serotonin as a precursor for melatonin, and its activity is controlled by noradrenergic sympathetic nerves. Pineal diurnal activity and its release of melatonin are relevant to aberrant states observed in depression. We investigated the effects on pineal monoamines of serotonin-noradrenaline reuptake inhibitors, which are widely used antidepressants. Four days of milnacipran treatment led to an increase in noradrenaline and serotonin levels, whereas 4 days of venlafaxine treatment reduced 5-hydroxyindoleacetic acid levels; both agents induced an increase in dopamine levels. Our data suggest that milnacipran increases levels of the precursor for melatonin synthesis by facilitating the noradrenergic regulation of pineal activity and that venlafaxine inhibits serotonin reuptake into noradrenergic terminals on the pineal gland.
Collapse
|
7
|
Fatima G, Das SK, Khan FH, Mahdi AA, Verma NS. Circadian variations of 5-hydroxytryptamine in female with fibromyalgia syndrome: A case control study. Sleep Biol Rhythms 2013. [DOI: 10.1111/sbr.12038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghizal Fatima
- Department of Rheumatology; King George's Medical University; Lucknow India
| | | | - Faizan Haider Khan
- Department of Biochemistry; King George's Medical University; Lucknow India
| | - Abbas Ali Mahdi
- Department of Biochemistry; King George's Medical University; Lucknow India
| | - Nar Singh Verma
- Department of Physiology; King George's Medical University; Lucknow India
| |
Collapse
|
8
|
González S, Moreno-Delgado D, Moreno E, Pérez-Capote K, Franco R, Mallol J, Cortés A, Casadó V, Lluís C, Ortiz J, Ferré S, Canela E, McCormick PJ. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 2012; 10:e1001347. [PMID: 22723743 PMCID: PMC3378626 DOI: 10.1371/journal.pbio.1001347] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 05/10/2012] [Indexed: 11/18/2022] Open
Abstract
Dopamine and adrenergic receptor complexes form under a circadian-regulated cycle and directly modulate melatonin synthesis and release from the pineal gland. The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs. Animals respond to cycles of light and dark with patterns in sleeping, feeding, body temperature alterations, and other biological functions. The pineal gland translates these light signals received from the retina into a language understandable to the rest of the body through the rhythmic synthesis and release of melatonin in response to the light and dark cycle. This process is controlled by adrenergic receptors. One impressive and mysterious aspect of the system is the rapid ability of rhythmic melatonin production and/or degradation to respond to changes in the cycle. In this study, we demonstrate that part of this response is due to the formation of receptor-receptor complexes (heteromers) between the adrenergic receptors α1B or β1 and the D4 dopamine receptor. Using both biochemical and biophysical methods in transfected cells and in ex vivo tissue we show that dopamine, a neurotransmitter, inhibits adrenergic receptor signaling through these heteromers. This inhibition causes a dramatic decrease in melatonin production of the pineal gland. We postulate that these heteromers provide a rapid feedback mechanism for the neuronal hormone system to modulate circadian-controlled outputs.
Collapse
MESH Headings
- Animals
- CHO Cells
- Circadian Rhythm/physiology
- Cricetinae
- Dopamine/metabolism
- HEK293 Cells
- Humans
- Male
- Melatonin/biosynthesis
- Pineal Gland/metabolism
- Rats
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/metabolism
- Serotonin/biosynthesis
- Transfection
Collapse
Affiliation(s)
- Sergio González
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David Moreno-Delgado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Kamil Pérez-Capote
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Ortiz
- Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Enric Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
9
|
Walther DJ, Stahlberg S, Vowinckel J. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases. FEBS J 2011; 278:4740-55. [DOI: 10.1111/j.1742-4658.2011.08347.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Crespi F. Influence of melatonin or its antagonism on alcohol consumption in ethanol drinking rats: a behavioral and in vivo voltammetric study. Brain Res 2011; 1452:39-46. [PMID: 22464879 DOI: 10.1016/j.brainres.2011.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/20/2011] [Accepted: 10/28/2011] [Indexed: 11/30/2022]
Abstract
Melatonin, an indoleamine hormone synthesized in the pinealocytes, has been implicated as influencing the intake of alcohol in rats. It has been shown that this hormone is voltammetrically electroactive at the surface of pretreated carbon fiber microelectrodes in vitro and in vivo, in rat cerebral melatonergic regions such the pineal gland. The aim of this work consisted in the study of the influence of melatonin on spontaneously ethanol drinking or ethanol avoiding rats selected throughout a free choice two bottle test. It appeared that only the water preferring rats were affected by treatment with the hormone and that in vivo voltammetric related levels of melatonin were higher in the pineal gland of ethanol drinking rats versus water preferring rats. In addition, when treated with the melatonin antagonist GR128107 ethanol drinking rats significantly reduced the spontaneous consumption of alcohol.
Collapse
Affiliation(s)
- Francesco Crespi
- Biology Dept, Neurosciences CEDD GlaxoSmithKline, Medicines Research Centre, Verona, Italy.
| |
Collapse
|
11
|
The pineal complex of the European sea bass (Dicentrarchus labrax): I. Histological, immunohistochemical and qPCR study. J Chem Neuroanat 2011; 41:170-80. [DOI: 10.1016/j.jchemneu.2011.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
12
|
Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Fiol MA, Rial R. Chronic melatonin treatment and its precursor L-tryptophan improve the monoaminergic neurotransmission and related behavior in the aged rat brain. J Pineal Res 2010; 48:170-7. [PMID: 20082664 DOI: 10.1111/j.1600-079x.2009.00741.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin has an important role in the aging process as a potential drug to relieve oxidative damage, a likely cause of age-associated brain dysfunction. As age advances, the nocturnal production of melatonin decreases potentially causing physiological alterations. The present experiments were performed to study in vivo the effects of exogenously administered melatonin chronically on monoaminergic central neurotransmitters serotonin (5-HT), dopamine (DA) and norepinephrine (NE) and behavioral tests in old rats. The accumulation of 5-hydroxy-tryptophan (5-HTP) and L-3,4-dihydroxyphenylalanine (DOPA) after decarboxylase inhibition was used as a measure of the rate of tryptophan and tyrosine hydroxylation in rat brain. Also neurotransmitters 5-HT, DA and NE and some metabolites were quantified by HPLC. In control rats, an age-related decline was observed in neurochemical parameters. However, chronic administration of melatonin (1 mg/kg/day, diluted in drinking water, 4 wk) significantly reversed the age-induced deficits in all the monoaminergic neurotransmitters studied. Also, neurochemical parameters were analyzed after administration of melatonin biosynthesis precursor L-tryptophan (240 mg/kg/day, i.p., at night for 4 wk) revealing similar improvement effects to those induced by melatonin. Behavioral data corresponded well with the neurochemical findings since spatial memory test in radial-maze and motor coordination in rota-rod were significantly improved after chronic melatonin treatment. In conclusion, these in vivo findings suggest that melatonin and L-tryptophan treatments exert a long-term effect on the 5-HT, DA and NE neurotransmission by enhancing monoamine synthesis in aged rats, which might improve the age-dependent deficits in cognition and motor coordination.
Collapse
Affiliation(s)
- Susana Esteban
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Melatonin is a hormone secreted from the pineal gland specifically at night and contributes to a wide array of physiological functions in mammals. Melatonin is one of the most well understood output of the circadian clock located in the suprachiasmatic nucleus. Melatonin synthesis is controlled distally via the circadian clock located in the suprachiasmatic nucleus and proximally regulated by norepinephrine released in response to the circadian clock signals. To understand melatonin synthesis in vivo, we have performed microdialysis analysis of the pineal gland, which monitors melatonin as well as the precursor (serotonin) and intermediate (N-acetylserotonin) of melatonin synthesis in freely moving animals in realtime at high resolution. Our data revealed a number of novel features of melatonin production undetected using conventional techniques, which include (1) large inter-individual variations of melatonin onset timing; (2) circadian regulation of serotonin synthesis and secretion in the pineal gland; and (3) a revised view on the rate-limiting step of melatonin formation in vivo. This article will summarize the main findings from our laboratory regarding melatonin formation in mammals.
Collapse
Affiliation(s)
- Asamanja Chattoraj
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 E., Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
14
|
Sánchez S, Sánchez C, Paredes SD, Cubero J, Rodríguez AB, Barriga C. Circadian variations of serotonin in plasma and different brain regions of rats. Mol Cell Biochem 2008; 317:105-11. [PMID: 18563534 DOI: 10.1007/s11010-008-9836-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022]
Abstract
Most of the physiological processes that take place in the organism follow a circadian rhythm. Serotonin is one of the most important neurotransmitters in our nervous system, and has been strongly implicated in the regulation on the mammalian circadian clock, located in the suprachiasmatic nuclei (SCN). The present study analysed the levels of serotonin over a period of 24 h in the plasma and in different brain regions. The model used was of male Wistar rats, 14 +/- 2 weeks of age (n = 120), maintained under conditions of 12 h light and 12 h dark, and food and water ad libitum. The serotonin levels were measured by ELISA every hour at night (20:00-08:00 h) and every 4 h during the daytime (08:00-20:00 h). Ours results show that the maximum levels of serotonin in plasma were obtained at 09:00 and 22:00 and a minor peak at 01:00 h. In hypothalamus there was a significant peak at 22:00 and two minor peaks at 17:00 and 02:00 h; the same occurred in hippocampus with a significant peak at 21:00, and two secondary peaks at 24:00 and 05:00 h; in cerebellum there were two peaks at 21:00 and 02:00 h, while in striatum and pineal there were peaks at 21:00 h and 23:00, respectively. In conclusion, the higher levels of serotonin were during the phase of darkness, which varies depending on the region in which it is measured.
Collapse
Affiliation(s)
- Soledad Sánchez
- Department of Physiology (Neuroimmunophysiology Research Group), Faculty of Science, University of Extremadura, Avda de Elvas S/N, Badajoz, 06071, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Garau C, Aparicio S, Rial RV, Nicolau MC, Esteban S. Age related changes in the activity-rest circadian rhythms and c-fos expression of ring doves with aging. Effects of tryptophan intake. Exp Gerontol 2006; 41:430-8. [PMID: 16564149 DOI: 10.1016/j.exger.2006.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/31/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
Age related changes in the circadian rhythms and sleep quality has been linked with impairment in the function of the suprachiasmatic nucleus (SCN) and melatonin secretion. The precursor of melatonin, serotonin (5-HT) is a neurotransmitter involved in the synchronisation of the circadian clock located in SCN, which shows decreased levels with age. The present work studied the effects of L-tryptophan, the precursor of 5-HT, on the circadian activity-rest rhythm and c-fos expression in the SCN of young and old ring doves, animals diurnal and monocyclic as humans. Two hours before the onset of dark phase, animals housed in cages equipped for activity recording and maintained under 12/12 L/D conditions, received orally L-tryptophan (100 and 240 mg/kg) and, for comparative purposes, melatonin (2.5 and 5 mg/kg). The administration of both L-tryptophan and melatonin reduced the nocturnal activity of all ring doves although only the highest doses were effective in old ones. A reduced amplitude in the activity-rest rhythm was observed in old animals in comparison to youngest, but it was increased after the treatments. Sleep parameters, calculated from the activity data, indicated a worsened sleep quality in old animals but it was improved with the treatments. In addition, the expression of c-fos in the SCN was reduced after both mentioned treatments. The results point to the SCN as a target for the observed nocturnal effects of L-tryptophan and melatonin, and support the supplemental administration of the essential amino acid L-tryptophan to reverse the disturbances of the circadian activity-rest cycle related with ageing.
Collapse
Affiliation(s)
- Celia Garau
- Laboratori de Neurofisiologia, Departament de Biologia Fonamental i Ciènces de la Salut, Universitat de les Illes Balears, Ctra. Valldemossa Km 7,5, E-07122 Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
16
|
Gannon RL, Millan MJ. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors. Neuroscience 2005; 137:287-99. [PMID: 16289351 DOI: 10.1016/j.neuroscience.2005.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/31/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
Mammalian circadian activity rhythms are generated by pacemaker cells in the suprachiasmatic nucleus (SCN). As revealed by the actions of diverse agonists, serotonergic input from raphe nuclei generally inhibits photic signaling in the suprachiasmatic nucleus. In contrast, the serotonin (5HT)1A partial agonist, 4-(benzodioxan-5-yl)1-(indan2-yl)piperazine (S 15535), was found to enhance the phase-shifting influence of light on hamster circadian rhythms [Gannon, Neuroscience 119 (2003) 567]. Herein, we extend this observation in showing that S 15535 (5.0 mg/kg, i.p.) markedly (275%) enhanced the light-induced phase shift in circadian activity rhythms: further, this action was dose-dependently abolished by the highly-selective 5HT1A receptor antagonist, WAY 100,635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-2-pyridinyl-cyclohexane-carboxamide maleate) (0.1-0.5 mg/kg, i.p.). WAY 100,635, which was inactive alone, shares the antagonist actions of S 15535 at postsynaptic 5HT1A sites, yet blocks its effects at their presynaptic counterparts. Thus, 5HT1A autoreceptor activation must be involved in this effect of S 15535 which contrasts with the opposite, inhibitory influence upon phase shifts of the "full" agonist, 8-OH-DPAT, which acts by stimulation of postsynaptic 5HT1A receptors [Rea et al., J Neurosci 14 (1994) 3635]. Despite the occurrence of 5HT2A and 5HT2C receptors in the (rat) suprachiasmatic nucleus, their influence on circadian rhythms is unknown since actions of selective ligands have never been evaluated. This issue was investigated with the most selective agents currently available. However, the 5HT2A agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.25 and 0.5 mg/kg), and the 5HT2C agonist, alphaS-6-chloro-5-fluoro-a-methyl-1H-indole-1-ethanamine fumarate (Ro-60-0175) (1.0 and 5.0 mg/kg), failed to affect light-induced phase shifts in hamsters. Moreover, even over broad dose-ranges, the 5HT2A antagonist, (+)-(2,3-dimethoxy-phenyl)-[1-[2-(4-fluoro-phenyl)-ethyl]-piperidin-4-yl]methanol (MDL 100,907) (0.1-1.0 mg/kg), and the 5HT2C antagonist, 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl carbamoyl]indoline (SB 242,084) (1.0-10.0 mg/kg), were likewise inactive. In view of evidence that 5HT2A and 5HT2C sites functionally interact with 5HT1A receptors, we also examined the influence of these agents upon the actions of S 15535, but no significant alteration was seen in its enhancement of rhythms. In conclusion, S 15535 elicits a striking enhancement of light-induced phase shifts in circadian rhythms by specifically recruiting 5HT1A autoreceptors, which leads to suppression of serotonergic input to the suprachiasmatic nucleus. Surprisingly, no evidence for a role of 5HT2A or 5HT2C sites was found, though comparable functional studies remain to be undertaken in rats. Indeed, the present work underlines the importance of comparative studies of circadian rhythms in various species, as well as the need for further study of potential interactions among 5HT receptor subtypes in their control.
Collapse
MESH Headings
- Animals
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Dose-Response Relationship, Drug
- Male
- Mesocricetus
- Piperazines/pharmacology
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Suprachiasmatic Nucleus/drug effects
- Suprachiasmatic Nucleus/metabolism
Collapse
Affiliation(s)
- R L Gannon
- Department of Biology, Idle Hour Boulevard, Dowling College, Oakdale, NY 11769, USA.
| | | |
Collapse
|
17
|
Ceinos RM, Rábade S, Soengas JL, Míguez JM. Indoleamines and 5-methoxyindoles in trout pineal organ in vivo: daily changes and influence of photoperiod. Gen Comp Endocrinol 2005; 144:67-77. [PMID: 15950974 DOI: 10.1016/j.ygcen.2005.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 04/15/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
This study describes the diel rhythms in several indoleamines, melatonin, and related 5-methoxyindoles in the pineal organ of rainbow trout in vivo. In addition, the effect of different photoperiod conditions was evaluated. Melatonin levels displayed clear daily rhythms in the pineal organ of rainbow trout kept experimentally under long (LD 16:08), neutral (LD 12:12), and short (LD 08:16) photoperiods. Duration of melatonin signal was dependent on the night length of prevailing photoperiod, while peak amplitude was higher when lengthening the photoperiod. Significant daily rhythms in 5-HT content, the precursor of melatonin synthesis, were found in neutral and short photoperiod with increases of the amine content just after the light-dark interphase and decreases in the middle of the night, which were more important under short photoperiod. In contrast, no significant 24-h cyclic variation was found in pineal 5-HT content under long photoperiod. Daily profiles in the content of the main 5-HT oxidative metabolite, the 5-hydroxyindoleacetic acid (5-HIAA), outlined those of the amine precursor. The chronograms of both aminergic compounds contrast with those of 5-hydroxytryptophan content, which displayed a net tendency to increase at night. This study also provides evidence for the existence of daily cyclic changes in the content of 5-methoxytryptamine (5-MT), 5-methoxyindoleacetic acid (5-MIAA), and 5-methoxytryptophol (5-MTOL) in trout pineal organ, which were also dependent on photoperiod. The 24-h profiles in 5-MT content correlated well with those of 5-HT, showing a peak at the first hour of darkness in all photoperiodic conditions, and a decay at midnight only in both neutral and long photoperiods. Similarly, the content of 5-MTOL also displayed high values during the day-night transition in trout kept under neutral and long photoperiods, followed by a slow decay all along the night. Finally, levels of 5-MIAA increased in all photoperiods when lights were turned off, being this nocturnal increase maximal in fish kept under LD 16:08. These results suggest that light-dark cycle modulates daily rhythms in pineal indoles and non-melatonin 5-methoxyindoles by acting mainly through the melatonin synthesis activity, which limits the availability of 5-HT for the oxidative and direct methylation pathways. In addition, it seems that a nocturnally increased synthesis of 5-HT might be a requirement for the optimal formation of melatonin and other 5-methoxyindoles in the pineal organ when trout remain under short photoperiods.
Collapse
Affiliation(s)
- Rosa M Ceinos
- Laboratorio de Fisiología Animal, Departamento Biología Funcional y CC Salud, Facultad de Biología, Universidad de Vigo, 36200 Vigo, Spain
| | | | | | | |
Collapse
|
18
|
Esteban S, Nicolaus C, Garmundi A, Rial RV, Rodríguez AB, Ortega E, Ibars CB. Effect of orally administered L-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Mol Cell Biochem 2005; 267:39-46. [PMID: 15663184 DOI: 10.1023/b:mcbi.0000049363.97713.74] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To assess the effects of external administration of L-tryptophan on the synthesis of serotonin and melatonin as well as on the immune function of Wistar rats, 300 mg of the amino acid were administered through an oral cannula either during daylight (08:00) or at night (20:00) for 5 days. Brain, plasma, and peritoneal macrophage samples were collected 4 h after the administration. The accumulation of 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition was used to measure the rate of tryptophan hydroxylation in vivo. Circulating melatonin levels were determined by radioimmunoassay, and the phagocytic activity of macrophages was measured by counting, under oil-immersion phase-contrast microscopy, the number of particles ingested. The results showed a diurnal increase (p < 0.05) in the brain 5-HTP, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindolacetic acid (5-HIAA) of the animals which had received tryptophan at 08:00 and were killed 4 h later. In the animals which received tryptophan during the dark period, the 5-HT declined but the 5-HT/5-HIAA ratio remained unchanged. There was also a significant increase (p < 0.05) in nocturnal circulating melatonin levels and in the innate immune response of the peritoneal macrophages in the animals which had received tryptophan at 20:00. The results indicated that the synthesis of serotonin and melatonin, as well as the innate immune response, can be modulated by oral ingestion of tryptophan.
Collapse
Affiliation(s)
- Susana Esteban
- Laboratori de Fisiologia, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Jiang-Shieh YF, Wu CH, Chien HF, Wei IH, Chang ML, Shieh JY, Wen CY. Reactive changes of interstitial glia and pinealocytes in the rat pineal gland challenged with cell wall components from gram-positive and -negative bacteria. J Pineal Res 2005; 38:17-26. [PMID: 15617533 DOI: 10.1111/j.1600-079x.2004.00170.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharide (LPS), the major proinflammatory component of gram-negative bacteria, is well known to induce sepsis and microglial activation in the CNS. On the contrary, the effect of products from gram-positive bacteria especially in areas devoid of blood-brain barrier remains to be explored. In the present study, a panel of antibodies, namely, OX-6, OX-42 and ED-1 was used to study the response of microglia/macrophages in the pineal gland of rats given an intravenous LPS or lipoteichoic acid (LTA). These antibodies recognize MHC class II antigens, complement type 3 receptors and unknown lysosomal proteins in macrophages, respectively. In rats given LPS (50 microg/kg) injection and killed 48 h later, the cell density and immunoexpression of OX-6, OX-42 and ED-1 in pineal microglia/macrophages were markedly increased. In rats receiving a high dose (20 mg/kg) of LTA, OX-42 and OX-6, immunoreactivities in pineal microglia/macrophages were also enhanced, but that of ED-1 was not. In addition, both bacterial toxins induced an increase in astrocytic profiles labelled by glial fibrillary acid protein. An interesting feature following LPS or LTA treatment was the lowering effect on serum melatonin, enhanced serotonin immunolabelling and cellular vacuolation as studied by electron microscopy in pinealocytes. The LPS- or LTA-induced vacuoles appeared to originate from the granular endoplasmic reticulum as well as the Golgi saccules. The present results suggest that LPS and LTA could induce immune responses of microglia/macrophages and astroglial activation in the pineal gland. Furthermore, the metabolic and secretory activity of pinealocytes was modified by products from both gram-positive and -negative bacteria.
Collapse
Affiliation(s)
- Ya Fen Jiang-Shieh
- Department of Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Gutiérrez CI, Urbina M, Obregion F, Glykys J, Lima L. Characterization of tryptophan high affinity transport system in pinealocytes of the rat. Day-night modulation. Amino Acids 2003; 25:95-105. [PMID: 12836064 DOI: 10.1007/s00726-002-0353-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tryptophan is required in the pineal gland for the formation of serotonin, precursor of melatonin biosynthesis. The level of this amino acid in the serum and in the pineal gland of the rat undergoes a circadian rhythm, and reduced plasma tryptophan concentration decreases secretion of melatonin in humans. Tryptophan is transported into the cells by the long chain neutral amine acid system T and by the aromatic amino acid system T. The high affinity component of [(3)H]tryptophan uptake was studied in pinealocytes of the rat. Inhibition was observed in the presence of phenylalanine or tyrosine, but not in the presence of neutral amino acids, alanine, glycine, serine, lysine or by 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid, a substrate specific for system L. The transport of tryptophan was temperature-dependent and trans-stimulated by phenylalanine and tyrosine, but was energy-, sodium-, chloride-, and pH-independent. In addition, the sulphydryl agent N-ethylmaleimide did not modify the high affinity transport of tryptophan in pinealocytes. The kinetic parameters were not significantly different at 12:00 as compared to 24:00 h. The treatment with the inhibitor of tryptophan hydroxylase, p-chlorophenylalanine, produced an increase in the maximal velocity of the uptake and a reduction in the affinity at 12:00, but not at 24:00 h, probably indicating that during the day, the formation of serotonin in the pineal gland is favoured by elevating the uptake of tryptophan, whereas at 24:00 h other mechanisms, such as induction of enzymes are taking place. High affinity tryptophan uptake in the rat pineal gland occurs through system T and is upregulated during the day when the availability of serotonin is reduced.
Collapse
Affiliation(s)
- C I Gutiérrez
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | |
Collapse
|
21
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
22
|
Kennedy JS, Gwirtsman HE, Schmidt DE, Johnson BW, Fielstein E, Salomon RM, Shiavi RG, Ebert MH, Parris WCV, Loosen PT. Serial cerebrospinal fluid tryptophan and 5-hydroxy indoleacetic acid concentrations in healthy human subjects. Life Sci 2002; 71:1703-15. [PMID: 12137916 DOI: 10.1016/s0024-3205(02)01899-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the serotonergic system in the pathogenesis of behavioral disorders such as depression, alcoholism, obsessive-compulsive disorder, and violence is not completely understood. Measurement of the concentration of neurotransmitters and their metabolites in cerebrospinal fluid (CSF) is considered among the most valid, albeit indirect, methods of assessing central nervous system function in man. However, most studies in humans have measured lumbar CSF concentrations only at single time points, thus not taking into account rhythmic or episodic variations in levels of neurotransmitters, precursors, or metabolites. We have continuously sampled lumbar CSF via subarachnoid catheter in 12 healthy volunteers, aged 20-65 years. One ml (every 10 min) CSF samples were collected at a rate of 0.1ml/min for 24-hour (h), and the levels of tryptophan (TRP) and 5-hydroxy indoleacetic acid (5-HIAA) were measured. Variability across all 12 subjects was significantly greater (P < 0.0001) than the variability seen in repeated analysis of a reference CSF sample for both 5-HIAA (32.0% vs 7.9%) and TRP (25.4% vs 7.0%), confirming the presence of significant biological variability during the 24-hr period examined. This variability could not be explained solely by meal related effects. Cosinor analysis of the 24-hr TRP concentrations from all subjects revealed a significant diurnal pattern in CSF TRP levels, whereas the 5-HIAA data were less consistent. These studies indicate that long-term serial CSF sampling reveals diurnal and biological variability not evident in studies based on single CSF samples.
Collapse
|
23
|
Privat K, Brisson C, Jouvet A, Chesneau D, Ravault JP, Fevre-Montange M. Evidence for implication of tryptophan hydroxylase in the regulation of melatonin synthesis in ovine pinealocytes in culture. Cell Mol Neurobiol 2002; 22:417-29. [PMID: 12507391 DOI: 10.1023/a:1021011604688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Tryptophan hydroxylase (TPOH) is the first enzyme in the melatonin synthesis pathway and the rate-limiting enzyme in serotonin synthesis. We established in this study an in vitro model of ovine pinealocytes to investigate the role of TPOH in melatonin production. 2. We demonstrated that TPOH is highly expressed both in vivo and in vitro at the protein and mRNA levels. In vitro pinealocytes show ultrastructural features similar to those previously described in vivo. 3. Moreover, our in vitro model allowed us to study the regulation mechanisms for melatonin synthesis in sheep pinealocytes and to demonstrate that both transcriptional and posttranscriptional mechanisms are involved. 4. In particular, our results suggest that TPOH plays an essential role in the regulation of melatonin synthesis.
Collapse
Affiliation(s)
- Karen Privat
- INSERM U433, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, 69372 Lyon 08, France
| | | | | | | | | | | |
Collapse
|
24
|
Yamada H, Hayashi M, Uehara S, Kinoshita M, Muroyama A, Watanabe M, Takei K, Moriyama Y. Norepinephrine triggers Ca2+-dependent exocytosis of 5-hydroxytryptamine from rat pinealocytes in culture. J Neurochem 2002; 81:533-40. [PMID: 12065661 DOI: 10.1046/j.1471-4159.2002.00839.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun X, Deng J, Liu T, Borjigin J. Circadian 5-HT production regulated by adrenergic signaling. Proc Natl Acad Sci U S A 2002; 99:4686-91. [PMID: 11917109 PMCID: PMC123708 DOI: 10.1073/pnas.062585499] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using on-line microdialysis, we have characterized in vivo dynamics of pineal 5-hydroxytryptamine (5-HT; serotonin) release. Daily pineal 5-HT output is triphasic: (i) 5-HT levels are constant and high during the day; (ii) early in the night, there is a novel sharp rise in 5-HT synthesis and release, which precedes the nocturnal rise in melatonin synthesis; and (iii) late in the night, levels are low. This triphasic 5-HT production persists in constant darkness and is influenced strongly by intrusion of light at night. We demonstrate that both diurnal 5-HT synthesis and 5-HT release are activated by sympathetic innervation from the superior cervical ganglion and show that these processes are controlled by distinct receptors. The increase in 5-HT synthesis is controlled by beta-adrenergic receptors, whereas the increase in 5-HT release is mediated by alpha-adrenergic signaling. On the other hand, the marked decrease in 5-HT content and release late at night is a passive process, influenced by the extent of melatonin synthesis. In the absence of melatonin synthesis, the late-night decline in 5-HT release is prevented, reaching levels roughly twice as high as that of the day value. In summary, our results demonstrate that 5-HT levels display marked circadian rhythms that depend on adrenergic signaling.
Collapse
Affiliation(s)
- Xing Sun
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | | | | | |
Collapse
|
26
|
Hayashi M, Haga M, Yatsushiro S, Yamamoto A, Moriyama Y. Vesicular monoamine transporter 1 is responsible for storage of 5-hydroxytryptamine in rat pinealocytes. J Neurochem 1999; 73:2538-45. [PMID: 10582616 DOI: 10.1046/j.1471-4159.1999.0732538.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vesicular monoamine transporters (VMATs) are involved in chemical transduction in monoaminergic neurons and various endocrine cells through the storage of monoamines in secretory vesicles. Mammalian pinealocytes contain more 5-hydroxytryptamine (5-HT) than any other cells and are expected to contain VMAT, although no information is available so far. Upon the addition of ATP, radiolabeled 5-HT was taken up by a particulate fraction prepared from cultured rat pinealocytes. The 5-HT uptake was inhibited significantly by bafilomycin A1 (an inhibitor of vacuolar H+-ATPase), 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (a proton conductor), or reserpine (an inhibitor of VMAT). RT-PCR analysis suggested that VMAT type 1 (VMAT1), but not type 2, is expressed. Antibodies against VMAT1 recognized a single polypeptide with an apparent molecular mass of approximately 55 kDa, and specifically immunostained pinealocytes. VMAT1 immunoreactivity was high in the vesicular structures in the varicosities of long branching processes and was associated with 5-HT, but not with synaptophysin, a marker protein for microvesicles. The 5-HT immunoreactivity in the long branching processes disappeared upon incubation with reserpine. These results indicate that 5-HT, at least in part, is stored in vesicles other than microvesicles in pinealocytes through a mechanism similar to that of various secretory vesicles.
Collapse
Affiliation(s)
- M Hayashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, CREST, Japan Science and Technology Corporation, Okayama University
| | | | | | | | | |
Collapse
|
27
|
Privat K, Ravault JP, Chesneau D, Fevre-Montange M. Day/night variation of tryptophan hydroxylase and serotonin N-acetyltransferase mRNA levels in the ovine pineal gland and retina. J Pineal Res 1999; 26:193-203. [PMID: 10340721 DOI: 10.1111/j.1600-079x.1999.tb00584.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In mammals, the photoperiodic information, received by the retina, is transmitted to the pineal gland. In both organs, melatonin is produced and functions as a neurohormone giving temporal information to the organism. A four-step enzymatic pathway, involving in particular the tryptophan hydroxylase (TPOH), the rate-limiting enzyme in serotonin synthesis, and the serotonin N-acetyltransferase (NAT) that converts serotonin to N-acetylserotonin, allows the synthesis of melatonin. Many studies on melatonin synthesis modulation have focused on the enzyme NAT, but the regulation of TPOH is less well understood. We report here a quantitative study, using a reverse transcription polymerase chain reaction (RT-PCR) analysis, of the nycthemeral expression of TPOH and NAT mRNAs in the ovine retina and pineal gland. In both organs, we show a nocturnal increase in mRNA levels of the two enzymes. suggesting a role of transcriptional mechanisms in the regulation of melatonin synthesis. However, the amplitude of the observed increase in TPOH and NAT mRNAs expression can not entirely explain the 7-fold nocturnal increase in the plasma melatonin level. Our results suggest that, in the sheep, post-transcriptional mechanisms might also be involved in the day/night modulation of melatonin production.
Collapse
Affiliation(s)
- K Privat
- INSERM U433, Faculté R. Th. Laënnec, Lyon, France.
| | | | | | | |
Collapse
|
28
|
Abstract
The neurotransmitter serotonin has been implicated in numerous physiological functions and pathophysiological disorders. The hydroxylation of the aromatic amino acid tryptophan is rate-limiting in the synthesis of serotonin. Tryptophan hydroxylase (TPH), as the rate-limiting enzyme, determines the concentrations of serotonin in vivo. Relative serotonin concentrations are clearly important in neural transmission, but serotonin has also been reported to function as a local antioxidant. Identification of the mechanisms regulating TPH activity has been hindered by its low levels in tissues and the instability of the enzyme. Several TPH expression systems have been developed to circumvent these problems. In addition, eukaryotic expressions systems are currently being developed and represent a new avenue of research for identifying TPH regulatory mechanisms. Recombinant DNA technology has enabled the synthesis of TPH deletions, chimeras, and point mutations that have served as tools for identifying structural and functional domains within TPH. Notably, the experiments have proven long-held hypotheses that TPH is organized into N-terminal regulatory and C-terminal catalytic domains, that serine-58 is a site for PKA-mediated phosphorylation, and that a C-terminal leucine zipper is involved in formation of the tetrameric holoenzyme. Several new findings have also emerged regarding regulation of TPH activity by posttranslational phosphorylation, kinetic inhibition, and covalent modification. Inhibition of TPH by L-DOPA may have implications for depression in Parkinson's disease (PD) patients. In addition, TPH inactivation by nitric oxide may be involved in amphetamine-induced toxicity. These regulatory concepts, in conjunction with new systems for studying TPH activity, are the focus of this article.
Collapse
Affiliation(s)
- S M Mockus
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA
| | | |
Collapse
|