1
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
3
|
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy [Biochimie 200 (2022) 44-59]. Biochimie 2022; 200:44-59. [PMID: 35618158 DOI: 10.1016/j.biochi.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Niloufar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537, Lodz, Poland; International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Weiss MD, Carloni S, Vanzolini T, Coppari S, Balduini W, Buonocore G, Longini M, Perrone S, Sura L, Mohammadi A, Rocchi MBL, Negrini M, Melandri D, Albertini MC. Human-rat integrated microRNAs profiling identified a new neonatal cerebral hypoxic-ischemic pathway melatonin-sensitive. J Pineal Res 2022; 73:e12818. [PMID: 35841265 PMCID: PMC9540681 DOI: 10.1111/jpi.12818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.
Collapse
Affiliation(s)
- Michael D. Weiss
- Department of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Tania Vanzolini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Sofia Coppari
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Giuseppe Buonocore
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Mariangela Longini
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Serafina Perrone
- Neonatal UnitUniversity Medical Center of Parma (AOUP) and University of ParmaParmaItaly
| | - Livia Sura
- Department of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Atefeh Mohammadi
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Massimo Negrini
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Davide Melandri
- O. U. Burns Center, Dermatology and Emilia Romagna Regional Skin Bank“M. Bufalini” HospitalCesenaItaly
| | | |
Collapse
|
5
|
Huang W, Hu W, Zhang P, Wang J, Jiang Y, Ma L, Zheng Y, Zhang J. Early Changes in the White Matter Microstructure and Connectome Underlie Cognitive Deficit and Depression Symptoms After Mild Traumatic Brain Injury. Front Neurol 2022; 13:880902. [PMID: 35847204 PMCID: PMC9279564 DOI: 10.3389/fneur.2022.880902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Cognitive and emotional impairments are frequent among patients with mild traumatic brain injury (mTBI) and may reflect alterations in the brain structural properties. The relationship between microstructural changes and cognitive and emotional deficits remains unclear in patients with mTBI at the acute stage. The purpose of this study was to analyze the alterations in white matter microstructure and connectome of patients with mTBI within 7 days after injury and investigate whether they are related to the clinical questionnaires. A total of 79 subjects (42 mTBI and 37 healthy controls) underwent neuropsychological assessment and diffusion-tensor MRI scan. The microstructure and connectome of white matter were characterized by tract-based spatial statistics (TBSSs) and graph theory approaches, respectively. Mini-mental state examination (MMSE) and self-rating depression scale (SDS) were used to evaluate the cognitive function and depressive symptoms of all the subjects. Patients with mTBI revealed early increases of fractional anisotropy in most areas compared with the healthy controls. Graph theory analyses showed that patients with mTBI had increased nodal shortest path length, along with decreased nodal degree centrality and nodal efficiency, mainly located in the bilateral temporal lobe and right middle occipital gyrus. Moreover, lower nodal shortest path length and higher nodal efficiency of the right middle occipital gyrus were associated with higher SDS scores. Significantly, the strength of the rich club connection in the mTBI group decreased and was associated with the MMSE. Our study demonstrated that the neuroanatomical alterations of mTBI in the acute stage might be an initial step of damage leading to cognitive deficits and depression symptoms, and arguably, these occur due to distinct mechanisms.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- *Correspondence: Jing Zhang
| |
Collapse
|
6
|
Abstract
Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.
Collapse
|
7
|
Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. J Mol Neurosci 2022; 72:994-1007. [PMID: 35307786 DOI: 10.1007/s12031-022-01995-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention. Therefore, in the present study, the coordination of ipsilateral and contralateral hemispheres to evaluate delayed post-acute effect of melatonin was examined on recovery of the cell survival and apoptosis after stroke. Melatonin was administered (4 mg/kg/day) intraperitoneally for 45 days, starting 3 days after 30 min of middle cerebral artery occlusion. The genes and proteins related to the cell survival and apoptosis were investigated by immunofluorescence, western blotting, and RT-PCR techniques after behavioral experiments. Melatonin produced delayed neurological recovery by improving motor coordination on grip strength and rotarod tests. This neurological recovery was also reflected by high level of NeuN positive cells and low level of TUNEL-positive cells suggesting enhanced neuronal survival and reduced apoptosis at the fifty-fifth day of stroke. The increase of NGF, Nrp1, c-jun; activation of AKT; and dephosphorylation of ERK and JNK at the fifty-fifth day showed that cell survival and apoptosis signaling molecules compete to contribute to the remodeling of brain. Furthermore, an increase in the CREB and Atf-1 expressions suggested the melatonin's strong reformative effect on neuronal regeneration. The contralateral hemisphere was more active at the latter stages of the molecular and functional regeneration which provides a further proof of principle about melatonin's action on the promotion of brain plasticity and recovery after stroke.
Collapse
|
8
|
Kilic U, Elibol B, Beker M, Altug-Tasa B, Caglayan AB, Beker MC, Yilmaz B, Kilic E. Inflammatory Cytokines are in Action: Brain Plasticity and Recovery after Brain Ischemia Due to Delayed Melatonin Administration. J Stroke Cerebrovasc Dis 2021; 30:106105. [PMID: 34547676 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Post-ischemic inflammation leads to apoptosis as an indirect cause of functional disabilities after the stroke. Melatonin may be a good candidate for the stroke recovery because of its anti-inflammatory effects. Therefore, we investigated the effect of melatonin on inflammation in the functional recovery of brain by evaluating ipsilesional and contralesional alterations. MATERIALS AND METHODS Melatonin (4 mg/kg/day) was intraperitoneally administered into the mice from the 3rd to the 55th day of the post-ischemia after 30 min of middle cerebral artery occlusion. RESULTS Melatonin produced a functional recovery by reducing the emigration of the circulatory leukocytes and the local microglial activation within the ischemic brain. Overall, the expression of the inflammation-related genes reduced upon melatonin treatment in the ischemic hemisphere. On the other hand, the expression level of the inflammatory cytokine genes raised in the contralateral hemisphere at the 55th day of the post-ischemia. Furthermore, melatonin triggers an increase in the iNOS expression and a decrease in the nNOS expression in the ipsilateral hemisphere at the earlier times in the post-ischemic recovery. At the 55th day of the post-ischemic recovery, melatonin administration enhanced the eNOS and nNOS protein expressions. CONCLUSIONS The present molecular, biological, and histological data have revealed broad anti-inflammatory effects of melatonin in both hemispheres with distinct temporal and spatial patterns at different phases of post-stroke recovery. These outcomes also established that melatonin act recruitment of contralesional rather than of ipsilesional.
Collapse
Affiliation(s)
- Ulkan Kilic
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.
| | - Merve Beker
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.
| | - Burcugul Altug-Tasa
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Ahmet Burak Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Mustafa Caglar Beker
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
9
|
Amer ME, Othamn AI, El-Missiry MA. Melatonin ameliorates diabetes-induced brain injury in rats. Acta Histochem 2021; 123:151677. [PMID: 33401187 DOI: 10.1016/j.acthis.2020.151677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023]
Abstract
Diabetic brain is a serious complication of diabetes, and it is associated with oxidative stress and neuronal injury. This study investigated the protective effect of melatonin (MLT) on diabetes-induced brain injury. A rat model of type 2 diabetes mellitus was produced by intraperitoneal injection of nicotinamide 100 mg/kg, followed by intraperitoneal injection of streptozotocin 55 mg/kg. The diabetic rats were orally administered MLT 10 mg/kg of body weight for 15 days. MLT remarkably downregulated serum glucose levels. It also improved levels of the lipid peroxidation product 4-hydroxynonenal, improved levels of antioxidants including glutathione, glutathione peroxidase and glutathione reductase in the brains of the diabetic rats, and this is indicative of the antioxidant potential of MLT. MLT also prevented increase in homocysteine, amyloid-β42 and tau levels in diabetic rats, and this suggests that it can reduce the risk of dementia. This is associated with reduction in the levels of the dopamine, serotonin, and glutamate and is indicative of the regulatory effect of MLT on neurotransmitters. Treatment with MLT improved diabetes-induced structural alteration in the hippocampus and cerebral cortex. MLT significantly reduced caspase-3 and Bax as well as significantly increase Bcl-2 protein and GFAP-positive astrocytes indicating its anti-apoptotic effect. MLT showed remarkable ameliorative effect against biochemical and molecular alterations in the brains of diabetic rats most likely through its antioxidant property.
Collapse
Affiliation(s)
- Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Azza I Othamn
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
10
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Luo L, Wu S, Chen R, Rao H, Peng W, Su W. The study of neuroprotective effects and underlying mechanism of Naoshuantong capsule on ischemia stroke mice. Chin Med 2020; 15:119. [PMID: 33292339 PMCID: PMC7670690 DOI: 10.1186/s13020-020-00399-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background Naoshuantong capsule (NSTC) is an oral Chinese medicine formula composed of Typhae Pollen, Radix Paeoniae Rubra, Curcumae Radix, Gastrodiae Rhizoma and Radix Rhapontici. It has been widely used at the acute and recovery stage of ischemic stroke since 2001. Comparing with its wide clinical application, there are only few studies emphasize on investigating its pharmacological effects. Methods To more generally elucidate the underlying mechanisms in this study, we identified active ingredients in NSTC by a network pharmacology approach based on transcriptomics analysis and pharmacological experiments. Modified neurological severity scores and morphometric analysis using Nissl staining were employed to evaluate the neuroprotective effects of NSTC on ischemia stroke in mice. Results The results showed that NSTC had preventive and protective effects on ischemia stroke, featuring repair of brain tissue during the sub-acute stage of stroke. This may attribute to the underlying mechanisms including anti-inflammatory, antioxidant, and anti-apoptotic activities, as well as an attenuation of excitatory amino acids (EAAs) toxicity of the active ingredients, especially the most active apigenin, from NSTC. Specifically, naringenin, calycosin, gastrodin, caffeic acid, paeoniflorin, and β-elemene seem to be also pharmacological active substances responsible for the anti-inflammatory effects. Meanwhile, 13-hydroxygemone, gastrodin, and p-hydroxybenzyl alcohol contributed to the attenuation of EAAs toxicity Furthermore, apigenin, naringenin, calycosin, gastrodin, and β-elemene accelerated the repair of brain ischemic tissue by up-regulating the expression of TGF-β1 levels. Conclusions The present study identifies the active ingredients of NSTC and illustrates the underlying mechanism using a combination of network pharmacology, transcriptomics analysis, and pharmacological experiments.
Collapse
Affiliation(s)
- Lvkeng Luo
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuling Wu
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ruiqi Chen
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hongyu Rao
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wei Peng
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Weiwei Su
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
12
|
Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, Fung ML, Lim LW. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Ann N Y Acad Sci 2020; 1478:43-62. [PMID: 32700392 DOI: 10.1111/nyas.14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
Collapse
Affiliation(s)
- Mazel Mihardja
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Luca Aquili
- Division of Psychology, College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Boon Chin Heng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Peking University School of Stomatology, Beijing, China
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
13
|
High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model. Sci Rep 2020; 10:3898. [PMID: 32127612 PMCID: PMC7054316 DOI: 10.1038/s41598-020-60858-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/17/2020] [Indexed: 01/13/2023] Open
Abstract
With the current practice of therapeutic hypothermia for neonatal encephalopathy, disability rates and the severity spectrum of cerebral palsy are reduced. Nevertheless, safe and effective adjunct therapies are needed to optimize outcomes. This study's objective was to assess if 18 mg/kg melatonin given rapidly over 2 h at 1 h after hypoxia-ischemia with cooling from 1-13 h was safe, achieved therapeutic levels within 3 h and augmented hypothermic neuroprotection. Following hypoxia-ischemia, 20 newborn piglets were randomized to: (i) Cooling 1-13 h (HT; n = 6); (ii) HT+ 2.5% ethanol vehicle (HT+V; n = 7); (iii) HT + Melatonin (HT+M; n = 7). Intensive care was maintained for 48 h; aEEG was acquired throughout, brain MRS acquired at 24 and 48 h and cell death (TUNEL) evaluated at 48 h. There were no differences for insult severity. Core temperature was higher in HT group for first hour after HI. Comparing HT+M to HT, aEEG scores recovered more quickly by 19 h (p < 0.05); comparing HT+V to HT, aEEG recovered from 31 h (p < 0.05). Brain phosphocreatine/inorganic phosphate and NTP/exchangeable phosphate were higher at 48 h in HT+M versus HT (p = 0.036, p = 0.049 respectively). Including both 24 h and 48 h measurements, the rise in Lactate/N-acetyl aspartate was reduced in white (p = 0.030) and grey matter (p = 0.038) after HI. Reduced overall TUNEL positive cells were observed in HT+M (47.1 cells/mm2) compared to HT (123.8 cells/mm2) (p = 0.0003) and HT+V (97.5 cells/mm2) compared to HT (p = 0.012). Localized protection was seen in white matter for HT+M versus HT (p = 0.036) and internal capsule for HT+M compared to HT (p = 0.001) and HT+V versus HT (p = 0.006). Therapeutic melatonin levels (15-30mg/l) were achieved at 2 h and were neuroprotective following HI, but ethanol vehicle was partially protective.
Collapse
|
14
|
Melatonin's efficacy in stroke patients; a matter of dose? A systematic review. Toxicol Appl Pharmacol 2020; 392:114933. [PMID: 32112789 DOI: 10.1016/j.taap.2020.114933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
There is a lack of effective therapies for stroke patients; its treatment is even more difficult considering the unexpected onset of the disease. In the last decade, melatonin has emerged as a promising neuroprotective agent which is able to cross the blood-brain-barrier (BBB) and with a low toxicity profile. The aim of this systematic review was to summarize and critically review clinical and pre-clinical evidence related to melatonin's effectiveness as a stroke treatment. Together with a comparative dose extrapolation with those used in the selected randomized controlled trials (RCTs), and based on these data to discuss whether the administered doses correlate with those advisable in human patients. To address this purpose, we performed a systematic review of the available literature. A total of 529 records were screened with the selecting of six full articles containing RCTs that met the inclusion/exclusion criteria. The evidence drawn from these six reports was analyzed to identify remaining gaps, treatment efficacy, and to suggest future directions. The primary outcome reported was the reduction of the oxidative response; the secondary outcome was the increase of the survival rate of the patients in the intervention groups. Calculations derived from animal studies revealed that the translational doses to humans were substantially higher than those employed in the RCTs. The findings of this systematic review revealed that there are insufficient RCTs to prove melatonin's value in stroke patients. Nevertheless, the evidence is promising, and further clinical research may support the benefits of melatonin in stroke patients, if the adequate dose is administered.
Collapse
|
15
|
Ozansoy M, Ozansoy MB, Yulug B, Cankaya S, Kilic E, Goktekin S, Kilic U. Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci 2020; 73:237-244. [PMID: 32061493 DOI: 10.1016/j.jocn.2019.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent studies have been revealed that oxidative damage is the main cause of aging and age-related neurodegenerative diseases like Alzheimer's disease (AD). Melatonin is secreted from the pineal gland and its secretion has been found to be altered in AD. In the last decade the role of exosomes in spreading toxic proteins and inducing the propagation of diseases like AD has been discussed. However, it is not known how melatonin affects the amount of exosomes released from the cells and the content of the exosomes. OBJECTIVE Herein, we investigated the possible role of melatonin treatment in the releasing of exosomes and exosomal tau content in an in vitro Aβ toxicity model. METHOD SH-SY5Y cell line was used. The optimum concentration of Aβ was determined by cell viability and cell proliferation tests. Melatonin (100 µM) was applied before and after Aβ application. Total exosomes isolated from cell culture media were immunoprecipitated. The amount of released exosomes and their tau content were analyzed by Western blots. RESULTS Our data demonstrated for the first time that melatonin treatment clearly affected the amount of released exosomes. It would decrease the amyloid beta load and toxicity by inhibiting exosome release. We also demonstated that melatonin also affected the level of tau carried by exosomes depending on whether melatonin was applied before or after Aβ application. CONCLUSION It is considered that the effect of melatonin in the release of exosomes and exosomal tau content would contribute the development of therapeutic strategies in AD and related disorders.
Collapse
Affiliation(s)
- Mehmet Ozansoy
- T.C. Istanbul Bahcesehir University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Muzaffer Beyza Ozansoy
- T.C. Istanbul Aydin University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Burak Yulug
- Alaaddin Keykubat University, The Faculty of Medicine, Dept. of Neurology, Alanya, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Seyda Cankaya
- Alaaddin Keykubat University, The Faculty of Medicine, Dept. of Neurology, Alanya, Turkey
| | - Ertugrul Kilic
- T.C. Istanbul Medipol University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Sule Goktekin
- T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Ulkan Kilic
- University of Health Sciences, Medical School, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
16
|
Wang X, Meng K, He Y, Wang H, Zhang Y, Quan F. Melatonin Stimulates STAR Expression and Progesterone Production via Activation of the PI3K/AKT Pathway in Bovine Theca Cells. Int J Biol Sci 2019; 15:404-415. [PMID: 30745830 PMCID: PMC6367557 DOI: 10.7150/ijbs.27912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin is present in mammalian follicular fluid and plays an important role in regulating steroidogenesis in follicular cells. In this study, we report the effect of melatonin on steroidogenesis in the theca interna (TI) in small bovine follicles and theca cells (TCs) cultured in vitro. Treatment with melatonin significantly increased the expression of steroidogenic acute regulatory protein (STAR) and the production of progesterone in both TI and in TCs. Melatonin stimulated the phosphorylation of AKT but not ERK1/2, and the addition of luzindole (a nonspecific MT1 and MT2 inhibitor) or 4P-PDOT (specific MT2 inhibitor) reduced melatonin-induced STAR expression, progesterone secretion, and PI3K/AKT pathway activation. The effect of melatonin on the TI in follicles was more obvious than on the TCs in vitro. Results indicate that melatonin stimulates the steroidogenesis of TCs mainly via the activation of the PI3K/AKT pathway by MT1 and MT2.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Shah FA, Zeb A, Ali T, Muhammad T, Faheem M, Alam SI, Saeed K, Koh PO, Lee KW, Kim MO. Identification of Proteins Differentially Expressed in the Striatum by Melatonin in a Middle Cerebral Artery Occlusion Rat Model-a Proteomic and in silico Approach. Front Neurosci 2018; 12:888. [PMID: 30618542 PMCID: PMC6295458 DOI: 10.3389/fnins.2018.00888] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke is characterized by permanent or transient obstruction of blood flow, which initiates a cascading pathological process, starting from acute ATP loss to subsequent membrane depolarization, glutamate excitotoxicity, and calcium overload. Melatonin is a potent antioxidant that exerts protective effects in different experimental stroke models. In this study, melatonin effects were demonstrated by a proteomic and in silico approach. The proteomic study identified differentially expressed proteins by 2D gel electrophoresis in the striatum 24 h after middle cerebral artery occlusion. Proteomic analysis revealed several proteins with aberrant expression and was validated by western blot and immunofluorescence analysis. Homology modeling was performed to build 3D structures for γ-enolase, thioredoxin (TRX), and heat shock 60 (HSP60) by the template crystal structures using a protein data bank as a sequence database. The structure refinement of each model was achieved by energy minimization via molecular dynamic simulation, and the generated models were further assessed for stability by Procheck and ProSA. The models were processed for docking analysis using AutoDock Vina, and post-docking analysis was determined by discovery studio. The proteomic study showed decreased expression of γ-enolase, TRX, and protein phosphatase 2A subunit B and increased expression of collapsin response mediator protein 2 and HSP60 in the striatum after ischemic injury. Treatment with melatonin modulated the expression profiles of these proteins. This study demonstrated the neuroprotective role of melatonin in the ischemic striatum using a proteomic and in silico approach. Collectively, melatonin may act in a multimechanistic way by modulating the expression of several proteins in the ischemic striatum.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Amir Zeb
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea.,Department of Pharmacy, Faculty of Life Science, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Tahir Muhammad
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Muhammad Faheem
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Rawalpindi, Pakistan
| | - Sayed Ibrar Alam
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
18
|
Beigi B, Shahidi S, Komaki A, Sarihi A, Hashemi-Firouzi N. Pretraining hippocampal stimulation of melatonin type 2 receptors can improve memory acquisition in rats. Int J Neurosci 2018; 129:492-500. [PMID: 30431374 DOI: 10.1080/00207454.2018.1545770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Learning and memory are among the most important cognitive functions of the brain. Melatonin receptor type 2 (MT2R) is located in the hippocampus and participates in learning and memory processes. In the present study, we examined the role of hippocampal MT2R activation in the acquisition, consolidation, and retrieval of learning and memory in novel object recognition (NOR) and passive avoidance (PA) tasks. METHODS IIK7 (0.03, 0.3, and 3 μg/μl/side), as a selective MT2R agonist, or vehicle was injected bilaterally into the dentate gyrus (DG) region of the hippocampus in rats five minutes before training, immediately after training, and five minutes before the retrieval-behavioral tasks, respectively. The discrimination index (DI) was measured in the NOR task, while step-through latency in acquisition (STLa), number of trials to acquisition (NOT), step-through latency in the retention trial (STLr), and time spent in the dark compartment (TDC) were determined in the PA task. RESULTS The pretraining intrahippocampal injection of IIK7 at all doses significantly improved acquisition in the PA task. On the other hand, the posttraining intrahippocampal administration of IIK7 had no significant effects on consolidation. The preretrieval intrahippocampal injection of IIK7 at different doses attenuated the retrieval of memory. However, the NOR data showed that the intrahippocampal injection of IIK7 at different doses had no significant effects on the acquisition, consolidation, or retrieval in this task. DISCUSSION Based on the findings, stimulation of MT2R could improve acquisition, whereas it had no effects on consolidation. It could impair retrieval in the PA task, while it had no effects on object recognition in rats.
Collapse
Affiliation(s)
- Bita Beigi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Siamak Shahidi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Alireza Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Abdolrahman Sarihi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Nasrin Hashemi-Firouzi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| |
Collapse
|
19
|
Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X, Liu C. The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J Pineal Res 2018; 65:e12521. [PMID: 30098076 DOI: 10.1111/jpi.12521] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/25/2022]
Abstract
Carotid endarterectomy (CEA) is the treatment of choice for carotid stenosis. Some patients develop ischemia and reperfusion (I/R) injury after CEA. This study was designed to investigate the neuroprotective effects of melatonin on I/R injury in both rats and humans. To this end, 36 male rats were evaluated, and a double-blind randomized controlled trial (RCT) including 60 patients was performed. A rat model of middle cerebral artery occlusion was used to mimic cerebral I/R. After 2 hour of occlusion and 24 hour of reperfusion, blood samples and brain tissues were harvested for further assessments. Compared with the vehicle treatment, melatonin decreased the expression of nuclear factor κ light-chain-enhancer of activated B cells (NF-κB) and S100 calcium-binding protein β (S100β) (P < 0.05) and markedly increased the expression of nuclear erythroid 2-related factor 2 (Nrf2), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) (P < 0.05). The participants in the RCT took 6 mg/d melatonin orally from 3 days before surgery to 3 days after surgery. Blood samples were drawn at the following times: baseline; pre-anesthesia; carotid reconstruction completion; and 6, 24, and 72 hour after CEA. Compared with the oral placebo treatment, melatonin decreased the expression of NF-κB, tumor necrosis factor-α, interleukin-6 (IL-6), and S100β (P < 0.05) and increased the expression of Nrf2, SOD, CAT, and GPx (P < 0.05) in patients after CEA. Our findings suggested that melatonin could ameliorate brain I/R injury after CEA and that this outcome was essentially due to the antioxidant and anti-inflammatory effects of melatonin.
Collapse
Affiliation(s)
- Zhewei Zhao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chengran Lu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjia Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuebin Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Robertson NJ, Martinello K, Lingam I, Avdic-Belltheus A, Meehan C, Alonso-Alconada D, Ragab S, Bainbridge A, Sokolska M, Tachrount M, Middleton B, Price D, Hristova M, Golay X, Soliani Raschini A, Aquino G, Pelizzi N, Facchinetti F. Melatonin as an adjunct to therapeutic hypothermia in a piglet model of neonatal encephalopathy: A translational study. Neurobiol Dis 2018; 121:240-251. [PMID: 30300675 DOI: 10.1016/j.nbd.2018.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Therapeutic hypothermia is only partially protective for neonatal encephalopathy; there is an urgent need to develop treatments that augment cooling. Our objective was to assess safety, efficacy and pharmacokinetics of 5 and 15 mg/kg/24 h melatonin (proprietary formulation) administered at 2 h and 26 h after hypoxia-ischemia (HI) with cooling in a piglet model. Following moderate cerebral HI, 30 piglets were eligible and randomized to: i) Hypothermia (33.5 °C, 2-26 h) and vehicle (HT + V;n = 13); b) HT and 5 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-5;n = 4); c) HT and 15 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-15;n = 13). Intensive care was maintained for 48 h; brain MRS was acquired and cell death (TUNEL) evaluated at 48 h. Comparing HT + V with HT + Mel-5 and HT + Mel-15, there was no difference in blood pressure or inotropic support needed, brain Lactate/N Acetylaspartate at 24 h and 48 h was similar, ATP/phosphate pool was higher for HT + Mel-15 versus HT + V at 24 h (p = 0.038) but not 48 h. A localized reduction in TUNEL positive cell death was observed in the sensorimotor cortex in the 15 mg/kg melatonin group (HT + Mel-15 versus HT + V; p < 0.003) but not in the 5 mg/kg melatonin group (HT + Mel-5 versus HT + V; p = 0.808). Putative therapeutic melatonin levels were reached 8 h after HI (104 increase from baseline; ~15-30 mg/l). Mean ± SD peak plasma melatonin levels after the first infusion were 0.0014 ± 0.0012 mg/l in the HT + V group, 3.97 ± 1.53 mg/l in the HT + Mel-5 group and 16.8 ± 8.3 mg/l in the HT + Mel-15 group. Protection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well tolerated and augmented hypothermic protection in sensorimotor cortex. Earlier attainment of therapeutic plasma melatonin levels may optimize protection by targeting initial events of reperfusion injury. The time window for intervention with melatonin, as adjunct therapy with cooling, is likely to be narrow and should be considered in designing future clinical studies.
Collapse
Affiliation(s)
- Nicola J Robertson
- University College London, London WC1E 6HX, UK; Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar.
| | | | | | | | | | | | - Sara Ragab
- University College London, London WC1E 6HX, UK
| | | | | | - Mohamed Tachrount
- Chronobiology Group, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Benita Middleton
- Chronobiology Group, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - David Price
- University College London Hospitals NHS Trust, UK
| | | | - Xavier Golay
- Institute of Neurology, Queen Square, University College London, London, UK
| | | | | | | | | |
Collapse
|
21
|
Aridas JDS, Yawno T, Sutherland AE, Nitsos I, Ditchfield M, Wong FY, Hunt RW, Fahey MC, Malhotra A, Wallace EM, Jenkin G, Miller SL. Systemic and transdermal melatonin administration prevents neuropathology in response to perinatal asphyxia in newborn lambs. J Pineal Res 2018; 64:e12479. [PMID: 29464766 PMCID: PMC5947141 DOI: 10.1111/jpi.12479] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023]
Abstract
Perinatal asphyxia remains a principal cause of infant mortality and long-term neurological morbidity, particularly in low-resource countries. No neuroprotective interventions are currently available. Melatonin (MLT), a potent antioxidant, anti-inflammatory and antiapoptotic agent, offers promise as an intravenous (IV) or transdermal therapy to protect the brain. We aimed to determine the effect of melatonin (IV or transdermal patch) on neuropathology in a lamb model of perinatal asphyxia. Asphyxia was induced in newborn lambs via umbilical cord occlusion at birth. Animals were randomly allocated to melatonin commencing 30 minutes after birth (60 mg in 24 hours; IV or transdermal patch). Brain magnetic resonance spectroscopy (MRS) was undertaken at 12 and 72 hours. Animals (control n = 9; control+MLT n = 6; asphyxia n = 16; asphyxia+MLT [IV n = 14; patch n = 4]) were euthanised at 72 hours, and cerebrospinal fluid (CSF) and brains were collected for analysis. Asphyxia resulted in severe acidosis (pH 6.9 ± 0.0; lactate 9 ± 2 mmol/L) and altered determinants of encephalopathy. MRS lactate:N-acetyl aspartate ratio was 2.5-fold higher in asphyxia lambs compared with controls at 12 hours and 3-fold higher at 72 hours (P < .05). Melatonin prevented this rise (3.5-fold reduced vs asphyxia; P = .02). Asphyxia significantly increased brain white and grey matter apoptotic cell death (activated caspase-3), lipid peroxidation (4HNE) and neuroinflammation (IBA-1). These changes were significantly mitigated by both IV and patch melatonin. Systemic or transdermal neonatal melatonin administration significantly reduces the neuropathology and encephalopathy signs associated with perinatal asphyxia. A simple melatonin patch, administered soon after birth, may improve outcome in infants affected by asphyxia, especially in low-resource settings.
Collapse
Affiliation(s)
- James D. S. Aridas
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
| | - Tamara Yawno
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | - Amy E. Sutherland
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
| | - Ilias Nitsos
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | | | - Flora Y. Wong
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Monash Children's HospitalMonash HealthClaytonVic.Australia
| | - Rod W. Hunt
- Murdoch Children's Research InstituteMelbourneVic.Australia
| | - Michael C. Fahey
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Monash Children's HospitalMonash HealthClaytonVic.Australia
| | - Atul Malhotra
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Monash Children's HospitalMonash HealthClaytonVic.Australia
| | - Euan M. Wallace
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | - Graham Jenkin
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| |
Collapse
|
22
|
Melatonin: A New-Generation Therapy for Reducing Chronic Pain and Improving Sleep Disorder-Related Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:229-251. [DOI: 10.1007/978-981-13-1756-9_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
|
24
|
Melatonin Attenuates Pulmonary Hypertension in Chronically Hypoxic Rats. Int J Mol Sci 2017; 18:ijms18061125. [PMID: 28538666 PMCID: PMC5485949 DOI: 10.3390/ijms18061125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022] Open
Abstract
Chronic hypoxia induces pulmonary hypertension and vascular remodeling, which are clinically relevant to patients with chronic obstructive pulmonary disease (COPD) associated with a decreased level of nitric oxide (NO). Oxidative stress and inflammation play important roles in the pathophysiological processes in COPD. We examined the hypothesis that daily administration of melatonin (10 mg/kg) mitigates the pulmonary hypertension and vascular remodeling in chronically hypoxic rats. The right ventricular systolic pressure (RVSP) and the thickness of pulmonary arteriolar wall were measured from normoxic control, vehicle- and melatonin-treated hypoxic rats exposed to 10% O2 for 14 days. Levels of markers for oxidative stress (malondialdhyde) and inflammation (tumor necrosis factor-α (TNFα), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2)) and the expressions of total endothelial NO synthase (eNOS) and phosphorylated eNOS at serine1177 (ser1177) were determined in the lung tissue. We found that the RVSP and the thickness of the arteriolar wall were significantly increased in the vehicle-treated hypoxic animals with elevated levels of malondialdhyde and mRNA expressions of the inflammatory mediators, when compared with the normoxic control. In addition, the phosphorylated eNOS (ser1177) level was significantly decreased, despite an increased eNOS expression in the vehicle-treated hypoxic group. Melatonin treatment significantly attenuated the levels of RVSP, thickness of the arteriolar wall, oxidative and inflammatory markers in the hypoxic animals with a marked increase in the eNOS phosphorylation in the lung. These results suggest that melatonin attenuates pulmonary hypertension by antagonizing the oxidative injury and restoration of NO production.
Collapse
|
25
|
Kilic U, Caglayan AB, Beker MC, Gunal MY, Caglayan B, Yalcin E, Kelestemur T, Gundogdu RZ, Yulug B, Yılmaz B, Kerman BE, Kilic E. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. Redox Biol 2017; 12:657-665. [PMID: 28395173 PMCID: PMC5388917 DOI: 10.1016/j.redox.2017.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 04/01/2017] [Indexed: 12/15/2022] Open
Abstract
Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice. However, it is not clear (i) whether increased PI3K/Akt phosphorylation is a concomitant event or it directly contributes to melatonin's neuroprotective effect, and (ii) how melatonin regulates PI3K/Akt signaling pathway after FCI. In this study, we showed that Akt was intensively phosphorylated at the Thr308 activation loop as compared with Ser473 by melatonin after FCI. Melatonin treatment reduced infarct volume, which was reversed by PI3K/Akt inhibition. However, PI3K/Akt inhibition did not inhibit melatonin's positive effect on brain swelling and IgG extravasation. Additionally, phosphorylation of mTOR, PTEN, AMPKα, PDK1 and RSK1 were increased, while phosphorylation of 4E-BP1, GSK-3α/β, S6 ribosomal protein were decreased in melatonin treated animals. In addition, melatonin decreased apoptosis through reduced p53 phosphorylation by the PI3K/Akt pathway. In conclusion, we demonstrated the activation profiles of PI3K/Akt signaling pathway components in the pathophysiological aspect of ischemic stroke and melatonin's neuroprotective activity. Our data suggest that Akt phosphorylation, preferably at the Thr308 site of the activation loop via PDK1 and PTEN, mediates melatonin's neuroprotective activity and increased Akt phosphorylation leads to reduced apoptosis.
Collapse
Affiliation(s)
- Ulkan Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Medical Biology, Istanbul Medipol University, Turkey
| | - Ahmet Burak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Mustafa Caglar Beker
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Mehmet Yalcin Gunal
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Reyhan Zeynep Gundogdu
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey
| | - Burak Yulug
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Neurology, Istanbul Medipol University, Turkey
| | - Bayram Yılmaz
- Dept. of Physiology, Yeditepe University, Istanbul, Turkey
| | - Bilal Ersen Kerman
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Histology and Embryology, Istanbul Medipol University, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, Istanbul Medipol University, Turkey.
| |
Collapse
|
26
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
27
|
Sotthibundhu A, Ekthuwapranee K, Govitrapong P. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone. EXCLI JOURNAL 2016; 15:829-841. [PMID: 28275319 PMCID: PMC5341012 DOI: 10.17179/excli2016-606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
Abstract
Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy.
Collapse
Affiliation(s)
- Areechun Sotthibundhu
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand; Chulabhorn International College of Medicine, Thammasat University, Patumthani, 12120, Thailand
| | - Kasima Ekthuwapranee
- Physical therapy, Srinakharinwirot University, Ongkharak, Nakhonnayok 26120, Thailand; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand
| | - Piyarat Govitrapong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand; Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
28
|
Romero A, Ramos E, Patiño P, Oset-Gasque MJ, López-Muñoz F, Marco-Contelles J, Ayuso MI, Alcázar A. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke. Front Aging Neurosci 2016; 8:281. [PMID: 27932976 PMCID: PMC5120103 DOI: 10.3389/fnagi.2016.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital Madrid, Spain
| | - Maria J Oset-Gasque
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Ciudad Universitaria Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela UniversityMadrid, Spain; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research InstituteMadrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC) Madrid, Spain
| | - María I Ayuso
- Neurovascular Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla, Spain
| | - Alberto Alcázar
- Department of Investigation, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
29
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Iñigo-Gil P, Tan DX, García JJ, Reiter RJ. Potential benefits of melatonin in organ transplantation: a review. J Endocrinol 2016; 229:R129-46. [PMID: 27068700 DOI: 10.1530/joe-16-0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Organ transplantation is a useful therapeutic tool for patients with end-stage organ failure; however, graft rejection is a major obstacle in terms of a successful treatment. Rejection is usually a consequence of a complex immunological and nonimmunological antigen-independent cascade of events, including free radical-mediated ischemia-reperfusion injury (IRI). To reduce the frequency of this outcome, continuing improvements in the efficacy of antirejection drugs are a top priority to enhance the long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) is a powerful antioxidant and ant-inflammatory agent synthesized from the essential amino acid l-tryptophan; it is produced by the pineal gland as well as by many other organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its benefits are based on its direct actions as a free radical scavenger as well as its indirect antioxidative actions in the stimulation of the cellular antioxidant defense system. Moreover, it has significant anti-inflammatory activity. Melatonin has been found to improve the beneficial effects of preservation fluids when they are enriched with the indoleamine. This article reviews the experimental evidence that melatonin is useful in reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, lung, pancreas, kidney, and liver transplantation.
Collapse
Affiliation(s)
| | | | - Laura López-Pingarrón
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Pablo Iñigo-Gil
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Joaquín García
- Department of Pharmacology and PhysiologyUniversity of Zaragoza, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
30
|
Paterniti I, Cordaro M, Esposito E, Cuzzocrea S. The antioxidative property of melatonin against brain ischemia. Expert Rev Neurother 2016; 16:841-8. [PMID: 27108742 DOI: 10.1080/14737175.2016.1182020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION This review briefly summarizes some of the large amount of data documenting the ability of melatonin to limit molecular and organ tissue damage in neural ischemia-reperfusion injury (stroke), where free radicals are generally considered as being responsible for much of the resulting tissue destruction. AREA COVERED Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes. Furthermore, several of its metabolites such as N(1)-acetyl-N(2)-formyl-5- methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine (AMF), are themselves scavengers suggesting that there is a cascade of reactions that greatly increase the efficacy of melatonin. Expert Commentary: However, the mechanisms by which melatonin is protective in such widely diverse areas of the cell and different organs are likely not yet all identified.
Collapse
Affiliation(s)
- Irene Paterniti
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Marika Cordaro
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Emanuela Esposito
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Salvatore Cuzzocrea
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy.,b Department of Pharmacological and Physiological Science , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
31
|
Gao Y, Bai C, Zheng D, Li C, Zhang W, Li M, Guan W, Ma Y. Combination of melatonin and Wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury. J Pineal Res 2016; 60:303-12. [PMID: 26762966 DOI: 10.1111/jpi.12311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
Although melatonin has been shown to exhibit a wide variety of biological functions, its effects on promoting differentiation of neural cells remain unknown. Wnt signaling mediates major developmental processes during embryogenesis and regulates maintenance, self-renewal, and differentiation of adult mammalian stem cells. However, the role of the noncanonical Wnt pathway during neurogenesis remains poorly understood. In this study, the amniotic epithelial cells ( AECs) were isolated from bovine amnion and incubated with various melatonin concentrations (0.01, 0.1, 1, 10, or 100 μm) and 5 × 10(-5) m all-trans retinoic acid (RA) for screening optimum culture medium of neural differentiation, compared with each groups, 1 μm melatonin and 5 × 10(-5) m RA were selected to induce neural differentiation of AECs, and then siMT1, siMT2, oWnt-4, and siWnt-4 were expressed in AECs to research role of these genes in neural differentiation. Efficiency of neural differentiation was evaluated after expressed above genes using flow cytometry. Cell function of neural cells was demonstrated in vivo using spinal cord injury model after cell transplantation, and damage repair of spinal cord was assessed using cell tracking and Basso, Beattie, Bresnahan Locomotor Rating Scale scores. Results demonstrated that melatonin stimulated melatonin receptor 1, which subsequently increased bovine amniotic epithelial cell vitality and promoted differentiation into neural cells. This took place through cooperation with Wnt-4. Additionally, following cotreatment with melatonin and Wnt-4, neurogenesis gene expression was significantly altered. Furthermore, single inhibition of melatonin receptor 1 or Wnt-4 expression decreased expression of neurogenesis-related genes, and bovine amniotic epithelial cell-derived neural cells were successfully colonized into injured spinal cord, which suggested participation in tissue repair.
Collapse
Affiliation(s)
- Yuhua Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Chunyu Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Zheng
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Changli Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxiu Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Wu L, Chen G. Signaling Pathway in Cerebral Vasospasm After Subarachnoid Hemorrhage: News Update. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:161-5. [PMID: 26463942 DOI: 10.1007/978-3-319-18497-5_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subarachnoid hemorrhage (SAH) caused by ruptured intracranial aneurysms is a serious threat to human health and life. Although advances in surgical and anesthetic techniques have improved the prognosis of patients with aneurysms, the rate of death and disability caused by SAH remains high, predominantly due to cerebral vasospasm (CVS) after SAH and early brain damage. In particular, CVS is a common complication after SAH. However, its pathogenesis has not yet been fully elucidated, and clinically effective prevention and treatment measures are still lacking. Spasm of blood vessels can decrease cerebral blood flow, leading to ischemia and hypoxia in brain tissues and ultimately severe neurological dysfunction. Currently, there is no comprehensive theory that can fully explain the mechanisms underlying SAH-caused CVS. However, studies on signal transduction, apoptosis, and glial cell-mediated mechanisms in recent years have shed new light on the treatment of CVS.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, P.R.China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, P.R.China.
| |
Collapse
|
33
|
Carriere CH, Kang NH, Niles LP. Chronic low-dose melatonin treatment maintains nigrostriatal integrity in an intrastriatal rotenone model of Parkinson's disease. Brain Res 2015; 1633:115-125. [PMID: 26740407 DOI: 10.1016/j.brainres.2015.12.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a major neurodegenerative disorder which primarily involves the loss of dopaminergic neurons in the substantia nigra and related projections in the striatum. The pesticide/neurotoxin, rotenone, has been shown to cause systemic inhibition of mitochondrial complex I activity in nigral dopaminergic neurons, with consequent degeneration of the nigrostriatal pathway, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of chronic low-dose treatment with the antioxidant indoleamine, melatonin, which can upregulate neurotrophic factors and other protective proteins in the brain. Sham or lesioned rats were treated with either vehicle (0.04% ethanol in drinking water) or melatonin at a dose of 4 µg/mL in drinking water. The right striatum was lesioned by stereotactic injection of rotenone at three sites (4 μg/site) along its rostrocaudal axis. Apomorphine administration to lesioned animals resulted in a significant (p<0.001) increase in ipsilateral rotations, which was suppressed by melatonin. Nine weeks post-surgery, animals were sacrificed by transcardial perfusion. Subsequent immunohistochemical examination revealed a decrease in tyrosine hydroxylase immunoreactivity within the striatum and substantia nigra of rotenone-lesioned animals. Melatonin treatment attenuated the decrease in tyrosine hydroxylase in the striatum and abolished it in the substantia nigra. Stereological cell counts indicated a significant (p<0.05) decrease in dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, chronic melatonin treatment blocked the loss of dopamine neurons in rotenone-lesioned animals. These findings strongly support the therapeutic potential of long-term and low-dose melatonin treatment in Parkinson's disease.
Collapse
Affiliation(s)
- Candace H Carriere
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| | - Na Hyea Kang
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
34
|
The effect of melatonin on spinal cord after ischemia in rats. Spinal Cord 2015; 54:360-3. [DOI: 10.1038/sc.2015.204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/01/2015] [Accepted: 10/16/2015] [Indexed: 11/08/2022]
|
35
|
Chen J, Qian C, Duan H, Cao S, Yu X, Li J, Gu C, Yan F, Wang L, Chen G. Melatonin attenuates neurogenic pulmonary edema via the regulation of inflammation and apoptosis after subarachnoid hemorrhage in rats. J Pineal Res 2015; 59:469-77. [PMID: 26383078 DOI: 10.1111/jpi.12278] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 01/09/2023]
Abstract
Neurogenic pulmonary edema (NPE) is a serious non-neurological complication that can occur after a subarachnoid hemorrhage (SAH) and is associated with decreased survival and a poor neurological outcome. Melatonin is a strong antioxidant that has beneficial effects against SAH in rats, including reduced mortality and reduced neurological deficits. The molecular mechanisms underlying these clinical effects in the SAH model, however, have not been clearly identified. This study was undertaken to determine the influence of melatonin on SAH-induced NPE and the potential mechanism of these effects using the filament perforation model of SAH in male Sprague Dawley rats. Either melatonin (150 mg/kg) or a vehicle was given via an intraperitoneal injection 2 hr after an SAH induction. Lung samples were extracted 24 hr after SAH. The results show that the melatonin treatment attenuated SAH-induced NPE by preventing alveolar-capillary barrier dysfunctions via inhibiting the disruption of tight junction proteins (ZO-1 and occludin). Moreover, the treatment downregulated the levels of mature interleukin (IL) -1β, myeloperoxidase (MPO), and matrix metallopeptidase (MMP) 9 expression/activation, which were increased in the lung; also, melatonin treatment improved neurological deficits. Furthermore, the melatonin treatment markedly reduced caspase-3 activity and the number of TUNEL-positive cells in the lung. Taken together, these findings show that administration of melatonin attenuates NPE by preventing alveolar-capillary barrier dysfunctions via repressing the inflammatory response and by anti-apoptosis effects after SAH.
Collapse
Affiliation(s)
- Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Duan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, The First People's Hospital of Wenling, Taizhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Ke H, Lisy JM. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6). Phys Chem Chem Phys 2015; 17:25354-64. [PMID: 26397000 DOI: 10.1039/c5cp01565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.
Collapse
Affiliation(s)
- Haochen Ke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
37
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
38
|
Buendia I, Gómez-Rangel V, González-Lafuente L, Parada E, León R, Gameiro I, Michalska P, Laudon M, Egea J, López MG. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. Neuropharmacology 2015; 99:187-95. [PMID: 26188145 DOI: 10.1016/j.neuropharm.2015.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022]
Abstract
Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2.
Collapse
Affiliation(s)
- Izaskun Buendia
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Gómez-Rangel
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura González-Lafuente
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Parada
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Gameiro
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Moshe Laudon
- Neurim Pharmaceuticals Ltd., 27 Habarzel St, Tel-Aviv 6971039, Israel
| | - Javier Egea
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
39
|
Pan X, Zhu L, Lu H, Wang D, Lu Q, Yan H. Melatonin Attenuates Oxidative Damage Induced by Acrylamide In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:703709. [PMID: 26185593 PMCID: PMC4491391 DOI: 10.1155/2015/703709] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/30/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Melatonin (MT) has been shown to be potentially effective in preventing oxidative stress related neurodegenerative disorders. In this study, whether MT exerted a protective effect against ACR-induced oxidative damage was investigated. Results in cells showed that reactive oxygen species (ROS) and malondialdehyde (MDA) significantly increased after ACR treatment for 24 h. MT preconditioning or cotreatment with ACR reduced ROS and MDA products, whereas the inhibitory effect of MT on oxidant generation was attenuated by blocking the MT receptor. Increased DNA fragmentation caused by ACR was significantly decreased by MT coadministration. In vivo, rats at 40 mg/kg/day ACR by gavage for 12 days showed weight loss and gait abnormality, Purkinje cell nuclear condensation, and DNA damage in rat cerebellum. MT (i.p) cotreatment with ACR not only recovered weight and gait of rats, but also decreased nuclear condensation and DNA damage in rat cerebellum. Using MDA generation, glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities in rat cerebellum as indicators, MT alleviated ACR-induced lipid peroxidation and depressed antioxidant capacity. Our results suggest that MT effectively prevents oxidative damage induced by ACR.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanlan Zhu
- Sanya Center for Disease Control and Prevention, Hainan 572000, China
| | - Huiping Lu
- Shanghai Songjiang District Center for Disease Control and Prevention, Shanghai 200000, China
| | - Dun Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
40
|
Revuelta M, Arteaga O, Montalvo H, Alvarez A, Hilario E, Martinez-Ibargüen A. Antioxidant Treatments Recover the Alteration of Auditory-Evoked Potentials and Reduce Morphological Damage in the Inferior Colliculus after Perinatal Asphyxia in Rat. Brain Pathol 2015; 26:186-98. [PMID: 25990815 DOI: 10.1111/bpa.12272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023] Open
Abstract
Maturation of the auditory pathway is dependent on the central nervous system myelination and it can be affected by pathologies such as neonatal hypoxic ischemic (HI) encephalopathy. Our aim was to evaluate the functional integrity of the auditory pathway and to visualize, by histological and cellular methods, the damage to the brainstem using a neonatal rat model of HI brain injury. To carry out this morphofunctional evaluation, we studied the effects of the administration of the antioxidants nicotine, melatonin, resveratrol and docosahexaenoic acid after hypoxia-ischemia on the inferior colliculus and the auditory pathway. We found that the integrity of the auditory pathway in the brainstem was altered as a consequence of the HI insult. Thus, the auditory brainstem response (ABR) showed increased I-V and III-V wave latencies. At a histological level, HI altered the morphology of the inferior colliculus neurons, astrocytes and oligodendricytes, and at a molecular level, the mitochondria membrane potential and integrity was altered during the first hours after the HI and reactive oxygen species (ROS) activity is increased 12 h after the injury in the brainstem. Following antioxidant treatment, ABR interpeak latency intervals were restored and the body and brain weight was recovered as well as the morphology of the inferior colliculus that was similar to the control group. Our results support the hypothesis that antioxidant treatments have a protective effect on the functional changes of the auditory pathway and on the morphological damage which occurs after HI insult.
Collapse
Affiliation(s)
- Miren Revuelta
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Olatz Arteaga
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Haizea Montalvo
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Agustin Martinez-Ibargüen
- Department of Otorhinolaryngology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| |
Collapse
|
41
|
Effect of Melatonin on the Extracellular-Regulated Kinase Signal Pathway Activation and Human Osteoblastic Cell Line hFOB 1.19 Proliferation. Int J Mol Sci 2015; 16:10337-53. [PMID: 25961946 PMCID: PMC4463649 DOI: 10.3390/ijms160510337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023] Open
Abstract
It has been shown that melatonin may affect bone metabolism. However, it is controversial whether melatonin could promote osteoblast proliferation, and the precise molecular mechanism of melatonin on osteoblast proliferation is still obscure. In this study, the results of the CCK-8 assay showed that melatonin significantly promoted human osteoblastic cell line hFOB 1.19 cell proliferation at 1, 2.5, 5, 10, 25, 50 and 100 µM concentrations for 24 h, but there were no significant differences among the groups. Western blot demonstrated that 10 µM melatonin significantly promoted ERK1/2 phosphorylation. Furthermore, we also detected the phosphorylation of c-Raf, MEK1/2, p90RSK and MSK1, and all of them increased with 10 µM melatonin. U0126 (a selective inhibitor of MEK that disrupts downstream activation of ERK1/2) downregulated the phosphorylation of ERK1/2, p90RSK and MSK1. U0126 also attenuated the proliferation of osteoblasts stimulated by melatonin. In conclusion, this study for the first time indicates that melatonin (10 nM–100 µM) promotes the proliferation of a human osteoblastic cell line hFOB 1.19 through activation of c-Raf, MEK1/2, ERK1/2, p90RSK and MSK1.
Collapse
|
42
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
|
43
|
Pan Y, Niles LP. Epigenetic mechanisms of melatonin action in human SH-SY5Y neuroblastoma cells. Mol Cell Endocrinol 2015; 402:57-63. [PMID: 25578604 DOI: 10.1016/j.mce.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/27/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022]
Abstract
We have shown that melatonin induces histone hyperacetylation in vitro and in vivo. To clarify the mechanisms involved, we have now investigated its effects on histone acetylation and signaling pathways in human SH-SY5Y neuroblastoma cells, which express melatonin MT1 receptors. Melatonin caused significant concentration-dependent increases in both histone H3 and H4 acetylation. Blockade of melatonin receptors with luzindole abolished the histone hyperacetylating effect of melatonin, whereas inhibition of MAPK-ERK by PD98059 attenuated but did not block this effect. Melatonin treatment for 24-h decreased the levels of phospho-ERK1/2, but significantly increased Akt phosphorylation and protein expression of the histone acetyltransferase, p300. These findings suggest that the epigenetic effects of melatonin in SH-SY5Y cells are mediated by G protein-coupled MT1 melatonin receptors. Furthermore, upregulation of the histone acetyltransferase/transcriptional co-activator p300, along with phosphorylation of Akt, which is essential for p300 activation, appear to be key mechanisms underlying the epigenetic effects of melatonin.
Collapse
Affiliation(s)
- Yi Pan
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Faculty of Health Sciences, HSC-4N77, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Lennard P Niles
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Faculty of Health Sciences, HSC-4N77, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
44
|
Shin EJ, Chung YH, Le HLT, Jeong JH, Dang DK, Nam Y, Wie MB, Nah SY, Nabeshima YI, Nabeshima T, Kim HC. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol 2015; 18:pyu105. [PMID: 25550330 PMCID: PMC4438546 DOI: 10.1093/ijnp/pyu105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. METHODS First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. RESULTS Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. CONCLUSIONS Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential.
Collapse
|
45
|
Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, Reiter RJ, Qu Y. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 2015; 58:61-70. [PMID: 25401748 DOI: 10.1111/jpi.12193] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023]
Abstract
Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci 2014; 347:251-6. [DOI: 10.1016/j.jns.2014.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/28/2023]
|
47
|
Li Y, Yang Y, Feng Y, Yan J, Fan C, Jiang S, Qu Y. A review of melatonin in hepatic ischemia/reperfusion injury and clinical liver disease. Ann Med 2014; 46:503-11. [PMID: 25033992 DOI: 10.3109/07853890.2014.934275] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) can lead to cellular and, eventually, organ dysfunction, with the liver being one of the most frequently affected organs. Melatonin, a molecule that has notable antioxidant and anti-inflammatory properties, has been shown to protect against hepatic IRI. The purpose of this review is to summarize the protective effects of melatonin on hepatic IRI. The review initially summarizes the antioxidant properties of melatonin. We then discuss the protective effects of melatonin against endothelial and mitochondrial dysfunction. Thereafter, we introduce some information covering melatonin-related signaling pathways, including heme oxygenase-1 (HO-1), toll-like receptor (TLR), c-Jun N-terminal kinase (JNK), and so on. Furthermore, the clinical application of melatonin to hepatic diseases is considered. Finally, the safety of melatonin is evaluated. Taken together, the information compiled in this review will serve as a comprehensive reference regarding the pharmacological benefits of melatonin on hepatic IRI, aid in the design of future experimental research, and promote melatonin as a new therapeutic target.
Collapse
Affiliation(s)
- Yue Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | | | | | | | | | | | | |
Collapse
|
48
|
Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 2014; 275:314-21. [PMID: 24956284 DOI: 10.1016/j.neuroscience.2014.06.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. Therefore, the aim of the present study was to explore the proliferative mechanism mediated by melatonin on the adult rat hippocampal NS/PCs. Treatment with melatonin significantly increased the number of neurospheres in a concentration-dependent manner and up-regulated nestin protein. Pretreatment with luzindole, a melatonin receptor antagonist, and PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, prevented the increase in the number of neurospheres formed by the activation of melatonin. The levels of phospho-c-Raf and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) increased when treated with melatonin. Pretreatment with luzindole or PD98059 prevented the melatonin-induced increase in these signaling molecules. The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication.
Collapse
Affiliation(s)
- C Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y Puriboriboon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - T Junmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - K Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - P Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
49
|
Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z. Inhibition of Autophagy Contributes to Melatonin-Mediated Neuroprotection Against Transient Focal Cerebral Ischemia in Rats. J Pharmacol Sci 2014; 124:354-64. [DOI: 10.1254/jphs.13220fp] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|