1
|
Wang W, Wang Y, Su L, Zhang M, Zhang T, Zhao J, Ma H, Zhang D, Ji F, Jiao RD, Li H, Xu Y, Chen L, Jiao J. Endothelial Cells Mediated by STING Regulate Oligodendrogenesis and Myelination During Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308508. [PMID: 39136074 PMCID: PMC11481185 DOI: 10.1002/advs.202308508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/30/2024] [Indexed: 10/17/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) migrate extensively using blood vessels as physical scaffolds in the developing central nervous system. Although the association of OPCs with the vasculature is critical for migration, the regulatory mechanisms important for OPCs proliferative and oligodendrocyte development are unknown. Here, a correlation is demonstrated between the developing vasculature and OPCs response during brain development. Deletion of endothelial stimulator of interferon genes (STING) disrupts angiogenesis by inhibiting farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and thereby reducing cholesterol synthesis. Furthermore, the perturbation of metabolic homeostasis in endothelial cells increases interleukin 17D production which mediates the signal transduction from endothelial cells to OPCs, which inhibits oligodendrocyte development and myelination and causes behavioral abnormalities in adult mice. Overall, these findings indicate how the endothelial STING maintains metabolic homeostasis and contributes to oligodendrocyte precursor cells response in the developing neocortex.
Collapse
Affiliation(s)
- Wenwen Wang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
| | - Yanyan Wang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Libo Su
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Tianyu Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinyue Zhao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongyan Ma
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Dongming Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | | | - Hong Li
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450000China
| | - Lei Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
2
|
Ma H, Jia H, Zou W, Ji F, Wang W, Zhao J, Yuan C, Jiao J. Gasdermin D Mediated Mitochondrial Metabolism Orchestrate Neurogenesis Through LDHA During Embryonic Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402285. [PMID: 39033542 PMCID: PMC11425199 DOI: 10.1002/advs.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/22/2024] [Indexed: 07/23/2024]
Abstract
Regulatory cell death is an important way to eliminate the DNA damage that accompanies the rapid proliferation of neural stem cells during cortical development, including pyroptosis, apoptosis, and so on. Here, the study reports that the absence of GSDMD-mediated pyroptosis results in defective DNA damage sensor pathways accompanied by aberrant neurogenesis and autism-like behaviors in adult mice. Furthermore, GSDMD is involved in organizing the mitochondrial electron transport chain by regulating the AMPK/PGC-1α pathway to target Aifm3. This process promotes a switch from oxidative phosphorylation to glycolysis. The perturbation of metabolic homeostasis in neural progenitor cells increases lactate production which acts as a signaling molecule to regulate the p38MAPK pathway. And activates NF-𝜿B transcription to disrupt cortex development. This abnormal proliferation of neural progenitor cells can be rescued by inhibiting glycolysis and lactate production. Taken together, the study proposes a metabolic axis regulated by GSDMD that links pyroptosis with metabolic reprogramming. It provides a flexible perspective for the treatment of neurological disorders caused by genotoxic stress and neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Hongyan Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Huiyang Jia
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Wenzheng Zou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Wenwen Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Jinyue Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Chenqi Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
3
|
Tan ML, Xie CT, Tu X, Li YW, Chen QL, Shen YJ, Liu ZH. Short daylight photoperiod alleviated alarm substance-stimulated fear response of zebrafish. Gen Comp Endocrinol 2023; 338:114274. [PMID: 36940834 DOI: 10.1016/j.ygcen.2023.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Photoperiod has been well-documented to be involved in regulating many activities of animals. However, whether photoperiod takes part in mood control, such as fear response in fish and the underlying mode(s) of action remain unclear. In this study, adult zebrafish males and females (Danio rerio) were exposed to different photoperiods, Blank (12 h light: 12 h dark), Control (12 h light: 12 h dark), Short daylight (SD, 6 h light: 18 h dark) and Long daylight (LD, 18 h light: 6 h dark) for 28 days. After exposure, fear response of the fish was investigated using a novel tank diving test. After alarm substance administration, the onset to higher half, total duration in lower half and duration of freezing in SD-fish were significantly decreased, suggesting that short daylight photoperiod is capable of alleviating fear response in zebrafish. In contrast, comparing with the Control, LD didn't show significant effect on fear response of the fish. Further investigation revealed that SD increased the levels of melatonin (MT), serotonin (5-HT) and dopamine (DA) in the brain while decreased the plasma level of cortisol comparing to the Control. Moreover, the expressions of genes in MT, 5-HT and DA pathways and HPI axis were also altered consistently. Our data indicated that short daylight photoperiod might alleviate fear response of zebrafish probably through interfering with MT/5-HT/DA pathways and HPI axis.
Collapse
Affiliation(s)
- Mei-Ling Tan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cheng-Ting Xie
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xin Tu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
4
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
5
|
Lubas MM, Mandrell BN, Greene WL, Howell CR, Christensen R, Kimberg CI, Li C, Ness KK, Srivastava DK, Hudson MM, Robison LL, Krull KR, Brinkman TM. A randomized double-blind placebo-controlled trial of the effectiveness of melatonin on neurocognition and sleep in survivors of childhood cancer. Pediatr Blood Cancer 2022; 69:e29393. [PMID: 34674368 PMCID: PMC8859989 DOI: 10.1002/pbc.29393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Adult survivors of childhood cancer are at risk of developing sleep and neurocognitive problems, yet few efficacious interventions exist targeting these prevalent late effects. Melatonin has known sleep-promoting effects; however, it has not been well studied among childhood cancer survivors. METHOD Survivors (n = 580; mean age = 33.5 years; 26 years post-diagnosis) from the St. Jude Lifetime Cohort were randomized (1:1) to a six-month double-blind placebo-controlled trial of 3 mg time-release melatonin within three strata (stratum 1: neurocognitive impairment only; stratum 2: neurocognitive and sleep impairment; stratum 3: sleep impairment only). Neurocognitive performance was assessed at baseline and post-intervention using standardized measures. Sleep was assessed via self-report and actigraphy. Independent sample t tests compared mean change scores from baseline to six months. Post-hoc analyses compared the prevalence of clinically significant treatment responders among melatonin and placebo conditions within and across strata. RESULTS Intent-to-treat analyses revealed no statistically significant differences in neurocognitive performance or sleep from baseline to post-intervention. However, among survivors with neurocognitive impairment only, a larger proportion randomized to melatonin versus placebo demonstrated a treatment response for visuomotor speed (63% vs 41%, P = 0.02) and nonverbal reasoning (46% vs 28%, P = 0.04). Among survivors with sleep impairment only, a larger proportion treated with melatonin demonstrated a treatment response for shifting attention (44% vs 28%, P = 0.05), short-term memory (39% vs 19%, P = 0.01), and actigraphy-assessed sleep duration (47% vs 29%, P = 0.05). CONCLUSION Melatonin was not associated with improved neurocognitive performance or sleep in our intent-to-treat analyses; however, a subset of survivors demonstrated a clinically significant treatment response.
Collapse
Affiliation(s)
- Margaret M. Lubas
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | | | - William L. Greene
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital
| | - Carrie R. Howell
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham
| | - Robbin Christensen
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital
| | - Cara I. Kimberg
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | - Chenghong Li
- Department of Biostatistics, St. Jude Children’s Research Hospital
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | | | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital,Department of Oncology, St. Jude Children’s Research Hospital
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | - Kevin R. Krull
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital,Department of Psychology, St. Jude Children’s Research Hospital
| | - Tara M. Brinkman
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital,Department of Psychology, St. Jude Children’s Research Hospital
| |
Collapse
|
6
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ramis MR, Sarubbo F, Moranta D, Tejada S, Lladó J, Miralles A, Esteban S. Neurochemical and Cognitive Beneficial Effects of Moderate Physical Activity and Catechin in Aged Rats. Antioxidants (Basel) 2021; 10:antiox10040621. [PMID: 33921628 PMCID: PMC8072822 DOI: 10.3390/antiox10040621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
A healthy aging process is a requirement for good life quality. A relationship between physical activity, the consumption of antioxidants and brain health has been stablished via the activation of pathways that reduce the harmful effects of oxidative stress, by inducing enzymes such as SIRT1, which is a protector of brain function. We analyzed the cognitive and neurochemical effects of applying physical exercise in elderly rats, alone or in combination with the antioxidant catechin. Several tests of spatial and episodic memory and motor coordination were evaluated. In addition, brain monoaminergic neurotransmitters and SIRT1 protein levels were assessed in the brains of the same rats. The results show that physical activity by itself improved age-related memory and learning deficits, correlating with the restoration of brain monoaminergic neurotransmitters and SIRT1 protein levels in the hippocampus. The administration of the antioxidant catechin along with the exercise program enhanced further the monoaminergic pathways, but not the other parameters studied. These results agree with previous reports revealing a neuroprotective effect of physical activity, probably based on its ability to improve the redox status of the brain, demonstrating that exercise at an advanced age, combined with the consumption of antioxidants, could produce favorable effects in terms of brain health.
Collapse
Affiliation(s)
- Margarita R. Ramis
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Fiorella Sarubbo
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Research Unit, University Hospital Son Llàtzer, Crta. Manacor Km 4, 07198 Palma, Spain
| | - David Moranta
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- CIBERON (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Jerònia Lladó
- Department of Biology and University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma, Spain;
| | - Antoni Miralles
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Susana Esteban
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: ; Tel.: +34-971-173-145
| |
Collapse
|
8
|
Lamtai M, Azirar S, Zghari O, Ouakki S, El Hessni A, Mesfioui A, Ouichou A. Melatonin Ameliorates Cadmium-Induced Affective and Cognitive Impairments and Hippocampal Oxidative Stress in Rat. Biol Trace Elem Res 2021; 199:1445-1455. [PMID: 32613486 DOI: 10.1007/s12011-020-02247-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
The present work aims to evaluate the effect of melatonin (Mel) on affective and cognitive disorders induced by chronic exposure to Cadmium (Cd). Male and female Wistar rats received either an intraperitoneal injection of saline solution NaCl (0.9%), Mel (4 mg/kg), Cd (1 mg/kg), or Cd (1 mg/kg) + Mel (4 mg/kg) for 8 weeks. Behavioral disorders were evaluated by different tests mainly the open field and elevated plus maze tests for anxiety-like behavior, forced swimming test (FST) for depression-like behavior, and the Y-maze and Morris water maze (MWM) tests for cognitive disorders. Thereafter, oxidative stress indices and histology of the hippocampus were evaluated. The results confirm that Cd administration has anxiogenic-like effects in both anxiety tests and depressive-like effects in the FST and leads to memory and learning disabilities in the Y-maze and MWM. We also report that Mel counteracts these neurobehavioral disorders. Biochemical assays showed that rats intoxicated with Cd significantly increased levels of nitric oxide (NO) and lipid peroxidation (LPO), while the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased in the hippocampus. In contrast, Mel administration attenuates the Cd-induced changes. The histopathological studies in the hippocampus of rats also supported that Mel markedly reduced the Cd-induced neuronal loss in CA3 sub-region. Overall, our results suggest that Mel could be used to protect against Cd-induced neurobehavioral changes via its antioxidant properties in the hippocampus. The effects of Cd and Mel are sex-dependent, knowing that Cd is more harmful in males, while Mel is more protective in females.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco.
| | - Sofia Azirar
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| |
Collapse
|
9
|
Cognitive and Neurochemical Changes Following Polyphenol-Enriched Diet in Rats. Nutrients 2020; 13:nu13010059. [PMID: 33375450 PMCID: PMC7824548 DOI: 10.3390/nu13010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Dietary recommendations are frequently developed based on nutrient deficiency or prevention of disease, but less attention has been paid to the dietary guidelines to promote brain health. Active and healthy aging is a prerequisite for improving quality of life as people age, and evidence is establishing a relationship between diet and brain health. This work studied the effect of a diet based on foods rich in antioxidants, especially polyphenols, in rats, three days a week for 20 months starting at 14 months. Behavioral analysis testing working memory, spatial and episodic memory, as well as brain monoaminergic neurotransmitters involved in these processes but also in general brain health were analyzed. In addition, hippocampal SIRT1 protein which has an important role in regulating normal brain function was evaluated. The results show that long-term intake of polyphenol-enriched diet improves memory and learning, correlating with restoration of brain monoaminergic neurotransmitters and hippocampal SIRT1 levels in aged rats. These results agree with reports revealing a neuroprotective effect of different polyphenolic compounds on age-related brain decline, based on its antioxidant and anti-inflammatory properties; and demonstrate that consumption of antioxidant-rich foods, a few days a week, gives good long-term results in terms of brain health.
Collapse
|
10
|
Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019; 76:106835. [PMID: 31518687 DOI: 10.1016/j.ntt.2019.106835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Venlafaxine (VEN) is one of the first clinical drugs for the treatment of depression. Long-term use may cause a potentially life-threatening serotonin syndrome. Melatonin (MT) could ameliorate depression behavior. Therefore, the aim of this study was to investigate the antidepressant effects of venlafaxine in combination with melatonin on zebrafish. Reserpine was used to induce depression-like behavioral zebrafish. To explore the effects of combined use of venlafaxine and melatonin on depression-like zebrafish induced by reserpine. We tested the depressive behavior of adult zebrafish through a novel tank test, and evaluated the levels of serotonin (5-HT), dopamine (DA) and noradrenaline (NA) in zebrafish brain using enzyme-linked immunosorbent assay (ELISA), besides that the gene expression of serotonin transporters a (serta), dopamine transporters (dat) and norepinephrine transporters (net), vesicular monoamine transporter2 (vmat2) and monoamine oxidase (mao) were evaluated by qRT-PCR. The results showed that, compared with reserpine-only group, venlafaxine (VEN, 0.025 mg/L) and melatonin (MT, 1 μM) increased the parameters of exploration in the top of the tank and decreased freezing behavior significantly. Compared with reserpine-only group, the use of VEN combined with MT increased serotonin and norepinephrine levels significantly, while there was no obvious difference in dopamine content. The results of qRT-PCR showed that the use of VEN combined with MT significantly reduced the expression of serta and promoted the expression of vmat2, but had no significant effect on the expression of net, dat and mao. The results indicated that venlafaxine combined with melatonin showed more effective role to remedy the depressive symptoms in zebrafish, providing a reference for the clinical application of antidepressants.
Collapse
Affiliation(s)
- Ya-Qiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Zhuo-Ran Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q. Melatonin in Synaptic Impairments of Alzheimer's Disease. J Alzheimers Dis 2019; 63:911-926. [PMID: 29710712 DOI: 10.3233/jad-171178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-β neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Integrated TCM and Western Medicine Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
A comprehensive metabolomics investigation of hippocampus, serum, and feces affected by chronic fluoxetine treatment using the chronic unpredictable mild stress mouse model of depression. Sci Rep 2019; 9:7566. [PMID: 31110199 PMCID: PMC6527582 DOI: 10.1038/s41598-019-44052-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/27/2019] [Indexed: 02/01/2023] Open
Abstract
A metabolomic investigation of depression and chronic fluoxetine treatment was conducted using a chronic unpredictable mild stress model with C57BL/6N mice. Establishment of the depressive model was confirmed by body weight measurement and behavior tests including the forced swim test and the tail suspension test. Behavioral despair by depression was reversed by four week-treatment with fluoxetine. Hippocampus, serum, and feces samples collected from four groups (control + saline, control + fluoxetine, model + saline, and model + fluoxetine) were subjected to metabolomic profiling based on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Alterations in the metabolic patterns were evident in all sample types. The antidepressant effects of fluoxetine appeared to involve various metabolic pathways including energy metabolism, neurotransmitter synthesis, tryptophan metabolism, fatty acid metabolism, lipid metabolism, and bile acid metabolism. Predictive marker candidates of depression were identified, including β-citryl-L-glutamic acid (BCG) and docosahexaenoic acid (DHA) in serum and chenodeoxycholic acid and oleamide in feces. This study suggests that treatment effects of fluoxetine might be differentiated by altered levels of tyramine and BCG in serum, and that DHA is a potential serum marker for depression with positive association with hippocampal DHA. Collectively, our comprehensive study provides insights into the biochemical perturbations involved in depression and the antidepressant effects of fluoxetine.
Collapse
|
13
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents. Mol Psychiatry 2019; 24:1478-1488. [PMID: 29679072 PMCID: PMC6756100 DOI: 10.1038/s41380-018-0047-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) in children and adolescents is a recurrent and disabling condition globally but its pathophysiology remains poorly elucidated and there are limited effective treatments available. We performed metabolic profiling of plasma samples based on ultra-high-performance liquid chromatography equipped with quadrupole time-offlight mass spectrometry to explore the potential biomarkers of depression in children and adolescents with MDD. We identified several perturbed pathways, including fatty acid metabolism-particularly the polyunsaturated fatty acids metabolism, and purine metabolism-that were associated with MDD in these young patients. In addition, inosine was shown as a potential independent diagnostic biomarker for MDD, achieving an area under the ROC curve of 0.999 in discriminating drug-naive MDD patients and 0.866 in discriminating drug-treated MDD from healthy controls. Moreover, we found evidence for differences in the pathophysiology of MDD in children and adolescents to that of adult MDD, specifically with tryptophan metabolism. Through metabolomic analysis, we have identified links between a framework of metabolic perturbations and the pathophysiology and diagnostic biomarker of child and adolescent MDD.
Collapse
|
15
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
16
|
Saikia B, Barua CC, Sarma J, Haloi P, Tamuli SM, Kalita DJ, Purkayastha A, Barua AG. Zanthoxylum alatum ameliorates scopolamine-induced amnesia in rats: Behavioral, biochemical, and molecular evidence. Indian J Pharmacol 2018; 50:30-38. [PMID: 29861525 PMCID: PMC5954630 DOI: 10.4103/ijp.ijp_417_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE: Hydroethanolic extract of Zanthoxylum alatum seeds (HEZA) in scopolamine-induced amnesia was investigated for memory enhancing activity. MATERIALS AND METHODS: Radial arm maze (RAM) test was performed to evaluate the behavioral activity. Rats were treated with HEZA (50, 100, and 200 mg/kg, p. o.) and tacrine (3 mg/kg. i. p.) for 14 days. Scopolamine (0.4 mg/kg) was injected i. p. into rats after 45 min of drug administration on the 14th day. The messenger RNA (mRNA)/protein profile of few markers (acetylcholinesterase [AChE], heme oxygenase-1 [HO-1], nuclear factor-kappa B [NFκB], nuclear factor erythroid 2–related factor 2 [Nrf2], protein phosphatase 2A[PP2A], Tau, brain-derived neurotrophic factor [BDNF], tropomyosin-related kinase B [TrkB], Bcl-2-associated X protein [Bax], and Caspase-3) were also measured by polymerase chain reaction (PCR) and immunoblotting assay. Brain cytokines (tumor necrosis factor alpha [TNF-α], interleukin [IL]-1 β, and IL-10) in hippocampus were evaluated using commercially available enzyme-linked immunosorbent assay kits. RESULTS: HEZA exhibited anti-amnesic activity as indicated by a significant reduction in the working memory error and reference memory error in RAM. Pretreatment with HEZA significantly down-regulated the expression of AChE, NFκB, Tau, Bax, and Caspase-3 with simultaneous up-regulation of Nrf2, HO-1, PP2A, BDNF, and TrkB genes in the hippocampal tissues similar to tacrine when compared with scopolamine-treated rats. Pretreatment with HEZA attenuated scopolamine-induced elevation of TNF-α, IL-1 β, levels in hippocampus and reversed diminished IL-10 concentrations towards normal levels in the brain. CONCLUSION: Zanthoxylum alatum seeds could probably counteract amnesia. Since its use is mainly reported as a stimulant and tonic, this novel activity could be a boon for the scientists to explore more in this direction.
Collapse
Affiliation(s)
- Beenita Saikia
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Chandana C Barua
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Jadav Sarma
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khurda, Odisha, India
| | - Sarojini M Tamuli
- Department of Veterinary Pathology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Dhruba J Kalita
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Arundhati Purkayastha
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Achinta G Barua
- Department of Veterinary Public Health, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| |
Collapse
|
17
|
Bin-Jaliah I, Sakr HF. Melatonin ameliorates brain oxidative stress and upregulates senescence marker protein-30 and osteopontin in a rat model of vascular dementia. Physiol Int 2018; 105:38-52. [PMID: 29602294 DOI: 10.1556/2060.105.2018.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate the effect of melatonin on oxidative stress and senescence marker protein-30 (SMP30) as well as osteopontin (OPN) expression in the hippocampus of rats subjected to vascular dementia (VD). A total of 72 male rats were divided into six groups (n = 12 each) as follows: (i) untreated control (CON), (ii) sham-operated group, (iii) sham-operated + melatonin, (iv) rats exposed to VD induced by permanent bilateral occlusion of the common carotid arteries (BCCAO) leading to chronic cerebral hypoperfusion, (v) rats exposed to VD + melatonin, and (vi) rats exposed to VD + donepezil (DON). At the end of experiment, the hippocampal levels of acetylcholine (ACh), norepinephrine (NE), and dopamine (Dop) were measured. Expression of OPN was determined using immunohistochemistry, and SMP30 expression was determined using real-time PCR in the hippocampus. Hippocampal thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) were evaluated. The BCCAO group showed significantly decreased TAC (p < 0.05) and significantly increased in TBARS levels compared with the CON group. In addition, BCCAO significantly decreased (p < 0.05) the expression of both OPN and SMP30 and the levels of ACh, NE, and Dop in the hippocampus compared with CON treatment. Treatment with melatonin significantly increased OPN and SMP30 expression and ACh, NE, and Dop levels in the hippocampus with amelioration of the oxidative stress compared with BCCAO rats. Melatonin might produce a neuroprotective effect through its antioxidant action and by increasing the expression of SMP30 and OPN that is not comparable with that of DON.
Collapse
Affiliation(s)
- I Bin-Jaliah
- 1 Department of Physiology, College of Medicine, King Khalid University , Abha, Saudi Arabia
| | - H F Sakr
- 2 Faculty of Medicine, Department of Medical Physiology, Mansoura University , Mansoura, Egypt.,3 Faculty of Medicine and Health Sciences, Department of Medical Physiology, Sultan Qaboos University , Muscat, Oman
| |
Collapse
|
18
|
Jantzie LL, Oppong AY, Conteh FS, Yellowhair TR, Kim J, Fink G, Wolin AR, Northington FJ, Robinson S. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy. Front Neurol 2018; 9:233. [PMID: 29706928 PMCID: PMC5908903 DOI: 10.3389/fneur.2018.00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) is the leading cause of motor impairment for children worldwide and results from perinatal brain injury (PBI). To test novel therapeutics to mitigate deficits from PBI, we developed a rat model of extreme preterm birth (<28 weeks of gestation) that mimics dual intrauterine injury from placental underperfusion and chorioamnionitis. We hypothesized that a sustained postnatal treatment regimen that combines the endogenous neuroreparative agents erythropoietin (EPO) and melatonin (MLT) would mitigate molecular, sensorimotor, and cognitive abnormalities in adults rats following prenatal injury. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague–Dawley rats. Uterine artery occlusion was performed for 60 min to induce placental insufficiency via transient systemic hypoxia-ischemia, followed by intra-amniotic injections of lipopolysaccharide, and laparotomy closure. On postnatal day 1 (P1), approximately equivalent to 30 weeks of gestation, injured rats were randomized to an extended EPO + MLT treatment regimen, or vehicle (sterile saline) from P1 to P10. Behavioral assays were performed along an extended developmental time course (n = 6–29). Open field testing shows injured rats exhibit hypermobility and disinhibition and that combined neonatal EPO + MLT treatment repairs disinhibition in injured rats, while EPO alone does not. Furthermore, EPO + MLT normalizes hindlimb deficits, including reduced paw area and paw pressure at peak stance, and elevated percent shared stance after prenatal injury. Injured rats had fewer social interactions than shams, and EPO + MLT normalized social drive. Touchscreen operant chamber testing of visual discrimination and reversal shows that EPO + MLT at least partially normalizes theses complex cognitive tasks. Together, these data indicate EPO + MLT can potentially repair multiple sensorimotor, cognitive, and behavioral realms following PBI, using highly translatable and sophisticated developmental testing platforms.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Akosua Y Oppong
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Fatu S Conteh
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joshua Kim
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gabrielle Fink
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Adam R Wolin
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Frances J Northington
- Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr Neuropharmacol 2018; 16:126-136. [PMID: 28676015 PMCID: PMC5883375 DOI: 10.2174/1570159x15666170703113212] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically the oxidative stress and more recently inflammatory processes have been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, but there is more information about the effects of oxidative stress on aging than regarding the contribution of inflammation on it. METHODS In the intense research for methods to delay or mitigate the effects of aging, are interesting polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and anti-inflammatory properties make them useful molecules in the prevention of aging. RESULTS The antiaging effects of polyphenols could be due to several related mechanisms, among which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via regulation of some signaling pathways, such as NF-κB. CONCLUSION In this review, we describe the positive effects of polyphenols on the prevention of the changes that occur during aging in the brain and their consequences on cognition, emphasizing the possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism.
Collapse
Affiliation(s)
- F. Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - S. Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - A. Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - D. Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| |
Collapse
|
20
|
Sarubbo F, Ramis MR, Kienzer C, Aparicio S, Esteban S, Miralles A, Moranta D. Chronic Silymarin, Quercetin and Naringenin Treatments Increase Monoamines Synthesis and Hippocampal Sirt1 Levels Improving Cognition in Aged Rats. J Neuroimmune Pharmacol 2017; 13:24-38. [DOI: 10.1007/s11481-017-9759-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
|
21
|
Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models: another understanding of ketamine CNS toxicity. Sci Rep 2016; 6:38771. [PMID: 27934938 PMCID: PMC5146946 DOI: 10.1038/srep38771] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Ketamine has been reported to impair human cognitive function as a recreational drug of abuse. However, chronic effects of ketamine on central nervous system need to be further explored. We set out to establish chronic ketamine addiction models by giving mice a three or six month course of daily intraperitoneal injections of ketamine, then examined whether long-term ketamine administration induced cognition deficits and changed hippocampal post-synaptic protein expression in adult mice. Behavior tests results showed that mice exhibited dose- and time-dependent learning and memory deficits after long-term ketamine administration. Western blot results showed levels of GluA1, p-S845 and p-S831 proteins demonstrated significant decline with ketamine 60 mg/kg until six months administration paradigm. But levels of p-S845 and p-S831 proteins exhibited obvious increase with ketamine 60 mg/kg three months administration paradigm. NR1 protein levels significantly decrease with ketamine 60 mg/kg three and six months administration paradigm. Our results indicate that reduced expression levels and decreased phosphorylation levels of hippocampal post-synaptic membrane GluA1- containing AMPA receptors maybe involved in cognition impairment after long-term ketamine administration. These findings provide further evidence for the cognitive damage of chronic ketamine addiction as a recreational drug.
Collapse
|
22
|
Stefanovic B, Spasojevic N, Jovanovic P, Jasnic N, Djordjevic J, Dronjak S. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: Regulating vesicular monoamine transporter 2 and monoamine oxidase A levels. Eur Neuropsychopharmacol 2016; 26:1629-37. [PMID: 27499503 DOI: 10.1016/j.euroneuro.2016.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/13/2016] [Accepted: 07/02/2016] [Indexed: 12/17/2022]
Abstract
The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes.
Collapse
Affiliation(s)
- Bojana Stefanovic
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Predrag Jovanovic
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Nebojsa Jasnic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
23
|
Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 2016; 60:383-93. [PMID: 26882442 DOI: 10.1111/jpi.12319] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4-mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jeong-Min Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| |
Collapse
|
24
|
Ramis MR, Sarubbo F, Terrasa JL, Moranta D, Aparicio S, Miralles A, Esteban S. Chronic α-Tocopherol Increases Central Monoamines Synthesis and Improves Cognitive and Motor Abilities in Old Rats. Rejuvenation Res 2016; 19:159-71. [DOI: 10.1089/rej.2015.1685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Margarita R. Ramis
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - Fiorella Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - Juan L. Terrasa
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - David Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
- Laboratorio de Infección e Inmunidad, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB)-Instituto de Investigación Sanitaria de Palma (IdISPa), Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Hospital Joan March, Mallorca, Spain
| | - Sara Aparicio
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - Antonio Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - Susana Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| |
Collapse
|
25
|
Spasojevic N, Stefanovic B, Jovanovic P, Dronjak S. Anxiety and Hyperlocomotion Induced by Chronic Unpredictable Mild Stress Can Be Moderated with Melatonin Treatment. Folia Biol (Praha) 2016; 62:250-257. [PMID: 28189148 DOI: 10.14712/fb2016062060250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Preclinical studies have shown that melatonin exercised antidepressant-like and anxiolyticlike effects in animal models of anxiety. The aim of the present study was to correlate the changes in behaviour induced by melatonin treatment with the activity of the dopaminergic system in the hippocampus of Wistar rats exposed to chronic, unpredictable, mild stress (CUMS). Male Wistar rats, 11 weeks old, were subjected to chronic stress for 28 successive days. Separate groups of control and stressed rats were intraperitoneally injected daily either with melatonin (10 mg/kg/day, i.p.) or placebo (5% ethanol). The open-field and elevated plus-maze tests were used to assess locomotor activities and anxiety levels. The content of dopamine (DA) in the hippocampal tissues was determined using radioenzymatic assay, while changes in tyrosine hydroxylase (TH) mRNA and protein levels in the hippocampus were determined using real-time RT-PCR and Western immunoblotting. Chronic stress led to reduction in the hippocampal dopaminergic content without affecting the levels of TH protein. These changes were accompanied by increased locomotor activity and higher anxiety levels in the open-field test. Administration of melatonin for 28 days resulted in an increase in the hippocampal DA content as a result of elevated TH protein levels. Melatonin showed an improvement in anxiety-like behaviour along with significantly reduced exploration. We could conclude that melatonin may stimulate dopaminergic synthesis in the hippocampus in order to suppress stress-induced behaviour.
Collapse
Affiliation(s)
- N Spasojevic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| | - B Stefanovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| | - P Jovanovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| | - S Dronjak
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| |
Collapse
|
26
|
Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L. The effect of melatonin treatment on postural stability, muscle strength, and quality of life and sleep in postmenopausal women: a randomized controlled trial. Nutr J 2015; 14:102. [PMID: 26424587 PMCID: PMC4590707 DOI: 10.1186/s12937-015-0093-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melatonin is often used as a sleeping aid in elderly adults. As previous studies suggest a protective role of melatonin against osteoporosis, it is important to document its safety. Treatment should not cause any hangover effect that could potentially lead to falls and fractures. We therefore aimed to evaluate the effect of melatonin on balance- and muscle function. METHODS AND PATIENTS In a double-blind placebo-controlled study, we randomized 81 postmenopausal women with osteopenia to receive 1 or 3 mg melatonin, or placebo nightly for 12 months. Postural balance as well as muscle function was measured. In addition, we assessed quality of life and sleep at baseline and after 12 months treatment. RESULTS Compared to placebo, one-year treatment with melatonin did not affect postural balance or risk of falls. Furthermore, no significant changes between groups were observed in muscle strength in neither upper- nor lower extremities. Treatment did not affect quality of life or sleep. However, in the subgroup of women with sleep disturbances at baseline, a trend towards an improved sleep quality was seen (p = 0.08). CONCLUSION Treatment with melatonin is safe in postmenopausal women with osteopenia. There is no hangover effect affecting balance- and muscle function following the intake of melatonin. In women with a good quality of sleep, melatonin has no effect, however in poor quality of sleep, small doses of melatonin trended towards improving the quality. TRIAL REGISTRATION (# NCT01690000).
Collapse
Affiliation(s)
- Anne Kristine Amstrup
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, Tage-Hansens Gade 2 DK-Aarhus C, 8000, Aarhus, Denmark.
| | - Tanja Sikjaer
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, Tage-Hansens Gade 2 DK-Aarhus C, 8000, Aarhus, Denmark
| | - Leif Mosekilde
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, Tage-Hansens Gade 2 DK-Aarhus C, 8000, Aarhus, Denmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, Tage-Hansens Gade 2 DK-Aarhus C, 8000, Aarhus, Denmark
| |
Collapse
|
27
|
Sarubbo F, Ramis MR, Aparicio S, Ruiz L, Esteban S, Miralles A, Moranta D. Improving effect of chronic resveratrol treatment on central monoamine synthesis and cognition in aged rats. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9777. [PMID: 25895558 PMCID: PMC4404420 DOI: 10.1007/s11357-015-9777-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/10/2015] [Indexed: 05/19/2023]
Abstract
Resveratrol is a polyphenol exhibiting antioxidant and neuroprotective effects in neurodegenerative diseases. However, neuroprotective properties during normal aging have not been clearly demonstrated. We analyzed the in vivo effects of chronic administration of resveratrol (20 mg/kg/day for 4 weeks) in old male rats (Wistar, 20 months), on tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activities which mediate central monoaminergic neurotransmitters synthesis, and besides, on hippocampal-dependent working memory test (radial maze). Our results show an age-related decline in neurochemical parameters that were reversed by resveratrol administration. The resveratrol treatment enhances serotonin (5-HT) levels in pineal gland, in hippocampus, and in striatum, and those of noradrenaline (NA) in hippocampus and also dopamine (DA) in striatum. These changes were largely due to an increased activity of TPH-1 (463 % in pineal gland), TPH-2 (70-51 % in hippocampus and striatum), and TH (150-36 % in hippocampus and striatum). Additionally, the observed hippocampal effects correlate with a resveratrol-induced restorative effect on working memory (radial maze). In conclusion, this study suggests resveratrol treatment as a restoring therapy for the impaired cognitive functions occurring along normal aging process, by preventing 5-HT, DA, and NA neurotransmission decline.
Collapse
Affiliation(s)
- F. Sarubbo
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - M. R. Ramis
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - S. Aparicio
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - L. Ruiz
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - S. Esteban
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - A. Miralles
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
| | - D. Moranta
- />Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Ctra. Valldemossa Km 7,5, 07122 Palma de Mallorca, Spain
- />Laboratorio de Infección e Inmunidad, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB)-Instituto de Investigación Sanitaria de Palma (IdISPa), Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Hospital Joan March, Mallorca, Spain
| |
Collapse
|
28
|
Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, Zhao J, Zhou J, Xie P, Xu G. Discovery and Validation of Plasma Biomarkers for Major Depressive Disorder Classification Based on Liquid Chromatography–Mass Spectrometry. J Proteome Res 2015; 14:2322-30. [DOI: 10.1021/acs.jproteome.5b00144] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xinyu Liu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Peng Zheng
- Department
of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
- Institute
of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xinjie Zhao
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Yuqing Zhang
- Department
of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
- Institute
of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chunxiu Hu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Jia Li
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Jieyu Zhao
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Jingjing Zhou
- Department
of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
- Institute
of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Peng Xie
- Department
of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
- Institute
of Neuroscience, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Guowang Xu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| |
Collapse
|
29
|
Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF. Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci 2015; 38:13-25. [DOI: 10.1016/j.tins.2014.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Chenu F, Shim S, El Mansari M, Blier P. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons. J Psychopharmacol 2014; 28:162-7. [PMID: 24189440 DOI: 10.1177/0269881113510071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.
Collapse
Affiliation(s)
- Franck Chenu
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
31
|
Intake of melatonin increases tryptophan hydroxylase type 1 activity in aged rats: Preliminary study. Exp Gerontol 2014; 49:1-4. [DOI: 10.1016/j.exger.2013.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
|
32
|
Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L. Melatonin and the skeleton. Osteoporos Int 2013; 24:2919-27. [PMID: 23716040 DOI: 10.1007/s00198-013-2404-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
Melatonin may affect bone metabolism through bone anabolic as well as antiresorptive effects. An age-related decrease in peak melatonin levels at nighttime is well documented, which may increase bone resorption and bone loss in the elderly. In vitro, melatonin reduces oxidative stress on bone cells by acting as an antioxidant. Furthermore, melatonin improves bone formation by promoting differentiation of human mesenchymal stem cell (hMSC) into the osteoblastic cell linage. Bone resorption is reduced by increased synthesis of osteoprogeterin (OPG), a decoy receptor that prevents receptor activator of NK-κB ligand (RANKL) in binding to its receptor. Moreover, melatonin is believed to reduce the synthesis of RANKL preventing further bone resorption. In ovariectomized as well as nonovariectomized rodents, melatonin has shown beneficial effects on bone as assessed by biochemical bone turnover markers, DXA, and μCT scans. Furthermore, in pinealectomized animals, bone mineral density (BMD) is significantly decreased compared to controls, supporting the importance of sufficient melatonin levels. In humans, dysfunction of the melatonin signaling pathway may be involved in idiopathic scoliosis, and the increased fracture risk in nighttime workers may be related to changes in the circadian rhythm of melatonin. In the so-far only randomized study on melatonin treatment, no effects were, however, found on bone turnover markers. In conclusion, melatonin may have beneficial effects on the skeleton, but more studies on humans are warranted in order to find out whether supplementation with melatonin at bedtime may preserve bone mass and improve bone biomechanical competence.
Collapse
Affiliation(s)
- A K Amstrup
- Department of Internal Medicine and Endocrinology (MEA), THG Tage-Hansens Gade 2, Aarhus University Hospital, 8000 Aarhus, Denmark,
| | | | | | | |
Collapse
|
33
|
Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:11-20. [PMID: 23590874 DOI: 10.1016/j.pnpbp.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
Abstract
It has been reported that Growth hormone (GH) has an immediate effect enhancing excitatory postsynaptic potentials mediated by AMPA and NMDA receptors in hippocampal area CA1. As GH plays a role in adult memory processing, this work aims to study the acute effects of GH on working memory tasks in rodents and the possible involvement of NMDA and AMPA receptors and also the MEK/ERK signalling pathway. To evaluate memory processes, two different tests were used, the spatial working memory 8-arm radial maze, and the novel object recognition as a form of non-spatial working memory test. Acute GH treatment (1mg/kg i.p., 1h) improved spatial learning in the radial maze respect to the control group either in young rats (reduction of 46% in the performance trial time and 61% in the number of errors), old rats (reduction of 38% in trial time and 48% in the number of errors), and adult mice (reduction of 32% in the performance time and 34% in the number of errors). GH treatment also increased the time spent exploring the novel object respect to the familiar object compared to the control group in young rats (from 63% to 79%), old rats (from 53% to 70%), and adult mice (from 61 to 68%). The improving effects of GH on working memory tests were blocked by the NMDA antagonist MK801 dizocilpine (0.025 mg/kg i.p.) injected 10 min before the administration of GH, in both young and old rats. In addition, the AMPA antagonist DNQX (1mg/kg i.p.) injected 10 min before the administration of GH to young rats, blocked the positive effect of GH. Moreover, in mice, the MEK inhibitor SL 327 (20mg/kg i.p.) injected 30 min before the administration of GH, blocked the positive effect of GH on radial maze and the novel object recognition. In conclusion, GH improved working memory processes through both glutamatergic receptors NMDA and AMPA and it required the activation of extracellular MEK/ERK signalling pathway. These effects could be related to the enhancement of excitatory synaptic transmission in the hippocampus reported by GH.
Collapse
|
34
|
De Berardis D, Marini S, Fornaro M, Srinivasan V, Iasevoli F, Tomasetti C, Valchera A, Perna G, Quera-Salva MA, Martinotti G, di Giannantonio M. The melatonergic system in mood and anxiety disorders and the role of agomelatine: implications for clinical practice. Int J Mol Sci 2013; 14:12458-83. [PMID: 23765220 PMCID: PMC3709794 DOI: 10.3390/ijms140612458] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023] Open
Abstract
Melatonin exerts its actions through membrane MT1/MT2 melatonin receptors, which belong to the super family of G-protein-coupled receptors consisting of the typical seven transmembrane domains. MT1 and MT2 receptors are expressed in various tissues of the body either as single ones or together. A growing literature suggests that the melatonergic system may be involved in the pathophysiology of mood and anxiety disorders. In fact, some core symptoms of depression show disturbance of the circadian rhythm in their clinical expression, such as diurnal mood and other symptomatic variation, or are closely linked to circadian system functioning, such as sleep-wake cycle alterations. In addition, alterations have been described in the circadian rhythms of several biological markers in depressed patients. Therefore, there is interest in developing antidepressants that have a chronobiotic effect (i.e., treatment of circadian rhythm disorders). As melatonin produces chronobiotic effects, efforts have been aimed at developing agomelatine, an antidepressant with melatonin agonist activity. The present paper reviews the role of the melatonergic system in the pathophysiology of mood and anxiety disorders and the clinical characteristics of agomelatine. Implications of agomelatine in "real world" clinical practice will be also discussed.
Collapse
Affiliation(s)
- Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4 Teramo, Italy; E-Mail:
- Department of Neuroscience and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti 66013, Italy; E-Mails: (G.M.); (M. G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0861429708; Fax: +39-0861429706
| | - Stefano Marini
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4 Teramo, Italy; E-Mail:
- Department of Neuroscience and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti 66013, Italy; E-Mails: (G.M.); (M. G.)
| | - Michele Fornaro
- Department of “Scienze della Formazione”, University of Catania, Catania 95121, Italy; E-Mail:
| | - Venkataramanujam Srinivasan
- Sri Sathya Sai Medical Educational and Research Foundation, Medical Sciences Research Study Center, Prasanthi Nilayam, 40-Kovai Thirunagar Coimbatore, Tamilnadu 641014, India; E-Mail:
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapeutics, Section of Psychiatry, Department of Neuroscience, University School of Medicine “Federico II”, Naples 80131, Italy; E-Mails: (F.I.); (C.T.)
| | - Carmine Tomasetti
- Laboratory of Molecular Psychiatry and Psychopharmacotherapeutics, Section of Psychiatry, Department of Neuroscience, University School of Medicine “Federico II”, Naples 80131, Italy; E-Mails: (F.I.); (C.T.)
| | - Alessandro Valchera
- Hermanas Hospitalarias, FoRiPsi, Villa S. Giuseppe Hospital, Ascoli Piceno 63100, Italy; E-Mail:
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, Como 22032, Italy; E-Mail:
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, 33124 Miami, USA
- Department of Psychiatry and Neuropsychology, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | - Maria-Antonia Quera-Salva
- AP-HP Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Garches 92380, France; E-Mail:
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti 66013, Italy; E-Mails: (G.M.); (M. G.)
| | - Massimo di Giannantonio
- Department of Neuroscience and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti 66013, Italy; E-Mails: (G.M.); (M. G.)
| |
Collapse
|
35
|
Tchekalarova J, Petkova Z, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Lozanov V, Atanasova D, Lazarov N, Stoynev A. Prophylactic treatment with melatonin after status epilepticus: effects on epileptogenesis, neuronal damage, and behavioral changes in a kainate model of temporal lobe epilepsy. Epilepsy Behav 2013; 27:174-87. [PMID: 23435277 DOI: 10.1016/j.yebeh.2013.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Melatonin is a potent antioxidant which showed anticonvulsant activities both in experimental and clinical studies. In the present study, we examined the effect of melatonin treatment (10mg/kg/day, diluted in drinking water, 8 weeks) during epileptogenesis on the consequences of a kainate (KA)-induced status epilepticus (SE) in rats. Melatonin increased the latency in the appearance of spontaneous recurrent seizures (SRSs) and decreased their frequency only during the treatment period. The behavioral alterations associated with hyperactivity, depression-like behavior during the light phase, and deficits in hippocampus-dependent working memory were positively affected by melatonin treatment in rats with epilepsy. Melatonin reduced the neuronal damage in the CA1 area of the hippocampus and piriform cortex and recovered the decrease of hippocampal serotonin (5-HT) level in rats with epilepsy. Taken together, long-term melatonin treatment after SE was unable to suppress the development of epileptogenesis. However, it showed a potential in reducing some of the deleterious alterations that develop during the chronic epileptic state in a diurnal phase-dependent mode.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Acad G Bonchev Str, Bl 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chenu F, El Mansari M, Blier P. Electrophysiological effects of repeated administration of agomelatine on the dopamine, norepinephrine, and serotonin systems in the rat brain. Neuropsychopharmacology 2013; 38:275-84. [PMID: 22871919 PMCID: PMC3527117 DOI: 10.1038/npp.2012.140] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Agomelatine is a melatonergic MT1/MT2 agonist and a serotonin (5-HT) 5-HT(2C) antagonist. The effects of 2-day and 14-day administration of agomelatine were investigated on the activity of ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) 5-HT neurons using in vivo electrophysiology in rats. The 5-HT(1A) transmission was assessed at hippocampus CA3 pyramidal neurons. After a 2-day regimen of agomelatine (40 mg/kg/day, i.p.), an increase in the number of spontaneously active VTA-DA neurons (p<0.001) and in the firing rate of LC-NE neurons (p<0.001) was observed. After 14 days, the administration of agomelatine induced an increase in: (1) the number of spontaneously active DA neurons (p<0.05), (2) the bursting activity of DA neurons (bursts/min, p<0.01 and percentage of spikes occurring in bursts, p<0.05), (3) the firing rate of DRN-5-HT neurons (p<0.05), and (4) the tonic activation of postsynaptic 5-HT(1A) receptors located in the hippocampus. The increase in 5-HT firing rate was D2 dependent, as it was antagonized by the D2 receptor antagonist paliperidone. The enhancement of NE firing was restored by the 5-HT(2A) receptor antagonist MDL-100,907 after the 14-day regimen. All the effects of agomelatine were antagonized by a single administration of the melatonergic antagonist S22153 (except for the increase in the percentage of spikes occurring in burst for DA neurons). The present results suggest that (1) agomelatine exerts direct (2 days) and indirect (14 days) modulations of monoaminergic neuronal activity and (2) the melatonergic agonistic activity of agomelatine contributes to the enhancement of DA and 5-HT neurotransmission.
Collapse
Affiliation(s)
- Franck Chenu
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Mostafa El Mansari
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Blier
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Institute of Mental Health Research (IMHR), 1145 Carling Avenue, University of Ottawa, Room 6412, Ottawa K1Z 7K4, ON, Canada, Tel: +1 613 722 6521 (ext 6944), Fax: +1 613 761 3610, E-mail:
| |
Collapse
|
37
|
Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids. Amino Acids 2012; 44:1039-51. [DOI: 10.1007/s00726-012-1439-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
|
38
|
Melatonin protection from chronic, low-level ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:7-14. [DOI: 10.1016/j.mrrev.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/02/2023]
|
39
|
Protective effect of melatonin on acute pancreatitis. Int J Inflam 2012; 2012:173675. [PMID: 22606640 PMCID: PMC3347751 DOI: 10.1155/2012/173675] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/22/2012] [Accepted: 02/02/2012] [Indexed: 02/04/2023] Open
Abstract
Melatonin, a product of the pineal gland, is released from the gut mucosa in response to food ingestion. Specific receptors for melatonin have been detected in many gastrointestinal tissues including the pancreas. Melatonin as well as its precursor, L-tryptophan, attenuates the severity of acute pancreatitis and protects the pancreatic tissue from the damage caused by acute inflammation. The beneficial effect of melatonin on acute pancreatitis, which has been reported in many experimental studies and supported by clinical observations, is related to: (1) enhancement of antioxidant defense of the pancreatic tissue, through direct scavenging of toxic radical oxygen (ROS) and nitrogen (RNS) species, (2) preservation of the activity of antioxidant enzymes; such as superoxide dismutase (SOD), catalase (CAT), or glutathione peroxidase (GPx), (3) the decline of pro-inflammatory cytokine tumor necrosis α (TNFα) production, accompanied by stimulation of an anti-inflammatory IL-10, (4) improvement of pancreatic blood flow and decrease of neutrophil infiltration, (5) reduction of apoptosis and necrosis in the inflamed pancreatic tissue, (6) increased production of chaperon protein (HSP60), and (7) promotion of regenerative process in the pancreas. Conclusion. Endogenous melatonin produced from L-tryptophan could be one of the native mechanisms protecting the pancreas from acute damage and accelerating regeneration of this gland. The beneficial effects of melatonin shown in experimental studies suggest that melatonin ought to be employed in the clinical trials as a supportive therapy in acute pancreatitis and could be used in people at high risk for acute pancreatitis to prevent the development of pancreatic inflammation.
Collapse
|
40
|
Melo P, Magalhães A, Alves CJ, Tavares MA, de Sousa L, Summavielle T, Moradas-Ferreira P. Methamphetamine mimics the neurochemical profile of aging in rats and impairs recognition memory. Neurotoxicology 2012; 33:491-9. [PMID: 22433442 DOI: 10.1016/j.neuro.2012.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/03/2012] [Accepted: 03/04/2012] [Indexed: 12/13/2022]
Abstract
Brain neurochemistry and cognition performance are thought to decline with age. Accumulating data indicate that similar events occur after prolonged methamphetamine (MA) exposure. Using the rat as a model, the present study was designed to uncover common alteration patterns in brain neurochemistry and memory performance between aging and prolonged MA exposure. To this end, animals were treated with a chronic binge MA administration paradigm (20mg/kg/day from postnatal day 91 to 100). Three-age control groups received isovolumetric saline treatment and were tested at the MA age-matched period, and at 12 and 20 months. We observed that both MA and aged animals presented a long, but not short, time impairment in novelty preference and an increased anxiety-like behavior. Neurochemical analysis indicated similar MA- and age-related impairments in dopamine, serotonin and metabolites in the striatum, prefrontal cortex and hippocampus. Thus, the present data illustrate that MA may be used to mimic age-related effects on neurotransmitter systems and advocate MA treatment as a feasible animal model to study neuronal processes associated with aging.
Collapse
Affiliation(s)
- Pedro Melo
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
41
|
Park S, Lee K, Kim YS, Back K. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. J Pineal Res 2012; 52:211-6. [PMID: 21884550 DOI: 10.1111/j.1600-079x.2011.00930.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melatonin biosynthesis was examined in Sekiguchi mutant rice lacking functional tryptamine 5-hydroxylase (T5H) activity, which is the terminal enzyme for serotonin biosynthesis in rice. During senescence process, the leaves of Sekiguchi mutant rice produced more tryptamine and N-acetyltryptamine compared with the wild-type Asahi leaves. Even though T5H activity is absent, Sekiguchi leaves produce low levels of serotonin derived from 5-hydroxytryptophan, which was found to be synthesized during senescence process. Accordingly, both rice cultivars exhibited similar levels of N-acetylserotonin until 6 days of senescence induction; however, only Asahi leaves continued to accumulate N-acetylserotonin after 6 days. In contrast, a large amount of N-acetyltryptamine was accumulated in Sekiguchi leaves, indicating that tryptamine was efficiently utilized as substrate by the rice arylalkylamine N-acetyltransferase enzyme. An increase in N-acetyltryptamine in Sekiguchi had an inhibitory effect on synthesis of melatonin because little melatonin was produced in Sekiguchi leaves at 6 days of senescence induction, even in the presence of equivalent levels of N-acetylserotonin in both cultivars. The exogenous treatment of 0.1 mmN-acetyltryptamine during senescence process completely blocked melatonin synthesis.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biotechnology, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | | | | | | |
Collapse
|
42
|
Jan JE, Reiter RJ, Wong PKH, Bax MCO, Ribary U, Wasdell MB. Melatonin has membrane receptor-independent hypnotic action on neurons: an hypothesis. J Pineal Res 2011; 50:233-40. [PMID: 21210841 DOI: 10.1111/j.1600-079x.2010.00844.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melatonin, which is known to have sleep-promoting properties, has no morpho-physiological barriers and readily enters neurons and their subcellular compartments from both the blood and cerebrospinal fluid. It has multiple receptor-dependent and receptor-independent functions. Sleep is a neuronal function, and it can no longer be postulated that one or more anatomical structures fully control sleep. Neurons require sleep for metabolically driven restorative purposes, and as a result, the process of sleep is modulated by peripheral and central mechanisms. This is an important finding because it suggests that melatonin should have intracellular sleep-inducing properties. Based on recent evidence, it is proposed that melatonin induces sleep at the neuronal level independently of its membrane receptors. Thus, the hypnotic action of melatonin and the mechanisms involving the circadian rhythms are separate neurological functions. This is contrary to the presently accepted view.
Collapse
Affiliation(s)
- James E Jan
- Diagnostic Neurophysiology, BC Children's Hospital, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse. J Pineal Res 2011; 50:97-109. [PMID: 20964710 DOI: 10.1111/j.1600-079x.2010.00819.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress is reported as one of the most widely accepted mechanisms of maneb (MB)- and paraquat (PQ)-induced nigrostriatal dopaminergic neurodegeneration leading to the Parkinson's disease (PD) phenotype. The study investigated the effects of silymarin, an antioxidant of plant origin, and melatonin, an indoleamine produced in all species, in MB- and PQ-induced mouse model of PD. The mice were treated intraperitoneally daily with silymarin (40mg/kg) or melatonin (30mg/kg) along with respective controls for 9wk. Subsets of these animals were also treated with MB (30mg/kg) and PQ (10mg/kg), twice a week, for 9wk, 2hr after silymarin/melatonin treatment. Locomotor activities along with striatal dopamine content, tyrosine hydroxylase (TH) immunoreactivity, number of degenerating neurons, lipid peroxidation and nitrite content were estimated. Additionally, mRNA expression of vesicular monoamine transporter, cytochrome P-450 2E1 (CYP2E1), and glutathione-S-transferase A4-4 (GSTA4-4), catalytic activities of CYP2E1 and GSTA4-4 and protein expressions of unphosphorylated and phosphorylated p53 (p53 and P-p53), Bax and caspase 9 were measured in control and MB- and PQ-treated mice with either silymarin or melatonin treatments. Silymarin/melatonin significantly offset MB- and PQ-mediated reductions in locomotor activities, dopamine content, TH immunoreactivity, VMAT 2 mRNA expression and the expression of p53 protein. Silymarin/melatonin attenuated the increases in lipid peroxidation, number of degenerating neurons, nitrite content, mRNA expressions of cytochrome P-450 2E1 (CYP2E1) and GSTA4-4, catalytic activities of CYP2E1 and GST and P-p53, Bax and caspase 9 protein expressions. The results demonstrate that silymarin and melatonin offer nigrostriatal dopaminergic neuroprotection against MB- and PQ-induced PD by the modulation of oxidative stress and apoptotic machinery.
Collapse
Affiliation(s)
- Naveen Kumar Singhal
- Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), M. G. Marg, Lucknow, UP, India Jamia Hamdard, New Delhi, India
| | | | | | | | | |
Collapse
|
44
|
Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Ramis M, Tresguerres JA, Rial R. Improving Effects of Long-Term Growth Hormone Treatment on Monoaminergic Neurotransmission and Related Behavioral Tests in Aged Rats. Rejuvenation Res 2010; 13:707-16. [DOI: 10.1089/rej.2010.1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Susana Esteban
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - Celia Garau
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Sara Aparicio
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - David Moranta
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
- Fundación Caubet-Cimera, Hospital Joan March, Mallorca, Spain
| | - Pere Barceló
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | - Margarita Ramis
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| | | | - Rubén Rial
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain
| |
Collapse
|
45
|
Hong Y, Palaksha KJ, Park K, Park S, Kim HD, Reiter RJ, Chang KT. Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury. J Pineal Res 2010; 49:201-9. [PMID: 20626592 DOI: 10.1111/j.1600-079x.2010.00786.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord caused by the trauma or disease that results in compromised or loss of body function. Subsequent to SCI in humans, many individuals have residual motor and sensory deficits that impair functional performance and quality of life. The available treatments for SCI are rehabilitation therapy, activity-based therapies, and pharmacological treatment using antioxidants and their agonists. Among pharmacological treatments, the most efficient and commonly used antioxidant for experimental SCI treatment is melatonin, an indolamine secreted by pineal gland at night. Melatonin's receptor-independent free radical scavenging action and its broad-spectrum antioxidant activity makes it an ideal antioxidant to protect tissue from oxidative stress-induced secondary damage after SCI. Owing to the limitations of an activity-based therapy and antioxidant treatment singly on the functional recovery and oxidative stress-induced secondary damages after SCI, a melatonin plus exercise treatment may be a more effective therapy for SCI. As suggested herein, supplementation with melatonin in conjunction with exercise not only would improve the functional recovery by enhancing the beneficial effects of exercise but would reduce the secondary tissue damage simultaneously. Finally, melatonin may protect against exercise-induced fatigue and impairments. In this review, based on the documented evidence regarding the beneficial effects of melatonin, activity-based therapy and the combination of both on functional recovery, as well as reduction of secondary damage caused by oxidative stress after SCI, we suggest the melatonin combined with exercise would be a novel neurorehabilitative strategy for the faster recovery after SCI.
Collapse
Affiliation(s)
- Yonggeun Hong
- Department of Physical Therapy, Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, 607 O-bang Dong, Gimhae 621-749, Korea.
| | | | | | | | | | | | | |
Collapse
|