1
|
Hirano T, Ebine K, Ueda T, Higaki T, Watanabe-Nakayama T, Konno H, Takigawa-Imamura H, Sato MH. The SYP123-VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. THE PLANT CELL 2023; 35:4347-4365. [PMID: 37713604 PMCID: PMC10689195 DOI: 10.1093/plcell/koad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Yang M, Ismayil A, Jiang Z, Wang Y, Zheng X, Yan L, Hong Y, Li D, Liu Y. A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO J 2022; 41:e108713. [PMID: 34888888 PMCID: PMC8762549 DOI: 10.15252/embj.2021108713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Asigul Ismayil
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan Wang
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Xiyin Zheng
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| | - Liming Yan
- MOE Key Laboratory of Protein ScienceSchool of MedicineTsinghua UniversityBeijingChina
| | - Yiguo Hong
- Research Centre for Plant RNA SignalingCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Dawei Li
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yule Liu
- MOE Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life SciencesBeijingChina
| |
Collapse
|
3
|
Changes in Subcellular Localization of Host Proteins Induced by Plant Viruses. Viruses 2021; 13:v13040677. [PMID: 33920930 PMCID: PMC8071230 DOI: 10.3390/v13040677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Viruses are dependent on host factors at all parts of the infection cycle, such as translation, genome replication, encapsidation, and cell-to-cell and systemic movement. RNA viruses replicate their genome in compartments associated with the endoplasmic reticulum, chloroplasts, and mitochondria or peroxisome membranes. In contrast, DNA viruses replicate in the nucleus. Viral infection causes changes in plant gene expression and in the subcellular localization of some host proteins. These changes may support or inhibit virus accumulation and spread. Here, we review host proteins that change their subcellular localization in the presence of a plant virus. The most frequent change is the movement of host cytoplasmic proteins into the sites of virus replication through interactions with viral proteins, and the protein contributes to essential viral processes. In contrast, only a small number of studies document changes in the subcellular localization of proteins with antiviral activity. Understanding the changes in the subcellular localization of host proteins during plant virus infection provides novel insights into the mechanisms of plant–virus interactions and may help the identification of targets for designing genetic resistance to plant viruses.
Collapse
|
4
|
Gu D, Zhou X, Ma Y, Xu E, Yu Y, Liu Y, Chen X, Zhang W. Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110754. [PMID: 33568293 DOI: 10.1016/j.plantsci.2020.110754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/11/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The essential micronutrient elements zinc (Zn) and manganese (Mn) are crucial for plant growth and development. As an important oil crop, the yield and quality of rapeseed are affected by Zn and Mn toxicity. The cation diffusion facilitator (CDF) family of proteins play significant roles in maintaining intracellular ionic homeostasis and tolerance in plants. However, research on CDF proteins in rapeseed is lacking. In this study, the function of a Brassica napus cation diffusion facilitator/ metal tolerance protein (CDF/MTP) was investigated. The protein, abbreviated BnMTP3 is homologous to the Arabidopsis thaliana MTP3 (AtMTP3). Heterologous expression of BnMTP3 in yeast enhanced tolerance and intracellular sequestration of Zn and Mn. Expression of BnMTP3 in A. thaliana increased Zn and Mn tolerance and markedly increased Zn accumulation in roots. Quantitative RT-PCR analysis showed that BnMTP3 is primarily expressed in roots, and subcellular localization suggested that BnMTP3 is localized in the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) in Arabidopsis and rape protoplast. After treatment with Zn and Mn, BnMTP3 was observed on the vacuolar membrane in transgenic Arabidopsis lines. These findings suggest that BnMTP3 confers Zn and Mn tolerance by sequestering Zn and/or Mn into the vacuole.
Collapse
Affiliation(s)
- Dongfang Gu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xueli Zhou
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yurou Ma
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yihong Yu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yiheng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
5
|
Yepes-Molina L, Bárzana G, Carvajal M. Controversial Regulation of Gene Expression and Protein Transduction of Aquaporins under Drought and Salinity Stress. PLANTS 2020; 9:plants9121662. [PMID: 33261103 PMCID: PMC7761296 DOI: 10.3390/plants9121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Enhancement of the passage of water through membranes is one of the main mechanisms via which cells can maintain their homeostasis under stress conditions, and aquaporins are the main participants in this process. However, in the last few years, a number of studies have reported discrepancies between aquaporin messenger RNA (mRNA) expression and the number of aquaporin proteins synthesised in response to abiotic stress. These observations suggest the existence of post-transcriptional mechanisms which regulate plasma membrane intrinsic protein (PIP) trafficking to the plasma membrane. This indicates that the mRNA synthesis of some aquaporins could be modulated by the accumulation of the corresponding encoded protein, in relation to the turnover of the membranes. This aspect is discussed in terms of the results obtained: on the one hand, with isolated vesicles, in which the level of proteins present provides the membranes with important characteristics such as resistance and stability and, on the other, with isolated proteins reconstituted in artificial liposomes as an in vitro method to address the in vivo physiology of the entire plant.
Collapse
|
6
|
Karim R, Bouchra B, Fatima G, Abdelkarim FM, Laila S. Plant NHX Antiporters: From Function to Biotechnological Application, with Case Study. Curr Protein Pept Sci 2020; 22:60-73. [PMID: 33143624 DOI: 10.2174/1389203721666201103085151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
Salt stress is one of the major abiotic stresses that negatively affect crops worldwide. Plants have evolved a series of mechanisms to cope with the limitations imposed by salinity. Molecular mechanisms, including the upregulation of cation transporters such as the Na+/H+ antiporters, are one of the processes adopted by plants to survive in saline environments. NHX antiporters are involved in salt tolerance, development, cell expansion, growth performance and disease resistance of plants. They are integral membrane proteins belonging to the widely distributed CPA1 sub-group of monovalent cation/H+ antiporters and provide an important strategy for ionic homeostasis in plants under saline conditions. These antiporters are known to regulate the exchange of sodium and hydrogen ions across the membrane and are ubiquitous to all eukaryotic organisms. With the genomic approach, previous studies reported that a large number of proteins encoding Na+/H+ antiporter genes have been identified in many plant species and successfully introduced into desired species to create transgenic crops with enhanced tolerance to multiple stresses. In this review, we focus on plant antiporters and all the aspects from their structure, classification, function to their in silico analysis. On the other hand, we performed a genome-wide search to identify the predicted NHX genes in Argania spinosa L. We highlighted for the first time the presence of four putative NHX (AsNHX1-4) from the Argan tree genome, whose phylogenetic analysis revealed their classification in one distinct vacuolar cluster. The essential information of the four putative NHXs, such as gene structure, subcellular localization and transmembrane domains was analyzed.
Collapse
Affiliation(s)
- Rabeh Karim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Belkadi Bouchra
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Gaboun Fatima
- Plant Breeding Unit, National Institute for Agronomic Research, Regional Center of Rabat, B.P. 6356-Rabat-Instituts, Morocco
| | - Filali-Maltouf Abdelkarim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Sbabou Laila
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| |
Collapse
|
7
|
Ibl V. ESCRTing in cereals: still a long way to go. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1144-1152. [PMID: 31327097 DOI: 10.1007/s11427-019-9572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Chen LM, Fang YS, Zhang CJ, Hao QN, Cao D, Yuan SL, Chen HF, Yang ZL, Chen SL, Shan ZH, Liu BH, Jing-Wang, Zhan Y, Zhang XJ, Qiu DZ, Li WB, Zhou XA. GmSYP24, a putative syntaxin gene, confers osmotic/drought, salt stress tolerances and ABA signal pathway. Sci Rep 2019; 9:5990. [PMID: 30979945 PMCID: PMC6461667 DOI: 10.1038/s41598-019-42332-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
As major environment factors, drought or high salinity affect crop growth, development and yield. Transgenic approach is an effective way to improve abiotic stress tolerance of crops. In this study, we comparatively analyzed gene structures, genome location, and the evolution of syntaxin proteins containing late embryogenesis abundant (LEA2) domain. GmSYP24 was identified as a dehydration-responsive gene. Our study showed that the GmSYP24 protein was located on the cell membrane. The overexpression of GmSYP24 (GmSYP24ox) in soybean and heteroexpression of GmSYP24 (GmSYP24hx) in Arabidopsis exhibited insensitivity to osmotic/drought and high salinity. However, wild type soybean, Arabidopsis, and the mutant of GmSYP24 homologous gene of Arabidopsis were sensitive to the stresses. Under the abiotic stresses, transgenic soybean plants had greater water content and higher activities of POD, SOD compared with non-transgenic controls. And the leaf stomatal density and opening were reduced in transgenic Arabidopsis. The sensitivity to ABA was decreased during seed germination of GmSYP24ox and GmSYP24hx. GmSYP24hx induced up-regulation of ABA-responsive genes. GmSYP24ox alters the expression of some aquaporins under osmotic/drought, salt, or ABA treatment. These results demonstrated that GmSYP24 played an important role in osmotic/drought or salt tolerance in ABA signal pathway.
Collapse
Affiliation(s)
- Li-Miao Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Yi-Sheng Fang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Chan-Juan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Qing-Nan Hao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Dong Cao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Song-Li Yuan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Hai-Feng Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Zhong-Lu Yang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Shui-Lian Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Zhi-Hui Shan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Bao-Hong Liu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Jing-Wang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Yong Zhan
- Crop Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Key Lab of Cereal Quality Research and Genetic Improvement, Xinjiang Production and Construction Crops, 832000, Shihezi, China
| | - Xiao-Juan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - De-Zhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Wen-Bin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
- Division of Soybean Breeding and Seed, Soybean Research & Development Center, CARS (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Harbin, 150030, China.
| | - Xin-An Zhou
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China.
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China.
| |
Collapse
|
9
|
Xie Q, Chen A, Zhang Y, Yuan M, Xie W, Zhang C, Zheng W, Wang Z, Li G, Zhou J. Component Interaction of ESCRT Complexes Is Essential for Endocytosis-Dependent Growth, Reproduction, DON Production and Full Virulence in Fusarium graminearum. Front Microbiol 2019; 10:180. [PMID: 30809208 PMCID: PMC6379464 DOI: 10.3389/fmicb.2019.00180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/23/2019] [Indexed: 01/18/2023] Open
Abstract
Multivesicular bodies (MVBs) are critical intermediates in the trafficking of ubiquitinated endocytosed surface proteins to the lysosome/vacuole for destruction. Recognizing and packaging ubiquitin modified cargoes to the MVB pathway require ESCRT (Endosomal sorting complexes required for transport) machinery, which consists of four core subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. Our previous results showed that ESCRT-0 is essential for fungal development and pathogenicity in Fusarium graminearum. We then, in this study, systemically studied the protein-protein interactions within F. graminearum ESCRT-I, -II or -III complex, as well as between ESCRT-0 and ESCRT-I, ESCRT-I and ESCRT-II, and ESCRT-II and ESCRT-III complexes and found that loss of any ESCRT component resulted in abnormal function in endocytosis. In addition, ESCRT deletion mutants displayed severe defects in growth, deoxynivalenol (DON) production, virulence, sexual, and asexual reproduction. Importantly genetic complementation with corresponding ESCRT genes fully rescued all these defective phenotypes, indicating the essential role of ESCRT machinery in fungal development and plant infection in F. graminearum. Taken together, the protein-protein interactome and biological functions of the ESCRT machinery is first profoundly characterized in F. graminearum, providing a foundation for further exploration of ESCRT machinery in filamentous fungi.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunzhi Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengkang Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Zhou
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Durand TC, Cueff G, Godin B, Valot B, Clément G, Gaude T, Rajjou L. Combined Proteomic and Metabolomic Profiling of the Arabidopsis thaliana vps29 Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. Int J Mol Sci 2019; 20:E362. [PMID: 30654520 PMCID: PMC6359594 DOI: 10.3390/ijms20020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/25/2022] Open
Abstract
The retromer is a multiprotein complex conserved from yeast to humans, which is involved in intracellular protein trafficking and protein recycling. Selection of cargo proteins transported by the retromer depends on the core retromer subunit composed of the three vacuolar protein sorting (VPS) proteins, namely VPS26, VPS29, and VPS35. To gain a better knowledge of the importance of the plant retromer in protein sorting, we carried out a comparative proteomic and metabolomic analysis of Arabidopsis thaliana seeds from the wild-type and the null-retromer mutant vps29. Here, we report that the retromer mutant displays major alterations in the maturation of seed storage proteins and synthesis of lipid reserves, which are accompanied by severely impaired seed vigor and longevity. We also show that the lack of retromer components is counterbalanced by an increase in proteins involved in intracellular trafficking, notably members of the Ras-related proteins in brain (RAB) family proteins. Our study suggests that loss of the retromer stimulates energy metabolism, affects many metabolic pathways, including that of cell wall biogenesis, and triggers an osmotic stress response, underlining the importance of retromer function in seed biology.
Collapse
Affiliation(s)
- Thomas C Durand
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon I, CNRS, INRA, 69342 Lyon, France.
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Benoît Valot
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon I, CNRS, INRA, 69342 Lyon, France.
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| |
Collapse
|
11
|
Yuan R, Lan J, Fang Y, Yu H, Zhang J, Huang J, Qin G. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology. THE NEW PHYTOLOGIST 2018; 219:1388-1405. [PMID: 29897620 PMCID: PMC6099276 DOI: 10.1111/nph.15249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/21/2018] [Indexed: 05/07/2023]
Abstract
The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation.
Collapse
Affiliation(s)
- Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
- The Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Yuxing Fang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jiaying Huang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| |
Collapse
|
12
|
Cui Y, He Y, Cao W, Gao J, Jiang L. The Multivesicular Body and Autophagosome Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1837. [PMID: 30619408 PMCID: PMC6299029 DOI: 10.3389/fpls.2018.01837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
In eukaryotic cells, the endomembrane system consists of multiple membrane-bound organelles, which play essential roles in the precise transportation of various cargo proteins. In plant cells, vacuoles are regarded as the terminus of catabolic pathways whereas the selection and transport of vacuolar cargoes are mainly mediated by two types of organelles, multivesicular bodies (MVBs) also termed prevacuolar compartments (PVCs) and autophagosomes. MVBs are single-membrane bound organelles with intraluminal vesicles and mediate the transport between the trans-Golgi network (TGN) and vacuoles, while autophagosomes are double-membrane bound organelles, which mediate cargo delivery to the vacuole for degradation and recycling during autophagy. Great progress has been achieved recently in identification and characterization of the conserved and plant-unique regulators involved in the MVB and autophagosome pathways. In this review, we present an update on the current knowledge of these key regulators and pay special attention to their conserved protein domains. In addition, we discuss the possible interplay between the MVB and autophagosome pathways in regulating vacuolar degradation in plants.
Collapse
Affiliation(s)
- Yong Cui
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Yong Cui, Liwen Jiang,
| | - Yilin He
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenhan Cao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Yong Cui, Liwen Jiang,
| |
Collapse
|
13
|
Wang Y, Yang L, Tang Y, Tang R, Jing Y, Zhang C, Zhang B, Li X, Cui Y, Zhang C, Shi J, Zhao F, Lan W, Luan S. Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth. PLoS Biol 2017; 15:e2004310. [PMID: 29283991 PMCID: PMC5746207 DOI: 10.1371/journal.pbio.2004310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters—Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)—to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis. Auxin, a plant hormone, controls many aspects of plant growth and development. The precise transport and distribution of auxin hold the key to its function. A number of transport proteins are known to be involved in auxin translocation, and the PIN proteins, which are an integral part of membranes in plants, play a pivotal role in this process. Several PIN proteins are localized in the plasma membrane to mediate auxin efflux from cells, but their regulation is not well known. In this report, we analyze the role of a choline transport protein, choline transporter-like 1 (CTL1), and find that it controls the trafficking of Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3) to the plasma membrane, thereby regulating auxin distribution during plant growth and development. In addition, we show that CTL1 has a role in lipid homeostasis in the membrane; thus, these findings provide a mechanistic link between choline transport, lipid homeostasis, and vesicle trafficking in plants. We conclude that CTL1 is a new factor in secretory protein sorting and that this finding contributes to the understanding of not only auxin distribution in plants but also protein trafficking in general.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- College of Life Sciences, Northwest University, Xi’an, Shanxi, China
| | - Lei Yang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Tang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Yanping Jing
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Bin Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Li
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yaning Cui
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jisen Shi
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Fugeng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (WL); (SL)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (WL); (SL)
| |
Collapse
|
14
|
Lütz-Meindl U. Micrasterias as a Model System in Plant Cell Biology. FRONTIERS IN PLANT SCIENCE 2016; 7:999. [PMID: 27462330 PMCID: PMC4940373 DOI: 10.3389/fpls.2016.00999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 05/18/2023]
Abstract
The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.
Collapse
Affiliation(s)
- Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of SalzburgSalzburg, Austria
| |
Collapse
|
15
|
Qiu QS. AtNHX5 and AtNHX6: Roles in protein transport. PLANT SIGNALING & BEHAVIOR 2016; 11:e1184810. [PMID: 27175802 PMCID: PMC4973783 DOI: 10.1080/15592324.2016.1184810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 05/24/2023]
Abstract
AtNHX5 and AtNHX6, endosomal Na(+),K(+)/H(+) antiporters in Arabidopsis, are localized in the Golgi, trans-Golgi network, and prevacuolear compartment. It becomes evident that AtNHX5 and AtNHX6 play an important role in protein transport toward the vacuole. Studies have shown that AtNHX5 and AtNHX6 regulate the transport of seed storage proteins as well as the biogenesis of the protein storage vacuoles. Three distinct mechanisms have been revealed for the roles of AtNHX5 and AtNHX6 in protein transport. AtNHX5 and AtNHX6 control: (i) the binding of VSR to its cargoes; (ii) the recycling of VSRs; and (iii) subcellular localization of the SNARE complex. Moreover, it has been found that the endosomal pH homeostasis maintained by AtNHX5 and AtNHX6 is critical for the transport of seed storage proteins. Taken together, AtNHX5 and AtNHX6 regulate the trafficking of seed storage proteins into the vacuole; the H(+) leak pathway conducted by AtNHX5 and AtNHX6 is critical for protein transport.
Collapse
Affiliation(s)
- Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Qiu QS. Plant endosomal NHX antiporters: Activity and function. PLANT SIGNALING & BEHAVIOR 2016; 11:e1147643. [PMID: 26890367 PMCID: PMC4973769 DOI: 10.1080/15592324.2016.1147643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 05/28/2023]
Abstract
The Arabidopsis NHX antiporter family contains eight members that are divided into three subclasses: vacuolar, endosomal, and plasma membrane. While the plasma membrane and vacuolar NHXs have been studied extensively, the activity and function of the endosomal NHXs are beginning to be discovered. AtNHX5 and AtNHX6 are endosomal Na(+),K(+)/H(+) antiporters that share high sequence similarity. They are localized in the Golgi, trans-Golgi network (TGN), and prevacuolear compartment (PVC). Studies have shown that AtNHX5 and AtNHX6 mediate K(+) and Na(+) transport, and regulate cellular pH homeostasis. Sequence alignment has found that AtNHX5 and AtNHX6 contain four conserved acidic amino acid residues in transmembrane domains that align with yeast and human NHXs. Three of these conserved acidic residues are critical for K(+) transport and seedling growth in Arabidopsis. Moreover, studies have shown that the precursors of the seed storage proteins are missorted to the apoplast in the nhx5 nhx6 knockout mutant, suggesting that AtNHX5 and AtNHX6 regulate protein transport into the vacuole. Further analysis found that AtNHX5 and AtNHX6 regulated the binding of VSR to its cargoes. Taken together, AtNHX5 and AtNHX6 play an important role in cellular ion and pH homeostasis, and are essential for protein transport into the vacuole.
Collapse
Affiliation(s)
- Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
AtNHX5 and AtNHX6 Are Required for the Subcellular Localization of the SNARE Complex That Mediates the Trafficking of Seed Storage Proteins in Arabidopsis. PLoS One 2016; 11:e0151658. [PMID: 26986836 PMCID: PMC4795774 DOI: 10.1371/journal.pone.0151658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 12/02/2022] Open
Abstract
The SNARE complex composed of VAMP727, SYP22, VTI11 and SYP51 is critical for protein trafficking and PSV biogenesis in Arabidopsis. This SNARE complex directs the fusion between the prevacuolar compartment (PVC) and the vacuole, and thus mediates protein trafficking to the vacuole. In this study, we examined the role of AtNHX5 and AtNHX6 in regulating this SNARE complex and its function in protein trafficking. We found that AtNHX5 and AtNHX6 were required for seed production, protein trafficking and PSV biogenesis. We further found that the nhx5 nhx6 syp22 triple mutant showed severe defects in seedling growth and seed development. The triple mutant had short siliques and reduced seed sets, but larger seeds. In addition, the triple mutant had numerous smaller protein storage vacuoles (PSVs) and accumulated precursors of the seed storage proteins in seeds. The PVC localization of SYP22 and VAMP727 was repressed in nhx5 nhx6, while a significant amount of SYP22 and VAMP727 was trapped in the Golgi or TGN in nhx5 nhx6. AtNHX5 and AtNHX6 were co-localized with SYP22 and VAMP727. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for the transport of the storage proteins, indicating the importance of exchange activity in protein transport. AtNHX5 or AtNHX6 did not interact physically with the SNARE complex. Taken together, AtNHX5 and AtNHX6 are required for the PVC localization of the SNARE complex and hence its function in protein transport. AtNHX5 and AtNHX6 may regulate the subcellular localization of the SNARE complex by their transport activity.
Collapse
|
18
|
Tun NM, O'Doherty PJ, Chen ZH, Wu XY, Bailey TD, Kersaitis C, Wu MJ. Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae. Metallomics 2015; 6:1558-64. [PMID: 24926745 DOI: 10.1039/c4mt00116h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genome-wide screening using gene deletion mutants has been widely carried out with numerous toxicants including oxidants and metal ions. The focus of such studies usually centres on identifying sensitive phenotypes against a given toxicant. Here, we screened the complete collection of yeast gene deletion mutants (5047) with increasing concentrations of aluminium sulphate (0.4, 0.8, 1.6 and 3.2 mM) in order to discover aluminium (Al(3+)) tolerant phenotypes. Fifteen genes were found to be associated with Al(3+) transport because their deletion mutants exhibited Al(3+) tolerance, including lem3Δ, hal5Δ and cka2Δ. Deletion of CKA2, a catalytic subunit of tetrameric protein kinase CK2, gives rise to the most pronounced resistance to Al(3+) by showing significantly higher growth compared to the wild type. Functional analysis revealed that both molecular regulation and endocytosis are involved in Al(3+) transport for yeast. Further investigations were extended to all the four subunits of CK2 (CKA1, CKA2, CKB1 and CKB2) and the other 14 identified mutants under a spectrum of metal ions, including Al(3+), Zn(2+), Mn(2+), Fe(2+), Fe(3+), Co(3+), Ga(3+), Cd(2+), In(3+), Ni(2+) and Cu(2+), as well as hydrogen peroxide and diamide, in order to unravel cross-tolerance amongst metal ions and the effect of the oxidants. Finally, the implication of the findings in Al(3+) transport for the other species like plants and humans is discussed.
Collapse
Affiliation(s)
- Nay M Tun
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Grégory Vert
- Institut des Sciences du Végétal, CNRS UPR 2355, 1 Avenue de la Terrasse, Bâtiment 23A, Gif-sur-Yvette 91190, France
| |
Collapse
|
20
|
Toyooka K, Sato M, Kutsuna N, Higaki T, Sawaki F, Wakazaki M, Goto Y, Hasezawa S, Nagata N, Matsuoka K. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2014; 55:1544-55. [PMID: 24929423 DOI: 10.1093/pcp/pcu084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified. In this study, we examined these changes at the ultrastructural level in tobacco Bright yellow 2 (BY-2) cells during the log and stationary phases of growth. We analyzed images of the BY-2 cells prepared by the high-pressure freezing/freeze substitution technique with the aid of an auto-acquisition transmission electron microscope system. We quantified the distribution of secretory and endosomal compartments in longitudinal sections of whole cells by using wide-range gigapixel-class images obtained by merging thousands of transmission electron micrographs. During the log phase, all Golgi stacks were composed of several thick cisternae. Approximately 20 vesicle clusters (VCs), including the trans-Golgi network and secretory vesicle cluster, were observed throughout the cell. In the stationary-phase cells, Golgi stacks were thin with small cisternae, and only a few VCs were observed. Nearly the same number of multivesicular body and small high-density vesicles were observed in both the stationary and log phases. Results from electron microscopy and live fluorescence imaging indicate that the morphology and distribution of secretory-related compartments dramatically change when cells transition from log to stationary phases of growth.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Fumie Sawaki
- Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Noriko Nagata
- Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Ken Matsuoka
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581 Japan
| |
Collapse
|
21
|
Richardson LGL, Clendening EA, Sheen H, Gidda SK, White KA, Mullen RT. A unique N-terminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23. J Virol 2014; 88:6329-44. [PMID: 24672030 PMCID: PMC4093892 DOI: 10.1128/jvi.03840-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/18/2014] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Like most positive-strand RNA viruses, infection by plant tombusviruses results in extensive rearrangement of specific host cell organelle membranes that serve as the sites of viral replication. The tombusvirus Tomato bushy stunt virus (TBSV) replicates within spherules derived from the peroxisomal boundary membrane, a process that involves the coordinated action of various viral and cellular factors, including constituents of the endosomal sorting complex required for transport (ESCRT). ESCRT is comprised of a series of protein subcomplexes (i.e., ESCRT-0 -I, -II, and -III) that normally participate in late endosome biogenesis and some of which are also hijacked by certain enveloped retroviruses (e.g., HIV) for viral budding from the plasma membrane. Here we show that the replication of Carnation Italian ringspot virus (CIRV), a tombusvirus that replicates at mitochondrial membranes also relies on ESCRT. In plant cells, CIRV recruits the ESCRT-I protein, Vps23, to mitochondria through an interaction that involves a unique region in the N terminus of the p36 replicase-associated protein that is not conserved in TBSV or other peroxisome-targeted tombusviruses. The interaction between p36 and Vps23 also involves the Vps23 C-terminal steadiness box domain and not its N-terminal ubiquitin E2 variant domain, which in the case of TBSV (and enveloped retroviruses) mediates the interaction with ESCRT. Overall, these results provide evidence that CIRV uses a unique N-terminal sequence for the recruitment of Vps23 that is distinct from those used by TBSV and certain mammalian viruses for ESCRT recruitment. Characterization of this novel interaction with Vps23 contributes to our understanding of how CIRV may have evolved to exploit key differences in the plant ESCRT machinery. IMPORTANCE Positive-strand RNA viruses replicate their genomes in association with specific host cell membranes. To accomplish this, cellular components responsible for membrane biogenesis and modeling are appropriated by viral proteins and redirected to assemble membrane-bound viral replicase complexes. The diverse pathways leading to the formation of these replication structures are poorly understood. We have determined that the cellular ESCRT system that is normally responsible for mediating late endosome biogenesis is also involved in the replication of the tombusvirus Carnation Italian ringspot virus (CIRV) at mitochondria. Notably, CIRV recruits ESCRT to the mitochondrial outer membrane via an interaction between a unique motif in the viral protein p36 and the ESCRT component Vps23. Our findings provide new insights into tombusvirus replication and the virus-induced remodeling of plant intracellular membranes, as well as normal ESCRT assembly in plants.
Collapse
Affiliation(s)
- Lynn G. L. Richardson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric A. Clendening
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Hyukho Sheen
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion. Curr Biol 2014; 24:1383-1389. [PMID: 24881875 DOI: 10.1016/j.cub.2014.05.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/07/2014] [Accepted: 05/02/2014] [Indexed: 01/20/2023]
Abstract
Plasma-membrane proteins such as ligand-binding receptor kinases, ion channels, or nutrient transporters are turned over by targeting to a lytic compartment--lysosome or vacuole--for degradation. After their internalization, these proteins arrive at an early endosome, which then matures into a late endosome with intraluminal vesicles (multivesicular body, MVB) before fusing with the lysosome/vacuole in animals or yeast. The endosomal maturation step involves a SAND family protein mediating Rab5-to-Rab7 GTPase conversion. Vacuolar trafficking is much less well understood in plants. Here we analyze the role of the single-copy SAND gene of Arabidopsis. In contrast to its animal or yeast counterpart, Arabidopsis SAND protein is not required for early-to-late endosomal maturation, although its role in mediating Rab5-to-Rab7 conversion is conserved. Instead, Arabidopsis SAND protein is essential for the subsequent fusion of MVBs with the vacuole. The inability of sand mutant to mediate MVB-vacuole fusion is not caused by the continued Rab5 activity but rather reflects the failure to activate Rab7. In conclusion, regarding the endosomal passage of cargo proteins for degradation, a major difference between plants and nonplant organisms might result from the relative timing of endosomal maturation and SAND-dependent Rab GTPase conversion as a prerequisite for the fusion of late endosomes/MVBs with the lysosome/vacuole.
Collapse
|
23
|
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 2014; 111:8293-8. [PMID: 24843126 DOI: 10.1073/pnas.1402262111] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
Collapse
|
24
|
Toshima JY, Nishinoaki S, Sato Y, Yamamoto W, Furukawa D, Siekhaus DE, Sawaguchi A, Toshima J. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole. Nat Commun 2014; 5:3498. [PMID: 24667230 DOI: 10.1038/ncomms4498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022] Open
Abstract
The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.
Collapse
Affiliation(s)
- Junko Y Toshima
- 1] Faculty of Science and Engineering, Waseda University, Wakamatsu-cho, 2-2, Shinjuku-ku, Tokyo 162-8480, Japan [2] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Show Nishinoaki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yoshifumi Sato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Wataru Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Daiki Furukawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Akira Sawaguchi
- Department of Anatomy, University of Miyazaki Faculty of Medicine, Miyazaki 889-1692, Japan
| | - Jiro Toshima
- 1] Research Center for RNA Science, RIST, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan [2] Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
25
|
Feeney M, Frigerio L, Kohalmi SE, Cui Y, Menassa R. Reprogramming cells to study vacuolar development. FRONTIERS IN PLANT SCIENCE 2013; 4:493. [PMID: 24348496 PMCID: PMC3848493 DOI: 10.3389/fpls.2013.00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/15/2013] [Indexed: 05/29/2023]
Abstract
During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions.
Collapse
Affiliation(s)
- Mistianne Feeney
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | | - Yuhai Cui
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| |
Collapse
|
26
|
Wanner G, Schäfer T, Lütz-Meindl U. 3-D analysis of dictyosomes and multivesicular bodies in the green alga Micrasterias denticulata by FIB/SEM tomography. J Struct Biol 2013; 184:203-11. [PMID: 24135121 PMCID: PMC3899002 DOI: 10.1016/j.jsb.2013.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 12/24/2022]
Abstract
In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin ‘slices’ (5–10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm3 provides new insight into the close spatial connection of the ER–Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge “trans-ER” sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation.
Collapse
Affiliation(s)
- Gerhard Wanner
- Ultrastructural Research, Faculty of Biology, Ludwig-Maximilians-University, Munich, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
27
|
Qi B, Doughty J, Hooley R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis. THE NEW PHYTOLOGIST 2013; 200:444-456. [PMID: 23795888 PMCID: PMC3817529 DOI: 10.1111/nph.12385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/23/2013] [Indexed: 05/04/2023]
Abstract
S-acylation of eukaryotic proteins is the reversible attachment of palmitic or stearic acid to cysteine residues, catalysed by protein S-acyl transferases that share an Asp-His-His-Cys (DHHC) motif. Previous evidence suggests that in Arabidopsis S-acylation is involved in the control of cell size, polarity and the growth of pollen tubes and root hairs. Using a combination of yeast genetics, biochemistry, cell biology and loss of function genetics the roles of a member of the protein S-acyl transferase PAT family, AtPAT10 (At3g51390), have been explored. In keeping with its role as a PAT, AtPAT10 auto-S-acylates, and partially complements the yeast akr1 PAT mutant, and this requires Cys(192) of the DHHC motif. In Arabidopsis AtPAT10 is localized in the Golgi stack, trans-Golgi network/early endosome and tonoplast. Loss-of-function mutants have a pleiotropic phenotype involving cell expansion and division, vascular patterning, and fertility that is rescued by wild-type AtPAT10 but not by catalytically inactive AtPAT10C(192) A. This supports the hypothesis that AtPAT10 is functionally independent of the other Arabidopsis PATs. Our findings demonstrate a growing importance of protein S-acylation in plants, and reveal a Golgi and tonoplast located S-acylation mechanism that affects a range of events during growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Baoxiu Qi
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityShandong, 271018, China
| | - James Doughty
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| | - Richard Hooley
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
28
|
Korbei B, Luschnig C. Plasma membrane protein ubiquitylation and degradation as determinants of positional growth in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:809-23. [PMID: 23981390 DOI: 10.1111/jipb.12059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/16/2013] [Indexed: 05/08/2023]
Abstract
Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Crosstalk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localization and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants.
Collapse
Affiliation(s)
- Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
29
|
Mulet JM, Llopis-Torregrosa V, Primo C, Marqués MC, Yenush L. Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Curr Genet 2013; 59:207-30. [PMID: 23974285 DOI: 10.1007/s00294-013-0401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022]
Abstract
The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.
Collapse
Affiliation(s)
- José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | | | | | | | | |
Collapse
|
30
|
Kessans SA, Linhart MD, Matoba N, Mor T. Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:681-90. [PMID: 23506331 PMCID: PMC3688661 DOI: 10.1111/pbi.12058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/10/2013] [Accepted: 01/27/2013] [Indexed: 05/29/2023]
Abstract
The transmembrane HIV-1 envelope protein gp41 has been shown to play critical roles in the viral mucosal transmission and infection of CD4⁺ cells. Gag is a structural protein configuring the enveloped viral particles and has been suggested to constitute a target of the cellular immunity that may control viral load. We hypothesized that HIV enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external, transmembrane and cytoplasmic domains (dgp41) could be expressed in plants. To this end, plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a Tobamovirus-based expression system or a combination of both. Our results of biophysical, biochemical and electron microscopy characterization demonstrates that plant cells could support not only the formation of enveloped HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These findings provide further impetus for the journey towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
Collapse
Affiliation(s)
- Sarah A Kessans
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Mark D Linhart
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Nobuyuki Matoba
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
- Owensboro Cancer Research ProgramOwensboro, KY, USA
- James Graham Brown Cancer Center and Department of Pharmacology & Toxicology, University of Louisville School of MedicineLouisville, KY, USA
| | - Tsafrir Mor
- School of Life Sciences and The Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| |
Collapse
|
31
|
Criscitiello MF, Dickman MB, Samuel JE, de Figueiredo P. Tripping on acid: trans-kingdom perspectives on biological acids in immunity and pathogenesis. PLoS Pathog 2013; 9:e1003402. [PMID: 23874196 PMCID: PMC3715416 DOI: 10.1371/journal.ppat.1003402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
32
|
Etxeberria E, Gonzalez P, Pozueta-Romero J. Architectural remodeling of the tonoplast during fluid-phase endocytosis. PLANT SIGNALING & BEHAVIOR 2013; 8:e24793. [PMID: 23656870 PMCID: PMC3908939 DOI: 10.4161/psb.24793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
During fluid phase endocytosis (FPE) in plant storage cells, the vacuole receives a considerable amount of membrane and fluid contents. If allowed to accumulate over a period of time, the enlarging tonoplast and increase in fluids would invariably disrupt the structural equilibrium of the mature cells. Therefore, a membrane retrieval process must exist that will guarantee membrane homeostasis in light of tonoplast expansion by membrane addition during FPE. We examined the morphological changes to the vacuolar structure during endocytosis in red beet hypocotyl tissue using scanning laser confocal microscopy and immunohistochemistry. The heavily pigmented storage vacuole allowed us to visualize all architectural transformations during treatment. When red beet tissue was incubated in 200 mM sucrose, a portion of the sucrose accumulated entered the cell by means of FPE. The accumulation process was accompanied by the development of vacuole-derived vesicles which transiently counterbalanced the addition of surplus endocytic membrane during rapid rates of endocytosis. Topographic fluorescent confocal micrographs showed an ensuing reduction in the size of the vacuole-derived vesicles and further suggest their reincorporation into the vacuole to maintain vacuolar unity and solute concentration.
Collapse
Affiliation(s)
- Ed Etxeberria
- Department of Horticultural Sciences; University of Florida; Institute of Food and Agricultural Sciences; Citrus Research and Education Center; Lake Alfred, FL USA
- Correspondence to: Ed Etxeberria,
| | - Pedro Gonzalez
- Department of Horticultural Sciences; University of Florida; Institute of Food and Agricultural Sciences; Citrus Research and Education Center; Lake Alfred, FL USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnologia; Universidad Publica de Navarra/Consejo de Investigaciones Cientificas/Gobierno de Navarra; Nafarroa, Spain
| |
Collapse
|
33
|
Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H. K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. MOLECULAR PLANT 2013; 6:1226-46. [PMID: 23430044 DOI: 10.1093/mp/sst032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The importance of sorting proteins and wall materials to their destination is critical for plant growth and development, though the machinery orchestrating membrane trafficking is poorly understood. Transporters that alter the environment across endomembrane compartments are thought to be important players. Using Escherichia coli and yeast, we previously showed that several Arabidopsis Cation/H(+) eXchanger (AtCHX) members were K(+) transporters with a role in pH homeostasis, though their subcellular location and biological roles in plants are unclear. Co-expression of markers with CHX16, CHX17, CHX18, or CHX19 tagged with a fluorescent protein indicated these transporters associated with plasma membrane (PM) and post-Golgi compartments. Under its native promoter, AtCHX17(1-820)-GFP localized to prevacuolar compartment (PVC) and to PM in roots. Brefeldin A diminished AtCHX17-GFP fluorescence at PM, whereas wortmannin caused formation of GFP-labeled ring-like structures, suggesting AtCHX17 trafficked among PVC, vacuole and PM. AtCHX17(1-472) lacking its carboxylic tail did not associate with PVC or PM in plant cells. Single chx17 mutant or higher-order mutants showed normal root growth and vegetative development. However, quadruple (chx16chx17chx18chx19) mutants were reduced in frequency and produced 50%-70% fewer seeds, indicating overlapping roles of several AtCHX17-related transporters in reproduction and/or seed development. Together, our results suggest that successful reproduction and seed development depend on the ability to regulate cation and pH homeostasis by AtCHX17-like transporters on membranes that traffic in the endocytic and/or secretory pathways.
Collapse
Affiliation(s)
- Salil Chanroj
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
34
|
Yun HS, Kwaaitaal M, Kato N, Yi C, Park S, Sato MH, Schulze-Lefert P, Kwon C. Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Mol Cells 2013; 35:481-8. [PMID: 23661365 PMCID: PMC3887875 DOI: 10.1007/s10059-013-2130-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Extracellular immune responses to ascomycete and oomycete pathogens in Arabidopsis are dependent on vesicle-associated secretion mediated by the SNARE proteins PEN1 syntaxin, SNAP33 and endomembrane-resident VAMP721/722. Continuous movement of functional GFP-VAMP722 to and from the plasma membrane in non-stimulated cells reflects the second proposed function of VAMP721/722 in constitutive secretion during plant growth and development. Application of the bacterium-derived elicitor flg22 stabilizes VAMP721/722 that are otherwise constitutively degraded via the 26S proteasome pathway. Depletion of VAMP721/722 levels by reducing VAMP721/722 gene dosage enhances flg22-induced seedling growth inhibition in spite of elevated VAMP721/722 abundance. We therefore propose that plants prioritize the deployment of the corresponding secretory pathway for defense over plant growth. Interstingly, VAMP721/722 specifically interact in vitro and in vivo with the plasma membrane syntaxin SYP132 that is required for plant growth and resistance to bacteria. This suggests that the plant growth/immunity-involved VAMP721/722 form SNARE complexes with multiple plasma membrane syntaxins to discharge cue-dependent cargo molecules.
Collapse
Affiliation(s)
- Hye Sup Yun
- Max-Planck-Institut für Züchtungsforschung, Deparment of Plant Microbe Interactions, D-50829, Köln,
Germany
- Biological Sciences Major, College of Biological Science and Biotechnology, Konkuk University, Seoul 143–701,
Korea
| | - Mark Kwaaitaal
- Max-Planck-Institut für Züchtungsforschung, Deparment of Plant Microbe Interactions, D-50829, Köln,
Germany
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, LA 70803-1715,
USA
| | - Changhyun Yi
- Department of Molecular Biology, Dankook University, Yongin 448–701,
Korea
| | - Sohyeon Park
- Department of Molecular Biology, Dankook University, Yongin 448–701,
Korea
| | - Masa H. Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522,
Japan
| | - Paul Schulze-Lefert
- Max-Planck-Institut für Züchtungsforschung, Deparment of Plant Microbe Interactions, D-50829, Köln,
Germany
| | - Chian Kwon
- Max-Planck-Institut für Züchtungsforschung, Deparment of Plant Microbe Interactions, D-50829, Köln,
Germany
- Department of Molecular Biology, Dankook University, Yongin 448–701,
Korea
- Department of Integrated Molecular Sciences, Dankook University, Yongin 448–701,
Korea
| |
Collapse
|
35
|
Stierhof YD, Viotti C, Scheuring D, Sturm S, Robinson DG. Sorting nexins 1 and 2a locate mainly to the TGN. PROTOPLASMA 2013; 250:235-40. [PMID: 22447127 DOI: 10.1007/s00709-012-0399-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 05/26/2023]
Abstract
The subcellular localization of the sorting nexins (SNXs) in higher plants is a matter of controversy. Previous confocal laser scanning microscopy (CLSM studies on root cells from a transgenic Arabidopsis line expressing SNX1-GFP have suggested that this SNX is present on an endosome having characteristics of both the trans-Golgi network (TGN) and the multivesicular body (MVB). In contrast, SNX2a locates exclusively to the TGN when transiently expressed in tobacco mesophyll protoplasts. By performing immunogold electron microscopy on cryofixed Arabidopsis roots, we have tried to clarify the situation. Both SNX1-GFP and endogenous SNX2a locate principally to the TGN. Labeling of MVBs could not be confirmed with any certainty.
Collapse
Affiliation(s)
- York-Dieter Stierhof
- Microscopy, Centre for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
36
|
Tian M, Xie Q. Non-26S proteasome proteolytic role of ubiquitin in plant endocytosis and endosomal trafficking(F). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:54-63. [PMID: 23137267 DOI: 10.1111/jipb.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 76 amino acid protein ubiquitin (Ub) is highly conserved in all eukaryotic species. It plays important roles in many cellular processes by covalently attaching to the target proteins. The best known function of Ub is marking substrate proteins for degradation by the 26S proteasome. In fact, other consequences of ubiquitination have been discovered in yeast and mammals, such as membrane trafficking, DNA repair, chromatin modification, and protein kinase activation. The common mechanism underlying these processes is that Ub serves as a signal to sort proteins to the vacuoles or lysosomes for degradation as opposed to 26S proteasome-dependent degradation. To date, several reports have indicated that a similar function of Ub also exists in plants. This review focuses on a summary and analysis of the recent research progress on Ub acting as a signal to mediate endocytosis and endosomal trafficking in plants.
Collapse
Affiliation(s)
- Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
37
|
Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality. Mol Biol Rep 2012; 40:3475-81. [PMID: 23275199 DOI: 10.1007/s11033-012-2422-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
In both yeast and mammals, the major constituent of the endosomal sorting complex required for transport-II (ESCRT-II) is the VPS22/EAP30 protein, which plays an important role in ubiquitin-mediated degradation of membrane proteins through the multivesicular body pathway. However, the functions of ESCRT-II subunits in plants are largely unknown. In this work, we report the genetic analysis and phenotypic characterization of mutants in OsVPS22 gene, which encodes a functional VPS22 homolog in rice. On the basis of a collection of T-DNA lines, we identified a T-DNA insertion mutant, which showed abnormal segregation ratios; we then found that the T-DNA insertion is located within the sixth intron of the OsVPS22 gene. Compared with the wild type, this vps22 mutant exhibited seedling lethality and severe reduction in shoot and root growth. In addition, the vps22 mutant had a chalky endosperm in the grain. In summary, our data suggest that OsVPS22 may be required for seedling viability and grain filling in rice, thus providing a valuable resource for further exploration of the functions of the ESCRTing machinery in plants.
Collapse
|
38
|
Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. TRENDS IN PLANT SCIENCE 2012; 17:606-15. [PMID: 22784825 DOI: 10.1016/j.tplants.2012.06.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 05/11/2023]
Abstract
It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
39
|
Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci U S A 2012; 109:15942-6. [PMID: 23019378 DOI: 10.1073/pnas.1209487109] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional gene silencing (PTGS) mediated by siRNAs is an evolutionarily conserved antiviral defense mechanism in higher plants and invertebrates. In this mechanism, viral-derived siRNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. In Arabidopsis, a key component of RISC is ARGONAUTE1 (AGO1), which not only binds to siRNAs but also carries the RNA slicer activity. At present little is known about posttranslational mechanisms regulating AGO1 turnover. Here we report that the viral suppressor of RNA silencing protein P0 triggers AGO1 degradation by the autophagy pathway. Using a P0-inducible transgenic line, we observed that AGO1 degradation is blocked by inhibition of autophagy. The engineering of a functional AGO1 fluorescent reporter protein further indicated that AGO1 colocalizes with autophagy-related (ATG) protein 8a (ATG8a) positive bodies when degradation is impaired. Moreover, this pathway also degrades AGO1 in a nonviral context, especially when the production of miRNAs is impaired. Our results demonstrate that a selective process such as ubiquitylation can lead to the degradation of a key regulatory protein such as AGO1 by a degradation process generally believed to be unspecific. We anticipate that this mechanism will not only lead to degradation of AGO1 but also of its associated proteins and eventually small RNAs.
Collapse
|
40
|
Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L. Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 2012; 13:1023-40. [PMID: 22486829 DOI: 10.1111/j.1600-0854.2012.01360.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 12/31/2022]
Abstract
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Herberth S, Shahriari M, Bruderek M, Hessner F, Müller B, Hülskamp M, Schellmann S. Artificial ubiquitylation is sufficient for sorting of a plasma membrane ATPase to the vacuolar lumen of Arabidopsis cells. PLANTA 2012; 236:63-77. [PMID: 22258747 DOI: 10.1007/s00425-012-1587-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/30/2011] [Indexed: 05/21/2023]
Abstract
Sorting of transmembrane proteins into the inner vesicles of multivesicular bodies for subsequent delivery to the vacuole/lysosome can be induced by attachment of a single ubiquitin or K63-linked ubiquitin chains to the cytosolic portion of the cargo in yeast and mammals. In plants, large efforts have been undertaken to elucidate the mechanisms of vacuolar trafficking of soluble proteins. Sorting of transmembrane proteins, by contrast, is still largely unexplored. As a proof of principle, that ubiquitin is involved in vacuolar sorting in plants we show that a translational fusion of a single ubiquitin to the Arabidopsis plasma membrane ATPase PMA-EGFP is sufficient to induce its endocytosis and sorting into the vacuolar lumen. Sorting of the artificial reporter is not dependent on ubiquitin chain formation, but involves ubiquitin's hydrophobic patch and can be inhibited by coexpression of a dominant-negative version of the ESCRT (endosomal sorting complex required for transport) related protein AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1). Our results suggest that ubiquitin can in principle act as vacuolar sorting signal in plants.
Collapse
Affiliation(s)
- Stefanie Herberth
- Botanical Institute III, Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Qiu QS. Plant and yeast NHX antiporters: roles in membrane trafficking. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:66-72. [PMID: 22222113 DOI: 10.1111/j.1744-7909.2012.01097.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The plant NHX gene family encodes Na(+)/H(+) antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhx1p, a prevacuole/ vacuolar Na(+)/H(+) antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.
Collapse
Affiliation(s)
- Quan-Sheng Qiu
- School of Life Sciences, Lanzhou University, 222 South Tianshui Rd., Lanzhou 730000, China.
| |
Collapse
|
43
|
Hicks GR, Raikhel NV. Small molecules present large opportunities in plant biology. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:261-82. [PMID: 22404475 DOI: 10.1146/annurev-arplant-042811-105456] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since the introduction of chemical genomics to plant biology as a tool for basic research, the field has advanced significantly. There are now examples of important basic discoveries that demonstrate the power and untapped potential of this approach. Given the combination of protein and small-molecule complexity, new phenotypes can be described through the perturbation of cellular functions that can be linked to growth and developmental phenotypes. There are now clear examples of overcoming functional redundancy in plants to dissect molecular mechanisms or critical pathways such as hormone signaling and dynamic intracellular processes. Owing to ongoing advances, including more sophisticated high-content screening and rapid approaches for target identification, the field is beginning to move forward. However, there are also challenges to improve automation, imaging, and analysis and provide chemical biology resources to the broader plant biology community.
Collapse
Affiliation(s)
- Glenn R Hicks
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
44
|
Harter K, Meixner AJ, Schleifenbaum F. Spectro-microscopy of living plant cells. MOLECULAR PLANT 2012; 5:14-26. [PMID: 21914652 DOI: 10.1093/mp/ssr075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
Collapse
Affiliation(s)
- Klaus Harter
- Center for Plant Molecular Biology, Plant Physiology and Biophysical Chemistry, University of Tübingen, Auf der Morgenstelle 1, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
45
|
Contento AL, Bassham DC. Structure and function of endosomes in plant cells. J Cell Sci 2012; 125:3511-8. [DOI: 10.1242/jcs.093559] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endosomes are a heterogeneous collection of organelles that function in the sorting and delivery of internalized material from the cell surface and the transport of materials from the Golgi to the lysosome or vacuole. Plant endosomes have some unique features, with an organization distinct from that of yeast or animal cells. Two clearly defined endosomal compartments have been studied in plant cells, the trans-Golgi network (equivalent to the early endosome) and the multivesicular body (equivalent to the late endosome), with additional endosome types (recycling endosome, late prevacuolar compartment) also a possibility. A model has been proposed in which the trans-Golgi network matures into a multivesicular body, which then fuses with the vacuole to release its cargo. In addition to basic trafficking functions, endosomes in plant cells are known to function in maintenance of cell polarity by polar localization of hormone transporters and in signaling pathways after internalization of ligand-bound receptors. These signaling functions are exemplified by the BRI1 brassinosteroid hormone receptor and by receptors for pathogen elicitors that activate defense responses. After endocytosis of these receptors from the plasma membrane, endosomes act as a signaling platform, thus playing an essential role in plant growth, development and defense responses. Here we describe the key features of plant endosomes and their differences from those of other organisms and discuss the role of these organelles in cell polarity and signaling pathways.
Collapse
|
46
|
Richardson LG, Mullen RT. Meta-analysis of the expression profiles of the Arabidopsis ESCRT machinery. PLANT SIGNALING & BEHAVIOR 2011; 6:1897-903. [PMID: 22105035 PMCID: PMC3337174 DOI: 10.4161/psb.6.12.18023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery is a set of multi-protein complexes that are well conserved among all eukaryotes and mediate a remarkable array of cellular processes including late endosome/multivesicular body (MVB) formation, retroviral particle release, and membrane abscission during cytokinesis. While the molecular mechanisms underlying ESCRT function have been relatively well characterized in yeasts and mammals, far less is known about ESCRT in plants. In this study, we utilized publicly-available microarray, massively parallel signature sequencing (MPSS) and proteome data sets in order to survey the expression profiles of many of the components of the Arabidopsis thaliana ESCRT machinery. Overall, the results indicate that ESCRT expression in Arabidopsis is highly dynamic across a wide range of organs, tissues and treatments, consistent with the complex interplay that likely exists between the spatial and temporal regulation of the ESCRT machinery and the diverse array of roles that ESCRT participates in during plant growth and development.
Collapse
|
47
|
Wrapping membranes around plant virus infection. Curr Opin Virol 2011; 1:388-95. [PMID: 22440840 DOI: 10.1016/j.coviro.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/22/2022]
Abstract
Positive strand RNA viruses cause membrane modifications which are microenvironments or larger intracellular compartments, also called 'viroplasms'. These compartments serve to concentrate virus and host factors needed to produce new genomes. Forming these replication sites often involves virus induced membrane synthesis, changes in fatty acid metabolism, and viral recruitment of cellular factors to subcellular domains. Interacting viral and host factors builds the physical scaffold for replication complexes. Such virus induced changes are a visible cytopathology that has been used by plant and mammalian virologists to describe virus disease. This article describes key examples of membrane modifications that are essential for plant virus replication and intercellular transport.
Collapse
|
48
|
Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K. Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. THE PLANT CELL 2011; 23:3463-81. [PMID: 21934143 PMCID: PMC3203422 DOI: 10.1105/tpc.111.086918] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 05/17/2023]
Abstract
The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole. The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.
Collapse
Affiliation(s)
- David Scheuring
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Corrado Viotti
- Developmental Biology of Plants, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Falco Krüger
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Künzl
- Developmental Genetics, Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | - Silke Sturm
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Bubeck
- Developmental Biology of Plants, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Hillmer
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lorenzo Frigerio
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David G. Robinson
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Pimpl
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
- Developmental Genetics, Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
- Address correspondence to
| | - Karin Schumacher
- Developmental Biology of Plants, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Maîtrejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A. Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. PLANT PHYSIOLOGY 2011; 156:1783-96. [PMID: 21697507 PMCID: PMC3149923 DOI: 10.1104/pp.111.177816] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/18/2010] [Indexed: 05/18/2023]
Abstract
The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins.
Collapse
|
50
|
Bond AE, Row PE, Dudley E. Post-translation modification of proteins; methodologies and applications in plant sciences. PHYTOCHEMISTRY 2011; 72:975-96. [PMID: 21353264 DOI: 10.1016/j.phytochem.2011.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 01/21/2011] [Indexed: 05/03/2023]
Abstract
Proteins have the potential to undergo a variety of post-translational modifications and the different methods available to study these cellular processes has advanced rapidly with the continuing development of proteomic technologies. In this review we aim to detail five major post-translational modifications (phosphorylation, glycosylaion, lipid modification, ubiquitination and redox-related modifications), elaborate on the techniques that have been developed for their analysis and briefly discuss the study of these modifications in selected areas of plant science.
Collapse
Affiliation(s)
- A E Bond
- Biochemistry Group, College of Medicine, Swansea University, Swansea, UK
| | | | | |
Collapse
|