1
|
Sahu S, Dash K, Mishra M. Common salt (NaCl) causes developmental, behavioral, and physiological defects in Drosophila melanogaster. Nutr Neurosci 2025:1-19. [PMID: 39760749 DOI: 10.1080/1028415x.2024.2441677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption. This study aims to check the toxicity of salt at different concentrations using an invertebrate model organism Drosophila melanogaster. METHODS Drosophila food was mixed with different salt concentrations (50, 200, 400, 800 µM). The toxicity of salt in third instar larvae was checked via different experiments such as trypan blue assay, crawling assay, and other histological staining was done to check the deposition of lipid droplets and amount of reactive oxygen species. Food intake analysis was performed to check the feeding rate, and body weight was also calculated to check the obesity index. Several behavioral assays are also performed in adult flies. RESULTS Most significant abnormalities were seen at 50 and 200 µM concentrations. Feeding rate increased up to 60%, body weight was increased up to 12% in larvae, and 27% in adult at 200 µM concentration. Approximately 60% larvae and 58% adult flies had defective response to extreme heat. 28% larvae and 38% adult flies were not responding to cold temperature. 55% flies had a defective phototaxis behavior and 40% of them showed positive geotaxis at those range. Salt stress leads to the buildup of free radicals, resulting in DNA damage in both the gut and hemolymph. FINDINGS Most toxic consequences are observed at the lower concentration range as the feeding rate was higher. Flies show aversive response to feed on the higher concentration of salt.
Collapse
Affiliation(s)
- Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Kalpanarani Dash
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Nas JSB, Medina PMB. Evaluating the effects of sodium metabisulfite on the cognitive and motor function in Drosophila melanogaster. NARRA J 2024; 4:e1338. [PMID: 39816056 PMCID: PMC11731670 DOI: 10.52225/narra.v4i3.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
Sodium metabisulfite is widely used as a preservative in many food and beverage products, yet its potential effects on cognitive and motor functions at low concentrations remain poorly understood. Evaluating learning, short-term memory, and motor activity is essential, as these functions are critical indicators of neurological health and could be impacted by low-level exposure to sodium metabisulfite. The aim of this study was to investigate the effects of sublethal concentrations of sodium metabisulfite on cognitive and motor functions using Drosophila melanogaster (fruit flies) as the model organism. Different levels of sodium metabisulfite were administered to male and female fruit flies, and their learning and short-term memory were observed. Additionally, their climbing activity with and without stressors (heat shock, ultraviolet A exposure, or energy deprivation) was examined. Our findings indicated that sodium metabisulfite did not impair learning, short-term memory, or motor activity. Furthermore, sodium metabisulfite did not affect the motor activity of fruit flies under heat, ultraviolet A, and energy-deprived conditions. In conclusion, our results suggested that the sublethal concentration of sodium metabisulfite did not harm cognitive and motor functions and did not exacerbate the effects of environmental stressors.
Collapse
Affiliation(s)
- John SB. Nas
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Paul MB. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
3
|
Das D, Ghosh G, Dutta A, Sherpa RD, Ghosh P, Hui SP, Ghosh S. Fruit ripening retardant Daminozide induces cognitive impairment, cell specific neurotoxicity, and genotoxicity in Drosophila melanogaster. Neurotoxicology 2024; 103:123-133. [PMID: 38851594 DOI: 10.1016/j.neuro.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND We explored neurotoxic and genotoxic effects of Daminozide, a fruit ripening retardant, on the brain of Drosophila melanogaster, based on our previous finding of DNA fragmentation in larval brain cell in the flies experimentally exposed to this chemicals. METHODS Adult flies were subjected to two distinct concentrations of daminozide (200 mg/L and 400 mg/L) mixed in culture medium, followed by an examination of specific behaviors such as courtship conditioning and aversive phototaxis, which serve as indicators of cognitive functions. We investigated brain histology and histochemistry to assess the overall toxicity of daminozide, focusing on neuron type-specific effects. Additionally, we conducted studies on gene expression specific to neuronal function. Statistical comparisons were then made between the exposed and control flies across all tested attributes. RESULTS The outcome of behavioral assays suggested deleterious effects of Daminozide on learning, short term and long term memory function. Histological examination of brain sections revealed cellular degeneration, within Kenyon cell neuropiles in Daminozide-exposed flies. Neurone specific Immuno-histochemistry study revealed significant reduction of dopaminergic and glutaminergic neurones with discernible reduction in cellular counts, alteration in cell and nuclear morphology among daminozide exposed flies. Gene expression analyses demonstrated upregulation of rutabaga (rut), hb9 and down regulation of PKa- C1, CrebB, Ace and nAchRbeta-1 in exposed flies which suggest dysregulation of gene functions involved in motor neuron activity, learning, and memory. CONCLUSION Taken together, our findings suggests that Daminozide induces multifaceted harmful impacts on the neural terrain of Drosophila melanogaster, posing a threat to its cognitive abilities.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER)- Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal, India
| | - Arthita Dutta
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rinchen D Sherpa
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls' College. Howrah. India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Sujay Ghosh
- Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
4
|
Dwijesha AS, Eswaran A, Berry JA, Phan A. Diverse memory paradigms in Drosophila reveal diverse neural mechanisms. Learn Mem 2024; 31:a053810. [PMID: 38862165 PMCID: PMC11199951 DOI: 10.1101/lm.053810.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/12/2024] [Indexed: 06/13/2024]
Abstract
In this review, we aggregated the different types of learning and memory paradigms developed in adult Drosophila and attempted to assess the similarities and differences in the neural mechanisms supporting diverse types of memory. The simplest association memory assays are conditioning paradigms (olfactory, visual, and gustatory). A great deal of work has been done on these memories, revealing hundreds of genes and neural circuits supporting this memory. Variations of conditioning assays (reversal learning, trace conditioning, latent inhibition, and extinction) also reveal interesting memory mechanisms, whereas mechanisms supporting spatial memory (thermal maze, orientation memory, and heat box) and the conditioned suppression of innate behaviors (phototaxis, negative geotaxis, anemotaxis, and locomotion) remain largely unexplored. In recent years, there has been an increased interest in multisensory and multicomponent memories (context-dependent and cross-modal memory) and higher-order memory (sensory preconditioning and second-order conditioning). Some of this work has revealed how the intricate mushroom body (MB) neural circuitry can support more complex memories. Finally, the most complex memories are arguably those involving social memory: courtship conditioning and social learning (mate-copying and egg-laying behaviors). Currently, very little is known about the mechanisms supporting social memories. Overall, the MBs are important for association memories of multiple sensory modalities and multisensory integration, whereas the central complex is important for place, orientation, and navigation memories. Interestingly, several different types of memory appear to use similar or variants of the olfactory conditioning neural circuitry, which are repurposed in different ways.
Collapse
Affiliation(s)
- Amoolya Sai Dwijesha
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Akhila Eswaran
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Amanullah A, Arzoo S, Aslam A, Qureshi IW, Hussain M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. BIOLOGY 2023; 12:926. [PMID: 37508357 PMCID: PMC10376054 DOI: 10.3390/biology12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Drosophila melanogaster has long been used to demonstrate the effect of inbreeding, particularly in relation to reproductive fitness and stress tolerance. In comparison, less attention has been given to exploring the influence of inbreeding on the innate behavior of D. melanogaster. In this study, multiple replicates of six different types of crosses were set in pair conformation of the laboratory-maintained wild-type D. melanogaster. This resulted in progeny with six different levels of inbreeding coefficients. Larvae and adult flies of varied inbreeding coefficients were subjected to different behavioral assays. In addition to the expected inbreeding depression in the-egg to-adult viability, noticeable aberrations were observed in the crawling and phototaxis behaviors of larvae. Negative geotactic behavior as well as positive phototactic behavior of the flies were also found to be adversely affected with increasing levels of inbreeding. Interestingly, positively phototactic inbred flies demonstrated improved learning compared to outbred flies, potentially the consequence of purging. Flies with higher levels of inbreeding exhibited a delay in the manifestation of aggression and courtship. In summary, our findings demonstrate that inbreeding influences the innate behaviors in D. melanogaster, which in turn may affect the overall biological fitness of the flies.
Collapse
Affiliation(s)
- Anusha Amanullah
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Shabana Arzoo
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Ayesha Aslam
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Iffat Waqar Qureshi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| |
Collapse
|
6
|
Chandra R, Farah F, Muñoz-Lobato F, Bokka A, Benedetti KL, Brueggemann C, Saifuddin MFA, Miller JM, Li J, Chang E, Varshney A, Jimenez V, Baradwaj A, Nassif C, Alladin S, Andersen K, Garcia AJ, Bi V, Nordquist SK, Dunn RL, Garcia V, Tokalenko K, Soohoo E, Briseno F, Kaur S, Harris M, Guillen H, Byrd D, Fung B, Bykov AE, Odisho E, Tsujimoto B, Tran A, Duong A, Daigle KC, Paisner R, Zuazo CE, Lin C, Asundi A, Churgin MA, Fang-Yen C, Bremer M, Kato S, VanHoven MK, L'Étoile ND. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell 2023; 186:2911-2928.e20. [PMID: 37269832 PMCID: PMC10354834 DOI: 10.1016/j.cell.2023.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fatima Farah
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fernando Muñoz-Lobato
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anirudh Bokka
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mashel Fatema A Saifuddin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia M Miller
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joy Li
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Eric Chang
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Aruna Varshney
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Vanessa Jimenez
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Anjana Baradwaj
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Cibelle Nassif
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sara Alladin
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kristine Andersen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Angel J Garcia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Bi
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sarah K Nordquist
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raymond L Dunn
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanessa Garcia
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kateryna Tokalenko
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emily Soohoo
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fabiola Briseno
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sukhdeep Kaur
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Malcolm Harris
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Hazel Guillen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Decklin Byrd
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Brandon Fung
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Andrew E Bykov
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emma Odisho
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Bryan Tsujimoto
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alan Tran
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alex Duong
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kevin C Daigle
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebekka Paisner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos E Zuazo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Bremer
- Department of Mathematics and Statistics, San José State University, San José, CA 95192, USA
| | - Saul Kato
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miri K VanHoven
- Department of Biological Sciences, San José State University, San José, CA 95192, USA.
| | - Noëlle D L'Étoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Pandey P, Wall PK, Lopez SR, Dubuisson OS, Zunica ER, Dantas WS, Kirwan JP, Axelrod CL, Johnson AE. A familial natural short sleep mutation promotes healthy aging and extends lifespan in Drosophila. RESEARCH SQUARE 2023:rs.3.rs-2882949. [PMID: 37398097 PMCID: PMC10312989 DOI: 10.21203/rs.3.rs-2882949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sleep loss typically imposes negative effects on animal health. However, humans with a rare genetic mutation in the dec2 gene (dec2P384R) present an exception; these individuals sleep less without the usual effects associated with sleep deprivation. Thus, it has been suggested that the dec2P384R mutation activates compensatory mechanisms that allows these individuals to thrive with less sleep. To test this directly, we used a Drosophila model to study the effects of the dec2P384R mutation on animal health. Expression of human dec2P384R in fly sleep neurons was sufficient to mimic the short sleep phenotype and, remarkably, dec2P384R mutants lived significantly longer with improved health despite sleeping less. The improved physiological effects were enabled, in part, by enhanced mitochondrial fitness and upregulation of multiple stress response pathways. Moreover, we provide evidence that upregulation of pro-health pathways also contributes to the short sleep phenotype, and this phenomenon may extend to other pro-longevity models.
Collapse
Affiliation(s)
- Pritika Pandey
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - P. Kerr Wall
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Stephen R. Lopez
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Olga S. Dubuisson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Elizabeth R.M. Zunica
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Wagner S. Dantas
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - John P. Kirwan
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Christopher L. Axelrod
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Alyssa E. Johnson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| |
Collapse
|
8
|
Roach ST, Ford MC, Simhambhatla V, Loutrianakis V, Farah H, Li Z, Periandri EM, Abdalla D, Huang I, Kalra A, Shaw PJ. Sleep deprivation, sleep fragmentation, and social jet lag increase temperature preference in Drosophila. Front Neurosci 2023; 17:1175478. [PMID: 37274220 PMCID: PMC10237294 DOI: 10.3389/fnins.2023.1175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.
Collapse
Affiliation(s)
- S. Tanner Roach
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Melanie C. Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vikram Simhambhatla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vasilios Loutrianakis
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Hamza Farah
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Dina Abdalla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Arjan Kalra
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Couto SDF, Araujo SM, Bortolotto VC, Dahleh MMM, Musachio EAS, Pinheiro FC, Romio LC, do Sacramento M, Alves D, Prigol M. Effectiveness of 7-chloro-4-(phenylselanyl) quinoline in improving learning, short-term memory, and anxiety-like behaviors in a mimetic model of Parkinson's disease in Drosophila melanogaster. NEW J CHEM 2022. [DOI: 10.1039/d2nj04011e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of 4-PSQ on psychomotor and non-motor behaviors of PD, such as spontaneous locomotor activity, learning, memory, and anxiety.
Collapse
Affiliation(s)
- Shanda de Freitas Couto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Leugim Corteze Romio
- Departamento de Matemática – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| |
Collapse
|
10
|
Napoletano F, Ferrari Bravo G, Voto IAP, Santin A, Celora L, Campaner E, Dezi C, Bertossi A, Valentino E, Santorsola M, Rustighi A, Fajner V, Maspero E, Ansaloni F, Cancila V, Valenti CF, Santo M, Artimagnella OB, Finaurini S, Gioia U, Polo S, Sanges R, Tripodo C, Mallamaci A, Gustincich S, d'Adda di Fagagna F, Mantovani F, Specchia V, Del Sal G. The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Rep 2021; 36:109694. [PMID: 34525372 DOI: 10.1016/j.celrep.2021.109694] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1α (HP1α). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies.
Collapse
Affiliation(s)
- Francesco Napoletano
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy.
| | - Gloria Ferrari Bravo
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Ilaria Anna Pia Voto
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Aurora Santin
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Lucia Celora
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Clara Dezi
- Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Arianna Bertossi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Elena Valentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Mariangela Santorsola
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | | | - Elena Maspero
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Cesare Fabio Valenti
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Manuela Santo
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | | | - Sara Finaurini
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Ubaldo Gioia
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Simona Polo
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Claudio Tripodo
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Antonello Mallamaci
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy; Central RNA Laboratory, Italian Institute of Technology, 16163 Genova, Italy
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; Institute of Molecular Genetics, National Research Institute (CNR), Pavia, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy; FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy.
| |
Collapse
|
11
|
Thomas J, Smith H, Smith CA, Coward L, Gorman G, De Luca M, Jumbo-Lucioni P. The Angiotensin-Converting Enzyme Inhibitor Lisinopril Mitigates Memory and Motor Deficits in a Drosophila Model of Alzheimer's Disease. PATHOPHYSIOLOGY 2021; 28:307-319. [PMID: 35366264 PMCID: PMC8830455 DOI: 10.3390/pathophysiology28020020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The use of angiotensin-converting enzyme inhibitors (ACEis) has been reported to reduce symptoms of cognitive decline in patients with Alzheimer’s disease (AD). Yet, the protective role of ACEis against AD symptoms is still controversial. Here, we aimed at determining whether oral treatment with the ACEi lisinopril has beneficial effects on cognitive and physical functions in a Drosophila melanogaster model of AD that overexpresses the human amyloid precursor protein and the human β-site APP-cleaving enzyme in neurons. We found a significant impairment in learning and memory as well as in climbing ability in young AD flies compared to control flies. After evaluation of the kynurenine pathway of tryptophan metabolism, we also found that AD flies displayed a >30-fold increase in the levels of the neurotoxic 3-hydroxykynurenine (3-HK) in their heads. Furthermore, compared to control flies, AD flies had significantly higher levels of the reactive oxygen species (ROS) hydrogen peroxide in their muscle-enriched thoraces. Lisinopril significantly improved deficits in learning and memory and climbing ability in AD flies. The positive impact of lisinopril on physical function might be, in part, explained by a significant reduction in ROS levels in the thoraces of the lisinopril-fed AD flies. However, lisinopril did not affect the levels of 3-HK. In conclusion, our findings provide novel and relevant insights into the therapeutic potential of ACEis in a preclinical AD model.
Collapse
Affiliation(s)
- Jimiece Thomas
- McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (J.T.); (H.S.); (C.A.S.)
| | - Haddon Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (J.T.); (H.S.); (C.A.S.)
| | - C. Aaron Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (J.T.); (H.S.); (C.A.S.)
| | - Lori Coward
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (L.C.); (G.G.)
| | - Gregory Gorman
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (L.C.); (G.G.)
- Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA
| | - Maria De Luca
- Department of Nutrition Sciences, School of Health Professions, University of Alabama, Birmingham, AL 35233, USA;
| | - Patricia Jumbo-Lucioni
- Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA
- Department of Biology, College of Arts and Sciences, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
12
|
Wiggin TD, Hsiao Y, Liu JB, Huber R, Griffith LC. Rest Is Required to Learn an Appetitively-Reinforced Operant Task in Drosophila. Front Behav Neurosci 2021; 15:681593. [PMID: 34220464 PMCID: PMC8250850 DOI: 10.3389/fnbeh.2021.681593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Maladaptive operant conditioning contributes to development of neuropsychiatric disorders. Candidate genes have been identified that contribute to this maladaptive plasticity, but the neural basis of operant conditioning in genetic model organisms remains poorly understood. The fruit fly Drosophila melanogaster is a versatile genetic model organism that readily forms operant associations with punishment stimuli. However, operant conditioning with a food reward has not been demonstrated in flies, limiting the types of neural circuits that can be studied. Here we present the first sucrose-reinforced operant conditioning paradigm for flies. In the paradigm, flies walk along a Y-shaped track with reward locations at the terminus of each hallway. When flies turn in the reinforced direction at the center of the track, they receive a sucrose reward at the end of the hallway. Only flies that rest early in training learn the reward contingency normally. Flies rewarded independently of their behavior do not form a learned association but have the same amount of rest as trained flies, showing that rest is not driven by learning. Optogenetically-induced sleep does not promote learning, indicating that sleep itself is not sufficient for learning the operant task. We validated the sensitivity of this assay to detect the effect of genetic manipulations by testing the classic learning mutant dunce. Dunce flies are learning-impaired in the Y-Track task, indicating a likely role for cAMP in the operant coincidence detector. This novel training paradigm will provide valuable insight into the molecular mechanisms of disease and the link between sleep and learning.
Collapse
Affiliation(s)
- Timothy D. Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Yungyi Hsiao
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Jeffrey B. Liu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Robert Huber
- Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA, United States
- Juvatech, Toledo, MA, United States
| | - Leslie C. Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| |
Collapse
|
13
|
Nave C, Roberts L, Hwu P, Estrella JD, Vo TC, Nguyen TH, Bui TT, Rindner DJ, Pervolarakis N, Shaw PJ, Leise TL, Holmes TC. Weekend Light Shifts Evoke Persistent Drosophila Circadian Neural Network Desynchrony. J Neurosci 2021; 41:5173-5189. [PMID: 33931552 PMCID: PMC8211545 DOI: 10.1523/jneurosci.3074-19.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.
Collapse
Affiliation(s)
- Ceazar Nave
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Logan Roberts
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Patrick Hwu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Jerson D Estrella
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Thanh C Vo
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Thanh H Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Tony Thai Bui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Daniel J Rindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California 92697
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts 01002
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
14
|
Melnattur K, Kirszenblat L, Morgan E, Militchin V, Sakran B, English D, Patel R, Chan D, van Swinderen B, Shaw PJ. A conserved role for sleep in supporting Spatial Learning in Drosophila. Sleep 2021; 44:5909488. [PMID: 32959053 DOI: 10.1093/sleep/zsaa197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep loss and aging impair hippocampus-dependent Spatial Learning in mammalian systems. Here we use the fly Drosophila melanogaster to investigate the relationship between sleep and Spatial Learning in healthy and impaired flies. The Spatial Learning assay is modeled after the Morris Water Maze. The assay uses a "thermal maze" consisting of a 5 × 5 grid of Peltier plates maintained at 36-37°C and a visual panorama. The first trial begins when a single tile that is associated with a specific visual cue is cooled to 25°C. For subsequent trials, the cold tile is heated, the visual panorama is rotated and the flies must find the new cold tile by remembering its association with the visual cue. Significant learning was observed with two different wild-type strains-Cs and 2U, validating our design. Sleep deprivation prior to training impaired Spatial Learning. Learning was also impaired in the classic learning mutant rutabaga (rut); enhancing sleep restored learning to rut mutants. Further, we found that flies exhibited a dramatic age-dependent cognitive decline in Spatial Learning starting at 20-24 days of age. These impairments could be reversed by enhancing sleep. Finally, we find that Spatial Learning requires dopaminergic signaling and that enhancing dopaminergic signaling in aged flies restored learning. Our results are consistent with the impairments seen in rodents and humans. These results thus demonstrate a critical conserved role for sleep in supporting Spatial Learning, and suggest potential avenues for therapeutic intervention during aging.
Collapse
Affiliation(s)
- Krishna Melnattur
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Ellen Morgan
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Valentin Militchin
- Department of Otolaryngology, Washington University School of Medicine, St Louis, MO
| | - Blake Sakran
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Denis English
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Rushi Patel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Dorothy Chan
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
15
|
Dissecting the complexity of CNV pathogenicity: insights from Drosophila and zebrafish models. Curr Opin Genet Dev 2021; 68:79-87. [PMID: 33812298 DOI: 10.1016/j.gde.2021.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
Genetic architecture predisposes regions of the human genome to copy-number variants, which confer substantial disease risk, most prominently towards neurodevelopmental disorders. These variants typically contain multiple genes and are often associated with extensive pleiotropy and variable phenotypic expressivity. Despite the expansion of the fidelity of CNV detection, and the study of such lesions at the population level, understanding causal mechanisms for CNV phenotypes will require biological testing of constituent genes and their interactions. In this regard, model systems amenable to high-throughput phenotypic analysis of dosage-sensitive genes (and combinations thereof) are beginning to offer improved granularity of CNV-driven pathology. Here, we review the utility of Drosophila and zebrafish models for pathogenic CNV regions, highlight the advances made in discovery of single gene drivers and genetic interactions that determine specific CNV phenotypes, and argue for their validity in dissecting conserved developmental mechanisms associated with CNVs.
Collapse
|
16
|
Konar A, Kalra RS, Chaudhary A, Nayak A, Guruprasad KP, Satyamoorthy K, Ishida Y, Terao K, Kaul SC, Wadhwa R. Identification of Caffeic Acid Phenethyl Ester (CAPE) as a Potent Neurodifferentiating Natural Compound That Improves Cognitive and Physiological Functions in Animal Models of Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:561925. [PMID: 33244299 PMCID: PMC7685006 DOI: 10.3389/fnagi.2020.561925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-based screening of bioactive compounds has served as an important gateway in drug discovery. In the present report, using human neuroblastoma cells and enrolling an extensive three-step screening of 57 phytochemicals, we have identified caffeic acid phenethyl ester (CAPE) as a potent neurodifferentiating natural compound. Analyses of control and CAPE-induced neurodifferentiated cells revealed: (i) modulation of several key proteins (NF200, MAP-2, NeuN, PSD95, Tuj1, GAP43, and GFAP) involved in neurodifferentiation process; and (ii) attenuation of neuronal stemness (HOXD13, WNT3, and Msh-2) and proliferation-promoting (CDC-20, CDK-7, and BubR1) proteins. We anticipated that the neurodifferentiation potential of CAPE may be beneficial for the treatment of neurodegenerative diseases and tested it using the Drosophila model of Alzheimer’s disease (AD) and mice model of amnesia/loss of memory. In both models, CAPE exhibited improved disease symptoms and activation of physiological functions. Remarkably, CAPE-treated mice showed increased levels of neurotrophin-BDNF, neural progenitor marker-Nestin, and differentiation marker-NeuN, both in the cerebral cortex and hippocampus. Taken together, we demonstrate the differentiation-inducing and therapeutic potential of CAPE for neurodegenerative diseases.
Collapse
Affiliation(s)
- Arpita Konar
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Anupama Chaudhary
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Aashika Nayak
- DAILAB, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kanive P Guruprasad
- DAILAB, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kapaettu Satyamoorthy
- DAILAB, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | | | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,KAUL-Tech Co., Ltd., Tsuchiura, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
17
|
Peralta-Rincón JR, Aoulad FZ, Prado A, Edelaar P. Phenotype-dependent habitat choice is too weak to cause assortative mating between Drosophila melanogaster strains differing in light sensitivity. PLoS One 2020; 15:e0234223. [PMID: 33057335 PMCID: PMC7561098 DOI: 10.1371/journal.pone.0234223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022] Open
Abstract
Matching habitat choice is gaining attention as a mechanism for maintaining biodiversity and driving speciation. It revolves around the idea that individuals select the habitat in which they perceive to obtain greater fitness based on a prior evaluation of their local performance across heterogeneous environments. This results in individuals with similar ecologically relevant traits converging to the same patches, and hence it could indirectly cause assortative mating when mating occurs in those patches. White-eyed mutants of Drosophila fruit flies have a series of disadvantages compared to wild type flies, including a poorer performance under bright light. It has been previously reported that, when given a choice, wild type Drosophila simulans preferred a brightly lit habitat while white-eyed mutants occupied a dimly lit one. This spatial segregation allowed the eye color polymorphism to be maintained for several generations, whereas normally it is quickly replaced by the wild type. Here we compare the habitat choice decisions of white-eyed and wild type flies in another species, D. melanogaster. We released groups of flies in a light gradient and recorded their departure and settlement behavior. Departure depended on sex and phenotype, but not on the light conditions of the release point. Settlement depended on sex, and on the interaction between phenotype and light conditions of the point of settlement. Nonetheless, simulations showed that this differential habitat use by the phenotypes would only cause a minimal degree of assortative mating in this species.
Collapse
Affiliation(s)
- Juan Ramón Peralta-Rincón
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Fatima Zohra Aoulad
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Prado
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
18
|
Naz F, Rahul, Fatima M, Naseem S, Khan W, Mondal AC, Siddique YH. Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson's disease. Neuropharmacology 2020; 177:108216. [PMID: 32707222 DOI: 10.1016/j.neuropharm.2020.108216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease due to the degeneration of dopaminergic neurons in substantia nigra pars compacta of the mid brain. The present study investigates the neuro-protective role of synthesized ropinirole silver nanocomposite (RPAgNC) in Drosophila model of PD. α-synuclein accumulation in the brain of flies (PD flies) leads to the damage of dopaminergic neurons, dopamine depletion, impaired muscular coordination, memory decline and increase in oxidative stress. Ingestion of the RPAgNC by Drosophila significantly prevented the neuronal degeneration compared to only ropinirole. The results confirm that the RPAgNC exerts more neuro-protective effect compared to dopamine agonist i.e. ropinirole as such drug in experimental PD flies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mahino Fatima
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swaleha Naseem
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Wasi Khan
- Department of Physics, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
19
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
20
|
Dissel S, Morgan E, Duong V, Chan D, van Swinderen B, Shaw P, Zars T. Sleep restores place learning to the adenylyl cyclase mutant rutabaga. J Neurogenet 2020; 34:83-91. [PMID: 31997683 PMCID: PMC7250152 DOI: 10.1080/01677063.2020.1720674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 01/29/2023]
Abstract
Sleep plays an important role in regulating plasticity. In Drosophila, the relationship between sleep and learning and memory has primarily focused on mushroom body dependent operant-learning assays such as aversive phototaxic suppression and courtship conditioning. In this study, sleep was increased in the classic mutant rutabaga (rut2080) and dunce (dnc1) by feeding them the GABA-A agonist gaboxadol (Gab). Performance was evaluated in each mutant in response to social enrichment and place learning, tasks that do not require the mushroom body. Gab-induced sleep did not restore behavioral plasticity to either rut2080 or dnc1 mutants following social enrichment. However, increased sleep restored place learning to rut2080 mutants. These data extend the positive effects of enhanced sleep to place learning and highlight the utility of Gab for elucidating the beneficial effects of sleep on brain functioning.
Collapse
Affiliation(s)
- Stephane Dissel
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO 64110
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Ellen Morgan
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Vincent Duong
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Dorothy Chan
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Bruno van Swinderen
- The Queensland Brain Institute, University of Queensland, Brisbane Qld 4072 Australia
| | - Paul Shaw
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
21
|
Troutwine B, Park A, Velez‐Hernandez ME, Lew L, Mihic SJ, Atkinson NS. F654A and K558Q Mutations in NMDA Receptor 1 Affect Ethanol‐Induced Behaviors in Drosophila. Alcohol Clin Exp Res 2019; 43:2480-2493. [DOI: 10.1111/acer.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Benjamin Troutwine
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - Annie Park
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | | | - Linda Lew
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - S. John Mihic
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - Nigel S. Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| |
Collapse
|
22
|
Kumar S, Smith KR, Serrano Negron YL, Harbison ST. Short-Term Memory Deficits in the SLEEP Inbred Panel. Clocks Sleep 2019; 1:471-488. [PMID: 32596662 PMCID: PMC7318870 DOI: 10.3390/clockssleep1040036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although sleep is heritable and conserved across species, sleep duration varies from individual to individual. A shared genetic architecture between sleep duration and other evolutionarily important traits could explain this variability. Learning and memory are critical traits sharing a genetic architecture with sleep. We wanted to know whether learning and memory would be altered in extreme long or short sleepers. We therefore assessed the short-term learning and memory ability of flies from the Sleep Inbred Panel (SIP), a collection of 39 extreme long- and short-sleeping inbred lines of Drosophila. Neither long nor short sleepers had appreciable learning, in contrast to a moderate-sleeping control. We also examined the response of long and short sleepers to enriched social conditions, a paradigm previously shown to induce morphological changes in the brain. While moderate-sleeping control flies had increased daytime sleep and quantifiable increases in brain structures under enriched social conditions, flies of the Sleep Inbred Panel did not display these changes. The SIP thus emerges as an important model for the relationship between sleep and learning and memory.
Collapse
|
23
|
Ki Y, Lim C. Sleep-promoting effects of threonine link amino acid metabolism in Drosophila neuron to GABAergic control of sleep drive. eLife 2019; 8:40593. [PMID: 31313987 PMCID: PMC6636906 DOI: 10.7554/elife.40593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/27/2019] [Indexed: 01/09/2023] Open
Abstract
Emerging evidence indicates the role of amino acid metabolism in sleep regulation. Here we demonstrate sleep-promoting effects of dietary threonine (SPET) in Drosophila. Dietary threonine markedly increased daily sleep amount and decreased the latency to sleep onset in a dose-dependent manner. High levels of synaptic GABA or pharmacological activation of metabotropic GABA receptors (GABAB-R) suppressed SPET. By contrast, synaptic blockade of GABAergic neurons or transgenic depletion of GABAB-R in the ellipsoid body R2 neurons enhanced sleep drive non-additively with SPET. Dietary threonine reduced GABA levels, weakened metabotropic GABA responses in R2 neurons, and ameliorated memory deficits in plasticity mutants. Moreover, genetic elevation of neuronal threonine levels was sufficient for facilitating sleep onset. Taken together, these data define threonine as a physiologically relevant, sleep-promoting molecule that may intimately link neuronal metabolism of amino acids to GABAergic control of sleep drive via the neuronal substrate of sleep homeostasis. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Yoonhee Ki
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
24
|
Rivera O, McHan L, Konadu B, Patel S, Sint Jago S, Talbert ME. A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J Comp Physiol B 2019; 189:179-198. [PMID: 30810797 PMCID: PMC6711602 DOI: 10.1007/s00360-019-01209-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
Obesity predisposes humans to a range of life-threatening comorbidities, including type 2 diabetes and cardiovascular disease. Obesity also aggravates neural pathologies, such as Alzheimer's disease, but this class of comorbidity is less understood. When Drosophila melanogaster (flies) are exposed to high-fat diet (HFD) by supplementing a standard medium with coconut oil, they adopt an obese phenotype of decreased lifespan, increased triglyceride storage, and hindered climbing ability. The latter development has been previously regarded as a potential indicator of neurological decline in fly models of neurodegenerative disease. Our objective was to establish the obesity phenotype in Drosophila and identify a potential correlation, if any, between obesity and neurological decline through behavioral assays and gene expression microarray. We found that mated female w1118 flies exposed to HFD maintained an obese phenotype throughout adult life starting at 7 days, evidenced by increased triglyceride stores, diminished life span, and impeded climbing ability. While climbing ability worsened cumulatively between 7 and 14 days of exposure to HFD, there was no corresponding alteration in triglyceride content. Microarray analysis of the mated female w1118 fly head revealed HFD-induced changes in expression of genes with functions in memory, metabolism, olfaction, mitosis, cell signaling, and motor function. Meanwhile, an Aversive Phototaxis Suppression assay in mated female flies indicated reduced ability to recall an entrained memory 6 h after training. Overall, our results support the suitability of mated female flies for examining connections between diet-induced obesity and nervous or neurobehavioral pathology, and provide many directions for further investigation.
Collapse
Affiliation(s)
- Osvaldo Rivera
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Lara McHan
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Bridget Konadu
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Sumitkumar Patel
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Silvienne Sint Jago
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Matthew E Talbert
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA.
| |
Collapse
|
25
|
Breger LS, Fuzzati Armentero MT. Genetically engineered animal models of Parkinson's disease: From worm to rodent. Eur J Neurosci 2018; 49:533-560. [PMID: 30552719 DOI: 10.1111/ejn.14300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterised by aberrant accumulation of insoluble proteins, including alpha-synuclein, and a loss of dopaminergic neurons in the substantia nigra. The extended neurodegeneration leads to a drop of striatal dopamine levels responsible for disabling motor and non-motor impairments. Although the causes of the disease remain unclear, it is well accepted among the scientific community that the disorder may also have a genetic component. For that reason, the number of genetically engineered animal models has greatly increased over the past two decades, ranging from invertebrates to more complex organisms such as mice and rats. This trend is growing as new genetic variants associated with the disease are discovered. The EU Joint Programme - Neurodegenerative Disease Research (JPND) has promoted the creation of an online database aiming at summarising the different features of experimental models of Parkinson's disease. This review discusses available genetic models of PD and the extent to which they adequately mirror the human pathology and reflects on future development and uses of genetically engineered experimental models for the study of PD.
Collapse
Affiliation(s)
- Ludivine S Breger
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Centre Broca Nouvelle Aquitaine, Université de Bordeaux, Bordeaux cedex, France
| | | |
Collapse
|
26
|
Gorostiza EA. Does Cognition Have a Role in Plasticity of "Innate Behavior"? A Perspective From Drosophila. Front Psychol 2018; 9:1502. [PMID: 30233444 PMCID: PMC6127854 DOI: 10.3389/fpsyg.2018.01502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- E. Axel Gorostiza
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
27
|
Baggett V, Mishra A, Kehrer AL, Robinson AO, Shaw P, Zars T. Place learning overrides innate behaviors in Drosophila. ACTA ACUST UNITED AC 2018; 25:122-128. [PMID: 29449456 PMCID: PMC5817280 DOI: 10.1101/lm.046136.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Animals in a natural environment confront many sensory cues. Some of these cues bias behavioral decisions independent of experience, and action selection can reveal a stimulus–response (S–R) connection. However, in a changing environment it would be a benefit for an animal to update behavioral action selection based on experience, and learning might modify even strong S–R relationships. How animals use learning to modify S–R relationships is a largely open question. Three sensory stimuli, air, light, and gravity sources were presented to individual Drosophila melanogaster in both naïve and place conditioning situations. Flies were tested for a potential modification of the S–R relationships of anemotaxis, phototaxis, and negative gravitaxis by a contingency that associated place with high temperature. With two stimuli, significant S–R relationships were abandoned when the cue was in conflict with the place learning contingency. The role of the dunce (dnc) cAMP-phosphodiesterase and the rutabaga (rut) adenylyl cyclase were examined in all conditions. Both dnc1 and rut2080 mutant flies failed to display significant S–R relationships with two attractive cues, and have characteristically lower conditioning scores under most conditions. Thus, learning can have profound effects on separate native S–R relationships in multiple contexts, and mutation of the dnc and rut genes reveal complex effects on behavior.
Collapse
Affiliation(s)
- Vincent Baggett
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Aditi Mishra
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Abigail L Kehrer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Abbey O Robinson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Paul Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
28
|
Abstract
Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| | - Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
29
|
Seugnet L, Dissel S, Thimgan M, Cao L, Shaw PJ. Identification of Genes that Maintain Behavioral and Structural Plasticity during Sleep Loss. Front Neural Circuits 2017; 11:79. [PMID: 29109678 PMCID: PMC5660066 DOI: 10.3389/fncir.2017.00079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 11/23/2022] Open
Abstract
Although patients with primary insomnia experience sleep disruption, they are able to maintain normal performance on a variety of cognitive tasks. This observation suggests that insomnia may be a condition where predisposing factors simultaneously increase the risk for insomnia and also mitigate against the deleterious consequences of waking. To gain insight into processes that might regulate sleep and buffer neuronal circuits during sleep loss, we manipulated three genes, fat facet (faf), highwire (hiw) and the GABA receptor Resistance to dieldrin (Rdl), that were differentially modulated in a Drosophila model of insomnia. Our results indicate that increasing faf and decreasing hiw or Rdl within wake-promoting large ventral lateral clock neurons (lLNvs) induces sleep loss. As expected, sleep loss induced by decreasing hiw in the lLNvs results in deficits in short-term memory and increases of synaptic growth. However, sleep loss induced by knocking down Rdl in the lLNvs protects flies from sleep-loss induced deficits in short-term memory and increases in synaptic markers. Surprisingly, decreasing hiw and Rdl within the Mushroom Bodies (MBs) protects against the negative effects of sleep deprivation (SD) as indicated by the absence of a subsequent homeostatic response, or deficits in short-term memory. Together these results indicate that specific genes are able to disrupt sleep and protect against the negative consequences of waking in a circuit dependent manner.
Collapse
Affiliation(s)
- Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, U1028/UMR 5292, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Lyon, France
| | - Stephane Dissel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Lijuan Cao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
30
|
Dissel S, Klose M, Donlea J, Cao L, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer's disease. Neurobiol Sleep Circadian Rhythms 2016; 2:15-26. [PMID: 29094110 PMCID: PMC5662006 DOI: 10.1016/j.nbscr.2016.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the hypothesis that sleep can reverse cognitive impairment during Alzheimer's disease, we enhanced sleep in flies either co-expressing human amyloid precursor protein and Beta-secretase (APP:BACE), or in flies expressing human tau. The ubiquitous expression of APP:BACE or human tau disrupted sleep. The sleep deficits could be reversed and sleep could be enhanced when flies were administered the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Expressing APP:BACE disrupted both Short-term memory (STM) and Long-term memory (LTM) as assessed using Aversive Phototaxic Suppression (APS) and courtship conditioning. Flies expressing APP:BACE also showed reduced levels of the synaptic protein discs large (DLG). Enhancing sleep in memory-impaired APP:BACE flies fully restored both STM and LTM and restored DLG levels. Sleep also restored STM to flies expressing human tau. Using live-brain imaging of individual clock neurons expressing both tau and the cAMP sensor Epac1-camps, we found that tau disrupted cAMP signaling. Importantly, enhancing sleep in flies expressing human tau restored proper cAMP signaling. Thus, we demonstrate that sleep can be used as a therapeutic to reverse deficits that accrue during the expression of toxic peptides associated with Alzheimer's disease. THIP can be used to enhance sleep in two Drosophila models of Alzheimer's disease. Enhanced sleep reverses memory deficits in fly's expressing human APP:BACE and tau. Enhanced sleep restores cAMP levels in clock neurons expressing tau. Sleep can be used as a therapeutic to reverse Alzheimer's disease related deficits.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Markus Klose
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Jeff Donlea
- Department of Neurobiology, University of California: Los Angeles Los Angeles, California, U.S.A
| | - Lijuan Cao
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Denis English
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences University of Surrey Guildford Surrey, GU2 7XH, United Kingdom
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane Qld 4072 Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, U.S.A
| |
Collapse
|
31
|
Dissel S, Seugnet L, Thimgan MS, Silverman N, Angadi V, Thacher PV, Burnham MM, Shaw PJ. Differential activation of immune factors in neurons and glia contribute to individual differences in resilience/vulnerability to sleep disruption. Brain Behav Immun 2015; 47:75-85. [PMID: 25451614 PMCID: PMC4416079 DOI: 10.1016/j.bbi.2014.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/26/2022] Open
Abstract
Individuals frequently find themselves confronted with a variety of challenges that threaten their wellbeing. While some individuals face these challenges efficiently and thrive (resilient) others are unable to cope and may suffer persistent consequences (vulnerable). Resilience/vulnerability to sleep disruption may contribute to the vulnerability of individuals exposed to challenging conditions. With that in mind we exploited individual differences in a fly's ability to form short-term memory (STM) following 3 different types of sleep disruption to identify the underlying genes. Our analysis showed that in each category of flies examined, there are individuals that form STM in the face of sleep loss (resilient) while other individuals show dramatic declines in cognitive behavior (vulnerable). Molecular genetic studies revealed that Antimicrobial Peptides, factors important for innate immunity, were candidates for conferring resilience/vulnerability to sleep deprivation. Specifically, Metchnikowin (Mtk), drosocin (dro) and Attacin (Att) transcript levels seemed to be differentially increased by sleep deprivation in glia (Mtk), neurons (dro) or primarily in the head fat body (Att). Follow-up genetic studies confirmed that expressing Mtk in glia but not neurons, and expressing dro in neurons but not glia, disrupted memory while modulating sleep in opposite directions. These data indicate that various factors within glia or neurons can contribute to individual differences in resilience/vulnerability to sleep deprivation.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Laurent Seugnet
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Matthew S. Thimgan
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Neal Silverman
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Veena Angadi
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| | - Pamela V. Thacher
- Department of Psychology, St Lawrence University, 23 Romoda Drive, Canton, NY 13617
| | | | - Paul J. Shaw
- Department of Anatomy & Neurobiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, Missouri, USA
| |
Collapse
|
32
|
The E3 ligase ube3a is required for learning in Drosophila melanogaster. Biochem Biophys Res Commun 2015; 462:71-7. [DOI: 10.1016/j.bbrc.2015.04.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 11/18/2022]
|
33
|
Heisenberg M. Outcome learning, outcome expectations, and intentionality in Drosophila. ACTA ACUST UNITED AC 2015; 22:294-8. [PMID: 25979991 PMCID: PMC4436651 DOI: 10.1101/lm.037481.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
An animal generates behavioral actions because of the effects of these actions in the future. Occasionally, the animal may generate an action in response to a certain event or situation. If the outcome of the action is adaptive, the animal may keep this stimulus–response link in its behavioral repertoire, in case the event or situation occurs again. If a responsive action is innate but the outcome happens to be less adaptive than it had been before, the link may be loosened. This adjustment of outcome expectations involves a particular kind of learning, which will be called “outcome learning.” The present article discusses several examples of outcome learning in Drosophila. Learning and memory are intensely studied in flies, but the focus is on classical conditioning. Outcome learning, a particular form of operant learning, is of special significance, because it modulates outcome expectations that are operational components of action selection and intentionality.
Collapse
Affiliation(s)
- Martin Heisenberg
- Rudolf Virchow Research Center, University of Wuerzburg, Wuerzburg D-97080, Germany
| |
Collapse
|
34
|
Dissel S, Angadi V, Kirszenblat L, Suzuki Y, Donlea J, Klose M, Koch Z, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Sleep restores behavioral plasticity to Drosophila mutants. Curr Biol 2015; 25:1270-81. [PMID: 25913403 DOI: 10.1016/j.cub.2015.03.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/18/2015] [Accepted: 03/18/2015] [Indexed: 12/01/2022]
Abstract
Given the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular lesion. Sleep was increased using three independent strategies: activating the dorsal fan-shaped body, increasing the expression of Fatty acid binding protein (dFabp), or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using aversive phototaxic suppression and courtship conditioning. Each of the three independent strategies increased sleep and restored memory to rut and dnc mutants. Importantly, inducing sleep also reverses memory defects in a Drosophila model of Alzheimer's disease. Together, these data demonstrate that sleep plays a more fundamental role in modulating behavioral plasticity than previously appreciated and suggest that increasing sleep may benefit patients with certain neurological disorders.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Veena Angadi
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yasuko Suzuki
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeff Donlea
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford 1 3SR, UK
| | - Markus Klose
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Zachary Koch
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Denis English
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey 2 7XH, UK
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Abstract
Drosophila has proven to be a powerful model to identify genes and circuits that impact sleep. While the majority of studies have primarily been interested in identifying manipulations that alter sleep time, a growing body of work has begun to focus on how changing sleep influences functional outcomes such as cognitive performance, structural plasticity, and metabolism to name a few. Evaluating sleep time provides an appropriate entry point into elucidating sleep function. However, it is not possible to fully understand how a manipulation has impacted sleep regulation without first establishing how it has affected the animals’ well-being. Synaptic plasticity and memory are important functional outcomes that can be used to asses an animal’s status. In this manuscript, we review recent advances in studies examining sleep, memory, and performance. We conclude that as Drosophila sleep researchers expand their analysis beyond sleep time, the opportunities to discover the function of sleep will be enhanced.
Collapse
|
36
|
Foraging alters resilience/vulnerability to sleep disruption and starvation in Drosophila. Proc Natl Acad Sci U S A 2012; 109:2613-8. [PMID: 22308351 DOI: 10.1073/pnas.1112623109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent human studies suggest that genetic polymorphisms allow an individual to maintain optimal cognitive functioning during sleep deprivation. If such polymorphisms were not associated with additional costs, selective pressures would allow these alleles to spread through the population such that an evolutionary alternative to sleep would emerge. To determine whether there are indeed costs associated with resiliency to sleep loss, we challenged natural allelic variants of the foraging gene (for) with either sleep deprivation or starvation. Flies with high levels of Protein Kinase G (PKG) (for(R)) do not display deficits in short-term memory following 12 h of sleep deprivation. However, short-term memory is significantly disrupted when for(R) flies are starved overnight. In contrast, flies with low levels of PKG (for(s), for(s2)) show substantial deficits in short-term memory following sleep deprivation but retain their ability to learn after 12 h of starvation. We found that for(R) phenotypes could be largely recapitulated in for(s) flies by selectively increasing the level of PKG in the α/β lobes of the mushroom bodies, a structure known to regulate both sleep and memory. Together, these data indicate that whereas the expression of for may appear to provide resilience in one environmental context, it may confer an unexpected vulnerability in other situations. Understanding how these tradeoffs confer resilience or vulnerability to specific environmental challenges may provide additional clues as to why an evolutionary alternative to sleep has not emerged.
Collapse
|
37
|
Cowan CM, Sealey MA, Quraishe S, Targett MT, Marcellus K, Allan D, Mudher A. Modelling tauopathies in Drosophila: insights from the fruit fly. Int J Alzheimers Dis 2011; 2011:598157. [PMID: 22254145 PMCID: PMC3255107 DOI: 10.4061/2011/598157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2023] Open
Abstract
Drosophila melanogaster is an experimentally tractable model organism that has been used successfully to model aspects of many human neurodegenerative diseases. Drosophila models of tauopathy have provided valuable insights into tau-mediated mechanisms of neuronal dysfunction and death. Here we review the findings from Drosophila models of tauopathy reported over the past ten years and discuss how they have furthered our understanding of the pathogenesis of tauopathies. We also discuss the multitude of technical advantages that Drosophila offers, which make it highly attractive as a model for such studies.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton, University Road, Southampton SO17 3JD, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
van Swinderen B. The aversive phototaxic suppression assay for individual adult Drosophila. Cold Spring Harb Protoc 2011; 2011:1203-5. [PMID: 21969628 DOI: 10.1101/pdb.prot065896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vision is a major sensory modality in Drosophila behavior, with more than one-half of the Drosophila brain devoted to visual processing. The mechanisms of vision in Drosophila can now be studied in individuals and in populations of flies by using various paradigms. Simple strategies for conducting visual perception and learning studies consist of individual studies performed on single flies on solid supports (larvae on agar or adults in a T-maze) using a light/dark association paradigm. These approaches are quite easy to implement but are fairly limited in their ability to address questions of visual perception. Nevertheless, the simpler approaches treating vision in one dimension (light, dark) do provide effective paradigms for genetic analysis. For adult flies, a paradigm called aversive phototaxic suppression (APS), as described here, can be used. This method exploits flies' phototaxic reflex. By associating a lit chamber with quinine (which is aversive), repeated trials on a single animal result in a learned response to avoid (or to suppress) phototaxis. Of note, the unconditioned stimulus (US) quinine must be present throughout the experiment for APS to work, unlike other memory assays in which the US is removed during testing.
Collapse
|
39
|
Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr Biol 2011; 21:835-40. [PMID: 21549599 PMCID: PMC3741064 DOI: 10.1016/j.cub.2011.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 01/04/2011] [Accepted: 03/31/2011] [Indexed: 01/10/2023]
Abstract
The role of the transmembrane receptor Notch in the adult brain is poorly understood. Here, we provide evidence that bunched, a negative regulator of Notch, is involved in sleep homeostasis. Genetic evidence indicates that interfering with bunched activity in the mushroom bodies (MBs) abolishes sleep homeostasis. Combining bunched and Delta loss-of-function mutations rescues normal homeostasis, suggesting that Notch signaling may be involved in regulating sensitivity to sleep loss. Preventing the downregulation of Delta by overexpressing a wild-type transgene in MBs reduces sleep homeostasis and, importantly, prevents learning impairments induced by sleep deprivation. Similar resistance to sleep loss is observed with Notch(spl-1) gain-of-function mutants. Immunohistochemistry reveals that the Notch receptor is expressed in glia, whereas Delta is localized in neurons. Importantly, the expression in glia of the intracellular domain of Notch, a dominant activated form of the receptor, is sufficient to prevent learning deficits after sleep deprivation. Together, these results identify a novel neuron-glia signaling pathway dependent on Notch and regulated by bunched. These data highlight the emerging role of neuron-glia interactions in regulating both sleep and learning impairments associated with sleep loss.
Collapse
Affiliation(s)
- Laurent Seugnet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8108, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ali YO, Escala W, Ruan K, Zhai RG. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 2011:2504. [PMID: 21445036 PMCID: PMC3197301 DOI: 10.3791/2504] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination. Here we use behavioral assays, including the negative geotaxis assay and the aversive phototaxic suppression assay (APS assay), to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.
Collapse
Affiliation(s)
- Yousuf O Ali
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, USA
| | | | | | | |
Collapse
|
41
|
Van Swinderen B, Andretic R. Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc Biol Sci 2011; 278:906-13. [PMID: 21208962 DOI: 10.1098/rspb.2010.2564] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many different roles? Adaptive changes within the DA system, anatomical specificity of action and effects on a variety of behaviours highlight the remarkable versatility of this neurotransmitter. Recent genetic and pharmacological manipulations of DA signalling in Drosophila have launched a surfeit of stories-each arguing for modulation of some aspect of the fly's waking (and sleeping) life. Although these stories often seem distinct and unrelated, there are some unifying themes underlying DA function and arousal states in this insect model. One of the central roles played by DA may involve perceptual suppression, a necessary component of both sleep and selective attention.
Collapse
Affiliation(s)
- Bruno Van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
42
|
Abstract
While the research community has accepted the value of rodent models as informative research platforms, there is less awareness of the utility of other small vertebrate and invertebrate animal models. Neuroscience is increasingly turning to smaller, non-rodent models to understand mechanisms related to neuropsychiatric disorders. Although they can never replace clinical research, there is much to be learnt from 'small brains'. In particular, these species can offer flexible genetic 'tool kits' that can be used to explore the expression and function of candidate genes in different brain regions. Very small animals also offer efficiencies with respect to high-throughput screening programs. This review provides a concise overview of the utility of models based on worm, fruit fly, honeybee and zebrafish. Although these species may have small brains, they offer the neuropsychiatric research community opportunities to explore some of the most important research questions in our field.
Collapse
|
43
|
Abstract
As bluntly summarized by a psychologist over a century ago, everyone knows what attention is [James (1890). The Principles of Psychology]. Attention describes our capacity to focus perception on one or a group of related stimuli while filtering out irrelevant stimuli. The ease we have in recognizing this astounding capacity in ourselves is matched by a surprising difficulty in identifying it in others, and this is especially the case for measuring attention in other animals. Identifying and measuring attention-like processes in simple animals such as flies requires, to some extent, even more rigor than asking the same question for our closer animal relatives, such as apes and monkeys. This is because flies have completely different brains than humans do, so to study attention in these creatures one must rely purely on operational or behavioral measures rather than comparative neuroanatomy. There is a long history of using sophisticated behavioral paradigms to study visual responses in Drosophila melanogaster, and these studies have often provided early evidence of attention-like processes in flies. More recently, these fly paradigms have been applied to measuring visual attention directly, and the combination of electrophysiology with these preparations has provided insight into how a fly might pay attention. Together with more efficient methods for measuring some aspects of attention, such as stimulus suppression, these approaches should begin to uncover how visual attention might work in a small brain.
Collapse
Affiliation(s)
- Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
44
|
β-N-methylamino-L-alanine induces neurological deficits and shortened life span in Drosophila. Toxins (Basel) 2010; 2:2663-79. [PMID: 22069570 PMCID: PMC3153171 DOI: 10.3390/toxins2112663] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 01/10/2023] Open
Abstract
The neurotoxic non-protein amino acid, β-N-methylamino-L-alanine (BMAA), was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam. Recently, BMAA has been implicated as a fierce environmental factor that contributes to the etiology of Alzheimer’s and Parkinson’s diseases, in addition to ALS. However, the toxicity of BMAA in vivo has not been clearly demonstrated. Here we report our investigation of the neurotoxicity of BMAA in Drosophila. We found that dietary intake of BMAA reduced life span, locomotor functions, and learning and memory abilities in flies. The severity of the alterations in phenotype is correlated with the concentration of BMAA detected in flies. Interestingly, developmental exposure to BMAA had limited impact on survival rate, but reduced fertility in females, and caused delayed neurological impairment in aged adults. Our studies indicate that BMAA exposure causes chronic neurotoxicity, and that Drosophila serves as a useful model in dissecting the pathogenesis of ALS/PDC.
Collapse
|
45
|
The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss. PLoS Biol 2010; 8. [PMID: 20824166 PMCID: PMC2930866 DOI: 10.1371/journal.pbio.1000466] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 07/19/2010] [Indexed: 12/21/2022] Open
Abstract
Starvation, which is common in the wild, appears to initiate a genetic program that allows fruitflies to remain awake without the sleepiness and cognitive impairments that typically follow sleep deprivation. Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking. It is well established in humans that sleep deficits lead to adverse outcomes, including cognitive impairments and an increased risk for obesity. Given the relationship between sleep and lipid stores, we hypothesized that metabolic pathways play a role in sleep regulation and contribute to deficits induced by sleep loss. Since starvation has a large impact on metabolic pathways and is an environmental condition that is encountered by animals living in the wild, we examined its effects on sleep in the fruit fly Drosophila melanogaster. Interestingly, when flies are starved they display an immediate increase in waking. However, in contrast to sleep deprivation, waking induced by starvation does not result in increased sleepiness or impairments in short-term memory. To identify the mechanisms underlying these processes, we evaluated mutants for genes that have been shown to alter an animal's response to starvation. Interestingly, brummer mutants, which are fat, show an exaggerated response to sleep loss. In contrast, mutants for Lipid storage droplet 2 are lean and are able to stay awake without becoming sleepy or showing signs of cognitive impairment. These results indicate that while sleep loss can alter lipids, lipid enzymes may, in turn, play a role in regulating sleep and influence the response to sleep deprivation.
Collapse
|
46
|
Seugnet L, Galvin JE, Suzuki Y, Gottschalk L, Shaw PJ. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease. Sleep 2009; 32:984-92. [PMID: 19725249 DOI: 10.1093/sleep/32.8.984] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. PARTICIPANTS Transgenic strains of Drosophila melanogaster. DESIGN Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. CONCLUSIONS These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.
Collapse
Affiliation(s)
- Laurent Seugnet
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
47
|
van Swinderen B, McCartney A, Kauffman S, Flores K, Agrawal K, Wagner J, Paulk A. Shared visual attention and memory systems in the Drosophila brain. PLoS One 2009; 4:e5989. [PMID: 19543525 PMCID: PMC2694981 DOI: 10.1371/journal.pone.0005989] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/19/2009] [Indexed: 11/18/2022] Open
Abstract
Background Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. Methodology/Principal Findings To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM) mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20–30 Hz local field potential associated with attention-like effects in the fly brain. Conclusions/Significance Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity required for attention-like processes in the fly brain.
Collapse
Affiliation(s)
- Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|