1
|
Lima MGF, Rocha LC, Silveira GL, Alvarenga IFS, Andrade-Vieria LF. Nucleolar alterations are reliable parameters to determine the cytogenotoxicity of environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:630-636. [PMID: 30875556 DOI: 10.1016/j.ecoenv.2019.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Pollution generated by deposition of industrial activity waste in the environment without due care can lead to serious environmental consequences. Bioassays in higher plants are means of understanding the cytogenotoxic effects of these substances. In the present work, Allium cepa L. was used as a model species to assess nucleolar changes induced by environmental pollutants. The substances used were Methyl Methane Sulfonate (MMS), cadmium (Cd), Spent Potliner (SPL) and the herbicide Atrazine. Water was used as a negative control. The silver-stained nucleolar organizer region (AgNOR) assay was used making it possible to evaluate how nucleolar parameters (number of nucleoli per nucleus and nucleoli area) behave when facing stress caused by such pollutants. The results obtained showed a variation in the observed parameters: an increase in the number of nucleoli in the treated cells and tendency to a reduction in nucleolar area, indicating that the tested pollutants may have impaired nucleolar activity. In addition, it was possible to establish a relationship between the behavior of the nucleolus with other changes as plantlet growth, cell proliferation, and DNA damage.
Collapse
Affiliation(s)
| | - Laiane Corsini Rocha
- Biology Department, Federal University of Lavras (UFLA), ZIP: 37.200-000 Lavras, MG, Brazil
| | | | | | | |
Collapse
|
2
|
Carvalho A, Reis S, Pavia I, Lima-Brito JE. Influence of seed priming with iron and/or zinc in the nucleolar activity and protein content of bread wheat. PROTOPLASMA 2019; 256:763-775. [PMID: 30554374 DOI: 10.1007/s00709-018-01335-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 05/17/2023]
Abstract
Seed priming with iron (Fe) and/or zinc (Zn) can overcome the reduced availability of these micronutrients in soils and crops, but suitable dosages should be predetermined. Nucleolus responds to stress, such as cytotoxicity, with alterations perceivable by cytogenetic analyses. This work intends to study how seed priming with Fe and/or Zn affects the nucleolar activity in roots and the total soluble protein content in the flour of bread wheat cv. 'Jordão'. Seven priming treatments with 0 mg L-1 to 8 mg L-1 of Fe and/or Zn were performed. In all treatments, each metaphase cell presented a maximum of six nucleolar organizer regions positively stained with silver nitrate (Ag-NORs). Also, a maximum number of six nucleoli per nucleus were observed in all treatments, except in the hydroprimed seeds (used as control) that showed a maximum of five nucleoli, probably due to nucleolar fusion. Irregular interphases were frequent in treatments with the highest dosage of micronutrients (8 mg L-1 Fe and/or 8 mg L-1 Zn). The nucleolar area reduced (p < 0.001) as the number of nucleoli increased, and it was lower in treatments with a combination of Fe and Zn. However, the combinations of Fe and Zn showed the highest concentrations of total soluble protein (p ≤ 0.001). Although a reduced nucleolar area represents low ribosomal RNA gene transcription and ribosomal production, the significant increase of the number of nucleoli in the seeds primed with Fe and Zn enhanced the total soluble protein content as compared to the hydroprimed seeds (control) probably due to an increase of nucleolar surface-to-volume ratio that improved the protein synthesis. Overall, this work revealed that priming of bread wheat seeds with suited dosages of Fe and Zn can improve the nutritional value of flour, and the nucleolar number, morphology, and area can be useful biomarkers in cytotoxicity studies.
Collapse
Affiliation(s)
- Ana Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), University of Tras-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of de Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Sara Reis
- Biosystems and Integrative Sciences Institute (BioISI), University of Tras-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Ivo Pavia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of de Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Eduardo Lima-Brito
- Biosystems and Integrative Sciences Institute (BioISI), University of Tras-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of de Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- Department of Genetics and Biotechnology, Ed. Blocos Laboratoriais, A0.04, University of Trasos-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
3
|
Jiang XM, Mi WH, Zhu W, Yao H, Zhang YM, Wei TB, Lin Q. A biacylhydrazone-based chemosensor for fluorescence ‘turn-on’ detection of Al3+ with high selectivity and sensitivity. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1539230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xiao-Mei Jiang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Wen-Hui Mi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Wei Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, P. R. China
- Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| |
Collapse
|
4
|
Mazzeo DEC, Marin-Morales MA. Genotoxicity evaluation of environmental pollutants using analysis of nucleolar alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9796-9806. [PMID: 25639248 DOI: 10.1007/s11356-015-4134-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Nucleolar alterations resulting from the action of either chemical or physical agents can serve as important genotoxicity biomarkers. In this study, the efficiency of AgNOR banding technique to identify the presence of nucleoli in micronucleus and assess nucleolar alterations in aberrant cells of Allium cepa was evaluated. Seeds of this plant were exposed to both water samples from a river that receives untreated urban effluent and to the trifluralin herbicide (0.84 mg/L concentration), both analyzed in two different seasons (summer and winter seasons). Samples induced significant frequencies of chromosomal and nuclear aberrations and micronuclei, as observed in cells submitted to conventional chromosomal staining. The herbicide caused a significant increase in the number of nucleoli and micronuclei, interpreted as due to the elimination of excessive nucleolar material resulting from polyploidization. The use of the AgNOR technique enabled the identification of both the presence of the nucleolus in some micronuclei and the nucleolar organizer region (NOR) behavior of aberrant cells. The NOR-banding technique showed to be an efficient tool for studying the genotoxic effects caused by a xenobiotics and a complex environmental sample.
Collapse
|
5
|
Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, Liu D. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC PLANT BIOLOGY 2014; 14:264. [PMID: 25267390 PMCID: PMC4189629 DOI: 10.1186/s12870-014-0264-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/25/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Masson pine (Pinus massoniana) is one of the most important timber species with adaptable, fast growing, versatile advantages in southern China. Despite considerable research efforts, the cellular and molecular mechanisms of A1 toxicity and resistance in P. massoniana are still poorly understood. The effects of Al on uptake and translocation of Al and other minerals, cell division and nucleolus in P. massoniana were investigated. RESULTS The results indicated that Al accumulated mainly in the roots, and small amounts were transported to aboveground organs. In the presence of Al, the contents of Mg and Fe in stems increased and decreased in roots. Accumulation of Mn in the organs was inhibited significantly. Evidence from cellular experiments showed that Al had an inhibitory effect on the root growth at all concentrations (10⁻⁵ - 10⁻² M) used. Chromosome fragments, chromosome bridges, C-mitosis and chromosome stickiness were induced during mitosis in the root tip cells. Al induced the formation of abnormal microtubule (MT) arrays, consisting of discontinuous wavy MTs or short MT fragments at the cell periphery. MT organization and function of the mitotic spindle and phragmoplast were severely disturbed. The nucleolus did not disaggregate normally and still remained its characteristic structure during metaphase. Nucleolar particles containing argyrophilic proteins were accumulated and leached out from the nucleus to the cytoplasm. Evidence confirmed that these proteins contained nucleophosmin (B23), nucleolin (C23) and fibrillarin. Western immunoblot analysis revealed that the contents of three nucleolar proteins increased significantly. CONCLUSION Based on the information provided in this article, it is concluded that root tips of plants are the most sensitive organ to environmental stresses and the accumulation of Al ions primarily is in roots of P. massoniana, and small amounts of Al are transported to aboveground. Root apical meristems play a key role in the immediate reaction to stress factors by activating signal cascades to the other plant organs. Al induces a series of the cellular toxic changes concerning with cell division and nucleolus. The data presented above can be also used as valuable and early markers in cellular changes induced by metals for the evaluation of metal contamination.
Collapse
Affiliation(s)
- Huanhuan Zhang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Ze Jiang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Rong Qin
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
- />School of Life Science, South China Normal University, Guangzhou, Guangzhou 510631 PR China
| | - Huaning Zhang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Jinhua Zou
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Wusheng Jiang
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| | - Donghua Liu
- />Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387 PR China
| |
Collapse
|
6
|
Jiang Z, Zhang H, Qin R, Zou J, Wang J, Shi Q, Jiang W, Liu D. Effects of lead on the morphology and structure of the nucleolus in the root tip meristematic cells of Allium cepa L. Int J Mol Sci 2014; 15:13406-23. [PMID: 25089875 PMCID: PMC4159802 DOI: 10.3390/ijms150813406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 01/14/2023] Open
Abstract
To study the toxic mechanisms of lead (Pb) in plants, the effects of Pb on the morphology and structure of the nucleolus in root tip meristematic cells of Allium cepa var. agrogarum L. were investigated. Fluorescence labeling, silver-stained indirect immunofluorescent microscopy and western blotting were used. Fluorescence labeling showed that Pb ions were localized in the meristematic cells and the uptake and accumulation of Pb increased with treatment time. At low concentrations of Pb (1-10 μM) there were persistent nucleoli in some cells during mitosis, and at high concentration (100 μM) many of the nucleolar organizing regions were localized on sticky chromosomes in metaphase and anaphase cells. Pb induced the release of particles containing argyrophilic proteins to be released from the nucleus into the cytoplasm. These proteins contained nucleophosmin and nucleolin. Pb also caused the extrusion of fibrillarin from the nucleus into the cytoplasm. Western blotting demonstrated the increased expression of these three major nucleolar proteins under Pb stress.
Collapse
Affiliation(s)
- Ze Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Huaning Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Rong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Junran Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Qiuyue Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Wusheng Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Donghua Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
7
|
Qin R, Jiang W, Liu D. Aluminum can induce alterations in the cellular localization and expression of three major nucleolar proteins in root tip cells of Allium cepa var. agrogarum L. CHEMOSPHERE 2013; 90:827-34. [PMID: 23111171 DOI: 10.1016/j.chemosphere.2012.09.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/16/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
A 50 μM aluminum (Al) could induce nucleolar materials containing the argyrophilic proteins scattered in the nuclei and extruded from the nuclei into the cytoplasm in the root tip cells of Allium cepa. Unfortunately, what kinds of nucleolar proteins are affected has not been reported till now. In order to go deeper into the understanding of the cytological effects of Al on nucleolus and nucleolar proteins, alterations in the cellular localization and expression of three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were further examined under the treatment with Al in the root tip cells of A. cepa in the present study. Cytological effects of Al on nucleolus were observed by silver-staining method and three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were examined by western blotting. The results indicated that in the presence of 50 μM Al for 48 h the nucleolar proteins were translocated from nucleolus to nucleoplasm and cytoplasm. Western blotting data demonstrated the relatively higher expression of the three major nucleolar proteins when compared with control. Evidence from the present investigation indicated that Al had toxic effects on Ag-NOR proteins, nucleophosmin and nucleolin, and other kinds of nucleolar proteins, fibrillarin.
Collapse
Affiliation(s)
- Rong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | | | | |
Collapse
|
8
|
R`bia O, Horchani F, Smida I, Mejri M, Aschi-Smit S. Aluminium Phytotoxicity and Plant Acclimation to Acidic Soils. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ijar.2011.194.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Qin R, Jiao Y, Zhang S, Jiang W, Liu D. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L. BMC PLANT BIOLOGY 2010; 10:225. [PMID: 20964828 PMCID: PMC3017848 DOI: 10.1186/1471-2229-10-225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/21/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Increased Al concentration causes reduction of mitotic activity, induction of nucleolar alteration, increase of the production of ROS and alteration of several antioxidant enzyme activities in plant cells. Allium cepa is an excellent plant and a useful biomarker for environmental monitoring. Limited information is available about the effects of Al on nucleoli, antioxidant enzyme system, contents of MDA and soluble protein in A. cepa. Therefore, we carried out the investigation in order to better understand the effects of Al on the growth, nucleoli in root tip cells and selected physiological and biochemical characters. RESULTS The results showed that the root growth exposed to 50 μM Al was inhibited significantly. 50 μM Al could induce some particles of argyrophilic proteins scattered in the nuclei and extruded from the nucleoli into the cytoplasm. The nucleolus did not disaggregate normally and still remained its characteristic structure during metaphase. Nucleolar reconstruction was inhibited. 50 μM Al induced high activities of SOD and POD in leaves and roots significantly (P < 0.05) when compared with control, whereas the level of CAT was low significantly (P < 0.05). At 50 μM Al the content of MDA in leaves was high significantly (P < 0.05) at 9(th) day and in roots increased (P < 0.05) with prolonging the treatment time during 6-12 days. The soluble protein content in leaves treated with 50 μM Al was high significantly (P < 0.05) at 6(th) day and increased with prolonging the treatment time. CONCLUSIONS We suggest that variations in nucleoli and the alterations of antioxidant enzyme activities, MDA and soluble protein contents in Allium cepa can serve as useful biomarkers, which can provide valuable information for monitoring and forecasting effects of exposure to Al in real scenarios conditions. Among the antioxidant enzymes SOD and POD appear to play a key role in the antioxidant defense mechanism under Al toxicity condition. Data from MDA concentration show that Al indirectly produces superoxide radicals, resulting in increased lipid peroxidative products and oxidative stress.
Collapse
Affiliation(s)
- Rong Qin
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yunqiu Jiao
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shanshan Zhang
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wusheng Jiang
- Library of Tianjin Normal University, Tianjin 300387, China
| | - Donghua Liu
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
10
|
Liu D, Jiang W, Lu C, Zhao F, Hao Y, Guo L. Effects of Copper Sulfate on the Nucleolus of Allium Cepa Root-Tip Cells. Hereditas 2004. [DOI: 10.1111/j.1601-5223.1994.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:1-46. [PMID: 10965465 DOI: 10.1016/s0074-7696(00)00001-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminum is the major element in the soil and exists as a stable complex with oxygen and silicate in neutral and weakly acidic soil. When the soil pH is lower than 4.5-5.0, Al is solubilized in the soil water and absorbed by plant roots. Absorbed Al inhibits root elongation severely, and the elongation of roots exposed to Al3+ as low as mumol level is inhibited within an hour(s). Thus much research has been conducted to understand the mechanism of Al toxicity and tolerance. Al is located specifically at the root apex. Al-sensitive plants absorb more Al than do Al-tolerant plants, and thus the exclusion mechanism of Al is the major idea for Al tolerance. The understanding of Al stress in plants is important for stable food production in future. Al is a complicated ion in its chemical form and biological function. In this chapter, mechanisms of Al toxicity and tolerance proposed during the past few decades as well as future topics are described from physiological and molecular points of view.
Collapse
Affiliation(s)
- H Matsumoto
- Research Institute for Bioresources, Okayama University, Japan
| |
Collapse
|
12
|
Jiang W, Liu D, Li H. Effects of Cu2+ on root growth, cell division, and nucleolus of Helianthus annuus L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2000; 256:59-65. [PMID: 10898387 DOI: 10.1016/s0048-9697(00)00470-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The effects of different concentrations (10-5 - 10-2 M) of copper sulfate on root growth, cell division and nucleoli in root-tip cells of Helianthus annuus L. were investigated. Cu had an inhibitory effect on the root growth at 10-4 - 10-2 M during the entire treatment. Cu has toxic effects on chromosomal morphology including anaphase bridges and chromosome stickiness and on nucleoli, causing some similar silver-stained particulate material scattered in the nuclei. Once the nucleolus is poisoned, showing some silver-stained particles scattered in the nucleus, the root growth of H. annuus is obviously inhibited. And once more silver-stained particles appear in the nucleus, the root growth is almost or completely stopped. The possible mechanism of the Cu poisoning of root-tip cells of H. annuus is also briefly discussed.
Collapse
Affiliation(s)
- W Jiang
- Department of Biology, College of Chemistry and Life Sciences, Tianjin Normal University, Tianjin, PR China
| | | | | |
Collapse
|
13
|
Zhang Y. Effects of aluminum chloride on the nucleus and nucleolus in root tip cells of Hordeum vulgare. Mutat Res 1995; 335:137-42. [PMID: 7477044 DOI: 10.1016/0165-1161(95)00012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cytotoxic effects of aluminum chloride at different concentrations (1 x 10(-4)-5 x 10(-2) M) on the nucleus and the nucleolus in root tip cells of Hordeum vulgare were investigated using the carbol fuchsin staining method and the silver staining technique separately. Results showed that aluminum chloride could induce nuclear aberrations comprising elongated, irregular, ruptured and fractured nuclei and micronucleus formation. After the treatment with aluminum, it was observed that the nucleolar material was extruded from the nucleus into the cytoplasm. The nucleolar material in the cytoplasm was disintegrated, forming silver-stained particulate material, which occurred in both the inner root meristem cells and the root cap cells. The possible mechanism of the aluminum toxicity on the nucleus and nucleolus is briefly discussed.
Collapse
Affiliation(s)
- Y Zhang
- Department of Life Science, Shanxi University, Taiyuan, People's Republic of China
| |
Collapse
|