1
|
Gelin A, Masson-Meyers D, Amini F, Moharamzadeh K, Tayebi L. Collagen: The superior material for full-thickness oral mucosa tissue engineering. J Oral Biosci 2024; 66:511-518. [PMID: 38909983 DOI: 10.1016/j.job.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Tissue engineering has significantly progressed in developing full-thickness oral mucosa constructs designed to replicate the natural oral mucosa. These constructs serve as valuable in vitro models for biocompatibility testing and oral disease modeling and hold clinical potential for replacing damaged or lost oral soft tissue. However, one of the major challenges in tissue engineering of the oral mucosa is the identification of an appropriate scaffold with optimal porosity, interconnected porous networks, biodegradability, and biocompatibility. These characteristics facilitate cell migration, nutrient delivery, and vascularization. Various biomaterials have been investigated for constructing tissue-engineered oral mucosa models; collagen has demonstrated superior outcomes compared with other materials. HIGHLIGHT This review discusses the different types of tissue-engineered oral mucosa developed using various materials and includes articles published between January 2000 and December 2022 in PubMed and Google Scholar. The review focuses on the superiority of collagen-based scaffolds for tissue engineering of oral mucosa, explores in vitro applications, and discusses potential clinical applications. CONCLUSION Among the various scaffold materials used for engineering the connective tissue of the oral mucosa, collagen-based scaffolds possess excellent biological properties, offering high-quality oral mucosa constructs and high resemblance to the native human oral mucosa in terms of histology and expression of various differentiation markers.
Collapse
Affiliation(s)
- Alexandra Gelin
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | | | - Fatemeh Amini
- School of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates; School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
2
|
Shang J, Feng X, Chen Y, Gu Z, Liu Y. Human lip vermilion: Physiology and age-related changes. J Cosmet Dermatol 2024; 23:2676-2680. [PMID: 38590116 DOI: 10.1111/jocd.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The human lip vermilion, also known as the red lip, is important to the quality of life and has long attracted the attention of cosmetic researchers. However, there is limited existing literature on the physiological characteristics and age-related alterations in the human vermilion. OBJECTIVE We aim to provide an overview of the physiological characteristics and age-related alterations in the human vermilion. METHODS This article is a result of previous research. We conducted a literature search using various academic databases such as Google Scholar, Web of Science, and PubMed. Our findings provided a comprehensive understanding of the physiological characteristics and age-related changes of the human lip vermilion. RESULTS The human lip vermilion has a unique structure and physiological characteristics, and during the aging process, a few changes may occur in the human lip vermilion. CONCLUSION Understanding the human lip vermilion's physiological characteristics and age-related changes can provide key information for the future innovation of lip vermilion care products. Further investigations are necessary to reach a consensus on the physiological characteristics and age-related alterations in the human vermilion.
Collapse
Affiliation(s)
- Jianli Shang
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Xiaoyue Feng
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Yong Chen
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Zhengping Gu
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| | - Youting Liu
- Beijing Underproved Medical Technology Co., LTD, Beijing, China
| |
Collapse
|
3
|
Mansour J, Nesbitt B, Khanjae S, Horowitz G, Amit M, Muhanna N, Hofstede TM, Gillenwater A. The Feasibility and Outcome of Integra® Bilayer Matrix in the Reconstruction of Oral Cavity Defects. Otolaryngol Head Neck Surg 2024; 170:373-379. [PMID: 37717219 DOI: 10.1002/ohn.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 08/12/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE To evaluate the feasibility, safety, and failure rate of Integra® Bilayer Wound Matrix (Integra) in the reconstruction of oral cavity defects. STUDY DESIGN Retrospective cohort study. SETTING All study information was collected from a single academic tertiary care hospital. METHODS Subjects included adult patients who underwent oral cavity resection and immediate subsequent reconstruction with Integra® Bilayer Wound Matrix at MD Anderson Cancer Center between the years 2015 and 2020. The following variables were collected: patient's demographics, comorbidities, disease stage, treatment and reconstruction modalities, and surgical outcome from the medical records. Statistical analysis included distribution analysis for all collected parameters and Pearson's χ2 tests to find correlation between variables and take rate of Integra. RESULTS Eighty-three patients underwent reconstruction with Integra® Bilayer Wound Matrix dressing. Average age was 66 years old. Thirty-nine patients (47%) had history of previous resections for oral cavity tumors. Fourteen patients (17%) had history of radiation therapy to the Head and Neck region. Most common pathology was invasive squamous cell carcinoma (75%) followed by dysplasia (12%). Complete wound healing with good cellular integration occurred in 83 patients (96%) with only 3 failures requiring additional surgery. Reconstruction of mandibulectomy defects was associated with increased risk of dehiscence and bone exposure (0.66, P = .03). CONCLUSION This study shows promising results with high take rate of Integra® Bilayer Wound Matrix dressing in the reconstruction of various oral cavity defects. We encourage surgeons to adopt this technique as a viable and versatile option into the reconstruction ladder of oral cavity defects.
Collapse
Affiliation(s)
- Jobran Mansour
- Department of Head and Neck Surgery, MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Otolaryngology-Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Blaine Nesbitt
- Department of Otolaryngology, Head and Neck Surgery, Walter Reed National Medical Center, Bethesda, Maryland, USA
| | - Sonam Khanjae
- Department of Head and Neck Surgery, MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gilad Horowitz
- Department of Otolaryngology-Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nidal Muhanna
- Department of Otolaryngology-Head and Neck and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Theresa M Hofstede
- Department of Head and Neck Surgery, Section of Oral Oncology and Maxillofacial Prosthodontics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ann Gillenwater
- Department of Head and Neck Surgery, MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. [PMID: 38243683 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of Queensland, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Gong Y, Tong S, Li X, Chen X, Liu Y, Li N, Xu J, Xu R, Guo Y, Xiao F, Chen X, Chen W. Intestinal Villi-Inspired Mathematically Base-Layer Engineered Microneedles (IMBEMs) for Effective Molecular Exchange during Biomarker Enrichment and Drug Deposition in Diversified Mucosa. ACS NANO 2023; 17:15696-15712. [PMID: 37549304 DOI: 10.1021/acsnano.3c02944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The mucosa-interfacing systems based on bioinspired engineering design for sampling/drug delivery have manifested crucial potential for the monitoring of infectious diseases and the treatment of mucosa-related diseases. However, their efficiency and validity are severely restricted by limited contact area for molecular transfer and dissatisfactory capture/detachment capability. Herein, inspired by the multilayer villus structure of the small intestine that enables high nutrient absorption, a trigonometric function-based periodic pattern was fabricated and integrated on the base layer of the microneedle patch, exhibiting a desirable synergistic effect with needle tips for deep sample enrichment and promising molecular transfer, significantly improving the device-mucosa bidirectional interaction. Moreover, mathematical modeling and finite element analysis were adopted to visualize and quantify the microcosmic molecular transmission process, guiding parameter optimization in actual situation. Encouragingly, these intestinal villi-inspired mathematically base-layer engineered microneedles (IMBEMs) have demonstrated distinguished applicability among mucosa tissue with varying surface curvatures, tissue toughness, and local environments, and simultaneously, have gained favorable support from healthy volunteers receiving preliminary test of IMBEMs patches. Overall, validated by numerous in vitro and in vivo tests, the IMBEMs were confirmed to act as a promising candidate to facilitate mucosa-based sampling and topical drug delivery, indicating highly clinical translation potential.
Collapse
Affiliation(s)
- Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Tong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixuan Li
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuli Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yushuang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rengui Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusong Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, and Nanomedicine Translational Research Program, National University of Singapore, 117597, Singapore
- NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Griffin MF, Fahy EJ, King M, Guardino N, Chen K, Abbas DB, Lavin CV, Diaz Deleon NM, Lorenz HP, Longaker MT, Wan DC. Understanding Scarring in the Oral Mucosa. Adv Wound Care (New Rochelle) 2022; 11:537-547. [PMID: 34470520 PMCID: PMC9347381 DOI: 10.1089/wound.2021.0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/23/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: Skin inevitably heals with the formation of a fibrotic scar. Patients affected by skin scarring suffer from long-term psychological and physical burdens. Recent Advances: Since the discovery of fetal scarless skin-wound healing, research has hoped to identify and mimic scarless healing for adult skin. Oral mucosa healing in adults provides the closest example to fetal scarless healing. Injuries to the oral mucosa heal with very minimal scarring. Understanding the mechanisms through which this process occurs may bring us closer to achieving scarless healing in adults. Critical Issues: In this review, we summarize the current evidence that illustrates distinct mechanisms involved in oral mucosal healing. We discuss the role of the oral niche in contributing to wound repair. The intrinsic properties of immune cells, fibroblasts, and keratinocytes within the oral mucosa that support regenerative repair are provided. We highlight the contribution of cytokines, growth factors, and chemokine secretion in permitting a scarless mucosal environment. Furthermore, we discuss the role of stem cell-like progenitor populations in the mucosa that may contribute to wound healing. We also provide suggestions for future studies that are needed to achieve scarless healing in adults. Future Directions: Many characteristics of the oral mucosa have been shown to contribute to decreased scarring, but the specific mechanism(s) is unclear. Advancing our understanding of oral healing may yield therapeutic therapies that can be used to overcome dermal scarring.
Collapse
Affiliation(s)
- Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Evan J. Fahy
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Megan King
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nicholas Guardino
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Darren B. Abbas
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Christopher V. Lavin
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nestor M. Diaz Deleon
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - H. Peter Lorenz
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
8
|
Masson-Meyers DS, Bertassoni LE, Tayebi L. Oral mucosa equivalents, prevascularization approaches, and potential applications. Connect Tissue Res 2022; 63:514-529. [PMID: 35132918 PMCID: PMC9357199 DOI: 10.1080/03008207.2022.2035375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
Collapse
Affiliation(s)
| | - Luiz E. Bertassoni
- School of Dentistry, Oregon Health and Science University. Portland, OR 97201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| |
Collapse
|
9
|
Air-Pressure-Supported Application of Cultured Human Keratinocytes in a Fibrin Sealant Suspension as a Potential Clinical Tool for Large-Scale Wounds. J Clin Med 2022; 11:jcm11175032. [PMID: 36078961 PMCID: PMC9456662 DOI: 10.3390/jcm11175032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of large-scale skin wounds remains a therapeutic challenge. In most cases there is not enough autologous material available for full coverage. Cultured epithelial autografts are efficient in restoring the lost epidermal cover; however, they have some disadvantages, such as difficult application and protracted cell cultivation periods. Transplanting a sprayed keratinocyte suspension in fibrin sealant as biological carrier is an option to overcome those disadvantages. Here, we studied different seeding techniques regarding their applicability and advantages on cell survival, attachment, and outgrowth in vitro and thereby improve the cell transfer to the wound bed. Human primary keratinocytes were suspended in a fibrin sealant. WST-8 assay was used to evaluate the vitality for 7 days. Furthermore, the cells were labeled with CellTracker™ CM-Di-I and stained with a life/dead staining. Cell morphology, shape, and distribution were microscopically analyzed. There was a significant increase in vitality while cultivating the cells in fibrin. Sprayed cells were considerably more homogenously distributed. Sprayed cells reached the confluent state earlier than dripped cells. There was no difference in the vitality and morphology in both groups over the observation period. These findings indicate that the sprayed keratinocytes are superior to the application of the cells as droplets. The sprayed application may offer a promising therapeutic option in the treatment of large chronic wounds.
Collapse
|
10
|
Yin X, Hong J, Tang HB, Liu M, Li YS. Enhanced healing of oral chemical burn by inhibiting inflammatory factors with an oral administration of shengFu oil. Front Pharmacol 2022; 13:913098. [PMID: 36034877 PMCID: PMC9403317 DOI: 10.3389/fphar.2022.913098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
ShengFu oil is a compounded Chinese medicinal prescription, and provides antibacterial, anti-inflammatory, and analgesic effects, favoring burn wound repair. In this study, we aimed at investigating the effects of topical applications of ShengFu oil and its active ingredients in oral chemical burns and elucidating its regulatory effects on β-catenin, COX-2, and MMP-9 expression caused by exposure to acid or alkaline agents. ShengFu oil contains 16 components, such as Frankincense, Radix Scutellariae and Radix Rehmanniae, and the main active ingredients from Frankincense are α-pinene, linalool, and n-octanol. Mouse models of oral chemical burns were induced by using glacial acetic acid or sodium hydroxide. Hematoxylin and eosin staining and immunohistochemical staining were used to detect the protein expressions of β-catenin, COX-2, and MMP-9 in wound tissues. They were further quantified by multispectral imaging analysis to clarify the effective mechanism of ShengFu oil for intervening inflammatory factors and active components. Our results indicated that the application of ShengFu oil on oral chemical burns effectively stopped the oral burn bleeding and reduced the inflammatory reaction in the damaged tissues, demonstrating that ShengFu oil can promote wound tissue repair in burns caused by heat, acids, and alkalis. The immunohistochemical staining results illustrated that ShengFu oil and its active ingredients significantly reversed the abnormal changes in inflammation-related proteins in mouse tongue tissues that were caused by chemical burns. Regarding long-term toxic effects of ShengFu oil on the gastrointestinal tract, liver, and kidney system, the results of hematoxylin and eosin staining experiments depicted that ShengFu oil was safe and effective for liver, kidney, intestine, esophagus, and tongue. All of these demonstrated that ShengFu oil and its active ingredients are effective and safe in preventing and treating oral chemical burns by interfering with the inflammatory microenvironment.
Collapse
Affiliation(s)
- Xin Yin
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Jing Hong
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Liu
- Chongqing Center for Drug Evaluation and Inspection, Chongqing, China
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
11
|
Reddy RR, Reddy SG, Pandey A, Banala B, Bronkhorst EM, Kuijpers-Jagtman AM. Effect of antibiotic pack on hard palate after fistula closure on nasal airflow and reoccurrence rate. J Oral Biol Craniofac Res 2022; 12:27-32. [PMID: 34745861 PMCID: PMC8556516 DOI: 10.1016/j.jobcr.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/31/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022] Open
Abstract
This parallel blocked randomized controlled trial was done in two groups of 30 patients each to determine if placement of an antibiotic oral pack on the hard palate after hard palatal fistula repair reduces nasal air emission and fistula re-occurrence. Group A had an oral pack on the hard palate for 5 days post-operatively while group B did not. In group A, percentage of nasal air emission was tested using nasometry with and without pack. Paired t-tests were performed to compare nasal emissions for patients with and without pack. Recurrence of fistulas after 6 months between group A and B was tested using odds ratio. Effect of nasal air emission on fistula rates was tested using paired t-tests. There was a significant increase (p < 0.0001) in nasal emission after removal of the pack in group A. Fistula re-occurrence tended to be higher in group B (no pack) than group A but this was not significant (p = 0.242). There was no correlation between nasal air emission and fistula rates. In patients with recurrent fistulae, placement of an oral pack after fistula repair diminishes nasal air emission. Whether this has an impact on re-occurrence of fistulae needs to be investigated further.
Collapse
Affiliation(s)
- Rajgopal R. Reddy
- Cranio-maxillofacial Surgery, G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India
| | - Srinivas Gosla Reddy
- Cranio-maxillofacial Surgery, G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India
| | - Avni Pandey
- G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India
| | - Bhavya Banala
- Speech and Language Therapy,G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India
| | - Ewald M. Bronkhorst
- Department of Cariology and Preventive Dentistry, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
12
|
Takizawa H, Karakawa A, Suzawa T, Chatani M, Ikeda M, Sakai N, Azetsu Y, Takahashi M, Urano E, Kamijo R, Maki K, Takami M. Neural crest-derived cells possess differentiation potential to keratinocytes in the process of wound healing. Biomed Pharmacother 2021; 146:112593. [PMID: 34968925 DOI: 10.1016/j.biopha.2021.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Neural crest-derived cells (NCDCs), which exist as neural crest cells during the fetal stage and differentiate into palate cells, also exist in adult palate tissues, though with unknown roles. In the present study, NCDCs were labeled with EGFP derived from P0-Cre/CAG-CAT-EGFP (P0-EGFP) double transgenic mice, then their function in palate mucosa wound healing was analyzed. As a palate wound healing model, left-side palate mucosa of P0-EGFP mice was resected, and stem cell markers and keratinocyte markers were detected in healed areas. NCDCs were extracted from normal palate mucosa and precultured with stem cell media for 14 days, then were differentiated into keratinocytes or osteoblasts to analyze pluripotency. The wound healing process started with marginal mucosal regeneration on day two and the entire wound area was lined by regenerated mucosa with EGFP-positive cells (NCDCs) on day 28. EGFP-positive cells comprised approximately 60% of cells in healed oral mucosa, and 65% of those expressed stem cell markers (Sca-1+, PDGFRα+) and 30% expressed a keratinocyte marker (CK13+). In tests of cultured palate mucosa cells, approximately 70% of EGFP-positive cells expressed stem cell markers (Sca-1+, PDGFRα+). Furthermore, under differentiation inducing conditions, cultured EGFP-positive cells were successfully induced to differentiate into keratinocytes and osteoblasts. We concluded that NCDCs exist in adult palate tissues as stem cells and have potential to differentiate into various cell types during the wound healing process.
Collapse
Affiliation(s)
- Hideomi Takizawa
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan; Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Tetsuo Suzawa
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Megumi Ikeda
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Division of Endodontology, Department of Conservative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Eri Urano
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
13
|
Balasubramanian GV, Chockalingam N, Naemi R. The Role of Cutaneous Microcirculatory Responses in Tissue Injury, Inflammation and Repair at the Foot in Diabetes. Front Bioeng Biotechnol 2021; 9:732753. [PMID: 34595160 PMCID: PMC8476833 DOI: 10.3389/fbioe.2021.732753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic foot syndrome is one of the most costly complications of diabetes. Damage to the soft tissue structure is one of the primary causes of diabetic foot ulcers and most of the current literature focuses on factors such as neuropathy and excessive load. Although the role of blood supply has been reported in the context of macro-circulation, soft tissue damage and its healing in the context of skin microcirculation have not been adequately investigated. Previous research suggested that certain microcirculatory responses protect the skin and their impairment may contribute to increased risk for occlusive and ischemic injuries to the foot. The purpose of this narrative review was to explore and establish the possible link between impairment in skin perfusion and the chain of events that leads to ulceration, considering the interaction with other more established ulceration factors. This review highlights some of the key skin microcirculatory functions in response to various stimuli. The microcirculatory responses observed in the form of altered skin blood flow are divided into three categories based on the type of stimuli including occlusion, pressure and temperature. Studies on the three categories were reviewed including: the microcirculatory response to occlusive ischemia or Post-Occlusive Reactive Hyperaemia (PORH); the microcirculatory response to locally applied pressure such as Pressure-Induced Vasodilation (PIV); and the interplay between microcirculation and skin temperature and the microcirculatory responses to thermal stimuli such as reduced/increased blood flow due to cooling/heating. This review highlights how microcirculatory responses protect the skin and the plantar soft tissues and their plausible dysfunction in people with diabetes. Whilst discussing the link between impairment in skin perfusion as a result of altered microcirculatory response, the review describes the chain of events that leads to ulceration. A thorough understanding of the microcirculatory function and its impaired reactive mechanisms is provided, which allows an understanding of the interaction between functional disturbances of microcirculation and other more established factors for foot ulceration.
Collapse
Affiliation(s)
| | - Nachiappan Chockalingam
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Roozbeh Naemi
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
14
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
15
|
Tait A, Proctor T, Hamilton NJI, Birchall MA, Lowdell MW. GMP compliant isolation of mucosal epithelial cells and fibroblasts from biopsy samples for clinical tissue engineering. Sci Rep 2021; 11:12392. [PMID: 34117337 PMCID: PMC8196163 DOI: 10.1038/s41598-021-91939-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Engineered epithelial cell sheets for clinical replacement of non-functional upper aerodigestive tract mucosa are regulated as medicinal products and should be manufactured to the standards of good manufacturing practice (GMP). The current gold standard for growth of epithelial cells for research utilises growth arrested murine 3T3 J2 feeder layers, which are not available for use as a GMP compliant raw material. Using porcine mucosal tissue, we demonstrate a new method for obtaining and growing non-keratinised squamous epithelial cells and fibroblast cells from a single biopsy, replacing the 3T3 J2 with a growth arrested primary fibroblast feeder layer and using pooled Human Platelet lysate (HPL) as the media serum supplement to replace foetal bovine serum (FBS). The initial isolation of the cells was semi-automated using an Octodissociator and the resultant cell suspension cryopreservation for future use. When compared to the gold standard of 3T3 J2 and FBS containing medium there was no reduction in growth, viability, stem cell population or ability to differentiate to mature epithelial cells. Furthermore, this method was replicated with Human buccal tissue, providing cells of sufficient quality and number to create a tissue engineered sheet.
Collapse
Affiliation(s)
- Angela Tait
- Cancer Institute, Department of Haematology, University College London, London, UK.
| | - Toby Proctor
- Department of Biochemical Engineering, University College London, London, UK
| | | | | | - Mark W Lowdell
- Cancer Institute, Department of Haematology, University College London, London, UK
| |
Collapse
|
16
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
17
|
Iroanya OO, Obi JC, Ogunyinka OO, Bosede OT, Egwuatu TF, Adewole RA. Messenger RNA (mRNA)-based age determination using skin-specific markers of saliva epithelial cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Age determination is a vital factor in biological identification in forensics. This study was carried out to determine the expression levels of three target genes (Keratin 9 (KRT9), Loricrin (LOR) and Corneodesmosin (CDSN)) in salivary epithelial cells and how they can be used in age determination using reference gene, β-actin. Thirty young adults participated in the study and were divided into three groups according to their ages (16–20, 21–25, and 26–30). Ribonucleic acid (RNA) extraction, complementary deoxyribonucleic acid (cDNA) synthesis and quantitative polymerase chain reaction (qPCR) were performed. Data analysis was done using IBM SPSS Version 26 and the comparative Ct method (2−∆∆Ct method).
Results
CDSN was detected in all the sampled age groups. Though the age group 16–20 had the highest (0.4237) expression of CDSN among the three age groups, there was no significant difference (p > 0.05) in the expression of the gene among the three age groups. The LOR gene was lowly expressed across all age groups used in the study. The expression of the gene did not significantly differ (p > 0.05) between the control and 26–30 years age group, but they were however significantly higher (F = 36.47, p ≤ 0.05) than the expression of the gene in both 16–20 and 21–25 years age groups. The KRT9 gene was expressed only in age groups 16–20 and 26–30 and the expression of the gene did not significantly (p > 0.05) differ between these age groups. Though the expression of all the target genes was low, it was observed that the LOR gene expression varied among 21–25 and 26–30 age groups; therefore, more data and further analyses are still required since this experimental approach for age determination using gene expression is still at an emerging stage.
Conclusion
Although RNA concentration was low and the expression values of the genes were low and could not be used in comparing the expression levels among the three age groups, it can be concluded that the three messenger ribonucleic acid (mRNA) markers CDSN, LOR and KRT9, as well as the ACTB reference mRNA marker analysed via the described qPCR assays, are suitable for identifying epithelial cells in saliva.
Collapse
|
18
|
Tabatabaei F, Moharamzadeh K, Tayebi L. Three-Dimensional In Vitro Oral Mucosa Models of Fungal and Bacterial Infections. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:443-460. [PMID: 32131719 DOI: 10.1089/ten.teb.2020.0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is the target tissue for many microorganisms involved in periodontitis and other infectious diseases affecting the oral cavity. Three-dimensional (3D) in vitro and ex vivo oral mucosa equivalents have been used for oral disease modeling and investigation of the mechanisms of oral bacterial and fungal infections. This review was conducted to analyze different studies using 3D oral mucosa models for the evaluation of the interactions of different microorganisms with oral mucosa. In this study, based on our inclusion criteria, 43 articles were selected and analyzed. Different types of 3D oral mucosa models of bacterial and fungal infections were discussed in terms of the biological system used, culture conditions, method of infection, and the biological endpoints assessed in each study. The critical analysis revealed some contradictory reports in this field of research in the literature. Challenges in recovering bacteria from oral mucosa models were further discussed, suggesting possible future directions in microbiomics, including the use of oral mucosa-on-a-chip. The potential use of these 3D tissue models for the evaluation of the effects of antiseptic agents on bacteria and oral mucosa was also addressed. This review concluded that there were many aspects that would require optimization and standardization with regard to using oral mucosal models for infection by microorganisms. Using new technologies-such as microfluidics and bioreactors-could help to reproduce some of the physiologically relevant conditions and further simulate the clinical situation. Impact statement Tissue-engineered or commercial models of the oral mucosa are very useful for the study of diseases that involve the interaction of microorganisms and oral epithelium. In this review, challenges in recovering bacteria from oral mucosa models, the potential use of these three-dimensional tissue models for the evaluation of the effects of antiseptic agents, and future directions in microbiomics are discussed.
Collapse
Affiliation(s)
- Fahimeh Tabatabaei
- School of Dentistry, Marquette University, Milwaukee, Wisconsin.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
19
|
The maintenance of an oral epithelial barrier. Life Sci 2019; 227:129-136. [PMID: 31002922 DOI: 10.1016/j.lfs.2019.04.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/05/2023]
Abstract
Oral epithelial barrier consists of closely controlled structure of the stratified squamous epithelium, which is the gateway to human bodies and encounters a huge burden of microbial, airborne and dietary antigens, as well as masticatory damage. Once this barrier is destroyed, it will trigger bone loss, tissue damage and microbial dysbiosis and lead to diseases, such as periodontitis, oral mucosal diseases and oral cancer. Recently, increasing evidences showed that different factors including microorganism, saliva, proteins and immune components have been considered to play a critical role in the disruption of oral epithelial barrier. Herein, we discussed mechanisms governing the maintenance of oral epithelial barrier. Besides, the role of oral epithelial barrier failure in oral carcinogenesis will also be talked about.
Collapse
|
20
|
Reddy RR, Reddy SG, Banala B, Bronkhorst EM, Kummer AW, Kuijpers-Jagtman AM, Bergé SJ. Placement of an antibiotic oral pack on the hard palate after primary cleft palatoplasty: a randomized controlled trial into the effect on fistula rates. Clin Oral Investig 2018; 22:1953-1958. [PMID: 29192349 PMCID: PMC5945738 DOI: 10.1007/s00784-017-2286-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/21/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of this study is to determine whether placement of an antibiotic oral pack on the hard palate reduces fistula rates after primary cleft palatoplasty. SUBJECTS AND METHODS This study was a parallel blocked randomized controlled trial. The study consisted of two groups of 100 patients each with non-syndromic unilateral complete cleft lip, alveolus, and hard and soft palate that underwent primary palatoplasty. Group A had an oral pack placed on the hard palate for 5 days postoperatively while group B did not. Occurrence of fistulae between both groups was tested using odds ratios (OR). RESULTS In 2% of the patients in group A, a fistula was found 6 months after palatal surgery. In contrast, in 21% of the patients in group B, a palatal fistula could be confirmed. The fistula occurrence in group A was statistically significantly lower than that in group B (OR = 0.0768, CI = [0.02 … 0.34], p < 0.001). CONCLUSION The findings of this study provide evidence that the rate of fistula formation after primary palatoplasty is significantly reduced if a pack soaked with antibiotic cream is placed on the palate postoperatively for 5 days. CLINICAL RELEVANCE The use of an antibiotic pack after cleft palate repair can be recommended to prevent occurrence of oronasal fistulae.
Collapse
Affiliation(s)
- Rajgopal R Reddy
- Cranio-maxillofacial Surgery, G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India.
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands.
- GSR Institute of Craniofacial Surgery, # 17-1-383/55, Vinay Nagar Colony, IS Sadan, Saidabad, Hyderabad, 500059, India.
| | - Srinivas Gosla Reddy
- Cranio-maxillofacial Surgery, G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India
| | - Bhavya Banala
- Speech and Language Therapy, G.S.R. Hospital, Institute of Cranio-Maxillofacial and Facial Plastic Surgery, Vinay Nagar Colony, Saidabad, Hyderabad, India
| | - Ewald M Bronkhorst
- Department of Cariology and Preventive Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ann W Kummer
- Division of Speech-Language Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefaan J Bergé
- Department of Cranio-maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Xu X, Cui N, Wang E. Application of an acellular dermal matrix to a rabbit model of oral mucosal defects. Exp Ther Med 2018; 15:2450-2456. [PMID: 29456650 PMCID: PMC5795579 DOI: 10.3892/etm.2018.5705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Acellular dermal matrices (ADMs) are increasingly used for the restoration of soft-tissue defects of the oral cavity due to their ability to facilitate faster healing and reduce scar formation without rejection. However, few studies have focused on the histopathology and biological mechanisms involved in their use. The aim of the present study was to observe tissue growth, histopathologic changes and altered biomolecular signatures that occur during the repair of oral defects in rabbit models over time, either with or without the employment of ADM. Animals were sacrificed 1, 2 and 4 weeks following surgery and histological changes were evaluated using hematoxylin and eosin staining. Reverse transcription-polymerase chain reaction and western blot analysis were used to determine changes in the expression of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). It was demonstrated that wounds treated with ADM exhibited a weak inflammatory reaction and faster epithelialization and revascularization compared with untreated wounds. This may have been caused by the elevated levels of VEGF and GLUT1 protein detected in the ADM-treated defects. Thus, treating wounds of the oral mucosa with an ADM improves pathological responses compared with those with an untreated wound. The current study demonstrates the underlying mechanisms by which ADM promotes wound healing in defects of the oral mucosa and the results provide further evidence for the use of ADM in clinical settings for the repair of mucosal defects.
Collapse
Affiliation(s)
- Xiangliang Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Nianhui Cui
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Enbo Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
22
|
Yaprak E, Kayaalti-Yuksek S. Preliminary evaluation of near-infrared vein visualization technology in the screening of palatal blood vessels. Med Oral Patol Oral Cir Bucal 2018; 23:e98-e104. [PMID: 29274151 PMCID: PMC5822547 DOI: 10.4317/medoral.21996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
Background Avoidance from palatal blood vessel rupture is a major concern during the palatal soft tissue graft surgery. There is no defined chair-side and case-specific palatal blood vessel detection approach to facilitate the harvesting process. The objective of this pilot study is to assess the feasibility of a near-infrared vein visualization system in the screening process of palatal blood vessels. Material and Methods An extraoral vein visualization device (AccuVein AV400) was applied to a total of 304 hemi-maxilla of 152 individuals by two blind examiners. The study groups were classified according to their maximum inter-incisal measurements. The distances between the coronal border of the vessel image and the mid-palatal gingival margins of the adjacent teeth were measured and in each group. The correlations among the measurements were evaluated within groups. Results The blood vessel to the adjacent teeth measurements exhibited no statistical difference between both examiners in all subjects (p<0.001). Correlations between the examiners gradually increased in all groups as the mouth opening rates of the subjects were increased (p<0.001). Conclusions In the current state, screening of the palatal blood vessels via near-infrared vein visualization technology seems to be not suitable for every individual due to the restrictive effect of mouth opening. However, the promising results of this preliminary study demonstrated increasing consistency between the measurements of the examiners as the inter-incisal distance increase which emphasized the need an intraoral version of the device. Considering the lack of local decision-making technology for the detection of palatal blood vessels, further studies are required for development and optimization of these systems. Key words:Near-infrared vein visualization, palatal graft harvesting, surgical complications.
Collapse
Affiliation(s)
- E Yaprak
- Kocaeli University, Faculty of Dentistry, Department of Periodontology, Yuvacik, Basiskele, Kocaeli, Turkey,
| | | |
Collapse
|
23
|
Thoma DS, Hilbe M, Bienz SP, Sancho-Puchades M, Hämmerle CHF, Jung RE. Palatal wound healing using a xenogeneic collagen matrix - histological outcomes of a randomized controlled clinical trial. J Clin Periodontol 2016; 43:1124-1131. [PMID: 27616435 DOI: 10.1111/jcpe.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 11/26/2022]
Abstract
AIM The aim of this study was to test whether or not a collagen matrix can improve early wound healing compared to spontaneous healing based on histological and immunohistologic analyses. METHODS In 20 volunteers, 6 mm punch biopsies were harvested at the palate. A xenogeneic collagen matrix (XCM) was sutured in one site; the other one was left untreated (control). Biopsies with a diameter of 8 mm were subsequently obtained at 4, 8, 15 and 29 days and histological and immunohistologic analyses were performed. RESULTS At day 4, wound bed keratinization amounted to 12.4 ± 7.5% (control) and 18.0 ± 10.2% (XCM). This increased up to day 8 (19.7 ± 25.5% control; 29.1 ± 8.0% XCM) and reached complete keratinization at day 15 in both groups. The quantitative analyses of the superficial compartment measured an increase in the amount of granulation tissue (32-88% control; 14-41% XCM) from day 4 to day 8. Angiogenesis was first detected at 8 days. At day 29, the amount of connective tissue in all compartments reached values similar to the native tissue at baseline. CONCLUSIONS The application of a XCM as a wound dressing on palatal wounds might be beneficial in the early stages of wound healing. Further research with a larger sample size is needed to confirm these results.
Collapse
Affiliation(s)
- Daniel S Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Zurich, Switzerland
| | - Stefan P Bienz
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuel Sancho-Puchades
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Christoph H F Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Low-level laser therapy in 3D cell culture model using gingival fibroblasts. Lasers Med Sci 2016; 31:973-8. [DOI: 10.1007/s10103-016-1945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
|
25
|
Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts. Biomaterials 2016; 77:207-15. [DOI: 10.1016/j.biomaterials.2015.10.073] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
|
26
|
Viñuela-Prieto JM, Sánchez-Quevedo MC, Alfonso-Rodríguez CA, Oliveira AC, Scionti G, Martín-Piedra MA, Moreu G, Campos A, Alaminos M, Garzón I. Sequential keratinocytic differentiation and maturation in a three-dimensional model of human artificial oral mucosa. J Periodontal Res 2014; 50:658-65. [PMID: 25470318 DOI: 10.1111/jre.12247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Oral mucosa shortage may limit or condition some clinical approaches in maxillofacial, periodontal and implant treatment. The availability of a human oral mucosa model generated by tissue engineering could help clinicians to address the lack of oral mucosa. In this work, we carried out a sequential maturation and differentiation study of the epithelial cell layer of an artificial human oral mucosa substitute based on fibrin-agarose biomaterials with fibroblasts and keratinocytes. MATERIAL AND METHODS Histological, immunohistochemical and gene expression analyses were carried out in artificial human oral mucosa models developed and cultured for 1, 2 and 3 wk. RESULTS Artificial oral mucosa models showed expression of tight junction proteins and cytokeratins from the first week of in vitro development. Mature samples of 3 wk of development subjected to air-liquid conditions showed signs of epithelial differentiation and expressed specific RNAs and proteins corresponding to adherent and gap junctions and basement lamina. Moreover, these mature samples overexpressed some desmosomal and tight junction transcripts, with gap junction components being downregulated. CONCLUSION These results suggest that bioengineered human oral mucosa substitutes form a well-developed epithelial layer that was very similar to human native tissues. In consequence, the epithelial layer could be fully functional in these oral mucosa substitutes, thus implying that these tissues may have clinical usefulness.
Collapse
Affiliation(s)
- J M Viñuela-Prieto
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain.,PhD Programme in Biomedicine, University of Granada, Granada, Spain
| | - M C Sánchez-Quevedo
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - C A Alfonso-Rodríguez
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - A C Oliveira
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - G Scionti
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - M A Martín-Piedra
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - G Moreu
- Department of Stomatology, Faculty of Dentistry, University of Granada, Granada, Spain
| | - A Campos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - M Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - I Garzón
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs, Granada, Spain
| |
Collapse
|
27
|
Augustine R, Kalarikkal N, Thomas S. Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog Biomater 2014; 3:103-113. [PMID: 29470769 PMCID: PMC5299852 DOI: 10.1007/s40204-014-0030-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/31/2014] [Indexed: 11/04/2022] Open
Abstract
This review gives a brief description on the skin and its essential functions, damages or injury which are common to the skin and the role of skin substitute to replace the functions of the skin soon after an injury. Skin substitutes have crucial role in the management of deep dermal and full thickness wounds. At present, there is no skin substitute in the market that can replace all the functions of skin 'and the research is still continuing for a better alternative. This review is an attempt to recollect and report the past efforts including skin grafting and recent trends like use of bioengineered smart skin substitutes in wound care. Incorporation functional moieties like antimicrobials and wound healing agents are also described.
Collapse
Affiliation(s)
- Robin Augustine
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686 560, Kerala, India.
- School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686 560, Kerala, India.
| | - Sabu Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686 560, Kerala, India.
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686 560, Kerala, India.
| |
Collapse
|
28
|
Thoma DS, Mühlemann S, Jung RE. Critical soft-tissue dimensions with dental implants and treatment concepts. Periodontol 2000 2014; 66:106-18. [DOI: 10.1111/prd.12045] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
|
29
|
Bae S, Sun S, Aghaloo T, Oh JE, McKenna CE, Kang MK, Shin KH, Tetradis S, Park NH, Kim RH. Development of oral osteomucosal tissue constructs in vitro and localization of fluorescently-labeled bisphosphonates to hard and soft tissue. Int J Mol Med 2014; 34:559-63. [PMID: 24920042 PMCID: PMC4094592 DOI: 10.3892/ijmm.2014.1802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
Bisphosphonates (BPs) are anti-resorptive agents commonly used to treat bone-related diseases; however, soft tissue-related side-effects are frequently reported in some BP users, such as oral or gastrointestinal (GI) ulcerations. BPs are stable analogs of pyrophosphate and have high affinity to hydroxyapatite, allowing them to bind to the bone surfaces and exert suppressive effects on osteoclast functions. However, the underlying mechanisms as to how bone-seeking BPs also exert cytotoxic effects on soft tissue remain unknown. In the present study, we investigated the localization of nitrogen-containing BPs (N-BPs) in hard and soft tissue using fluorescently-labeled N-BPs in vitro. We developed osteomucosal tissue constructs in vitro to recapitulate the hard and soft tissue of the oral cavity. A histological examination of the osteomucosal tissue constructs revealed a differentiated epithelium over the bone containing osteocytes and the periosteum, similar to that observed in the rat palatal tissues. Following treatment with the fluorescently-labeled bisphosphonate, AF647-ZOL, the osteomucosal constructs exhibited fluorescent signals, not only in the bone, but also in the epithelium. No fluorescent signals were observed from the control- or ZOL-treated constructs, as expected. Collectively, the data from the present study suggest that N-BPs localize to epithelial tissue and that such a localization and subsequent toxicity of N-BPs may be associated, at least in part, with soft tissue-related side-effects.
Collapse
Affiliation(s)
- Susan Bae
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Shuting Sun
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Tara Aghaloo
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ju-Eun Oh
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Mo K Kang
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Ki-Hyuk Shin
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | - No-Hee Park
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben H Kim
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Izumi K, Neiva RF, Feinberg SE. Intraoral grafting of tissue-engineered human oral mucosa. Int J Oral Maxillofac Implants 2014; 28:e295-303. [PMID: 24066347 DOI: 10.11607/jomi.te11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The primary objective of this study was to evaluate the safety of a tissue-engineered human ex vivo-produced oral mucosa equivalent (EVPOME) in intraoral grafting procedures. The secondary objective was to assess the efficacy of the grafted EVPOME in producing a keratinized mucosal surface epithelium. MATERIALS AND METHODS Five patients who met the inclusion criteria of having one mucogingival defect or a lack of keratinized gingiva on a nonmolar tooth, along with radiographic evidence of sufficient interdental bone height, were recruited as subjects to increase the width of keratinized gingiva at the defect site. A punch biopsy specimen of the hard palate was taken to acquire oral keratinocytes, which were expanded, seeded, and cultured on an acellular dermal matrix for fabrication of an EVPOME. EVPOME grafts were applied directly over an intact periosteal bed and secured in place. At baseline (biopsy specimen retrieval) and at 7, 14, 30, 90, and 180 days postsurgery, Plaque Index and Gingival Index were recorded for each subject. In addition, probing depths, keratinized gingival width, and keratinized gingival thickness were recorded at baseline, 30, 90, and 180 days. RESULTS No complications or adverse reactions to EVPOME were observed in any subjects during the study. The mean gain in keratinized gingival width was 3 mm (range, 3 to 4 mm). The mean gain in keratinized gingival thickness was 1 mm (range, 1 to 2 mm). No significant changes in probing depths were observed. CONCLUSION Based on these findings, it can be concluded that EVPOME is safe for intraoral use and has the ability to augment keratinized tissue around teeth. Future clinical trials are needed to further explore this potential.
Collapse
|
31
|
Bustos RH, Suesca E, Millán D, González JM, Fontanilla MR. Real-time quantification of proteins secreted by artificial connective tissue made from uni- or multidirectional collagen I scaffolds and oral mucosa fibroblasts. Anal Chem 2014; 86:2421-8. [PMID: 24517886 DOI: 10.1021/ac4033164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we found that oral autologous artificial connective tissue (AACT) had a different protein secretion profile to that of clot-embedded AACT. Other oral mucosa substitutes, having different cell types and scaffolds, had dissimilar secretion profiles of proteins (including that for AACT) that influence healing outcome; thus, to ascertain the profiles of factors secreted by artificial tissue and whether they are influenced by their microstructure might help in understanding their bioactivity. An important component of tissue microstructure is the fiber orientation of the scaffold used for manufacturing it. This work developed a surface plasmon resonance (SPR) methodology to quantify factors secreted by oral artificial connective tissue (ACT) in culture medium, and a method to manufacture unidirectional laminar collagen I scaffolds. The SPR methodology was used for assessing differences in the protein secretion profile of ACT made with collagen scaffolds having different fiber orientation (unidirectional vs multidirectional). Oral fibroblasts seeded onto unidirectional scaffolds increased the secretion of six factors involved in modulating healing compared to those seeded onto multidirectional scaffolds. Histological analysis of uni- and multidirectional ACT showed that cells differ in their alignment and morphology. This SPR-methodology led to nanoscale detection of paracrine factors and might be useful to study biomarkers of three-dimensional cell growth, cell differentiation, and wound-healing progression.
Collapse
Affiliation(s)
- Rosa Helena Bustos
- Tissue Engineering Group, Pharmacy Department, Universidad Nacional de Colombia , Bogotá, Colombia
| | | | | | | | | |
Collapse
|
32
|
Negrini TC, Arthur RA, Waeiss RA, Carlosa IZ, Srinivasan M. Salivary epithelial cells as model to study immune response against cutaneous pathogens. Clin Transl Sci 2014; 7:48-51. [PMID: 24118988 PMCID: PMC5414475 DOI: 10.1111/cts.12113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human skin not only provides passive protection as a physical barrier against external injury, but also mediates active surveillance via epidermal cell surface receptors that recognize and respond to potential invaders. Primary keratinocytes and immortalized cell lines, the commonly used sources to investigate immune responses of cutaneous epithelium are often difficult to obtain and/or potentially exhibit changes in cellular genetic make-up. Here we investigated the possibility of using salivary epithelial cells (SEC) to evaluate the host response to cutaneous microbes. Elevated secretion of IFN-γ and IL-12 was observed in the SEC stimulated with Staphylococcus aureus, a transient pathogen of the skin, as mono species biofilm as compared to SEC stimulated with a commensal microbe, the Staphylococcus epidermidis. Co-culture of the SEC with both microbes as dual species biofilm elicited maximum cytokine response. Stimulation with S. aureus alone but not with S. epidermidis alone induced maximum toll-like receptor-2 (TLR-2) expression in the SEC. Exposure to dual species biofilm induced a sustained upregulation of TLR-2 in the SEC for up to an hour. The data support novel application of the SEC as efficient biospecimen that may be used to investigate personalized response to cutaneous microflora.
Collapse
Affiliation(s)
- Thais C Negrini
- Department of Clinical Analysis, Araraquara School of Pharmaceutical Sciences, São Paulo State University, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
33
|
Payne KF, Balasundaram I, Deb S, Di Silvio L, Fan KF. Tissue engineering technology and its possible applications in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 2014; 52:7-15. [DOI: 10.1016/j.bjoms.2013.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/09/2013] [Indexed: 12/27/2022]
|
34
|
Haslam IS, Roubos EW, Mangoni ML, Yoshizato K, Vaudry H, Kloepper JE, Pattwell DM, Maderson PFA, Paus R. From frog integument to human skin: dermatological perspectives from frog skin biology. Biol Rev Camb Philos Soc 2013; 89:618-55. [DOI: 10.1111/brv.12072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
| | - Eric W. Roubos
- Department of Anatomy; Radboud University Medical Centre; Geert Grooteplein Noord 2, 6525 EZ, Nijmegen P.O. Box 9101, 6500 HB Nijmegen The Netherlands
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti; La Sapienza University of Rome, Piazzale Aldo Moro, 5-00185; Rome Italy
| | - Katsutoshi Yoshizato
- Academic Advisors Office, Synthetic Biology Research Center; Osaka City University Graduate School of Medicine; Osaka Japan
- Phoenixbio Co. Ltd; 3-4-1, Kagamiyama; Higashihiroshima Hiroshima 739-0046 Japan
| | - Hubert Vaudry
- European Institute for Peptide Research; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
- INSERM U-982, CNRS; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
| | - Jennifer E. Kloepper
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| | - David M. Pattwell
- Leahurst Campus, Institute of Learning & Teaching; School of Veterinary Science, University of Liverpool; Neston CH64 7TE U.K
| | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| |
Collapse
|
35
|
Vrana NE, Lavalle P, Dokmeci MR, Dehghani F, Ghaemmaghami AM, Khademhosseini A. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:529-43. [PMID: 23705900 DOI: 10.1089/ten.teb.2012.0603] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Nihal E Vrana
- 1 Institut National de la Santé et de la Recherche Médicale , INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie," Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Glim JE, van Egmond M, Niessen FB, Everts V, Beelen RHJ. Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen 2013; 21:648-60. [PMID: 23927738 DOI: 10.1111/wrr.12072] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 06/01/2013] [Indexed: 12/11/2022]
Abstract
Wounds in adults are frequently accompanied by scar formation. This scar can become fibrotic due to an imbalance between extracellular matrix (ECM) synthesis and ECM degradation. Oral mucosal wounds, however, heal in an accelerated fashion, displaying minimal scar formation. The exact mechanisms of scarless oral healing are yet to be revealed. This review highlights possible mechanisms involved in the difference between scar-forming dermal vs. scarless oral mucosal wound healing. Differences were found in expression of ECM components, such as procollagen I and tenascin-C. Oral wounds contained fewer immune mediators, blood vessels, and profibrotic mediators but had more bone marrow-derived cells, a higher reepithelialization rate, and faster proliferation of fibroblasts compared with dermal wounds. These results form a basis for further research that should be focused on the relations among ECM, immune cells, growth factors, and fibroblast phenotypes, as understanding scarless oral mucosal healing may ultimately lead to novel therapeutic strategies to prevent fibrotic scars.
Collapse
Affiliation(s)
- Judith E Glim
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands; Department of Plastic and Reconstructive Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Garzón I, Miyake J, González-Andrades M, Carmona R, Carda C, Sánchez-Quevedo MDC, Campos A, Alaminos M. Wharton's jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med 2013; 2:625-32. [PMID: 23817131 DOI: 10.5966/sctm.2012-0157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells such as human umbilical cord Wharton's jelly stem cells (HWJSCs) are excellent candidates for tissue engineering because of their proliferation and differentiation capabilities. However, their differentiation potential into epithelial cells at in vitro and in vivo levels has not yet been reported. In this work we have studied the capability of HWJSCs to differentiate in vitro and in vivo to oral mucosa and skin epithelial cells using a bioactive three-dimensional model that mimics the native epithelial-mesenchymal interaction. To achieve this, primary cell cultures of HWJSCs, oral mucosa, and skin fibroblasts were obtained in order to generate a three-dimensional heterotypical model of artificial oral mucosa and skin based on fibrin-agarose biomaterials. Our results showed that the cells were unable to fully differentiate to epithelial cells in vitro. Nevertheless, in vivo grafting of the bioactive three-dimensional models demonstrated that HWJSCs were able to stratify and to express typical markers of epithelial differentiation, such as cytokeratins 1, 4, 8, and 13, plakoglobin, filaggrin, and involucrin, showing specific surface patterns. Electron microscopy analysis confirmed the presence of epithelial cell-like layers and well-formed cell-cell junctions. These results suggest that HWJSCs have the potential to differentiate to oral mucosa and skin epithelial cells in vivo and could be an appropriate novel cell source for the development of human oral mucosa and skin in tissue engineering protocols.
Collapse
Affiliation(s)
- Ingrid Garzón
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fontanilla MR, Espinosa LG. In VitroandIn VivoAssessment of Oral Autologous Artificial Connective Tissue Characteristics That Influence Its Performance as a Graft. Tissue Eng Part A 2012; 18:1857-66. [DOI: 10.1089/ten.tea.2011.0421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Marta Raquel Fontanilla
- Tissue Engineering Group, Department of Pharmacy, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lady Giovanna Espinosa
- Tissue Engineering Group, Department of Pharmacy, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
39
|
Renò F, Rizzi M, Cannas M. Effect of a gelatin hydrogel incorporating epiregulin on human keratinocyte growth. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:2025-38. [PMID: 22023724 DOI: 10.1163/092050611x603872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ionic hydrogels are biocompatible interesting candidates for tissue-engineering applications, such as the creation of artificial skin, as they can also be used, along with growth factors and cells grown in vitro, for developing bioengineered tissues to be implanted. Among the growth factors that can be used to induce keratinocytes growth in vitro, epiregulin, a broad-specificity epidermal growth factor (EGF) family member, has been shown to be more effective than EGF and transforming growth factor-alpha (TGF-α) in promoting re-epithelization in vitro. To produce a drug-delivery hydrogel for epiregulin, bovine gelatin was cross-linked with poly(glutamic acid) (PLG) in the presence of epiregulin (5-50 ng/ml). Spontaneously immortalized human keratinocytes (HaCaT) were seeded on unloaded and epiregulin-loaded hydrogels and cell adhesion was evaluated after 6 h. Moreover, cell proliferation and stratification, cytokeratins (K5, K10), differentiation markers (filaggrin and transglutaminase-1 (TG-1)) and matrix metalloproteinases (MMP-2, MMP-9 and MMP-28) expression were evaluated after 7 days. The presence of epiregulin induced an increase in cell proliferation, stratification and K5 expression along with MMP-9 and MMP-28 expression, while all differentiation markers expression (K10, filaggrin, TG-1) was decreased. These data indicated that a simple hydrogel loaded with epiregulin could be an effective tool for skin tissue engineering.
Collapse
Affiliation(s)
- Filippo Renò
- a Human Anatomy Laboratory, Research Centre for Biocompatibility and Tissue Engineering, Experimental and Clinical Medicine Department, University of Eastern Piedmont 'A. Avogadro' , Via Solaroli 17 , 28100 , Novara , Italy
| | | | | |
Collapse
|
40
|
Renò F, Rizzi M, Cannas M. Gelatin-based anionic hydrogel as biocompatible substrate for human keratinocyte growth. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:565-571. [PMID: 22160746 DOI: 10.1007/s10856-011-4519-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Ionic hydrogels are biocompatible candidates for skin tissue engineering. Two hydrogels synthesized by crosslinking gelatin with polylysine (positively charged HG1) or polyglutamic acid (negatively charged HG2) were tested using spontaneously immortalized human keratinocytes (HaCaT). HaCaT cells displayed higher adhesion and proliferation onto HG2, forming a continuous and stratified epithelium after 7 days. Moreover HaCaT cells grown onto HG2 showed a decreased Epilysin and Filaggrin expression, while transglutaminase-1 expression was increased. Those data indicate that human keratinocyte can form a stratified epithelium onto HG2 that could therefore be an useful tool for skin tissue engineering.
Collapse
Affiliation(s)
- Filippo Renò
- Research Centre for Biocompatibility and Tissue Engineering, Department of Experimental and Clinical Medicine, University of Eastern Piedmont A. Avogadro, Novara, Italy.
| | | | | |
Collapse
|
41
|
Levi B, Brugman S, Wong VW, Grova M, Longaker MT, Wan DC. Palatogenesis: engineering, pathways and pathologies. Organogenesis 2011; 7:242-54. [PMID: 21964245 DOI: 10.4161/org.7.4.17926] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cleft palate represents the second most common birth defect and carries substantial physiologic and social challenges for affected patients, as they often require multiple surgical interventions during their lifetime. A number of genes have been identified to be associated with the cleft palate phenotype, but etiology in the majority of cases remains elusive. In order to better understand cleft palate and both surgical and potential tissue engineering approaches for repair, we have performed an in-depth literature review into cleft palate development in humans and mice, as well as into molecular pathways underlying these pathologic developments. We summarize the multitude of pathways underlying cleft palate development, with the transforming growth factor beta superfamily being the most commonly studied. Furthermore, while the majority of cleft palate studies are performed using a mouse model, studies focusing on tissue engineering have also focused heavily on mouse models. A paucity of human randomized controlled studies exists for cleft palate repair, and so far, tissue engineering approaches are limited. In this review, we discuss the development of the palate, explain the basic science behind normal and pathologic palate development in humans as well as mouse models and elaborate on how these studies may lead to future advances in palatal tissue engineering and cleft palate treatments.
Collapse
Affiliation(s)
- Benjamin Levi
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
42
|
Two- and Three-Dimensional Culture of Keratinocyte Stem and Precursor Cells Derived from Primary Murine Epidermal Cultures. Stem Cell Rev Rep 2011; 8:402-13. [DOI: 10.1007/s12015-011-9314-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Golinski PA, Gröger S, Herrmann JM, Bernd A, Meyle J. Oral mucosa model based on a collagen-elastin matrix. J Periodontal Res 2011; 46:704-11. [DOI: 10.1111/j.1600-0765.2011.01393.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Modern concepts in mandibular reconstruction in oral and oropharyngeal cancer. Curr Opin Otolaryngol Head Neck Surg 2011; 19:119-24. [DOI: 10.1097/moo.0b013e328344a569] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Liu J, Mao JJ, Chen L. Epithelial-mesenchymal interactions as a working concept for oral mucosa regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:25-31. [PMID: 21062224 DOI: 10.1089/ten.teb.2010.0489] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oral mucosa consists of two tissue layers, the superficial epithelium and the underlying lamina propria. Together, oral mucosa functions as a barrier against exogenous substances and pathogens. In development, interactions of stem/progenitor cells of the epithelium and mesenchyme are crucial to the morphogenesis of oral mucosa. Previous work in oral mucosa regeneration has yielded important clues for several meritorious proof-of-concept approaches. Tissue engineering offers a broad array of novel tools for oral mucosa regeneration with reduced donor site trauma and accelerated clinical translation. However, the developmental concept of epithelial-mesenchymal interactions (EMIs) is rarely considered in oral mucosa regeneration. EMIs in postnatal oral mucosa regeneration likely will not be a simple recapitulation of prenatal oral mucosa development. Biomaterial scaffolds play an indispensible role for oral mucosa regeneration and should provide a conducive environment for pivotal EMIs. Autocrine and paracrine factors, either exogenously delivered or innately produced, have rarely been and should be harnessed to promote oral mucosa regeneration. This review focuses on a working concept of epithelial and mesenchymal interactions in oral mucosa regeneration.
Collapse
Affiliation(s)
- Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
46
|
Gingival mucosa regeneration in athymic mice using in vitro engineered human oral mucosa. Biomaterials 2010; 31:5798-804. [DOI: 10.1016/j.biomaterials.2010.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/01/2010] [Indexed: 11/21/2022]
|