1
|
Sangwan N, Gangwal A, Jain P, Langtso C, Srivastava S, Dhawan U, Baweja R, Singh Y. Anthrax: Transmission, Pathogenesis, Prevention and Treatment. Toxins (Basel) 2025; 17:56. [PMID: 39998073 PMCID: PMC11860322 DOI: 10.3390/toxins17020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Bacillus anthracis is a deadly pathogen that under unfavourable conditions forms highly resistant spores which enable them to survive for a long period of time. Spores of B. anthracis are transmitted through the contaminated soil or animal products and enter to the host through the skin, lungs or oral route and can cause cutaneous, injection, inhalation and gastrointestinal anthrax, respectively. The disease is caused by the toxin which is produced by them once they germinate within the host cell. Anthrax toxin is the major virulence factor which has the ability to kill the host cell. The role of protein kinases and phosphatases of B. anthracis in toxin production and other virulence related properties have also been reported. There are two vaccines, BioThrax and CYFENDUSTM, which are approved by the FDA-USA to prevent anthrax disease. Recently, anthrax toxin has also been shown to be a potential candidate for cancer therapeutics. Through present review, we aim to provide insights into sporulation, transmission and pathogenesis of B. anthracis as well as the current state of its prevention, treatment, vaccines and possible therapeutic uses in cancer.
Collapse
Affiliation(s)
- Nitika Sangwan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Aakriti Gangwal
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Preksha Jain
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Chokey Langtso
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Shruti Srivastava
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Renu Baweja
- Department of Biochemistry, Shivaji College, University of Delhi, Delhi 110027, India
| | - Yogendra Singh
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Li Y, Maimaiti M, Yang B, Lu Z, Zheng Q, Lin Y, Luo W, Wang R, Ding L, Wang H, Chen X, Xu Z, Wang M, Li G, Gao L. Comprehensive analysis of subtypes and risk model based on complement system associated genes in ccRCC. Cell Signal 2023; 111:110888. [PMID: 37717714 DOI: 10.1016/j.cellsig.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Immune therapy is widely used in treating clear cell renal cell carcinoma (ccRCC), yet identifying patient subgroups that are expected to response remains challenging. As complement system can mediate immune effects, including the progression of tumors, a correlation between complement system and immune therapy may exist. METHODS Based on 11 complement system associated genes (CSAGs) identified from The Cancer Genome Atlas (TCGA), we performed unsupervised clustering and classified the tumors into two different complement system (CS) patterns. The clinical significance, tumor microenvironment (TME), functional enrichment, and immune infiltration were further analyzed. A novel scoring system named CSscore was developed based on the expression levels of the 11 CSAGs. RESULTS Two distinct CS patterns were identified, classified as Cluster1 and Cluster2, and Cluster1 showed poor clinical outcome. Further analysis of functional enrichment, immune cell infiltration, and genetic variation revealed that Cluster1 had high infiltration of TME immune cells, but also exhibited high immune escape. The novel prognostic model, CSscore could act as an independent prognostic factor and effectively predict patients' prognosis and distinguish the therapeutic efficacy of different immune treatment strategies. The pan-cancer analysis of the CSscore indicates its potential to be further generalized to other types of cancer. CONCLUSIONS Two distinct CS patterns were identified and were further analyzed in terms of infiltration of TME immune cells and immune escape, providing potential explanations for the impact on prognosis of ccRCC. Our CSscore prognostic model may offer a novel perspective in the management of ccRCC patients, and potentially other types of cancer as well.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Muzhapaer Maimaiti
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bowen Yang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Lei Gao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
3
|
Liu J, Zhang M, Huang Z, Fang J, Wang Z, Zhou C, Qiu X. Diversity, Biosynthesis and Bioactivity of Aeruginosins, a Family of Cyanobacteria-Derived Nonribosomal Linear Tetrapeptides. Mar Drugs 2023; 21:md21040217. [PMID: 37103356 PMCID: PMC10143770 DOI: 10.3390/md21040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Aeruginosins, a family of nonribosomal linear tetrapeptides discovered from cyanobacteria and sponges, exhibit in vitro inhibitory activity on various types of serine proteases. This family is characterized by the existence of the 2-carboxy-6-hydroxy-octahydroindole (Choi) moiety occupied at the central position of the tetrapeptide. Aeruginosins have attracted much attention due to their special structures and unique bioactivities. Although many studies on aeruginosins have been published, there has not yet been a comprehensive review that summarizes the diverse research ranging from biogenesis, structural characterization and biosynthesis to bioactivity. In this review, we provide an overview of the source, chemical structure as well as spectrum of bioactivities of aeruginosins. Furthermore, possible opportunities for future research and development of aeruginosins were discussed.
Collapse
Affiliation(s)
- Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Chengxu Zhou
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
- Correspondence:
| |
Collapse
|
4
|
Scarini JF, de Lima-Souza RA, Lavareze L, Ribeiro de Assis MCF, Damas II, Altemani A, Egal ESA, dos Santos JN, Bello IO, Mariano FV. Heterogeneity and versatility of the extracellular matrix during the transition from pleomorphic adenoma to carcinoma ex pleomorphic adenoma: cumulative findings from basic research and new insights. FRONTIERS IN ORAL HEALTH 2023; 4:942604. [PMID: 37138857 PMCID: PMC10149834 DOI: 10.3389/froh.2023.942604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
Pleomorphic adenoma (PA) is the most common salivary gland tumor, accounting for 50%-60% of these neoplasms. If untreated, 6.2% of PA may undergo malignant transformation to carcinoma ex-pleomorphic adenoma (CXPA). CXPA is a rare and aggressive malignant tumor, whose prevalence represents approximately 3%-6% of all salivary gland tumors. Although the pathogenesis of the PA-CXPA transition remains unclear, CXPA development requires the participation of cellular components and the tumor microenvironment for its progression. The extracellular matrix (ECM) comprises a heterogeneous and versatile network of macromolecules synthesized and secreted by embryonic cells. In the PA-CXPA sequence, ECM is formed by a variety of components including collagen, elastin, fibronectin, laminins, glycosaminoglycans, proteoglycans, and other glycoproteins, mainly secreted by epithelial cells, myoepithelial cells, cancer-associated fibroblasts, immune cells, and endothelial cells. Like in other tumors including breast cancer, ECM changes play an important role in the PA-CXPA sequence. This review summarizes what is currently known about the role of ECM during CXPA development.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Maria Clara Falcão Ribeiro de Assis
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Jean Nunes dos Santos
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Ibrahim Olajide Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Correspondence: Fernanda Viviane Mariano
| |
Collapse
|
5
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
6
|
Badodekar N, Sharma A, Patil V, Telang G, Sharma R, Patil S, Vyas N, Somasundaram I. Angiogenesis induction in breast cancer: A paracrine paradigm. Cell Biochem Funct 2021; 39:860-873. [PMID: 34505714 DOI: 10.1002/cbf.3663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women globally. Angiogenesis contributes significantly to breast cancer progression and dissemination. Neovascularization is concurrent with the progression and growth of breast cancer. Breast cancer cells control angiogenesis by secreting pro-angiogenic factors like fibroblast growth factor, vascular endothelial growth factor, interleukin, transforming growth factor-β, platelet-derived growth factor and several others. These pro-angiogenic factors trigger neovascularization, and thereby lead to breast cancer development and metastasis. The hypoxia-inducible factor (HIF)-regulated angiogenesis cascade is a crucial underlying factor in breast cancer growth and metastasis. To that end, several efforts have been made to identify druggable targets within the HIF-angiogenesis components. However, escape pathways are a major hindrance for targeted therapies against angiogenesis. Thus, understanding the key factors that trigger breast cancer angiogenesis is critical in elucidating ways to inhibit breast cancer. The current review provides an overview of the key growth factors that trigger breast cancer angiogenesis.
Collapse
Affiliation(s)
| | - Akshita Sharma
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | | | | | - Rakesh Sharma
- Department of Obstetrics and Gynaecology, D. Y. Patil Medical College, Kolhapur, India
| | - Shankargouda Patil
- Department of Maxilofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| |
Collapse
|
7
|
Artzy-Randrup Y, Epstein T, Brown JS, Costa RLB, Czerniecki BJ, Gatenby RA. Novel evolutionary dynamics of small populations in breast cancer adjuvant and neoadjuvant therapy. NPJ Breast Cancer 2021; 7:26. [PMID: 33707440 PMCID: PMC7952601 DOI: 10.1038/s41523-021-00230-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Disseminated cancer cells (DCCs) are detected in the circulation and bone marrow of up to 40% of breast cancer (BC) patients with clinically localized disease. The formation of metastases is governed by eco-evolutionary interactions of DCCs with the tissue during the transition from microscopic populations to macroscopic disease. Here, we view BC adjuvant and neoadjuvant treatments in the context of small population extinction dynamics observed in the Anthropocene era. Specifically, the unique eco-evolutionary dynamics of small asexually reproducing cancer populations render them highly vulnerable to: (1) environmental and demographic fluctuations, (2) Allee effects, (3) genetic drift and (4) population fragmentation. Furthermore, these typically interact, producing self-reinforcing, destructive dynamics—termed the Extinction Vortex—eradicating the population even when none of the perturbations is individually capable of causing extinction. We propose that developing BC adjuvant and neoadjuvant protocols may exploit these dynamics to prevent recovery and proliferation of small cancer populations during and after treatment—termed “Eco-evolutionary rescue” in natural extinctions. We hypothesize more strategic application of currently available agents based on the extinction vulnerabilities of small populations could improve clinical outcomes.
Collapse
Affiliation(s)
- Yael Artzy-Randrup
- Department of Theoretical and Computational Ecology, IBED, University of Amsterdam, Amsterdam, The Netherlands.,Institute of Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamir Epstein
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joel S Brown
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ricardo L B Costa
- Breast Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian J Czerniecki
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Breast Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert A Gatenby
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,Diagnostic Imaging Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
8
|
Oh J, An HJ, Kim JO, Jun HH, Kim WR, Kim EJ, Oh D, Kim JW, Kim NK. Association between Five Common Plasminogen Activator Inhibitor-1 ( PAI-1) Gene Polymorphisms and Colorectal Cancer Susceptibility. Int J Mol Sci 2020; 21:ijms21124334. [PMID: 32570732 PMCID: PMC7352892 DOI: 10.3390/ijms21124334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
The plasminogen activator inhibitor-1 (PAI-1) is expressed in many cancer cell types and modulates cancer growth, invasion, and angiogenesis. The present study investigated the association between five PAI-1 gene polymorphisms and colorectal cancer (CRC) risk. Five PAI-1 polymorphisms (−844G > A [rs2227631], −675 4G > 5G [rs1799889], +43G > A [rs6092], +9785G > A [rs2227694], and +11053T > G [rs7242]) were genotyped using a polymerase chain reaction-restriction fragment length polymorphism assay in 459 CRC cases and 416 controls. Increased CRC risk was more frequently associated with PAI-1 −675 5G5G polymorphism than with 4G4G (adjusted odds ratio (AOR) = 1.556; 95% confidence interval (CI): 1.012–2.391; p = 0.04). In contrast, for the PAI-1 +11053 polymorphism, we found a lower risk of CRC with the GG genotype (AOR = 0.620; 95% CI: 0.413–0.932; p = 0.02) than with the TT genotype, as well as for recessive carriers (TT + TG vs. GG, AOR = 0.662; 95% CI: 0.469–0.933; p = 0.02). The +43AA genotype was associated with lower overall survival (OS) than the +43GG genotype. Our results suggest that the PAI-1 genotype plays a role in CRC risk. This is the first study to identify an association between five PAI-1 polymorphisms and CRC incidence worldwide.
Collapse
Affiliation(s)
- Jisu Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.O.); (D.O.)
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.)
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.)
| | - Hak Hoon Jun
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (H.H.J.); (W.R.K.)
| | - Woo Ram Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (H.H.J.); (W.R.K.)
| | - Eo Jin Kim
- Department on Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.O.); (D.O.)
| | - Jong Woo Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (H.H.J.); (W.R.K.)
- Correspondence: (J.W.K.); (N.K.K.); Tel.: +82-31-881-7137 (N.K.K.); Fax: +82-31-881-7249 (N.K.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.)
- Correspondence: (J.W.K.); (N.K.K.); Tel.: +82-31-881-7137 (N.K.K.); Fax: +82-31-881-7249 (N.K.K.)
| |
Collapse
|
9
|
Zhang Z, Lin E, Zhuang H, Xie L, Feng X, Liu J, Yu Y. Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma. Cancer Cell Int 2020; 20:27. [PMID: 32002016 PMCID: PMC6986036 DOI: 10.1186/s12935-020-1113-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) comprises the majority of kidney cancer death worldwide, whose incidence and mortality are not promising. Identifying ideal biomarkers to construct a more accurate prognostic model than conventional clinical parameters is crucial. METHODS Raw count of RNA-sequencing data and clinicopathological data were acquired from The Cancer Genome Atlas (TCGA). Tumor samples were divided into two sets. Differentially expressed genes (DEGs) were screened in the whole set and prognosis-related genes were identified from the training set. Their common genes were used in LASSO and best subset regression which were performed to identify the best prognostic 5 genes. The gene-based risk score was developed based on the Cox coefficient of the individual gene. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess its prognostic power. GSE29609 dataset from GEO (Gene Expression Omnibus) database was used to validate the signature. Univariate and multivariate Cox regression were performed to screen independent prognostic parameters to construct a nomogram. The predictive power of the nomogram was revealed by time-dependent ROC curves and the calibration plot and verified in the validation set. Finally, Functional enrichment analysis of DEGs and 5 novel genes were performed to suggest the potential biological pathways. RESULTS PADI1, ATP6V0D2, DPP6, C9orf135 and PLG were screened to be significantly related to the prognosis of ccRCC patients. The risk score effectively stratified the patients into high-risk group with poor overall survival (OS) based on survival analysis. AJCC-stage, age, recurrence and risk score were regarded as independent prognostic parameters by Cox regression analysis and were used to construct a nomogram. Time-dependent ROC curves showed the nomogram performed best in 1-, 3- and 5-year survival predictions compared with AJCC-stage and risk score in validation sets. The calibration plot showed good agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis suggested several enriched biological pathways related to cancer. CONCLUSIONS In our study, we constructed a gene-based model integrating clinical prognostic parameters to predict prognosis of ccRCC well, which might provide a reliable prognosis assessment tool for clinician and aid treatment decision-making in the clinic.
Collapse
Affiliation(s)
- Zedan Zhang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Enyu Lin
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Hongkai Zhuang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqiang Feng
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Swenarchuk LE. Nerve, Muscle, and Synaptogenesis. Cells 2019; 8:cells8111448. [PMID: 31744142 PMCID: PMC6912269 DOI: 10.3390/cells8111448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skeletal neuromuscular junction (NMJ) has long served as a model system for studying synapse structure, function, and development. Over the last several decades, a neuron-specific isoform of agrin, a heparan sulfate proteoglycan, has been identified as playing a central role in synapse formation at all vertebrate skeletal neuromuscular synapses. While agrin was initially postulated to be the inductive molecule that initiates synaptogenesis, this model has been modified in response to work showing that postsynaptic differentiation can develop in the absence of innervation, and that synapses can form in transgenic mice in which the agrin gene is ablated. In place of a unitary mechanism for neuromuscular synapse formation, studies in both mice and zebrafish have led to the proposal that two mechanisms mediate synaptogenesis, with some synapses being induced by nerve contact while others involve the incorporation of prepatterned postsynaptic structures. Moreover, the current model also proposes that agrin can serve two functions, to induce synaptogenesis and to stabilize new synapses, once these are formed. This review examines the evidence for these propositions, and concludes that it remains possible that a single molecular mechanism mediates synaptogenesis at all NMJs, and that agrin acts as a stabilizer, while its role as inducer is open to question. Moreover, if agrin does not act to initiate synaptogenesis, it follows that as yet uncharacterized molecular interactions are required to play this essential inductive role. Several alternatives to agrin for this function are suggested, including focal pericellular proteolysis and integrin signaling, but all require experimental validation.
Collapse
|
11
|
Chang J, Chaudhuri O. Beyond proteases: Basement membrane mechanics and cancer invasion. J Cell Biol 2019; 218:2456-2469. [PMID: 31315943 PMCID: PMC6683740 DOI: 10.1083/jcb.201903066] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
In epithelial cancers, cells must invade through basement membranes (BMs) to metastasize. The BM, a thin layer of extracellular matrix underlying epithelial and endothelial tissues, is primarily composed of laminin and collagen IV and serves as a structural barrier to cancer cell invasion, intravasation, and extravasation. BM invasion has been thought to require protease degradation since cells, which are typically on the order of 10 µm in size, are too large to squeeze through the nanometer-scale pores of the BM. However, recent studies point toward a more complex picture, with physical forces generated by cancer cells facilitating protease-independent BM invasion. Moreover, collective cell interactions, proliferation, cancer-associated fibroblasts, myoepithelial cells, and immune cells are all implicated in regulating BM invasion through physical forces. A comprehensive understanding of BM structure and mechanics and diverse modes of BM invasion may yield new strategies for blocking cancer progression and metastasis.
Collapse
Affiliation(s)
- Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Wang L, Yang R, Zhao L, Zhang X, Xu T, Cui M. Basing on uPAR-binding fragment to design chimeric antigen receptors triggers antitumor efficacy against uPAR expressing ovarian cancer cells. Biomed Pharmacother 2019; 117:109173. [PMID: 31387176 DOI: 10.1016/j.biopha.2019.109173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Due to the success of chimeric antigen receptors (CARs) in hematological tumors, CARs are also being studied to treat solid tumors. Improving the ability of CARs to penetrate solid tumor tissues is one of the biggest challenges. As the most malignant cancer of the female reproductive system, the survival rate of ovarian cancer has not been significantly improved by traditional therapy methods; therefore, it is necessary to develop new therapeutic targets and new immunotherapy methods for ovarian cancer. UPAR is a glysocylphosphatidylinositol (GPI) anchoring membrane protein that is differentially expressed in normal tissues and ovarian cancer tissues. It has been shown that uPAR up-regulation promotes tumor development, proliferation, invasion, and metastasis, and uPAR is also up-regulated in tumor matrix components. In our study, CARs were designed using the natural ligand binding fragment of uPAR for ovarian cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Rulin Yang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Liping Zhao
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Xiwen Zhang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Manhua Cui
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| |
Collapse
|
13
|
Long D, Wang Y, Wang H, Wu X, Yu L. Correlation of Serum and Ascitic Fluid Soluble Form Urokinase Plasminogen Activator Receptor Levels With Patient Complications, Disease Severity, Inflammatory Markers, and Prognosis in Patients With Severe Acute Pancreatitis. Pancreas 2019; 48:335-342. [PMID: 30768571 PMCID: PMC6426350 DOI: 10.1097/mpa.0000000000001247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
Abstract
Supplemental digital content is available in the text. Objectives The aim of the study was to investigate the correlation of serum and ascitic fluid soluble form urokinase plasminogen activator receptor (suPAR) levels with patients' complications, disease severity, inflammatory markers, and prognosis in patients with severe acute pancreatitis (SAP). Methods Fifty patients with SAP, 47 patients with mild acute pancreatitis, and 50 healthy controls were enrolled. Serum samples were obtained from all participants after enrollment; meanwhile, ascitic fluid samples were collected from 20 patients with SAP who developed ascites. Serum and ascitic fluid suPAR levels were determined by enzyme-linked immunosorbent assay. Results Serum suPAR level was greatly elevated in patients with SAP than patients with mild acute pancreatitis and healthy controls. Receiver operating characteristic curve showed that serum suPAR presented with good value in predicting risk of pancreatic necrosis, pancreatic infection, and multiple organ dysfunction syndrome, whereas serum suPAR did not predict mortality. Serum suPAR level was also positively correlated with Acute Physiology and Chronic Health Evaluation II score, Balthazar index, and Sequential Organ Failure Assessment score. As to ascitic fluid suPAR, it was positively correlated with serum suPAR level, Acute Physiology and Chronic Health Evaluation II score, Sequential Organ Failure Assessment score, risk of pancreatic infection, and multiple organ dysfunction syndrome. Conclusions Serum and ascetic fluid suPAR levels could be served as markers for disease severity and risk of severe complications in patients with SAP.
Collapse
Affiliation(s)
- Ding Long
- From the Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
14
|
Xu P, Huang M. Small Peptides as Modulators of Serine Proteases. Curr Med Chem 2018; 27:3686-3705. [PMID: 30332941 DOI: 10.2174/0929867325666181016163630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Serine proteases play critical roles in many physiological and pathological processes, and are proven diagnostic and therapeutic targets in a number of clinical indications. Suppression of the aberrant proteolytic activities of these proteases has been clinically used for the treatments of relevant diseases. Polypeptides with 10-20 residues are of great interests as medicinal modulators of serine proteases, because these peptides demonstrate the characteristics of both small molecule drugs and macromolecular drugs. In this review, we summarized the recent development of peptide-based inhibitors against serine proteases with potent inhibitory and high specificity comparable to monoclonal antibodies. In addition, we also discussed the strategies of enhancing plasma half-life and bioavailability of peptides in vivo, which is the main hurdle that limits the clinical translation of peptide-based drugs. This review advocates new avenue for the development of effective serine protease inhibitors and highlights the prospect of the medicinal use of these inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
15
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
16
|
Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. In Vitro Cell Dev Biol Anim 2018; 54:629-639. [PMID: 30136034 DOI: 10.1007/s11626-018-0288-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common cancer of the sympathetic nervous system in children. Here, the influences of curcumin on survival, apoptosis, migration, and its combined effects with doxorubicin were investigated in SH-SY5Y cells by cell survival assay, flow cytometry, migration assays, and RT-PCR. Curcumin inhibited SH-SY5Y cell growth and induced apoptosis in dose- and time-dependent manners. This apoptotic induction relied on the upregulation of p53 and p21. Moreover, the treatment of curcumin for 24 h significantly suppressed cell migration, together with the downregulation of matrix metalloproteinase-2 (MMP-2) and upregulation of tissue inhibitor of metalloproteinases-1 (TIMP-1). The combination of curcumin augmented the anticancer activity of doxorubicin and significantly induced apoptosis. Pretreatment with curcumin increased the fraction of doxorubicin-induced apoptotic cells from 21.76 ± 0.50 to 57.74 ± 2.68%. Co-treatment with doxorubicin plus curcumin further inhibited 3D tumor migration. Altogether, the results suggest that curcumin suppresses growth and migration of SH-SY5Y cells and enhances the anticancer activity of doxorubicin. The addition of curcumin to therapeutic regimens may be promising for the treatment of neuroblastomas if a number of problems related to its in vivo bioavailability can be resolved. Graphical abstract ᅟ.
Collapse
|
17
|
Shin SS, Ko MC, Park YJ, Hwang B, Park SL, Kim WJ, Moon SK. Hydrangenol inhibits the proliferation, migration, and invasion of EJ bladder cancer cells via p21 WAF1-mediated G1-phase cell cycle arrest, p38 MAPK activation, and reduction in Sp-1-induced MMP-9 expression. EXCLI JOURNAL 2018; 17:531-543. [PMID: 30034317 PMCID: PMC6046626 DOI: 10.17179/excli2018-1361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023]
Abstract
Hydrangenol is a dihydroisocoumarin that is mainly obtained from Hydrangea macrophylla. Recently, hydrangenol has garnered attention since several studies have reported that it has anti-inflammatory, anti-allergic, anti-diabetic, and anti-malarial activities. However, there have been few studies on the effect of hydrangenol on oncogenesis. In this study, we evaluated the anti-cancer activity of hydrangenol against the EJ bladder cancer cell line. Hydrangenol significantly inhibited the proliferation of EJ cells in a dose-dependent manner with an IC50 of 100 µM. Flow cytometry and immunoblotting experiments indicated that EJ cells were arrested in the G1-phase of the cell cycle and showed reduced expression of CDK2, CDK4, cyclin D1, and cyclin E mediated via the upregulation of p21WAF1. Hydrangenol increased the phosphorylation of p38 MAPK without affecting the phosphorylation of ERK and JNK. In addition, hydrangenol significantly inhibited the migratory and invasive activities of EJ cells by suppressing the enzymatic activity of MMP-9. Electrophoretic mobility shift assays suggested that the inhibition of MMP-9 activity by hydrangenol was attributable to its suppression of the Sp-1 transcription factor binding activity. This study is the first report on the mode of action of hydrangenol as an inhibitor of bladder cancer. We believe that these results provide novel insights that could aid the development of hydrangenol-based chemotherapeutic agents.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, South Korea
| | - Myeong-Cheol Ko
- Department of ICT Convergence Engineering, College of Science and Technology, Konkuk University, Chungju, Chungbuk 27478, South Korea
| | - Yu-Jin Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Kyung-gi 17546, South Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Kyung-gi 17546, South Korea
| | - Sung Lyea Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Kyung-gi 17546, South Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Kyung-gi 17546, South Korea
| |
Collapse
|
18
|
Shin SS, Noh DH, Hwang B, Lee JW, Park SL, Park SS, Moon B, Kim WJ, Moon SK. Inhibitory effect of Au@Pt-NSs on proliferation, migration, and invasion of EJ bladder carcinoma cells: involvement of cell cycle regulators, signaling pathways, and transcription factor-mediated MMP-9 expression. Int J Nanomedicine 2018; 13:3295-3310. [PMID: 29910616 PMCID: PMC5987858 DOI: 10.2147/ijn.s158463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Although the diverse biological properties of nanoparticles have been studied intensively, research into their mechanism of action is relatively rare. In this study, we investigated the molecular mechanisms of the anticancer activity of heterometallic Au@Pt-nanoseeds (NSs) against bladder cancers. Materials and methods Mode of action of Au@Pt-NSs was investigated through MTT assay, flow cytometry analysis, Western immunoblots, real-time qPCR, wound-healing migration and invasion assays, zymography, and electrophoretic mobility shift assay (EMSA). Results Treatment with Au@Pt-NSs significantly inhibited the proliferation of EJ cells in a dose-dependent manner by inducing G1 phase cell cycle arrest. Among the regulators associated with the G1 cell cycle phase, CDK2, CDK4, cyclin D1, cyclin E, and p21WAF1 were shown to participate in the inhibitory pathways of Au@Pt-NSs. In addition, treatment with Au@Pt-NSs led to upregulation of phospho-p38 MAPK and downregulation of phospho-AKT in EJ cells. Interestingly, Au@Pt-NSs inhibited the migratory and invasive potential of the cells, which was attributed to the suppression of the enzymatic activity of matrix metalloproteinase-9 (MMP-9). Using MMP-9-specific oligonucleotides, we showed that transcription factors such as NF-κB and Sp-1 were responsible for the MMP-9-mediated metastatic potential of EJ cells. Conclusion Au@Pt-NSs significantly limited the progression, migration, and invasion of bladder cancer EJ cells. Our data represent a novel insight into developing cisplatin-like chemotherapeutic reagents with fewer side effects and provide useful information on molecular markers to monitor patients under Au@Pt-NSs-based chemotherapy.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Dae-Hwa Noh
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Jo-Won Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Sung Lyea Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Bokyung Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
19
|
Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model. Bull Math Biol 2018; 80:701-737. [DOI: 10.1007/s11538-018-0396-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022]
|
20
|
Jaiswal RK, Varshney AK, Yadava PK. Diversity and functional evolution of the plasminogen activator system. Biomed Pharmacother 2018; 98:886-898. [PMID: 29571259 DOI: 10.1016/j.biopha.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
The urokinase plasminogen activator system is a family of serine proteases which consists of uPA (urokinase plasminogen activator), uPAR (urokinase type plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor 1). In addition to their significant roles in activation, these proteases act as key regulators of the tumor microenvironment and are involved in the metastatic process in many cancers. High levels of uPA system proteases in many human cancer predicts poor patient prognosis and strongly indicated a key role of uPA system in cancer metastasis. Individual components of uPA system are found to be differentially expressed in cancer cells compared to normal cells and therefore are potential therapeutic targets. In this review, we present the molecular and cellular mechanisms underlying the role of uPA system in cancer progression. Epithelial to mesenchymal transitions (EMT) is the main cause of the cancer cell metastasis. We have also attempted to relate the role of uPA signaling in EMT of cancer cells.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Kumar Varshney
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
21
|
Ju A, Cho YC, Kim BR, Lee S, Le HTT, Vuong HL, Cho S. Anticancer effects of methanol extract of Myrmecodia platytyrea Becc. leaves against human hepatocellular carcinoma cells via inhibition of ERK and STAT3 signaling pathways. Int J Oncol 2017; 52:201-210. [PMID: 29075791 DOI: 10.3892/ijo.2017.4178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/07/2017] [Indexed: 11/06/2022] Open
Abstract
Myrmecodia platytyrea Becc., a member of the Rubiaceae family, is found throughout Southeast Asia and has been traditionally used to treat cancer. However, there is limited pharmacological information on this plant. We investigated the anticancer effects of the methanol extract of Myrmecodia platytyrea Becc. leaves (MMPL) and determined the molecular mechanisms underlying the effects of MMPL on metastasis in human hepatocellular carcinoma (HCC) cells. MMPL dose-dependently inhibited cell migration and invasion in SK‑Hep1 and Huh7 cells. In addition, MMPL strongly suppressed the enzymatic activity of matrix metalloproteinases (MMP‑2 and MMP‑9). Diminished telomerase activity by MMPL resulted in the suppression of both telomerase activity and telomerase-associated gene expression. The levels of urokinase-type plasminogen activator receptor (uPAR) expression as well as the phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) were also attenuated by MMPL. The above results collectively suggest that MMPL has anticancer effects in HCC and that MMPL can serve as an effective therapeutic agent for treating human liver cancer.
Collapse
Affiliation(s)
- Anna Ju
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Chang Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hien Thi Thu Le
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Huong Lan Vuong
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
22
|
Satelur KP, Kumar GS. Immunohistochemical Expression of Cathepsin D in Primary and Recurrent Squamous Cell Carcinoma. J Contemp Dent Pract 2017; 18:795-801. [PMID: 28874644 DOI: 10.5005/jp-journals-10024-2129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM The aim of this study is to analyze and compare the immunohistochemical expression of cathepsin B in primary oral squamous cell carcinoma (OSCC) and recurrent OSCC. MATERIALS AND METHODS A total of 50 cases were studied immunohistochemically for rabbit polyclonal antihuman cathepsin D expression. A total of 10 cases of breast carcinoma were taken as positive controls. Immunohistochemical staining was performed using labeled streptavidin-biotin technique. RESULTS All the 45 cases of OSCC, both primary and recurrent cases included, showed varying grades of cathepsin D immu-noreactivity. Statistical significance at 5% level was observed in cathepsin D expression between the different grades of well, moderate, and poorly differentiated primary squamous cell carcinomas. In the comparison of cathepsin D staining intensity among primary squamous cell carcinomas with and without recurrence, a statistical significance between the groups was observed when the p-value was at 10%, but the same comparison was not significant when the p-value was at 5%. CONCLUSION Cathepsin D expression in primary squamous cell carcinomas with recurrences was very variable as compared with primary squamous cell carcinomas without recurrences. Comparison of cathepsin D expression in primary with their recurrent counterparts showed mostly similar intensity of expression in recurrent carcinomas, thus suggesting its limited usefulness in predicting recurrence. CLINICAL SIGNIFICANCE Although cathepsin D might have shown limited usefulness in predicting cancer recurrence, it, however, is a proven valuable tool to detect the aggressiveness of various other tumors, and if corroborated with a larger sample may hold the key to early, more effective, and more specific treatment modalities for cases of oral cancer also.
Collapse
Affiliation(s)
- Krishnanand P Satelur
- Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India, e-mail:
| | - G S Kumar
- Department of Oral Pathology, KSR Institute of Dental Sciences, Tiruchengode, Tamil Nadu, India
| |
Collapse
|
23
|
Shin SS, Hwang B, Lee SB, Kim WJ, Moon SK. Ethanol extract of loquat fruit skin inhibits the proliferation and metastatic potential of EJ human bladder carcinoma cells. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1358665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| | - Soo-Bok Lee
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
24
|
Zheng H, Wang X, Guo P, Ge W, Yan Q, Gao W, Xi Y, Yang X. Premature remodeling of fat body and fat mobilization triggered by platelet‐derived growth factor/VEGF receptor in
Drosophila. FASEB J 2017; 31:1964-1975. [DOI: 10.1096/fj.201601127r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/09/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Huimei Zheng
- Division of Human ReproductionDevelopmental GeneticsThe Women's Hospital
- Department of GeneticsZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsHangzhouChina
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Xuexiang Wang
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Pengfei Guo
- Division of Human ReproductionDevelopmental GeneticsThe Women's Hospital
- Department of GeneticsZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsHangzhouChina
| | - Wanzhong Ge
- Division of Human ReproductionDevelopmental GeneticsThe Women's Hospital
- Department of GeneticsZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsHangzhouChina
| | - Qinfeng Yan
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Weiqiang Gao
- School of Biomedical EngineeringShanghaiChina
- Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Yongmei Xi
- Division of Human ReproductionDevelopmental GeneticsThe Women's Hospital
- Department of GeneticsZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsHangzhouChina
| | - Xiaohang Yang
- Division of Human ReproductionDevelopmental GeneticsThe Women's Hospital
- Department of GeneticsZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsHangzhouChina
- Joint Institute of GeneticsGenomic MedicineZhejiang University–University of TorontoZhejiang UniversityHangzhouChina
| |
Collapse
|
25
|
Miller WB, Torday JS. A systematic approach to cancer: evolution beyond selection. Clin Transl Med 2017; 6:2. [PMID: 28050778 PMCID: PMC5209328 DOI: 10.1186/s40169-016-0131-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages.
Collapse
Affiliation(s)
| | - John S Torday
- Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| |
Collapse
|
26
|
Flick MJ, Bugge TH. Plasminogen-receptor KT : plasminogen activation and beyond. J Thromb Haemost 2017; 15:150-154. [PMID: 27740735 PMCID: PMC5280338 DOI: 10.1111/jth.13541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
The cell surface orchestrates plasminogen activation through the concomitant binding of plasminogen and plasminogen activators to specific receptors. In this issue, Miles and colleagues describe their detailed phenotypic characterization of mice deficient in Plg-RKT, a key plasminogen receptor expressed in numerous tissues, but highly expressed by proinflammatory macrophages. The analysis provides critical and surprising new insights into the biology of this receptor.
Collapse
Affiliation(s)
- Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
27
|
Kurgan Ş, Önder C, Balcı N, Fentoğlu Ö, Eser F, Balseven M, Serdar MA, Tatakis DN, Günhan M. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy. J Periodontal Res 2016; 52:574-581. [DOI: 10.1111/jre.12425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Ş. Kurgan
- Department of Periodontology; Faculty of Dentistry; Ankara University; Ankara Turkey
| | - C. Önder
- Department of Periodontology; Faculty of Dentistry; Ankara University; Ankara Turkey
| | - N. Balcı
- Department of Periodontology; Faculty of Dentistry; Istanbul Medipol University; İstanbul Turkey
| | - Ö. Fentoğlu
- Department of Periodontology; Faculty of Dentistry; Süleyman Demirel University; Isparta Turkey
| | - F. Eser
- Department of Physical Medicine and Rehabilitation; Ankara Numune Training and Research Hospital; Ankara Turkey
| | - M. Balseven
- Department of Periodontology; Faculty of Dentistry; Pamukkale University; Denizli Turkey
| | - M. A. Serdar
- Department of Medical Biochemistry; School of Medicine; Acıbadem University; Ankara Turkey
| | - D. N. Tatakis
- Division of Periodontology; College of Dentistry; The Ohio State University; Columbus OH USA
| | - M. Günhan
- Department of Periodontology; Faculty of Dentistry; Ankara University; Ankara Turkey
| |
Collapse
|
28
|
Li FJ, Wang XJ, Zhou XL. WISP-1 overexpression upregulates cell proliferation in human salivary gland carcinomas via regulating MMP-2 expression. Onco Targets Ther 2016; 9:6539-6548. [PMID: 27799801 PMCID: PMC5085305 DOI: 10.2147/ott.s107166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND WISP-1 is a member of the CCN family of growth factors and has been reported to play an important role in tumorigenesis by triggering downstream events via integrin signaling. However, little is known about the role of WISP-1 in proliferation of salivary gland carcinoma (SGC) cells. METHODS In this study, we investigated the WISP-1 expression in SGC tissues via immunohistochemical staining, Western blotting assay, and real-time quantitative polymerase chain reaction method, and then evaluated the regulatory role of WISP-1 in the growth of SGC A-253 cells. In addition, the role of MMP-2 in the WISP-1-mediated growth regulation was also investigated. RESULTS It was demonstrated that the WISP-1 expression was upregulated at both mRNA and protein levels in 15 of 21 SGC tumor tissues, compared to the non-tumor tissues (five of 21), associated with the lymph node dissection and bone invasion. The in vitro CCK-8 assay and colony-forming assay demonstrated that the exogenous WISP-1 treatment or the WISP-1 overexpression promoted the growth of A-253 cells. In addition, we confirmed that the WISP-1 overexpression upregulated the MMP-2 expression in A-253 cells with the gain-of-function and loss-of-function strategies, and that the MMP-2 knockdown attenuated the WISP-1-mediated growth promotion of A-253 cells. CONCLUSION We found that WISP-1 was overexpressed in the human SGCs, and the WISP-1 overexpression promoted the salivary gland cell proliferation via upregulating MMP-2 expression. Our study recognized the oncogenic role of WISP-1 in human SGCs, which could serve as a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Fu-Jun Li
- Department of Stomatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xin-Juan Wang
- Department of Stomatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xiao-Li Zhou
- Department of Stomatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
29
|
Gouri A, Dekaken A, El Bairi K, Aissaoui A, Laabed N, Chefrour M, Ciccolini J, Milano G, Benharkat S. Plasminogen Activator System and Breast Cancer: Potential Role in Therapy Decision Making and Precision Medicine. Biomark Insights 2016; 11:105-111. [PMID: 27578963 PMCID: PMC4993165 DOI: 10.4137/bmi.s33372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 02/05/2023] Open
Abstract
Shifting from the historical TNM paradigm to the determination of molecular and genetic subtypes of tumors has been a major improvement to better picture cancerous diseases. The sharper the picture is, the better will be the possibility to develop subsequent strategies, thus achieving higher efficacy and prolonged survival eventually. Recent studies suggest that urokinase-type plasminogen activator (uPA), uPA Receptor (uPAR), and plasmino-gen activator inhibitor-1 (PAI-1) may play a critical role in cancer invasion and metastasis. Consistent with their role in cancer dissemination, high levels of uPA, PAI-1, and uPAR in multiple cancer types correlate with dismal prognosis. In this respect, upfront determination of uPA and PAI-1 as invasion markers has further opened up the possibilities for individualized therapy of breast cancer. Indeed, uPA and PAI-1 could help to classify patients on their risk for metastatic spreading and subsequent relapse, thus helping clinicians in their decision-making process to propose, or not propose, adjuvant therapy. This review covers the implications for cancer diagnosis, prognosis, and therapy of uPA and PAI-1, and therefore how they could be major actors in the development of a precision medicine in breast cancer.
Collapse
Affiliation(s)
- Adel Gouri
- Laboratory of Biochemistry, Faculty of Medicine, Badji Mokhtar University, Annaba, Algeria
| | - Aoulia Dekaken
- Department of Internal Medicine, EL OKBI Public Hospital, Guelma, Algeria
| | - Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Faculty of Medicine and Pharmacy, Mohamed 1st University, Oujda, Morocco
| | - Arifa Aissaoui
- Laboratory of Biochemistry, Faculty of Medicine, Badji Mokhtar University, Annaba, Algeria
| | - Nihad Laabed
- Laboratory of Biochemistry, Faculty of Medicine, Badji Mokhtar University, Annaba, Algeria
| | - Mohamed Chefrour
- Laboratory of Biochemistry, La Timone University Hospital of Marseille, France
| | - Joseph Ciccolini
- Clinical Pharmacokinetics Laboratory, SMARTc unit, Inserm S911 CRO2, La Timone University Hospital of Marseille, France
| | - Gérard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, Nice, France
| | - Sadek Benharkat
- Laboratory of Biochemistry, Faculty of Medicine, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
30
|
Abstract
Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors.
Collapse
|
31
|
An anthrax toxin variant with an improved activity in tumor targeting. Sci Rep 2015; 5:16267. [PMID: 26584669 PMCID: PMC4653645 DOI: 10.1038/srep16267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022] Open
Abstract
Anthrax lethal toxin (LT) is an A-B type toxin secreted by Bacillus anthracis, consisting of the cellular binding moiety, protective antigen (PA), and the catalytic moiety, lethal factor (LF). To target cells, PA binds to cell-surface receptors and is then proteolytically processed forming a LF-binding competent PA oligomer where each LF binding site is comprised of three subsites on two adjacent PA monomers. We previously generated PA-U2-R200A, a urokinase-activated PA variant with LF-binding subsite II residue Arg200 mutated to Ala, and PA-L1-I210A, a matrix metalloproteinase-activated PA variant with subsite III residue Ile210 mutated to Ala. PA-U2-R200A and PA-L1-I210A displayed reduced cytotoxicity when used singly. However, when combined, they formed LF-binding competent heterogeneous oligomers by intermolecular complementation, and achieved high specificity in tumor targeting. Nevertheless, each of these proteins, in particular PA-L1-I210A, retained residual LF-binding ability. In this work, we screened a library containing all possible amino acid substitutions for LF-binding site to find variants with activity strictly dependent upon intermolecular complementation. PA-I207R was identified as an excellent replacement for the original clockwise-side variant, PA-I210A. Consequently, the new combination of PA-L1-I207R and PA-U2-R200A showed potent anti-tumor activity and low toxicity, exceeding the performance of the original combination, and warranting further investigation.
Collapse
|
32
|
Bekdash A, Darwish M, Timsah Z, Kassab E, Ghanem H, Najjar V, Ghosn M, Nasser S, El-Hajj H, Bazerbachi A, Liu S, Leppla SH, Frankel AE, Abi-Habib RJ. Phospho-MEK1/2 and uPAR Expression Determine Sensitivity of AML Blasts to a Urokinase-Activated Anthrax Lethal Toxin (PrAgU2/LF). Transl Oncol 2015; 8:347-357. [PMID: 26500025 PMCID: PMC4630967 DOI: 10.1016/j.tranon.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023] Open
Abstract
In this study, we attempt to target both the urokinase plasminogen activator and the mitogen-activated protein kinase pathway in acute myeloid leukemia (AML) cell lines and primary AML blasts using PrAgU2/LF, a urokinase-activated anthrax lethal toxin. PrAgU2/LF was cytotoxic to five out of nine AML cell lines. Cytotoxicity of PrAgU2/LF appeared to be nonapoptotic and was associated with MAPK activation and urokinase activity because all the PrAgU2/LF-sensitive cell lines showed both uPAR expression and high levels of MEK1/2 phosphorylation. Inhibition of uPAR or desensitization of cells to MEK1/2 inhibition blocked toxicity of PrAgU2/LF, indicating requirement for both uPAR expression and MAPK activation for activity. PrAgU2/LF was also cytotoxic to primary blasts from AML patients, with blasts from four out of five patients showing a cytotoxic response to PrAgU2/LF. Cytotoxicity of primary AML blasts was also dependent on uPAR expression and phos-MEK1/2 levels. CD34(+) bone marrow blasts and peripheral blood mononuclear cells lacked uPAR expression and were resistant to PrAgU2/LF, demonstrating the lack of toxicity to normal hematological cells and, therefore, the tumor selectivity of this approach. Dose escalation in mice revealed that the maximal tolerated dose of PrAgU2/LF is at least 5.7-fold higher than that of the wild-type anthrax lethal toxin, PrAg/LF, further demonstrating the increased safety of this molecule. We have shown, in this study, that PrAgU2/LF is a novel, dual-specific molecule for the selective targeting of AML.
Collapse
Affiliation(s)
- Amira Bekdash
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Manal Darwish
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Zahra Timsah
- School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Elias Kassab
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hadi Ghanem
- Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Vicky Najjar
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Marwan Ghosn
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Selim Nasser
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Hiba El-Hajj
- Department of Internal Medicine and Experimental Pathology, School of Medicine, American University of Beirut, Lebanon; Department of Immunology and Microbiology, School of Medicine, American University of Beirut, Lebanon
| | - Ali Bazerbachi
- Department of Internal Medicine, School of Medicine, American University of Beirut, Lebanon; Department of Anatomy, School of Medicine, American University of Beirut, Lebanon; Department of Cell Biology and Physiological Sciences, School of Medicine, American University of Beirut, Lebanon
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Arthur E Frankel
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ralph J Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon.
| |
Collapse
|
33
|
Indira Chandran V, Eppenberger-Castori S, Venkatesh T, Vine KL, Ranson M. HER2 and uPAR cooperativity contribute to metastatic phenotype of HER2-positive breast cancer. Oncoscience 2015; 2:207-24. [PMID: 25897424 PMCID: PMC4394126 DOI: 10.18632/oncoscience.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Human epidermal growth factor receptor type 2 (HER2)-positive breast carcinoma is highly aggressive and mostly metastatic in nature though curable/manageable in part by molecular targeted therapy. Recent evidence suggests a subtype of cells within HER2-positive breast tumors that concomitantly expresses the urokinase plasminogen activator receptor (uPAR) with inherent stem cell/mesenchymal-like properties promoting tumor cell motility and a metastatic phenotype. This HER-positive/uPAR-positive subtype may be partially responsible for the failure of HER2-targeted treatment strategies. Herein we discuss and substantiate the cumulative preclinical and clinical evidence on HER2-uPAR cooperativity in terms of gene co-amplification and/or mRNA/protein co-overexpression. We then propose a regulatory signaling model that we hypothesize to maintain upregulation and cooperativity between HER2 and uPAR in aggressive breast cancer. An improved understanding of the HER2/uPAR interaction in breast cancer will provide critical biomolecular information that may help better predict disease course and response to therapy.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), K. S. Hegde Medical Academy, Nitte University, Deralakatte, Mangalore, Karnataka, India
| | - Kara Lea Vine
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia ; Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia ; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Marie Ranson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia ; Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia ; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
34
|
Illemann M, Eefsen RHL, Bird NC, Majeed A, Osterlind K, Laerum OD, Alpízar-Alpízar W, Lund IK, Høyer-Hansen G. Tissue inhibitor of matrix metalloproteinase-1 expression in colorectal cancer liver metastases is associated with vascular structures. Mol Carcinog 2015; 55:193-208. [PMID: 25594187 PMCID: PMC6680289 DOI: 10.1002/mc.22269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/30/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
Abstract
Metastatic growth by colorectal cancer cells in the liver requires the ability of the cancer cells to interact with the new microenvironment. This interaction results in three histological growth patterns of liver metastases: desmoplastic, pushing, and replacement. In primary colorectal cancer several proteases, involved in the degradation of extracellular matrix components, are up‐regulated. In liver metastases, their expression is growth pattern dependent. Tissue inhibitor of matrix metalloproteinase‐1 (TIMP‐1) is a strong prognostic marker in plasma from colorectal cancer patients, with significant higher levels in patients with metastatic disease. We therefore wanted to determine the expression pattern of TIMP‐1 in primary colorectal cancers and their matching liver metastases. TIMP‐1 mRNA was primarily seen in α‐smooth‐muscle actin (α‐SMA)‐positive cells. In all primary tumors and liver metastases with desmoplastic growth pattern, TIMP‐1 mRNA was primarily found in α‐SMA‐positive myofibroblasts located at the invasive front. Some α‐SMA‐positive cells with TIMP‐1 mRNA were located adjacent to CD34‐positive endothelial cells, identifying them as pericytes. This indicates that TIMP‐1 in primary tumors and liver metastases with desmoplastic growth pattern has dual functions; being an MMP‐inhibitor at the cancer periphery and involved in tumor‐induced angiogenesis in the pericytes. In the liver metastases with pushing or replacement growth patterns, TIMP‐1 was primarily expressed by activated hepatic stellate cells at the metastasis/liver parenchyma interface. These cells were located adjacent to CD34‐positive endothelial cells, suggesting a function in tumor‐induced angiogenesis. We therefore conclude that TIMP‐1 expression is growth pattern dependent in colorectal cancer liver metastases. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin Illemann
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Rikke Helene Løvendahl Eefsen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Ali Majeed
- Academic Surgical Unit, University of Sheffield, Sheffield, England
| | - Kell Osterlind
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ole Didrik Laerum
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Center for Research on Microscopic Structures, University of Costa Rica, San José, Costa Rica
| | - Ida Katrine Lund
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gunilla Høyer-Hansen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
McMahon BJ, Kwaan HC. Components of the Plasminogen-Plasmin System as Biologic Markers for Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 867:145-56. [PMID: 26530365 DOI: 10.1007/978-94-017-7215-0_10] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the plasminogen-plasmin (PP) system participate in many physiologic functions. In particular, uPA, its receptor (uPAR) and its inhibitor PAI-1 play an important role in cell migration, cell proliferation and tissue remodeling. Through a number of interactions, these components of the PP system are also involved in the pathogenesis of many diseases. In cancer, they modulate the essential processes of tumor development, growth, invasion and metastasis as well as angiogenesis and fibrosis. Thus, quantification of uPA, uPAR and PAI-1 in tumors and, in some cases in the circulating blood, became of potential value in the prognostication of many types of cancer. These include cancer of the breast, stomach, colon and rectum, esophagus, pancreas, glioma, lung, kidney, prostate, uterine cervix, ovary, liver and bone. Published data are reviewed in this chapter. Clinical validation of the prognostic value has also been made, particularly in cancer of the breast. Inclusion of these biomarkers in the risk assessment of cancer patients is now considered in the risk-adapted management in carcinoma of the breast. Factors limiting its broader use are discussed with suggestions how these can be overcome. Hopefully the use of these biomarkers will be applied to other types of cancer in the near future.
Collapse
Affiliation(s)
- Brandon J McMahon
- Division of Hematology/Oncology, Feinberg School of Medicine, and the Robert H. Lurie Cancer, Northwestern University, Chicago, IL, USA.,Olson Pavilion, Room 8258, 710 N. Fairbanks Court, Chicago, IL, 60611, USA
| | - Hau C Kwaan
- Division of Hematology/Oncology, Feinberg School of Medicine, and the Robert H. Lurie Cancer, Northwestern University, Chicago, IL, USA. .,Olson Pavilion, Room 8258, 710 N. Fairbanks Court, Chicago, IL, 60611, USA.
| |
Collapse
|
36
|
Tuomi H, Kultti J, Danielsson J, Kangastupa P, Akerman K, Niemelä O. Serum soluble urokinase plasminogen activator receptor in alcoholics: relation to liver disease severity, fibrogenesis, and alcohol use. J Gastroenterol Hepatol 2014; 29:1991-5. [PMID: 24909734 DOI: 10.1111/jgh.12639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Heavy alcohol consumption may lead to development of liver disease and the need for non-invasive parameters for detecting those at risk is widely acknowledged. METHODS We measured serum soluble urokinase-type plasminogen activator receptor (suPAR) levels from 63 patients with alcoholic liver disease (ALD), 57 heavy drinkers without apparent liver disease, and 39 controls who were either moderate drinkers or abstainers. RESULTS The highest serum suPAR concentrations were detected in patients with ALD (P < 0.001) showing high diagnostic accuracy in differentiating ALD patients from heavy drinkers without liver disease (area under curve 0.921, P < 0.001). Levels of suPAR correlated positively with serum markers of fibrogenesis (aminoterminal propeptide of type III procollagen and hyaluronic acid) (P < 0.001), with clinical (combined clinical and laboratory index P < 0.01) and morphological (combined morphological index P < 0.05) indices of liver disease severity and with the stage of fibrosis (P < 0.01). The suPAR concentrations were also elevated in heavy drinkers when compared with healthy controls (P < 0.001). CONCLUSION The data indicate that serum suPAR concentrations are increased as a result of heavy alcohol consumption and further with development of ALD, showing a good diagnostic performance in detecting those with liver disease. The association with the histological severity of ALD and correlation with fibrosis indicates potential of serum suPAR also as a prognostic marker in ALD.
Collapse
Affiliation(s)
- Heidi Tuomi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Xiang Y, Li Q, Huang D, Tang X, Wang L, Shi Y, Zhang W, Yang T, Xiao C, Wang J. Preparation and antitumor effect of a toxin-linked conjugate targeting vascular endothelial growth factor receptor and urokinase plasminogen activator. Exp Biol Med (Maywood) 2014; 240:160-8. [PMID: 25125500 DOI: 10.1177/1535370214547154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aberrant signaling activation of vascular endothelial growth factor receptor (VEGFR) and urokinase plasminogen activator (uPA) is a common characteristic of many tumors, including lung cancer. Accordingly, VEGFR and uPA have emerged as attractive targets for tumor. KDR (Flk-1/VEGFR-2), a member of the VEGFR family, has been recognized as an important target for antiangiogenesis in tumor. In this study, a recombinant immunotoxin was produced to specifically target KDR-expressing tumor vascular endothelial cells and uPA-expressing tumor cells and mediate antitumor angiogenesis and antitumor effect. Based on its potent inhibitory effect on protein synthesis, Luffin-beta (Lβ) ribosome-inactivating protein was selected as part of a recombinant fusion protein, a single-chain variable fragment against KDR (KDRscFv)-uPA cleavage site (uPAcs)-Lβ-KDEL (named as KPLK). The KDRscFv-uPAcs-Lβ-KDEL (KPLK) contained a single-chain variable fragment (scFv) against KDR, uPAcs, Lβ, and the retention signal for endoplasmic reticulum proteins KDEL (Lys-Asp-Glu-Leu). The KPLK-expressing vector was expressed in Escherichia coli, and the KPLK protein was isolated with nickel affinity chromatography and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis test demonstrated KPLK was effectively expressed. Result of in vitro cell viability assay on non-small cell lung cancer (NSCLC) H460 cell line (uPA-positive cell) revealed that KPLK significantly inhibited cell proliferation, induced apoptosis, and accumulated cells in S and G2/M phases, but the normal cell line (human submandibular gland cell) was unaffected. These effects were enhanced when uPA was added to digest KPLK to release Lβ. For in vivo assay of KPLK, subcutaneous xenograft tumor model of nude mice were established with H460 cells. Growth of solid tumors was significantly inhibited in animals treated with KPLK up to 21 days, tumor weights were decreased, and the expression of angiogenesis marker CD31 was downregulated; meanwhile, the apoptosis-related protein casspase-3 was upregulated. These results suggested that the recombinant KPLK may have therapeutic applications on tumors, especially uPA-overexpressing ones.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Qiying Li
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Dehong Huang
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Xianjun Tang
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Li Wang
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Yang Shi
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Wenjun Zhang
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Tao Yang
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Chunyan Xiao
- Department of Biotherapy and Hemo-oncology, Chongqing Cancer Institute, Chongqing 400030, China
| | - Jianghong Wang
- Center of Endoscopy Examination & Therapy, Chongqing Cancer Institute, Chongqing 400030, China
| |
Collapse
|
38
|
Sa R, Fang L, Huang M, Li Q, Wei Y, Wu K. Evaluation of interactions between urokinase plasminogen and inhibitors using molecular dynamic simulation and free-energy calculation. J Phys Chem A 2014; 118:9113-9. [PMID: 24984238 DOI: 10.1021/jp5064319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding modes of urokinase-type plasminogen activator (uPA) with five inhibitors (1-(7-sulfonamidoisoquinolinyl) guanidine derivatives) were predicted based on molecular dynamic simulations. MM/PBSA free-energy calculations and MM/GBSA free-energy decomposition analyses were performed on the studied complexes. The calculated binding free energies are reasonably consistent with the experimental results. The free-energy decomposition analyses elucidate the different contributions of the energy of some favorable residues in the interactions between protein and ligand of each complex. The results indicate that the inhibitors mainly interact with the S1 pocket of uPA, wherein the hydrogen bonds and the interactions between guanidines and the corresponding residues play an important role. Moreover, hydrogen bond analyses show the water-mediated hydrogen-bond network near the S1 pocket between uPA, and the ligand probably leads to excellent selectivity of these inhibitors on uPA.
Collapse
Affiliation(s)
- Rongjian Sa
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Karthik S, Sankar R, Varunkumar K, Ravikumar V. Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells. Biomed Pharmacother 2014; 68:327-34. [PMID: 24485799 DOI: 10.1016/j.biopha.2014.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/01/2014] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have been proven to be effective therapeutic agents to kill cancer cells through inhibiting HDAC activity or altering the structure of chromatin. We recently reported that chemotherapy by the HDAC inhibitor, romidepsin activates the anti- apoptotic transcription factor NF-κB in A549 non-small cell lung cancer (NSCLC) cells and fails to induce significant levels of apoptosis. We also demonstrated that NF-κB inhibition with proteasome inhibitor bortezomib enhanced HDAC inhibitor induced mitochondrial injury and sensitize A549 NSCLC cells to apoptosis through the generation of reactive oxygen species. In this study, we investigate whether combined treatment with romidepsin and bortezomib would induce apoptosis in A549 NSCLC cells by activating cell cycle arrest, enhanced generation of p21 and p53, down-regulation of matrix metalloproteinases (MMPs) 2,9 also altering the acetylation status of histone proteins. Our data show that combination of romidepsin and bortezomib caused cell cycle arrest at Sub G0-G1 transition, up-regulation of cell cycle protein p21 and tumour suppressor protein p53. In addition, romidepsin down-regulated the expression of MMP-2,9 and hyperacetylation of histone H3 and H4 in bortezomib sensitised A549 NSCLC cells. From this study we concluded that romidepsin and bortezomib cooperatively inhibit A549 NSCLC cell proliferation by altering the histone acetylation status, expression of cell cycle regulators and MMPs. Romidepsin along with bortezomib might be an effective treatment approach for A549 NSCLC cells.
Collapse
Affiliation(s)
- Selvaraju Karthik
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India.
| | - Renu Sankar
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
| | - Krishnamoorthy Varunkumar
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
| | - Vilwanathan Ravikumar
- Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India.
| |
Collapse
|
40
|
Metastatic Cancer Identified in Osteonecrosis Specimens of the Jaws in Patients Receiving Intravenous Bisphosphonate Medications. J Oral Maxillofac Surg 2013; 71:2077-86. [DOI: 10.1016/j.joms.2013.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022]
|
41
|
Park ES, Park YK, Shin CY, Park SH, Ahn SH, Kim DH, Lim KH, Kwon SY, Kim KP, Yang SI, Seong BL, Kim KH. Hepatitis B virus inhibits liver regeneration via epigenetic regulation of urokinase-type plasminogen activator. Hepatology 2013; 58:762-76. [PMID: 23483589 DOI: 10.1002/hep.26379] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Liver regeneration after liver damage caused by toxins and pathogens is critical for liver homeostasis. Retardation of liver proliferation was reported in hepatitis B virus (HBV) X protein (HBx)-transgenic mice. However, the underlying mechanism of the HBx-mediated disturbance of liver regeneration is unknown. We investigated the molecular mechanism of the inhibition of liver regeneration using liver cell lines and a mouse model. The mouse model of acute HBV infection was established by hydrodynamic injection of viral DNA. Liver regeneration after partial hepatectomy was significantly inhibited in the HBV DNA-treated mice. Mechanism studies have revealed that the expression of urokinase-type plasminogen activator (uPA), which regulates the activation of hepatocyte growth factor (HGF), was significantly decreased in the liver tissues of HBV or HBx-expressing mice. The down-regulation of uPA was further confirmed using liver cell lines transiently or stably transfected with HBx and the HBV genome. HBx suppressed uPA expression through the epigenetic regulation of the uPA promoter in mouse liver tissues and human liver cell lines. Expression of HBx strongly induced hypermethylation of the uPA promoter by recruiting DNA methyltransferase (DNMT) 3A2. CONCLUSION Taken together, these results suggest that infection of HBV impairs liver regeneration through the epigenetic dysregulation of liver regeneration signals by HBx.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Transforming growth factor-Beta and urokinase-type plasminogen activator: dangerous partners in tumorigenesis-implications in skin cancer. ISRN DERMATOLOGY 2013; 2013:597927. [PMID: 23984088 PMCID: PMC3732602 DOI: 10.1155/2013/597927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/18/2013] [Indexed: 01/01/2023]
Abstract
Transforming growth factor-beta (TGF-β) is a pleiotropic factor, with several different roles in health and disease. TGF-β has been postulated as a dual factor in tumor progression, since it represses epithelial tumor development in early stages, whereas it stimulates tumor progression in advanced stages. During tumorigenesis, cancer cells acquire the capacity to migrate and invade surrounding tissues and to metastasize different organs. The urokinase-type plasminogen activator (uPA) system, comprising uPA, the uPA cell surface receptor, and plasminogen-plasmin, is involved in the proteolytic degradation of the extracellular matrix and regulates key cellular events by activating intracellular signal pathways, which together allow cancer cells to survive, thus, enhancing cell malignance during tumor progression. Due to their importance, uPA and its receptor are tightly transcriptionally regulated in normal development, but are deregulated in cancer, when their activity and expression are related to further development of cancer. TGF-β regulates uPA expression in cancer cells, while uPA, by plasminogen activation, may activate the secreted latent TGF-β, thus, producing a pernicious cycle which contributes to the enhancement of tumor progression. Here we review the specific roles and the interplay between TGF-β and uPA system in cancer cells and their implication in skin cancer.
Collapse
|
43
|
Tüter G, Özdemir B, Kurtiş B, Serdar M, Yücel AA, Ayhan E. Short term effects of non-surgical periodontal treatment on gingival crevicular fluid levels of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) in patients with chronic and aggressive periodontitis. Arch Oral Biol 2013; 58:391-6. [DOI: 10.1016/j.archoralbio.2012.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/25/2012] [Accepted: 08/10/2012] [Indexed: 01/01/2023]
|
44
|
Potential role of kringle-integrin interaction in plasmin and uPA actions (a hypothesis). J Biomed Biotechnol 2012; 2012:136302. [PMID: 23125522 PMCID: PMC3480031 DOI: 10.1155/2012/136302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 12/02/2022] Open
Abstract
We previously showed that the kringle domains of plasmin and angiostatin, the N-terminal four kringles (K1–4) of plasminogen, directly bind to integrins. Angiostatin blocks tumor-mediated angiogenesis and has great therapeutic potential. Angiostatin binding to integrins may be related to the antiinflammatory action of angiostatin. We reported that plasmin induces signals through protease-activated receptor (PAR-1), and plasmin-integrin interaction may be required for enhancing plasmin concentration on the cell surface, and enhances its signaling function. Angiostatin binding to integrin does not seem to induce proliferative signals. One possible mechanism of angiostatin's inhibitory action is that angiostatin suppresses plasmin-induced PAR-1 activation by competing with plasmin for binding to integrins. Interestingly, plasminogen did not interact with αvβ3, suggesting that the αvβ3-binding sites in the kringle domains of plasminogen are cryptic. The kringle domain of urokinase-type plasminogen activator (uPA) also binds to integrins. The uPA-integrin interaction enhances uPA concentrations on the cell surface and enhances plasminogen activation on the cell surface. It is likely that integrins bind to the kringle domain, and uPAR binds to the growth factor-like domain (GFD) of uPA simultaneously, making the uPAR-uPA-integrin ternary complex. We present a docking model of the ternary complex.
Collapse
|
45
|
Veeravalli KK, Dasari VR, Rao JS. Regulation of proteases after spinal cord injury. J Neurotrauma 2012; 29:2251-62. [PMID: 22709139 DOI: 10.1089/neu.2012.2460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury is a major medical problem worldwide. Unfortunately, we still do not have suitable therapeutic agents for the treatment of spinal cord injury and prevention of its devastating consequences. Scientists and physicians are baffled by the challenges of controlling progressive neurodegeneration in spinal cord injury, which has not been healed with any currently-available treatments. Although extensive work has been carried out to better understand the pathophysiology of spinal cord injury, our current understanding of the repair mechanisms of secondary injury processes is still meager. Several investigators reported the crucial role played by various proteases after spinal cord injury. Understanding the beneficial and harmful roles these proteases play after spinal cord injury will allow scientists to plan and design appropriate treatment strategies to improve functional recovery after spinal cord injury. This review will focus on various proteases such as matrix metalloproteinases, cysteine proteases, and serine proteases and their inhibitors in the context of spinal cord injury.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | |
Collapse
|
46
|
Soluble urokinase plasminogen activator receptor is associated with progressive liver fibrosis in hepatitis C infection. J Clin Gastroenterol 2012; 46:334-8. [PMID: 21934527 DOI: 10.1097/mcg.0b013e31822da19d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progressive liver fibrosis is the main predictor of disease outcome in chronic hepatitis C viral (HCV) infection. Although the importance of the coagulation cascade has been suggested in liver fibrogenesis, the role of the fibrinolytic pathway is yet unclear. GOAL We evaluated the association of serum levels of the fibrinolysis-associated soluble urokinase plasminogen activator receptor (suPAR) with the severity of liver fibrosis in HCV infection. STUDY suPAR serum levels were assessed in 146 chronically HCV-infected patients of 2 independent cohorts (64 subjects in the screening cohort, 82 in the validation cohort) by enzyme-linked immunosorbent assay and correlated with biopsy-proven histologic stage of liver fibrosis and noninvasive liver fibrosis markers (aspartate transaminase to platelets ratio index score, transient elastography). RESULTS suPAR serum levels were strongly associated with the histologic stage of liver fibrosis in both cohorts (P<0.0001). Although mean suPAR levels in patients with F1 and F2 fibrosis were not different from healthy control subjects, they were significantly increased at higher stages of liver fibrosis (F3 and F4, P<0.0001). suPAR values had a high diagnostic specificity and sensitivity to differentiate mild/moderate fibrosis (F1/F2) from severe fibrosis (F3/F4) with an area under curve of 0.774 (P=0.0001) and for the differentiation of noncirrhosis from cirrhosis (F1/F2/F3 vs. F4, area under curve 0.791, P=0.0001). SuPAR serum levels were also strongly correlated to the noninvasive fibrosis markers aspartate transaminase to platelets ratio index score (r=0.52) and transient elastography (r=0.44, both P<0.0001). CONCLUSIONS Serum suPAR levels were robust markers of liver fibrosis in 2 cohorts with a comparable diagnostic accuracy for prediction of severe liver fibrosis as established noninvasive marker.
Collapse
|
47
|
Xu X, Gårdsvoll H, Yuan C, Lin L, Ploug M, Huang M. Crystal Structure of the Urokinase Receptor in a Ligand-Free Form. J Mol Biol 2012; 416:629-41. [DOI: 10.1016/j.jmb.2011.12.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/23/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
|
48
|
Alpízar-Alpízar W, Christensen IJ, Santoni-Rugiu E, Skarstein A, Ovrebo K, Illemann M, Laerum OD. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma. Int J Cancer 2011; 131:E329-36. [DOI: 10.1002/ijc.26417] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/23/2011] [Indexed: 12/27/2022]
|
49
|
Thompson LC, Goswami S, Ginsberg DS, Day DE, Verhamme IM, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition. Protein Sci 2011; 20:353-65. [PMID: 21280127 DOI: 10.1002/pro.568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1-2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
50
|
Plasminogen activator promotes recovery following spinal cord injury. Cell Mol Neurobiol 2011; 31:961-7. [PMID: 21573723 DOI: 10.1007/s10571-011-9701-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/26/2011] [Indexed: 12/21/2022]
Abstract
Plasminogen activators play an important role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function after spinal cord injury. A genetic approach using knockout mice lacking various genes in the plasminogen activator/plasmin system has shown that induction of urokinase plasminogen activator (uPA) is required during the first hour after a C2-hemisection for the acquisition of the CPP response. The uPA knockout mice do not show the structural remodeling of phrenic motor neuron synapses characteristic of the CPP response. As shown here uPA acts in a cell signaling manner via binding to its receptor uPAR rather than as a protease, since uPAR knockout mice or knock-in mice possessing a modified uPA that is unable to bind to uPAR both fail to generate a CPP and recover respiratory function. Microarray data and real-time PCR analysis of mRNAs induced in the phrenic motor nucleus after C2-hemisection in C57Bl/6 mice as compared to uPA knockout mice indicate a potential cell signaling cascade downstream possibly involving β-integrin and Src, and other pathways. Identification of these uPA-mediated signaling pathways may provide the opportunity to pharmacologically upregulate the synaptic plasticity necessary for recovery of phrenic motoneuron activity following cervical spinal cord injury.
Collapse
|