1
|
Liu X, Chang Z, Sun P, Cao B, Wang Y, Fang J, Pei Y, Chen B, Zou W. MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans. J Cell Biol 2025; 224:e202403198. [PMID: 39400293 PMCID: PMC11473600 DOI: 10.1083/jcb.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Maximizing cell survival under stress requires rapid and transient adjustments of RNA and protein synthesis. However, capturing these dynamic changes at both single-cell level and across an organism has been challenging. Here, we developed a system named MONITTR (MS2-embedded mCherry-based monitoring of transcription) for real-time simultaneous measurement of nascent transcripts and endogenous protein levels in C. elegans. Utilizing this system, we monitored the transcriptional bursting of fasting-induced genes and found that the epidermis responds to fasting by modulating the proportion of actively transcribing nuclei and transcriptional kinetics of individual alleles. Additionally, our findings revealed the essential roles of the transcription factors NHR-49 and HLH-30 in governing the transcriptional kinetics of fasting-induced genes under fasting. Furthermore, we tracked transcriptional dynamics during heat-shock response and ER unfolded protein response and observed rapid changes in the level of nascent transcripts under stress conditions. Collectively, our study provides a foundation for quantitatively investigating how animals spatiotemporally modulate transcription in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Pingping Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yechun Pei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang S, Liu R, Zhou Y, Xu J, Su A, Zheng D. TUDCA inhibits EV71 replication by regulating ER stress signaling pathway and suppressing autophagy. Diagn Microbiol Infect Dis 2024; 110:116500. [PMID: 39213902 DOI: 10.1016/j.diagmicrobio.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that alleviates endoplasmic reticulum (ER) stress and inhibits apoptosis, thereby protecting cells. Previous studies have shown that enterovirus 71 (EV71) infection modulates ER stress and induces autophagy to assist viral replication. This study observed the effects of TUDCA pretreatment on HeLa and Vero cells infected with EV71, finding that TUDCA inhibits EV71 replication in TUDCA pretreated HeLa and Vero cells in a dose-dependent manner. We found that TUDCA pretreatment inhibited EV71 replication by regulating three branches of UPR, that is up-regulated ATF6, down-regulated both PERK and IRE1. The results also indicated that autophagy which is downstream of UPR, was inhibited either. The results indicate that TUDCA inhibits EV71 replication by regulating UPR sensor proteins and autophagy following ER stress.
Collapse
Affiliation(s)
- Siwen Wang
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | - Rui Liu
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | - Yuting Zhou
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | - Jinjin Xu
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China
| | - Airong Su
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China.
| | - Datong Zheng
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China.
| |
Collapse
|
3
|
Wang X, Yang J, Yang W, Sheng H, Jia B, Cheng P, Xu S, Hong X, Jiang C, Yang Y, Wu Z, Wang J. Multiple roles of p53 in cancer development: Regulation of tumor microenvironment, m 6A modification and diverse cell death mechanisms. J Adv Res 2024:S2090-1232(24)00481-8. [PMID: 39490612 DOI: 10.1016/j.jare.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The protein p53, encoded by the most frequently mutated gene TP53 in human cancers, has diverse functions in tumor suppression. As a best known transcription factor, p53 can regulate various fundamental cellular responses, ranging from the cell-cycle arrest, DNA repair, senescence to the programmed cell death (PCD), which includes autophagy, apoptosis, ferroptosis, cuproptosis, pyroptosis and disulfidoptosis. Accumulating evidence has indicated that the tumor microenvironment (TME), N6-methyladenosine (m6A) modification and diverse PCD are important for the progression, proliferation and metastases of cancers. AIM OF REVIEW This paper aims to systematically and comprehensively summarize the multiple roles of p53 in the development of cancers from the regulation of TME, m6A Modification and diverse PCD. KEY SCIENTIFIC CONCEPTS OF REVIEW TME, a crucial local homeostasis environment, influences every step of tumorigenesis and metastasis. m6A, the most prevalent and abundant endogenous modification in eukaryotic RNAs, plays an essential role in various biological processes, containing the progression of cancers. Additionally, PCD is an evolutionarily conserved mechanism of cell suicide and a common process in living organisms. Some forms of PCD contribute to the occurrence and development of cancer. However, the complex roles of p53 within the TME, m6A modification and diverse PCD mechanisms are still not completely understood. Presently, the function roles of p53 including the wild-type and mutant p53 in different context are summarized. Additionally, the interaction between the cancer immunity, cancer cell death and RNA m6A methylation and the p53 regulation during the development and progress of cancers were discussed. Moreover, the key molecular mechanisms by which p53 participates in the regulation of TME, m6A and diverse PCD are also explored. All the findings will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyang Sheng
- Global Biometrics and Data Sciences, Bristol Myers Squibb, New York City, USA
| | - Buyun Jia
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Cheng
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shanshan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinhui Hong
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanwei Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Ziyin Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
4
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
5
|
Islam MN, Ebara F, Kawasaki K, Konno T, Tatemoto H, Yamanaka KI. Attenuation of endoplasmic reticulum stress improves invitro growth and subsequent maturation of bovine oocytes. Theriogenology 2024; 228:54-63. [PMID: 39096624 DOI: 10.1016/j.theriogenology.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Endoplasmic reticulum (ER) stress interferes with developmental processes in oocyte maturation and embryo development. Invitro growth (IVG) is associated with low developmental competence, and ER stress during IVG culture may play a role. Therefore, this study aimed to examine the effect of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, on the IVG of bovine oocytes to understand the role of ER stress. Oocyte-granulosa cell complexes (OGCs) were collected from early antral follicles (1.5-1.8 mm) and allowed to grow in vitro for 5 days at 38.5 °C in a humidified atmosphere containing 5 % CO2. Basic growth culture medium was supplemented with TUDCA at various concentrations (0, 50, 100, 250, and 500 μM). After IVG, oocyte diameters were similar among groups, but the antrum formation rate tended to be higher in the TUDCA 100 μM group. The mRNA expression levels of ER stress-associated genes (PERK, ATF6, ATF4, CHOP, BAX, IRE1, and XBP1) in OGCs were downregulated in the TUDCA 100 μM group than those in the control group. Moreover, the TUDCA 100 μM group exhibited reduced ROS production with higher GSH levels and improved in vitro-grown oocyte maturation compared with those in the control group. In contrast, no difference in the developmental competence of embryos following invitro fertilization was observed between the control and TUDCA 100 μM groups. These results indicate that ER stress could impair IVG and subsequent maturation rate of bovine oocytes, and TUDCA could alleviate these detrimental effects. These outcomes might improve the quality of oocytes in IVG culture in assisted reproductive technology.
Collapse
Affiliation(s)
- Md Nuronnabi Islam
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fumio Ebara
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Kokoro Kawasaki
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Toshihiro Konno
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken-Ichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
6
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
7
|
Kim J, Huang K, Vo PTT, Miao T, Correia J, Kumar A, Simons MJP, Bai H. Peroxisomal import stress activates integrated stress response and inhibits ribosome biogenesis. PNAS NEXUS 2024; 3:pgae429. [PMID: 39398621 PMCID: PMC11470064 DOI: 10.1093/pnasnexus/pgae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Impaired organelle-specific protein import triggers a variety of cellular stress responses, including adaptive pathways to balance protein homeostasis. Most of the previous studies focus on the cellular stress response triggered by misfolded proteins or defective protein import in the endoplasmic reticulum or mitochondria. However, little is known about the cellular stress response to impaired protein import in the peroxisome, an understudied organelle that has recently emerged as a key signaling hub for cellular and metabolic homeostasis. To uncover evolutionarily conserved cellular responses upon defective peroxisomal import, we carried out a comparative transcriptomic analysis on fruit flies with tissue-specific peroxin knockdown and human HEK293 cells expressing dominant-negative PEX5C11A. Our RNA-seq results reveal that defective peroxisomal import upregulates integrated stress response (ISR) and downregulates ribosome biogenesis in both flies and human cells. Functional analyses confirm that impaired peroxisomal import induces eIF2α phosphorylation and ATF4 expression. Loss of ATF4 exaggerates cellular damage upon peroxisomal import defects, suggesting that ATF4 activation serves as a cellular cytoprotective mechanism upon peroxisomal import stress. Intriguingly, we show that peroxisomal import stress decreases the expression of rRNA processing genes and inhibits early pre-rRNA processing, which leads to the accumulation of 47S precursor rRNA and reduction of downstream rRNA intermediates. Taken together, we identify ISR activation and ribosome biogenesis inhibition as conserved adaptive stress responses to defective peroxisomal import and uncover a novel link between peroxisomal dysfunction and rRNA processing.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pham Thuy Tien Vo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacinta Correia
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Bobek JM, Stuttgen GM, Sahoo D. A comprehensive analysis of the role of native and modified HDL in ER stress in primary macrophages. Front Cardiovasc Med 2024; 11:1448607. [PMID: 39328237 PMCID: PMC11424405 DOI: 10.3389/fcvm.2024.1448607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.
Collapse
Affiliation(s)
- Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Kao AT, Cabanlong CV, Padilla K, Xue X. Unveiling ferroptosis as a promising therapeutic avenue for colorectal cancer and colitis treatment. Acta Pharm Sin B 2024; 14:3785-3801. [PMID: 39309484 PMCID: PMC11413686 DOI: 10.1016/j.apsb.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) involving iron accumulation and lipid peroxidation. Since its discovery in 2012, various studies have shown that ferroptosis is associated with the pathogenesis of various diseases. Ferroptotic cell death has also been linked to intestinal dysfunction but can act as either a positive or negative regulator of intestinal disease, depending on the cell type and disease context. The continued investigation of mechanisms underlying ferroptosis provides a wealth of potential for developing novel treatments. Considering the growing prevalence of intestinal diseases, particularly colorectal cancer (CRC) and inflammatory bowel disease (IBD), this review article focuses on potential therapeutics targeting the ferroptotic pathway in relation to CRC and IBD.
Collapse
Affiliation(s)
| | | | - Kendra Padilla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Dutta T, Chakraborty B, Nigam A, Minocha S, Koner AL. A small-molecule probe to decipher stress-induced ER microenvironments and ER-Golgi communication. J Mater Chem B 2024; 12:7848-7857. [PMID: 38808376 DOI: 10.1039/d4tb00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cellular stress is a crucial factor in regulating and maintaining both organismal and microenvironmental homeostasis. It induces a response that also affects the micropolarity of specific cellular compartments, which is essential for early disease diagnosis. In this contribution, we present a quantitative study of micropolarity changes inside the endoplasmic reticulum (ER) during the G1/S and G2/M phases, using a biocompatible small-molecule fluorophore called ER-Oct. This probe is selectively driven to the ER by its hydrophobicity, and it has the fastest diffusion properties among a series of analogous probes. We found that induced ER stress caused cell cycle arrests leading to an increase in ER micropolarity which is well supported by lambda scanning experiments and fluorescence lifetime imaging microscopy (FLIM) as well. ER-Oct is a versatile staining agent that could effectively stain the ER in various living/fixed mammalian cells, isolated ER, Caenorhabditis elegans, and mice tissues. Furthermore, we used this probe to visualize a well-known biological event, ER to Golgi transport, by live-cell fluorescence microscopy. Our exhaustive investigation of micropolarity using ER-staining dye provides a new way to study ER stress, which could provide a deeper understanding of proteostasis in model systems and even in fixed patient samples.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh - 462066, India.
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Barsha Chakraborty
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh - 462066, India.
| | - Aditya Nigam
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh - 462066, India.
| |
Collapse
|
11
|
Sun M, Zhang X, Tan B, Zhang Q, Zhao X, Dong D. Potential role of endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity-an update. Front Pharmacol 2024; 15:1415108. [PMID: 39188945 PMCID: PMC11345228 DOI: 10.3389/fphar.2024.1415108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
As a chemotherapy agent, doxorubicin is used to combat cancer. However, cardiotoxicity has limited its use. The existing strategies fail to eliminate doxorubicin-induced cardiotoxicity, and an in-depth exploration of its pathogenesis is in urgent need to address the issue. Endoplasmic reticulum stress (ERS) occurs when Endoplasmic Reticulum (ER) dysfunction results in the accumulation of unfolded or misfolded proteins. Adaptive ERS helps regulate protein synthesis to maintain cellular homeostasis, while prolonged ERS stimulation may induce cell apoptosis, leading to dysfunction and damage to tissue and organs. Numerous studies on doxorubicin-induced cardiotoxicity strongly link excessive activation of the ERS to mechanisms including oxidative stress, calcium imbalance, autophagy, ubiquitination, and apoptosis. The researchers also found several clinical drugs, chemical compounds, phytochemicals, and miRNAs inhibited doxorubicin-induced cardiotoxicity by targeting ERS. The present review aims to outline the interactions between ERS and other mechanisms in doxorubicin-induced cardiotoxicity and summarize ERS's role in this type of cardiotoxicity. Additionally, the review enumerates several clinical drugs, phytochemicals, chemical compounds, and miRNAs targeting ERS for considering therapeutic regimens that address doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xin Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Boxuan Tan
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024:AD.2024.0362. [PMID: 38913046 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Gundu C, Arruri VK, Sherkhane B, Khatri DK, Singh SB. Indole-3-propionic acid attenuates high glucose induced ER stress response and augments mitochondrial function by modulating PERK-IRE1-ATF4-CHOP signalling in experimental diabetic neuropathy. Arch Physiol Biochem 2024; 130:243-256. [PMID: 35015592 DOI: 10.1080/13813455.2021.2024577] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We aimed to evaluate the neuroprotective effect of Indole-3-propionic acid (IPA) against streptozotocin (STZ) induced diabetic peripheral neuropathy (DPN) in rats and in high glucose (HG) induced neurotoxicity in neuro2a (N2A) cells. METHODS Diabetes was induced in male SD rats STZ (55 mg/kg, i.p.) and IPA (10 and 20 mg/kg, p.o.) was administered for two weeks, starting from sixth week after diabetes induction. Neurobehavioral, functional assessments were made, and various molecular studies were performed to evaluate the effect of IPA on HG induced ER stress and mitochondrial dysfunction in sciatic nerves, DRGs and in N2A cells. RESULTS Diabetic rats and high glucose exposed N2A cells showed marked increase in oxidative damage accompanied by ER stress and mitochondrial dysfunction along with increased apoptotic markers. IPA treatment for two weeks markedly alleviated these changes and attenuated pain behaviour. CONCLUSION IPA exhibited neuroprotective activity against hyperglycaemic insults.
Collapse
Affiliation(s)
- Chayanika Gundu
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Vijay Kumar Arruri
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Bhoomika Sherkhane
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| |
Collapse
|
14
|
Zhang YZ, Lai HL, Huang C, Jiang ZB, Yan HX, Wang XR, Xie C, Huang JM, Ren WK, Li JX, Zhai ZR, Yao XJ, Wu QB, Leung ELH. Tanshinone IIA induces ER stress and JNK activation to inhibit tumor growth and enhance anti-PD-1 immunotherapy in non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155431. [PMID: 38537440 DOI: 10.1016/j.phymed.2024.155431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.
Collapse
Affiliation(s)
- Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Huan-Ling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ze-Bo Jiang
- Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai 519000, Guangdong, China
| | - Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xuan-Run Wang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Wen-Kang Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Xin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Zhi-Ran Zhai
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China.
| |
Collapse
|
15
|
Chen Y. Advances in Organic Fluorescent Probes for Intracellular Zn 2+ Detection and Bioimaging. Molecules 2024; 29:2542. [PMID: 38893419 PMCID: PMC11173588 DOI: 10.3390/molecules29112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Zinc ions (Zn2+) play a key role in maintaining and regulating protein structures and functions. To better understand the intracellular Zn2+ homeostasis and signaling role, various fluorescent sensors have been developed that allow the monitoring of Zn2+ concentrations and bioimaging in live cells in real time. This review highlights the recent development of organic fluorescent probes for the detection and imaging of intracellular Zn2+, including the design and construction of the probes, fluorescent response mechanisms, and their applications to intracellular Zn2+ detection and imaging on-site. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Xie Y, Wu N, Tang S, Zhou Z, Chen J, Li J, Wu F, Xu M, Xu X, Liu Y, Ma X. Endoplasmic Reticulum Dysfunction: An Emerging Mechanism of Vitiligo Pathogenesis. Clin Cosmet Investig Dermatol 2024; 17:1133-1144. [PMID: 38774812 PMCID: PMC11107934 DOI: 10.2147/ccid.s459070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis, transport, and modification. Its abnormal status has now emerged as an established cause of many pathological processes, such as tumors and autoimmune diseases. Recent studies also demonstrated that the defective functions of ER may lead to pigmentary diseases. Vitiligo is a depigmenting ailment skin disorder whose pathogenesis is now found to be associated with ER. However, the detailed mechanism is still unclear. In this review, we try to link the association between ER with its inter- and intra-organellar interactions in vitiligo pathogenesis and focus on the function, mechanism, and clinical potential of ER with vitiligo. Expand ER is found in melanocytes of vitiligo and ER stress (ERS) might be a bridge between oxidative stress and innate and adaptive immunity. Meanwhile, the tight association between ER and mitochondria or melanosomes in organelles levels, as well as genes and cytokines, is the new paradigm in the pathogenesis of vitiligo. This undoubtedly adds a new aspect to the understanding of vitiligo, facilitating the design of targeted therapies for vitiligo.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Suwei Tang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhiyu Zhou
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jie Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Correia da Silva D, Valentão P, Pereira DM. Naturally occurring small molecules with dual effect upon inflammatory signaling pathways and endoplasmic reticulum stress response. J Physiol Biochem 2024; 80:421-437. [PMID: 38502466 DOI: 10.1007/s13105-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The endoplasmic reticulum (ER) is determinant to maintain cellular proteostasis. Upon unresolved ER stress, this organelle activates the unfolded protein response (UPR). Sustained UPR activates is known to occur in inflammatory processes, deeming the ER a potential molecular target for the treatment of inflammation. This work characterizes the inflammatory/UPR-related molecular machinery modulated by an in-house library of natural products, aiming to pave the way for the development of new selective drugs that act upon the ER to counter inflammation-related chronic diseases. Starting from a library of 134 compounds of natural occurrence, mostly occurring in medicinal plants, nontoxic molecules were screened for their inhibitory capacity against LPS-induced nuclear factor kappa B (NF-κB) activation in a luciferase-based reporter gene assay. Since several natural products inhibited NF-κB expression in THP-1 macrophages, their effect on reactive oxygen species (ROS) production and inflammasome activation was assessed, as well as their transcriptional outcome regarding ER stress. The bioactivities of several natural products are described herein for the first time. We report the anti-inflammatory potential of guaiazulene and describe 5-deoxykaempferol as a novel inhibitor of inflammasome activation. Furthermore, we describe the dual potential of 5-deoxykaempferol, berberine, guaiazulene, luteolin-4'-O-glucoside, myricetin, quercetagetin and sennoside B to modulate inflammatory signaling ER stress. Our results show that natural products are promising molecules for the discovery and pharmaceutical development of chemical entities able to modulate the inflammatory response, as well as proteostasis and the UPR.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal.
| |
Collapse
|
18
|
Zhang P, Li W, Zheng X, Luo H, Liu Q, Long Q, Yan Q, Yuan X. Endoplasmic reticulum stress and death receptor-mediated apoptosis in the neuronal differentiation of adult adipose-derived stromal cells. Heliyon 2024; 10:e28608. [PMID: 38586331 PMCID: PMC10998070 DOI: 10.1016/j.heliyon.2024.e28608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Apoptosis is the primary cause of cell death in the differentiation of Adipose-derived stromal cells (ADSCs) into neurons. However, the relationship between endoplasmic reticulum stress (ERS) and death receptor-mediated apoptosis in ADSC-induced neuronal differentiation is not clear. ADSCs were isolated and induced to differentiate into neurons using β-mercaptoethanol. The expression of neuron-specific enolase (NSE), GRP94, CHOP, Fas/FasL, TNFR1/TNF-α, DR5/TRAIL, Caspase8, and Caspase3 in ADSCs was examined using immunocytochemistry and Western blotting before induction, during pre-induction, and after induction. Transmission electron microscopy (TEM) was used to observe changes in the morphology of the endoplasmic reticulum (ER), and the MTT assay was employed to measure cell viability in the uninduced and induced groups. Additionally, the number of apoptotic cells during the induction process was measured using flow cytometry with Annexin V/PI. With increasing induction time, the positive expression rates of CHOP, Fas/FasL, Caspase8, Caspase-3, and NSE gradually increased, while the positive expression rate of GRP94 decreased. TNFR1/TNF-α and DR5/TRAIL peaked at 5 h post-induction and then decreased at 8 h. TEM revealed swelling and expansion of the ER, vacuolar changes, and degranulation in cells. The MTT assay showed a gradual decrease in the absorbance of surviving cells in all groups. Flow cytometry indicated an increasing rate of apoptosis in cells. Therefore, ERS in the normal culture and growth of ADSCs, manifesting as enhanced unfolded protein response (UPR), maintains the normal survival of ADSCs. However, in the process of ADSC-induced differentiation into neurons, ERS and death receptor-mediated apoptosis are significant causes of cell death.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Wen Li
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Xinyue Zheng
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Hongjie Luo
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Qing Liu
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Qingxi Long
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Qi Yan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
- Hebei Provincial Key Laboratory of Neurobiological Function, China
| | - Xiaodong Yuan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, China
| |
Collapse
|
19
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
20
|
AlBashtawi J, Al-Jaber H, Ahmed S, Al-Mansoori L. Impact of Obesity-Related Endoplasmic Reticulum Stress on Cancer and Associated Molecular Targets. Biomedicines 2024; 12:793. [PMID: 38672148 PMCID: PMC11047871 DOI: 10.3390/biomedicines12040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity, characterized by excessive body fat, is closely linked to endoplasmic reticulum (ER) stress, leading to insulin resistance and type 2 diabetes. Inflammatory pathways like c-Jun N-terminal kinase (JNK) worsen insulin resistance, impacting insulin signaling. Moreover, ER stress plays a substantial role in cancer, influencing tumor cell survival and growth by releasing factors like vascular endothelial growth factor (VEGF). The unfolded protein response (UPR) is pivotal in this process, offering both pro-survival and apoptotic pathways. This review offers an extensive exploration of the sophisticated connection between ER stress provoked by obesity and its role in both the onset and advancement of cancer. It delves into the intricate interplay between oncogenic signaling and the pathways associated with ER stress in individuals who are obese. Furthermore, this review sheds light on potential therapeutic strategies aimed at managing ER stress induced by obesity, with a focus on addressing cancer initiation and progression. The potential to alleviate ER stress through therapeutic interventions, which may encompass the use of small molecules, FDA-approved medications, and gene therapy, holds great promise. A more in-depth examination of pathways such as UPR, ER-associated protein degradation (ERAD), autophagy, and epigenetic regulation has the potential to uncover innovative therapeutic approaches and the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Joud AlBashtawi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Sara Ahmed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| |
Collapse
|
21
|
Kaphalia L, Srinivasan MP, Kaphalia BS, Calhoun WJ. Alcohol and its metabolites dysregulate cellular bioenergetics and induce oxidative and endoplasmic reticulum stress in primary human bronchial epithelial cells. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:596-611. [PMID: 38339830 PMCID: PMC11015980 DOI: 10.1111/acer.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Chronic alcohol consumption/misuse is a significant risk factor for pneumonia and lung infection leading to the development of chronic pulmonary disorders such as chronic obstructive pulmonary disease (COPD) and lung fibrosis. In this study, we sought to delineate the mechanism of alcohol-associated lung disease. We did so by measuring in vitro mitochondrial, endoplasmic reticulum (ER) oxidative stress in human bronchial epithelial cells (hBECs) treated with ethanol and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters or FAEEs) metabolites. METHODS Primary hBECs from a normal subject were treated with relevant concentrations of ethanol and its metabolites and incubated at 37°C for 24 h. Viability and cytotoxicity were determined using cell viability and lactate dehydrogenase (LDH) assay kits, respectively. Oxidized glutathione (GSSG) and reduced glutathione (GSH) were measured by colorimetric reaction, and 4-hydroxynenonal (4HNE) by immunohistochemistry. Endoplasmic reticulum stress and dysregulated cellular bioenergetics were determined by western blot analysis. Mitochondrial stress and real-time ATP production rates were determined using a Seahorse Extracellular Flux analyzer. Amelioration of ethanol-induced oxidative/ER stress and mitochondrial energetics was determined using an AMPKα agonist. RESULTS Human bronchial epithelial cells treated with ethanol, acetaldehyde, and FAEEs showed a concentration-dependent increase in the secretion of LDH, oxidative/ER stress, deactivation of AMPKα phosphorylation and mitochondrial stress (decreased spare respiratory capacity) with concomitant decreases in mitochondrial and glycolytic ATP production rates. FAEEs caused greater cytotoxicity, ER stress, and dysregulated cellular bioenergetics than those ethanol and its oxidative metabolite. AMPKα agonist-pretreated cells significantly ameliorated ethanol-induced oxidative/ER stress, deactivation of AMPKα, and dysregulated cellular bioenergetics. CONCLUSIONS Findings of this study suggest that ethanol and its metabolites contribute to cytotoxicity, oxidative/ER stress, and dysregulation of cellular bioenergetics in hBECs. The attenuation of ethanol-induced ER/oxidative stress and mitochondrial respiration by an AMPKα agonist may reflect a potential for it to be developed as a therapeutic agent for chronic alcohol-associated lung disease.
Collapse
Affiliation(s)
- Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - William J Calhoun
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
22
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
23
|
Horibe I, Izumi S, Ke Y, Tanahashi N, Takagi Y, Ishihara R, Nakano T, Sumiyoshi T, Nagaoka Y. Acquired curved hair is caused by fusion of multiple hair matrix cells. J Dermatol Sci 2024; 113:130-137. [PMID: 38431439 DOI: 10.1016/j.jdermsci.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND "Curved hair" caused by acquired factors is considered to have adverse cosmetic effects, but the detailed mechanism behind curved hair remains obscure. OBJECTIVE We attempted to clarify the causes of curved hair that appeared to have occurred via acquired factors. METHODS Outer root sheath cells (ORSC) isolated from plucked human hair follicles were used to evaluate the expression of type IV collagen. Straight and curved hairs with hair follicle tissue attached were also collected from the same individuals and subjected to morphological, immunohistochemical, and gene expression analyses. RESULTS The amount of type IV collagen increased upon inducing endoplasmic reticulum stress in ORSC. Meanwhile, in curved hair follicle tissue, the gene expression of type IV collagen decreased. In addition, the curved hair follicle tissue obtained from participants in their 30 s to 50 s had distorted shapes compared with that of straight hair from the same individuals. It was also observed that hair matrix cells based on multiple hair germs fused to eventually form a single hair follicle and hair shaft. In curved hair follicle tissue, KRT71 protein, a marker of inner root sheath differentiation, was unevenly distributed and there was elevated expression of Dickkopf-1 (DKK1) protein, an inhibitor of the Wnt signaling pathway. CONCLUSION Our study revealed the fusion of hair matrix cells during hair follicle regeneration as a cause of acquired curved hair. We consider that such fusion causes hair follicle tissue to abnormally differentiate, resulting in asymmetric hair follicle shapes and curved hair.
Collapse
Affiliation(s)
- Ippei Horibe
- Research & Development Division, NAKANO SEIYAKU Co., Ltd., Kyoto, Japan.
| | - Sara Izumi
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| | - Yuru Ke
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| | - Nanami Tanahashi
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| | - Yusuke Takagi
- Research & Development Division, NAKANO SEIYAKU Co., Ltd., Kyoto, Japan
| | - Ryoji Ishihara
- Research & Development Division, NAKANO SEIYAKU Co., Ltd., Kyoto, Japan
| | - Takaya Nakano
- Research & Development Division, NAKANO SEIYAKU Co., Ltd., Kyoto, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Kansai University, Osaka, Japan
| |
Collapse
|
24
|
Al-Daghestani H, Qaisar R, Al Kawas S, Ghani N, Rani KGA, Azeem M, Hasnan HK, Kassim NK, Samsudin AR. Pharmacological inhibition of endoplasmic reticulum stress mitigates osteoporosis in a mouse model of hindlimb suspension. Sci Rep 2024; 14:4719. [PMID: 38413677 PMCID: PMC10899598 DOI: 10.1038/s41598-024-54944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Hindlimb suspension (HLS) mice exhibit osteoporosis of the hindlimb bones and may be an excellent model to test pharmacological interventions. We investigated the effects of inhibiting endoplasmic reticulum (ER) stress with 4-phenyl butyrate (4-PBA) on the morphology, physicochemical properties, and bone turnover markers of hindlimbs in HLS mice. We randomly divided 21 male C57BL/6J mice into three groups, ground-based controls, untreated HLS group and 4-PBA treated group (HLS+4PBA) (100mg/kg/day, intraperitoneal) for 21 days. We investigated histopathology, micro-CT imaging, Raman spectroscopic analysis, and gene expression. Untreated HLS mice exhibited reduced osteocyte density, multinucleated osteoclast-like cells, adipocyte infiltration, and reduced trabecular striations on micro-CT than the control group. Raman spectroscopy revealed higher levels of ER stress, hydroxyproline, non-collagenous proteins, phenylalanine, tyrosine, and CH2Wag as well as a reduction in proteoglycans and adenine. Furthermore, bone alkaline phosphatase and osteocalcin were downregulated, while Cathepsin K, TRAP, and sclerostin were upregulated. Treatment with 4-PBA partially restored normal bone histology, increased collagen crosslinking, and mineralization, promoted anti-inflammatory markers, and downregulated bone resorption markers. Our findings suggest that mitigating ER stress with 4-PBA could be a therapeutic intervention to offset osteoporosis in conditions mimicking hindlimb suspension.
Collapse
Affiliation(s)
- Hiba Al-Daghestani
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Nurhafizah Ghani
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - K G Aghila Rani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Azeem
- Department of Mathematical and Physical Sciences, University of Nizwa, Nizwa 33, Sultanate of Oman
| | - Hijaz Kamal Hasnan
- Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Karyatee Kassim
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - A R Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
25
|
Jia J, Zhu L, Yue X, Tang S, Jing S, Tan C, Du Y, Gao J, Lee I, Qian Y. Crosstalk between KDEL receptor and EGF receptor mediates cell proliferation and migration via STAT3 signaling. Cell Commun Signal 2024; 22:140. [PMID: 38378560 PMCID: PMC10880305 DOI: 10.1186/s12964-024-01517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Hostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones. By combining proximity-based mass spectrometry analysis, split venus imaging and membrane yeast two hybrid assay, we present that EGF receptor (EGFR) may be a co-receptor for KDELR on the surface. Prior to ligand addition, KDELR spontaneously oligomerizes and constantly undergoes recycling near the plasma membrane. Upon KDEL ligand binding, the interactions of KDELR with itself and with EGFR increase rapidly, leading to augmented internalization of KDELR and tyrosine phosphorylation in the C-terminus of EGFR. STAT3, which binds the phosphorylated tyrosine motif on EGFR, is subsequently activated by EGFR and mediates cell growth and migration. Taken together, our results suggest that KDELR serves as a bona fide cell surface receptor for secreted ER chaperones and transactivates EGFR-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuocheng Tang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
- Present address: Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
26
|
Martini A, Turato C, Cannito S, Quarta S, Biasiolo A, Ruvoletto M, Novo E, Marafatto F, Guerra P, Tonon M, Clemente N, Bocca C, Piano SS, Guido M, Gregori D, Parola M, Angeli P, Pontisso P. The polymorphic variant of SerpinB3 (SerpinB3-PD) is associated with faster cirrhosis decompensation. Aliment Pharmacol Ther 2024; 59:380-392. [PMID: 37990490 DOI: 10.1111/apt.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND SerpinB3 is a cysteine protease inhibitor involved in liver disease progression due to its proinflammatory and profibrogenic properties. The polymorphic variant SerpinB3-PD (SB3-PD), presents a substitution in its reactive centre loop, determining the gain of function. AIMS To disclose the clinical characteristics of a cohort of patients with cirrhosis in relation to the presence of SB3-PD and to assess the effect of this genetic variant on fibrogenic and inflammatory cytokines in vitro. METHODS We assessed SB3 polymorphism in 90 patients with cirrhosis, prospectively followed up in our referral centre. We used HepG2 and HuH-7 cells transfected to overexpress either wild-type SB3 (SB3-WT) or SB3-PD to assess their endogenous effect, while LX2 and THP-1 cells were treated with exogenous SB3-WT or SB3-PD proteins. RESULTS Patients carrying SB3-PD had more severe portal hypertension and higher MELD scores, than patients carrying SB3-WT. In multivariate analysis, SB3-PD was an independent predictor of cirrhosis complications. Patients with SB3-PD polymorphism presented with more severe liver fibrosis and inflammatory features. Hepatoma cells overexpressing SB3-PD showed higher TGF-β1 expression than controls. The addition of recombinant SB3-PD induced an up-regulation of TGF-β1 in LX2 cells and a more prominent inflammatory profile in THP-1 cells, compared to the effect of SB3-WT protein. CONCLUSIONS The polymorphic variant SB3-PD is highly effective in determining activation of TGF-β1 and inflammation in vitro. Patients with cirrhosis who carry SB3-PD polymorphism may be more prone to develop severe liver disease progression. However, further validation studies are warranted to support the in vivo relevance of this polymorphism.
Collapse
Affiliation(s)
- Andrea Martini
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Santina Quarta
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Alessandra Biasiolo
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Mariagrazia Ruvoletto
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Erica Novo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Filippo Marafatto
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Marta Tonon
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Nausicaa Clemente
- Department of Health Science, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Claudia Bocca
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Salvatore Silvio Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Maria Guido
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maurizio Parola
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
- European Reference Network - ERN RARE-LIVER, Department of Medicine, Azienda Ospedaliera-Università, Padova, Italy
| |
Collapse
|
27
|
Nandwani A, Rathore S, Datta M. LncRNA H19 inhibition impairs endoplasmic reticulum-mitochondria contact in hepatic cells and augments gluconeogenesis by increasing VDAC1 levels. Redox Biol 2024; 69:102989. [PMID: 38100882 PMCID: PMC10761920 DOI: 10.1016/j.redox.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Inspite of exerting independent cellular functions, the endoplasmic-reticulum (ER) and the mitochondria also physically connect at specific sites termed mitochondria-associated ER membranes (MAMs) and these sites consist of several tethering proteins that play varied roles in diverse cellular processes. However, the regulation of these tethering proteins within the cell is relatively less studied. Here, we show that several MAM proteins are significantly altered in the liver during diabetes and among these, the lncRNA, H19 regulates the levels of VDAC1. Inhibition of H19 expression using H19 specific siRNA altered VDAC1, mitochondrial Ca2+ and oxygen consumption rate, ATP and ROS levels and enhanced ER and mitochondria coupling in Hepa 1-6 cells. While H19 inhibition did not impact lipid accumulation, levels of gluconeogenic genes were significantly increased. JNK-phosphorylation and IRS1-Ser307-phosphorylation were increased by H19 inhibition and this was associated with abrogation of insulin-stimulated AKT (Ser-473) phosphorylation and glucose uptake in Hepa 1-6 cells. While inhibition of VDAC1 expression using siRNAs and with metformin significantly rescued the effects of H19 inhibition, VDAC1 overexpression alone exerted effects similar to H19 inhibition, suggesting that VDAC1 increase mediates the adverse effects of H19. In-vivo H19 inhibition using specific siRNAs increased hepatic VDAC1, pJNK and pIRS1 (Ser307) levels and decreased AKT (Ser-473) phosphorylation in mice. These suggest an important role of the H19-VDAC1 axis in ER-mitochondria coupling and regulation of gluconeogenesis in the liver during diabetes.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
28
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
29
|
Zhang Z, Fu X, Zhou F, Zhang D, Xu Y, Fan Z, Wen S, Shao Y, Yao Z, He Y. Huaju Xiaoji Formula Regulates ERS-lncMGC/miRNA to Enhance the Renal Function of Hypertensive Diabetic Mice with Nephropathy. J Diabetes Res 2024; 2024:6942156. [PMID: 38282657 PMCID: PMC10821808 DOI: 10.1155/2024/6942156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Better therapeutic drugs are required for treating hypertensive diabetic nephropathy. In our previous study, the Huaju Xiaoji (HJXJ) formula promoted the renal function of patients with diabetes and hypertensive nephropathy. In this study, we investigated the therapeutic effect and regulation mechanism of HJXJ in hypertensive diabetic mice with nephropathy. Methods We constructed a mouse hypertensive diabetic nephropathy (HDN) model by treating mice with streptozotocin (STZ) and nomega-nitro-L-arginine methyl ester (LNAME). We also constructed a human glomerular mesangial cell (HGMC) model that was induced by high doses of sugar (30 mmol/mL) and TGFβ1 (5 ng/mL). Pathological changes were evaluated by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and Masson staining. The fibrosis-related molecules (TGFβ1, fibronectin, laminin, COL I, COL IV, α-SMA, and p-smad2/3) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA levels and protein expression of endoplasmic reticulum stress, fibrosis molecules, and their downstream molecules were assessed using qPCR and Western blotting assays. Results Administering HJXJ promoted the renal function of HDN mice. HJXJ reduced the expression of ER stress makers (CHOP and GRP78) and lncMGC, miR379, miR494, miR495, miR377, CUGBP2, CPEB4, EDEM3, and ATF3 in HDN mice and model HGMCs. The positive control drugs (dapagliflozin and valsartan) also showed similar effects after treatment with HJXJ. Additionally, in model HGMCs, the overexpression of CHOP or lncMGC decreased the effects of HJXJ-M on the level of fibrosis molecules and downstream target molecules. Conclusion In this study, we showed that the HJXJ formula may regulate ERS-lncMGC/miRNA to enhance renal function in hypertensive diabetic mice with nephropathy. This study may act as a reference for further investigating whether combining HJXJ with other drugs can enhance its therapeutic effect. The findings of this study might provide new insights into the clinical treatment of hypertensive diabetic nephropathy with HJXJ.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Fu
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanqiu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhaohua Fan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shimei Wen
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanting Shao
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Yao
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
30
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
31
|
Wang J, Jin J, Li G. NR3C2 activates LCN2 transcription to promote endoplasmic reticulum stress and cell apoptosis in ischemic cerebral infarction. Brain Res 2024; 1822:148632. [PMID: 37832761 DOI: 10.1016/j.brainres.2023.148632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Endoplasmic reticulum (ER) stress can lead to cell death and worsen tissue damage during ischemic events. Nuclear receptor subfamily 3 group C member 2 (NR3C2) and lipocalin 2 (LCN2) are known to be associated with ER stress. In this study, we obtained a potential interaction between NR3C2 and LCN2 through bioinformatics. The primary objective was to investigate their roles and interactions in the context of ER stress in ischemic cerebral infarction (ICI). A mouse model of ICI was generated by middle cerebral artery occlusion, resulting in elevated levels of NR3C2 and LCN2 in brain tissues. NR3C2 bound to the LCN2 promoter, thereby activating its transcription. Either knockdown of LCN2 or NR3C2 led to an improvement in neurologic deficits in mice, along with a reduction in infract size, tissue damage, ER stress, inflammation, and cell apoptosis in their brain tissues. Similar results were reproduced in HT22 cells, where LCN2 or NR3C2 knockdown alleviated oxygen-glucose deprivation-induced ER stress, inflammation, and cell apoptosis while improving cell viability. However, the protective effects of NR3C2 knockdown were counteracted when LCN2 was overexpressed, both in vitro and in vivo. Overall, this study demonstrates that NR3C2 activates LCN2 transcription, ultimately promoting ER stress and cell apoptosis in the context of ICI.
Collapse
Affiliation(s)
- Jianxiu Wang
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China
| | - Jing Jin
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China
| | - Guozhong Li
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
32
|
Nishiguchi H, Omura T, Sato A, Kitahiro Y, Yamamoto K, Kunimasa J, Yano I. Luteolin Protects Against 6-Hydoroxydopamine-Induced Cell Death via an Upregulation of HRD1 and SEL1L. Neurochem Res 2024; 49:117-128. [PMID: 37632637 PMCID: PMC10776467 DOI: 10.1007/s11064-023-04019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Parkinson's Disease (PD) is caused by many factors and endoplasmic reticulum (ER) stress is considered as one of the responsible factors for it. ER stress induces the activation of the ubiquitin-proteasome system to degrade unfolded proteins and suppress cell death. The ubiquitin ligase 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation 1 (HRD1) and its stabilizing molecule, the suppressor/enhancer lin-12-like (SEL1L), can suppress the ER stress via the ubiquitin-proteasome system, and that HRD1 can also suppress cell death in familial and nonfamilial PD models. These findings indicate that HRD1 and SEL1L might be key proteins for the treatment of PD. Our study aimed to identify the compounds with the effects of upregulating the HRD1 expression and suppressing neuronal cell death in a 6-hydroxydopamine (6-OHDA)-induced cellular PD model. Our screening by the Drug Gene Budger, a drug repositioning tool, identified luteolin as a candidate compound for the desired modulation of the HRD1 expression. Subsequently, we confirmed that low concentrations of luteolin did not show cytotoxicity in SH-SY5Y cells, and used these low concentrations in the subsequent experiments. Next, we demonsrated that luteolin increased HRD1 and SEL1L mRNA levels and protein expressions. Furthermore, luteolin inhibited 6-OHDA-induced cell death and suppressed ER stress response caused by exposure to 6-OHDA. Finally, luteolin did not reppress 6-OHDA-induced cell death when expression of HRD1 or SEL1L was suppressed by RNA interference. These findings suggest that luteolin might be a novel therapeutic agent for PD due to its ability to suppress ER stress through the activation of HRD1 and SEL1L.
Collapse
Affiliation(s)
- Hiroki Nishiguchi
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomohiro Omura
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ayaka Sato
- Education and Research Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1, Motoyama Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yumi Kitahiro
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kazuhiro Yamamoto
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Junichi Kunimasa
- Education and Research Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1, Motoyama Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Ikuko Yano
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
33
|
Shen Y, Zhao W, Bao Y, Zhu J, Jiao L, Duan X, Pan T, Monroig Ó, Zhou Q, Jin M. Molecular cloning and characterization of endoplasmic reticulum stress related genes grp78 and atf6α from black seabream (Acanthopagrus schlegelii) and their expressions in response to nutritional regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1115-1128. [PMID: 37855969 DOI: 10.1007/s10695-023-01242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.
Collapse
Affiliation(s)
- Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiayun Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xuemei Duan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595, Castellón, Spain
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
34
|
Wu J, Lin C, Yang C, Pan L, Liu H, Zhu S, Wei S, Jia X, Zhang Q, Yu Z, Zhao X, Liu W, Zhuo Y, Wang N. Identification and validation of key biomarkers and potential therapeutic targets for primary open-angle glaucoma. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2837-2850. [PMID: 37610681 DOI: 10.1007/s11427-022-2344-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/06/2023] [Indexed: 08/24/2023]
Abstract
Primary open-angle glaucoma (POAG) is a prevalent cause of blindness worldwide, resulting in degeneration of retinal ganglion cells and permanent damage to the optic nerve. However, the underlying pathogenetic mechanisms of POAG are currently indistinct, and there has been no effective nonsurgical treatment regimen. The objective of this study is to identify novel biomarkers and potential therapeutic targets for POAG. The mRNA expression microarray datasets GSE27276 and GSE138125, as well as the single-cell high-throughput RNA sequencing (scRNA-seq) dataset GSE148371 were utilized to screen POAG-related differentially expressed genes (DEGs). Functional enrichment analyses, protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA) of the DEGs were performed. Subsequently, the hub genes were validated at a single-cell level, where trabecular cells were annotated, and the mRNA expression levels of target genes in different cell clusters were analyzed. Immunofluorescence and quantitative real-time PCR (qPCR) were performed for further validation. DEGs analysis identified 43 downregulated and 32 upregulated genes in POAG, which were mainly enriched in immune-related pathways, oxidative stress, and endoplasmic reticulum (ER) stress. PPI networks showed that FN1 and DUSP1 were the central hub nodes, while GPX3 and VAV3 were screened out as hub genes through WGCNA and subsequently validated by qPCR. Finally, FN1, GPX3, and VAV3 were determined to be pivotal core genes via single-cell validation. The relevant biomarkers involved in the pathogenesis of POAG, may serve as potential therapeutic targets. Further studies are necessary to unveil the mechanisms underlying the expression variations of these genes in POAG.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Caixia Lin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, 100191, China
- North America Medical Education Foundation, Union City, CA, 94539, USA
| | - Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Hongyi Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Sirui Zhu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Shuwen Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Xu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ziyu Yu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, 100191, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| |
Collapse
|
35
|
Liu M, Honjo M, Yamagishi R, Aihara M. Effects of Brimonidine, Omidenepag Isopropyl, and Ripasudil Ophthalmic Solutions to Protect against H 2O 2-Induced Oxidative Stress in Human Trabecular Meshwork Cells. Curr Eye Res 2023; 48:1014-1025. [PMID: 37466387 DOI: 10.1080/02713683.2023.2235892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE We investigated whether hydrogen peroxide (H2O2)-induced oxidative stress causes human trabecular meshwork (HTM) cell dysfunction observed in open angle glaucoma (OAG) in vitro, and the effects of topical glaucoma medications on oxidative stress in HTM cells. METHODS We used commercially available ophthalmic solutions of brimonidine, omidenepag isopropyl, and ripasudil in the study. HTM cells were exposed to H2O2 for 1 h, with or without glaucoma medications. We assessed cell viability and senescence via WST-1 and senescence-associated-β-galactosidase (SA-β-Gal) activity assays. After exposure to H2O2 and glaucoma medications, we evaluated changes in markers of fibrosis and stress by using real-time quantitative polymerase chain reaction (qPCR) to measure the mRNA levels of collagen type I alpha 1 chain (COL1A1), fibronectin, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), endoplasmic reticulum stress markers of C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and splicing X-box binding protein-1 (sXBP-1). RESULTS HTM cell viability decreased and SA-β-Gal activity increased significantly after exposure to H2O2. Treatment with three ophthalmic solutions attenuated these changes. Real-time qPCR revealed that H2O2 upregulated the mRNA levels of COL1A1, fibronectin, α-SMA, CHOP, GRP78, and sXBP-1, whereas it downregulated MMP-2 mRNA expression significantly. Brimonidine suppressed the upregulation of stress markers CHOP and GRP78. Additionally, omidenepag isopropyl and ripasudil decreased the upregulation of COL1A1 and sXBP-1. Furthermore, ripasudil significantly suppressed fibrotic markers fibronectin and α-SMA, compared with the other two medications. CONCLUSION In vitro, H2O2 treatment of HTM cells induced characteristic changes of OAG, such as fibrosis changes and the upregulation of stress markers. These glaucomatous changes were attenuated by additional treatments with brimonidine, omidenepag isopropyl, and ripasudil ophthalmic solutions.
Collapse
Affiliation(s)
- Mengxuan Liu
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Wu D, Zhang D, Yin H, Zhang B, Xing J. Meta-analysis of the effects of inert gases on cerebral ischemia-reperfusion injury. Sci Rep 2023; 13:16896. [PMID: 37803128 PMCID: PMC10558482 DOI: 10.1038/s41598-023-43859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Recently, noble gas has become a hot spot within the medical field like respiratory organ cerebral anemia, acute urinary organ injury and transplantation. However, the shield performance in cerebral ischemia-reperfusion injury (CIRI) has not reached an accord. This study aims to evaluate existing evidence through meta-analysis to determine the effects of inert gases on the level of blood glucose, partial pressure of oxygen, and lactate levels in CIRI. We searched relevant articles within the following both Chinese and English databases: PubMed, Web of science, Embase, CNKI, Cochrane Library and Scopus. The search was conducted from the time of database establishment to the end of May 2023, and two researchers independently entered the data into Revman 5.3 and Stata 15.1. There were total 14 articles were enclosed within the search. The results showed that the amount of partial pressure of blood oxygen in the noble gas cluster was beyond that in the medicine gas cluster (P < 0.05), and the inert gas group had lower lactate acid and blood glucose levels than the medical gas group. The partial pressure of oxygen (SMD = 1.51, 95% CI 0.10 ~ 0.91 P = 0.04), the blood glucose level (SMD = - 0.59, 95% CI - 0.92 ~ - 0.27 P = 0.0004) and the lactic acid level (SMD = - 0.42, 95% CI - 0.80 ~ - 0.03 P = 0.03) (P < 0.05). These results are evaluated as medium-quality evidence. Inert gas can effectively regulate blood glucose level, partial pressure of oxygen and lactate level, and this regulatory function mainly plays a protective role in the small animal ischemia-reperfusion injury model. This finding provides an assessment and evidence of the effectiveness of inert gases for clinical practice, and provides the possibility for the application of noble gases in the treatment of CIRI. However, more operations are still needed before designing clinical trials, such as the analysis of the inhalation time, inhalation dose and efficacy of different inert gases, and the effective comparison of the effects in large-scale animal experiments.
Collapse
Affiliation(s)
- Di Wu
- Department of Emergency Medicine, The First Hospital of Jilin University, No.71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Daoyu Zhang
- The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hang Yin
- Baicheng Medical College, Baicheng, 137000, Jilin, China
| | - Bo Zhang
- The Second Foreign Department, Corps Hospital of the Chinese People's Armed Police Force of Jilin Province, Changchun, 130052, Jilin, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, No.71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
37
|
Shreya S, Grosset CF, Jain BP. Unfolded Protein Response Signaling in Liver Disorders: A 2023 Updated Review. Int J Mol Sci 2023; 24:14066. [PMID: 37762367 PMCID: PMC10531763 DOI: 10.3390/ijms241814066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endoplasmic reticulum (ER) is the site for synthesis and folding of secreted and transmembrane proteins. Disturbance in the functioning of ER leads to the accumulation of unfolded and misfolded proteins, which finally activate the unfolded protein response (UPR) signaling. The three branches of UPR-IRE1 (Inositol requiring enzyme 1), PERK (Protein kinase RNA-activated (PKR)-like ER kinase), and ATF6 (Activating transcription factor 6)-modulate the gene expression pattern through increased expression of chaperones and restore ER homeostasis by enhancing ER protein folding capacity. The liver is a central organ which performs a variety of functions which help in maintaining the overall well-being of our body. The liver plays many roles in cellular physiology, blood homeostasis, and detoxification, and is the main site at which protein synthesis occurs. Disturbance in ER homeostasis is triggered by calcium level imbalance, change in redox status, viral infection, and so on. ER dysfunction and subsequent UPR signaling participate in various hepatic disorders like metabolic (dysfunction) associated fatty liver disease, liver cancer, viral hepatitis, and cholestasis. The exact role of ER stress and UPR signaling in various liver diseases is not fully understood and needs further investigation. Targeting UPR signaling with drugs is the subject of intensive research for therapeutic use in liver diseases. The present review summarizes the role of UPR signaling in liver disorders and describes why UPR regulators are promising therapeutic targets.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, Bihar, India;
| | - Christophe F. Grosset
- MIRCADE Team, U1312, Bordeaux Institute in Oncology, BRIC, Université de Bordeaux, 146 Rue Léo Saignat, F-33000 Bordeaux, France
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, Bihar, India;
| |
Collapse
|
38
|
Zhong M, Wu Z, Chen Z, Ren Q, Zhou J. Advances in the interaction between endoplasmic reticulum stress and osteoporosis. Biomed Pharmacother 2023; 165:115134. [PMID: 37437374 DOI: 10.1016/j.biopha.2023.115134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the main site for protein synthesis, folding, and secretion, and accumulation of the unfolded/misfolded proteins in the ER may induce ER stress. ER stress is an important participant in various intracellular signaling pathways. Prolonged- or high-intensity ER stress may induce cell apoptosis. Osteoporosis, characterized by imbalanced bone remodeling, is a global disease caused by many factors, such as ER stress. ER stress stimulates osteoblast apoptosis, increases bone loss, and promotes osteoporosis development. Many factors, such as the drug's adverse effects, metabolic disorders, calcium ion imbalance, bad habits, and aging, have been reported to activate ER stress, resulting in the pathological development of osteoporosis. Increasing evidence shows that ER stress regulates osteogenic differentiation, osteoblast activity, and osteoclast formation and function. Various therapeutic agents have been developed to counteract ER stress and thereby suppress osteoporosis development. Thus, inhibition of ER stress has become a potential target for the therapeutic management of osteoporosis. However, the in-depth understanding of ER stress in the pathogenesis of osteoporosis still needs more effort.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
39
|
Petrohilos C, Patchett A, Hogg CJ, Belov K, Peel E. Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells. Sci Rep 2023; 13:12698. [PMID: 37542170 PMCID: PMC10403513 DOI: 10.1038/s41598-023-39901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells. Four cathelicidins (Saha-CATH3, 4, 5 and 6) were toxic to DFTD cells and caused general signs of cellular stress. The most toxic peptide (Saha-CATH5) also suppressed the ERBB and YAP1/TAZ signaling pathways, both of which have been identified as important drivers of cancer proliferation. Three cathelicidins induced inflammatory pathways in DFTD cells that may potentially recruit immune cells in vivo. This study suggests that devil cathelicidins have some anti-cancer and inflammatory functions and should be explored further to determine whether they have potential as treatment leads.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Amanda Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M, Safaralizadeh R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Pract 2023; 248:154706. [PMID: 37499516 DOI: 10.1016/j.prp.2023.154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
When large amounts of misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER) in response to stress, a process called unfolded protein response (UPR) is activated. The disruption of this process leads to many diseases including diabetes, neurodegenerative diseases, and many cancers. In the process of UPR in response to stress and unfolded proteins, specific signaling pathways are induced in the endoplasmic reticulum and subsequently transmitted to the nucleus and cytoplasm, causing homeostasis and restoring the cell's normal condition with reducing protein translation and synthesis. The UPR response followed by stress enhancement balances cell survival with death, therefore in this condition cells decide either to survive or have the path of apoptosis ahead. However, in some cases, this balance is disturbed and the UPR pathway is chronically activated or not activated and the cell conditions lead to cancer. This study aimed to briefly investigate the association between ER stress, UPR, apoptosis, and autophagy in colorectal cancer (CRC). Moreover, in current study, we will try to demonstrate canonical ways and methods for the treatment of CRC cells with attenuated ER stress.
Collapse
Affiliation(s)
| | | | - Iraj Alipourfard
- Insttue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia, Katowice, Poland
| | - Peyman Hassani
- DVM Graduated, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
41
|
Klyosova E, Azarova I, Buikin S, Polonikov A. Differentially Expressed Genes Regulating Glutathione Metabolism, Protein-Folding, and Unfolded Protein Response in Pancreatic β-Cells in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:12059. [PMID: 37569434 PMCID: PMC10418503 DOI: 10.3390/ijms241512059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Impaired redox homeostasis in the endoplasmic reticulum (ER) may contribute to proinsulin misfolding and thus to activate the unfolded protein response (UPR) and apoptotic pathways, culminating in pancreatic β-cell loss and type 2 diabetes (T2D). The present study was designed to identify differentially expressed genes (DEGs) encoding enzymes for glutathione metabolism and their impact on the expression levels of genes regulating protein folding and UPR in β-cells of T2D patients. The GEO transcriptome datasets of β-cells of diabetics and non-diabetics, GSE20966 and GSE81608, were analyzed for 142 genes of interest using limma and GREIN software, respectively. Diabetic β-cells showed dataset-specific patterns of DEGs (FDR ≤ 0.05) implicated in the regulation of glutathione metabolism (ANPEP, PGD, IDH2, and CTH), protein-folding (HSP90AB1, HSP90AA1, HSPA1B, HSPA8, BAG3, NDC1, NUP160, RLN1, and RPS19BP1), and unfolded protein response (CREB3L4, ERP27, and BID). The GCLC gene, encoding the catalytic subunit of glutamate-cysteine ligase, the first rate-limiting enzyme of glutathione biosynthesis, was moderately down-regulated in diabetic β-cells from both datasets (p ≤ 0.05). Regression analysis established that genes involved in the de novo synthesis of glutathione, GCLC, GCLM, and GSS affect the expression levels of genes encoding molecular chaperones and those involved in the UPR pathway. This study showed for the first time that diabetic β-cells exhibit alterations in the expression of genes regulating glutathione metabolism, protein-folding, and UPR and provided evidence for the molecular crosstalk between impaired redox homeostasis and abnormal protein folding, underlying ER stress in type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Stepan Buikin
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
- Department of Internal Diseases, Yaroslav the Wise Novgorod State University, 41 Bolshaya St. Petersburg Street, 173003 Veliky Novgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
42
|
Hao HC, Zhang G, Sun R, Xu YJ, Ge JF. Multiple organelle-targeted 1,8-naphthyridine derivatives for detecting the polarity of organelles. J Mater Chem B 2023. [PMID: 37401500 DOI: 10.1039/d3tb00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Four 1,8-naphthyridine derivatives (1a-1d) with different organelle targeting abilities were obtained using the Knoevenagel condensation reaction of 1,8-naphthyridine with 4-(N,N-diethylamino)benzaldehyde (2a), 4-(N,N-diphenylamino)benzaldehyde (2b), 4-(piperazin-1-yl)benzaldehyde (2c) and 4-(ethyl(4-formylphenyl)amino)-N-(2-((4-methylphenyl)sulfonamido)ethyl)butanamide (2d), respectively. The maximal absorption bands of dyes 1a-1d were observed at 375-447 nm, while their maximum emission peaks were situated at 495-605 nm. The optical properties showed that the fluorescence emission of dyes 1a-1d is shifted toward greater wavelengths as the system polarity (Δf) increased. Meanwhile, with increasing polarity of the mixed 1,4-dioxane/H2O system, the fluorescence intensity of dyes 1a-1d gradually decreased. Furthermore, the fluorescence intensity of 1a-1d enhanced by 12-239 fold as the polarity of 1,4-dioxane/H2O mixtures declined. 1a-1d had a large Stokes shift (up to 229 nm) in polar solvents in comparison to nonpolar solvents. The colocalization imaging experiments demonstrated that dyes 1a-1d (3-10 μM) were located in mitochondria, lipid droplets, lysosomes and the endoplasmic reticulum in living HeLa cells, respectively; and they could monitor the polarity fluctuation of the corresponding organelles. Consequently, this work proposes a molecular design idea with different organelle targeting capabilities based on the same new fluorophore, and this molecular design idea may provide more alternatives for polarity-sensitive fluorescent probes with organelle targeting.
Collapse
Affiliation(s)
- Hao-Chi Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
| | - Gang Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| |
Collapse
|
43
|
Dang TT, Kim MJ, Lee YY, Le HT, Kim KH, Nam S, Hyun SH, Kim HL, Chung SW, Chung HT, Jho EH, Yoshida H, Kim K, Park CY, Lee MS, Back SH. Phosphorylation of EIF2S1 (eukaryotic translation initiation factor 2 subunit alpha) is indispensable for nuclear translocation of TFEB and TFE3 during ER stress. Autophagy 2023; 19:2111-2142. [PMID: 36719671 PMCID: PMC10283430 DOI: 10.1080/15548627.2023.2173900] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3β: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.
Collapse
Affiliation(s)
- Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Yoon Young Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 03722, Seoul, Korea
| | - Somi Nam
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Seung Hwa Hyun
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, 678-1297, Hyogo, Japan
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, 02841, Seoul, Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science & Division of Endocrinology, Department of Internal Medicine, SIMS (Soonchunhyang Institute of Medi-bio Science) & Soonchunhyang University Hospital, Soonchunhyang University, 31151, Cheonan, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| |
Collapse
|
44
|
Peng X, Tang S, Tang D, Zhou D, Li Y, Chen Q, Wan F, Lukas H, Han H, Zhang X, Gao W, Wu S. Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy. SCIENCE ADVANCES 2023; 9:eadh1736. [PMID: 37294758 PMCID: PMC10256165 DOI: 10.1126/sciadv.adh1736] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous nanorobot capable of active mitochondria-targeted drug delivery, prepared by facilely encapsulating mitochondriotropic doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic imidazolate framework-67 (ZIF-67) nanoparticles. The catalytic ZIF-67 body can decompose bioavailable hydrogen peroxide overexpressed inside tumor cells to generate effective intracellular mitochondriotropic movement in the presence of TPP cation. This nanorobot-enhanced targeted drug delivery induces mitochondria-mediated apoptosis and mitochondrial dysregulation to improve the in vitro anticancer effect and suppression of cancer cell metastasis, further verified by in vivo evaluations in the subcutaneous tumor model and orthotopic breast tumor model. This nanorobot unlocks a fresh field of nanorobot operation with intracellular organelle access, thereby introducing the next generation of robotic medical devices with organelle-level resolution for precision therapy.
Collapse
Affiliation(s)
- Xiqi Peng
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou 515000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daitian Tang
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou 515000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Dewang Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Qiwei Chen
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou 515000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Fangchen Wan
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Song Wu
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou 515000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, P. R. China
| |
Collapse
|
45
|
Lee DE, Lee GY, Lee HM, Choi SY, Lee SJ, Kwon OS. Synergistic apoptosis by combination of metformin and an O-GlcNAcylation inhibitor in colon cancer cells. Cancer Cell Int 2023; 23:108. [PMID: 37268905 DOI: 10.1186/s12935-023-02954-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Although autophagy is an important mediator of metformin antitumor activity, the role of metformin in the crosstalk between autophagy and apoptosis remains unclear. The aim was to confirm the anticancer effect by inducing apoptosis by co-treatment with metformin and OSMI-1, an inhibitor of O-GlcNAcylation, in colon cancer cells. METHODS Cell viability was measured by MTT in colon cancer cell lines HCT116 and SW620 cells. Co-treatment with metformin and OSMI-1 induced autophagy and apoptosis, which was analyzed using western blot, reverse transcription-polymerase chain reaction (RT-PCR) analysis, and fluorescence-activated cell sorting (FACS). Combined treatment with metformin and OSMI-1 synergistically inhibit the growth of HCT116 was confirmed by xenograft tumors. RESULTS We showed that metformin inhibited mammalian target of rapamycin (mTOR) activity by inducing high levels of C/EBP homologous protein (CHOP) expression through endoplasmic reticulum (ER) stress and activating adenosine monophosphate-activated protein kinase (AMPK) to induce autophagy in HCT116 cells. Interestingly, metformin increased O-GlcNAcylation and glutamine:fructose-6-phosphate amidotransferase (GFAT) levels in HCT116 cells. Thus, metformin also blocks autophagy by enhancing O-GlcNAcylation, whereas OSMI-1 increases autophagy via ER stress. In contrast, combined metformin and OSMI-1 treatment resulted in continuous induction of autophagy and disruption of O-GlcNAcylation homeostasis, resulting in excessive autophagic flux, which synergistically induced apoptosis. Downregulation of Bcl2 promoted apoptosis via the activation of c-Jun N-terminal kinase (JNK) and CHOP overexpression, synergistically inducing apoptosis. The activation of IRE1α/JNK signaling by OSMI-1 and PERK/CHOP signaling by metformin combined to inhibit Bcl2 activity, ultimately leading to the upregulation of cytochrome c release and activation of caspase-3. CONCLUSIONS In conclusion, combinatorial treatment of HCT116 cells with metformin and OSMI-1 resulted in more synergistic apoptosis being induced by enhancement of signal activation through ER stress-induced signaling rather than the cell protective autophagy function. These results in HCT116 cells were also confirmed in xenograft models, suggesting that this combination strategy could be utilized for colon cancer treatment.
Collapse
Affiliation(s)
- Da Eun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Geun Yong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hae Min Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Su Jin Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
46
|
Correia da Silva D, Jervis PJ, Martins JA, Valentão P, Ferreira PMT, Pereira DM. Fisetin derivatives exhibit enhanced anti-inflammatory activity and modulation of endoplasmic reticulum stress. Int Immunopharmacol 2023; 119:110178. [PMID: 37068339 DOI: 10.1016/j.intimp.2023.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Inflammation and endoplasmic reticulum (ER) stress are often hand in hand in the context of chronic disease. Both are activated upon perceived disturbances in homeostasis, being deleterious when intensely or chronically activated. Fisetin (FST) is a dietary flavonol that is known to possess multiple relevant bioactivities, raising the question of its potential health benefits and even its use in novel pharmacological approaches against ER stress and inflammation. To attain this prospect, some limitations to this molecule, namely its poor bioavailability and solubility, must be addressed. In an attempt to improve the biological properties of the parent molecule, we have synthesized a set of FST derivatives. These new molecules were tested along with the original compound for their ability to mitigate the activation of the signaling pathways underlying inflammation and ER stress. By reducing LPS-induced nuclear factor-kappa B (NF-κB) activation, cytokine release, inflammasome activation and reactive oxygen species (ROS) generation, FST has proven to be effective against the onset of inflammation. The molecule also decreases the activation of the unfolded protein response (UPR), as evidenced by the reduced expression of relevant UPR-related genes upon ER stress induction. Some of the tested derivatives are novel inhibitors of targets associated to inflammation and ER stress signaling, in some cases more potent than the parent compound. Furthermore, the reduced cytotoxicity of some of these molecules enabled the use of higher concentrations than that of FST, resulting in the observation of enhanced bioactivities.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-213 Porto, Portugal
| | - Peter J Jervis
- Chemistry Centre, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - José A Martins
- Chemistry Centre, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-213 Porto, Portugal
| | - Paula M T Ferreira
- Chemistry Centre, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-213 Porto, Portugal.
| |
Collapse
|
47
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
48
|
González-Blanco L, Sierra V, Diñeiro Y, Coto-Montes A, Oliván M. Role of the endoplasmic reticulum in the search for early biomarkers of meat quality. Meat Sci 2023; 203:109224. [PMID: 37253285 DOI: 10.1016/j.meatsci.2023.109224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Defects in meat quality such as dark, firm and dry (DFD) beef have been related to high levels of oxidative stress that produce cellular alterations that may affect to the process of meat quality acquisition. Despite the important role of endoplasmic reticulum (ER) in the cellular response to oxidative stress, its function in the muscle-to-meat conversion process has not yet been studied. In this study, differences in muscular antioxidant defense and the unfolded protein response (UPR) of the ER in CONTROL (normal pH24) and dark, firm, and dry (DFD, pH24 ≥ 6.2) beef at 24 h post-mortem were analyzed to understand the changes in the muscle-to-meat conversion process related to meat quality defects. DFD meat showed poor quality, lower antioxidant activity (P < 0.05) and higher UPR activation (P < 0.05), which indicates higher oxidative stress what could partly explain the occurrence of meat quality defects. Therefore, the biomarkers of these cellular processes (IRE1α, ATF6α, and p-eIF2α) are putative biomarkers of meat quality.
Collapse
Affiliation(s)
- Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain.
| | - Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain.
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain.
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain.
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain.
| |
Collapse
|
49
|
Yang R, Zhu T, Xu J, Zhao Y, Kuang Y, Sun M, Chen Y, He W, Wang Z, Jiang T, Zhang H, Wei M. Organic Fluorescent Probes for Monitoring Micro-Environments in Living Cells and Tissues. Molecules 2023; 28:molecules28083455. [PMID: 37110689 PMCID: PMC10147038 DOI: 10.3390/molecules28083455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
As a vital parameter in living cells and tissues, the micro-environment is crucial for the living organisms. Significantly, organelles require proper micro-environment to achieve normal physiological processes, and the micro-environment in organelles can reflect the state of organelles in living cells. Moreover, some abnormal micro-environments in organelles are closely related to organelle dysfunction and disease development. So, visualizing and monitoring the variation of micro-environments in organelles is helpful for physiologists and pathologists to study the mechanisms of the relative diseases. Recently, a large variety of fluorescent probes was developed to study the micro-environments in living cells and tissues. However, the systematic and comprehensive reviews on the organelle micro-environment in living cells and tissues have rarely been published, which may hinder the research progress in the field of organic fluorescent probes. In this review, we will summarize the organic fluorescent probes for monitoring the microenvironment, such as viscosity, pH values, polarity, and temperature. Further, diverse organelles (mitochondria, lysosome, endoplasmic reticulum, cell membrane) about microenvironments will be displayed. In this process, the fluorescent probes about the "off-on" and ratiometric category (the diverse fluorescence emission) will be discussed. Moreover, the molecular designing, chemical synthesis, fluorescent mechanism, and the bio-applications of these organic fluorescent probes in cells and tissues will also be discussed. Significantly, the merits and defects of current microenvironment-sensitive probes are outlined and discussed, and the development tendency and challenges for this kind of probe are presented. In brief, this review mainly summarizes some typical examples and highlights the progress of organic fluorescent probes for monitoring micro-environments in living cells and tissues in recent research. We anticipate that this review will deepen the understanding of microenvironment in cells and tissues and facilitate the studies and development of physiology and pathology.
Collapse
Affiliation(s)
- Rui Yang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tao Zhu
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jingyang Xu
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yuang Zhao
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yawei Kuang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengni Sun
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yuqi Chen
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Wei He
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Zixing Wang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tingwang Jiang
- Department of Key Laboratory, The Second People's Hospital of Changshu, the Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Huiguo Zhang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengmeng Wei
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
50
|
Kowalczuk A, Marycz K, Kornicka J, Groborz S, Meissner J, Mularczyk M. Tetrahydrocannabivarin (THCV) Protects Adipose-Derived Mesenchymal Stem Cells (ASC) against Endoplasmic Reticulum Stress Development and Reduces Inflammation during Adipogenesis. Int J Mol Sci 2023; 24:ijms24087120. [PMID: 37108282 PMCID: PMC10138341 DOI: 10.3390/ijms24087120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The endoplasmic reticulum (ER) fulfills essential duties in cell physiology, and impairment of this organelle's functions is associated with a wide number of metabolic diseases. When ER stress is generated in the adipose tissue, it is observed that the metabolism and energy homeostasis of the adipocytes are altered, leading to obesity-associated metabolic disorders such as type 2 diabetes (T2D). In the present work, we aimed to evaluate the protective effects of Δ9-tetrahydrocannabivarin (THCV, a cannabinoid compound isolated from Cannabis sativa L.) against ER stress in adipose-derived mesenchymal stem cells. Our results show that pre-treatment with THCV prevents the subcellular alteration of cell components such as nuclei, F-actin, or mitochondria distribution, and restores cell migration, cell proliferation and colony-forming capacity upon ER stress. In addition, THCV partially reverts the effects that ER stress induces regarding the activation of apoptosis and the altered anti- and pro-inflammatory cytokine profile. This indicates the protective characteristics of this cannabinoid compound in the adipose tissue. Most importantly, our data demonstrate that THCV decreases the expression of genes involved in the unfolded protein response (UPR) pathway, which were upregulated upon induction of ER stress. Altogether, our study shows that the cannabinoid THCV is a promising compound that counters the harmful effects triggered by ER stress in the adipose tissue. This work paves the way for the development of new therapeutic means based on THCV and its regenerative properties to create a favorable environment for the development of healthy mature adipocyte tissue and to reduce the incidence and clinical outcome of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Justyna Kornicka
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - Sylwia Groborz
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Justyna Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, 55-114 Malin, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland
| |
Collapse
|