1
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Ali EAA, Hussein NA, El-Hakim AE, Amer MA, Shahein YE. Cloning and catalytic profile of Hyalomma dromedarii leucine aminopeptidase. Int J Biol Macromol 2024; 268:131778. [PMID: 38657929 DOI: 10.1016/j.ijbiomac.2024.131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to β-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.
Collapse
Affiliation(s)
- Esraa A A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Amr E El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mahmoud A Amer
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
3
|
Gao X, Tian Y, Liu ZL, Li D, Liu JJ, Yu GX, Duan DY, Peng T, Cheng TY, Liu L. Tick salivary protein Cystatin: structure, anti-inflammation and molecular mechanism. Ticks Tick Borne Dis 2024; 15:102289. [PMID: 38070274 DOI: 10.1016/j.ttbdis.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
Ticks are blood-sucking ectoparasites that secrete immunomodulatory substances in saliva to hosts during engorging. Cystatins, a tick salivary protein and natural inhibitor of Cathepsins, are attracting growing interest globally because of the immunosuppressive activities and the feasibility as an antigen for developing anti-tick vaccines. This review outlines the classification and the structure of tick Cystatins, and focuses on the anti-inflammatory effects and molecular mechanisms. Tick Cystatins can be divided into four families based on structures and cystatin 1 and cystatin 2 are the most abundant. They are injected into hosts during blood feeding and effectively mitigate the host inflammatory response. Mechanically, tick Cystatins exert anti-inflammatory properties through the inhibition of TLR-NF-κb, JAK-STAT and p38 MAPK signaling pathways. Further investigations are crucial to confirm the reduction of inflammation in other cell types like neutrophils and mast cells, and fully elucidate the underlying mechanism (like the structural mechanism) to make Cystatin a potential candidate for the development of novel anti-inflammation agents.
Collapse
Affiliation(s)
- Xin Gao
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Tian
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ling Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dan Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Jun Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guang-Xu Yu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
de Araújo CN, Santiago PB, Causin Vieira G, Silva GDS, Moura RP, Bastos IMD, de Santana JM. The biotechnological potential of proteases from hematophagous arthropod vectors. Front Cell Infect Microbiol 2023; 13:1287492. [PMID: 37965257 PMCID: PMC10641018 DOI: 10.3389/fcimb.2023.1287492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Carla Nunes de Araújo
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| | - Paula Beatriz Santiago
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Giulia Causin Vieira
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel dos Santos Silva
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Renan Pereira Moura
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Izabela Marques Dourado Bastos
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Jaime Martins de Santana
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
5
|
Abbas MN, Jmel MA, Mekki I, Dijkgraaf I, Kotsyfakis M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int J Mol Sci 2023; 24:4969. [PMID: 36902400 PMCID: PMC10003026 DOI: 10.3390/ijms24054969] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ingrid Dijkgraaf
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
6
|
Inspiring Anti-Tick Vaccine Research, Development and Deployment in Tropical Africa for the Control of Cattle Ticks: Review and Insights. Vaccines (Basel) 2022; 11:vaccines11010099. [PMID: 36679944 PMCID: PMC9866923 DOI: 10.3390/vaccines11010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.
Collapse
|
7
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
8
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
9
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Identification and Characterization of Immunodominant Proteins from Tick Tissue Extracts Inducing a Protective Immune Response against Ixodes ricinus in Cattle. Vaccines (Basel) 2021; 9:vaccines9060636. [PMID: 34200738 PMCID: PMC8229163 DOI: 10.3390/vaccines9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ixodes ricinus is the main vector of tick-borne diseases in Europe. An immunization trial of calves with soluble extracts of I. ricinus salivary glands (SGE) or midgut (ME) previously showed a strong response against subsequent tick challenge, resulting in diminished tick feeding success. Immune sera from these trials were used for the co-immunoprecipitation of tick tissue extracts, followed by LC-MS/MS analyses. This resulted in the identification of 46 immunodominant proteins that were differentially recognized by the serum of immunized calves. Some of these proteins had previously also drawn attention as potential anti-tick vaccine candidates using other approaches. Selected proteins were studied in more detail by measuring their relative expression in tick tissues and RNA interference (RNAi) studies. The strongest RNAi phenotypes were observed for MG6 (A0A147BXB7), a protein containing eight fibronectin type III domains predominantly expressed in tick midgut and ovaries of feeding females, and SG2 (A0A0K8RKT7), a glutathione-S-transferase that was found to be upregulated in all investigated tissues upon feeding. The results demonstrated that co-immunoprecipitation of tick proteins with host immune sera followed by protein identification using LC-MS/MS is a valid approach to identify antigen–antibody interactions, and could be integrated into anti-tick vaccine discovery pipelines.
Collapse
|
11
|
Pérez-Sánchez R, Carnero-Morán Á, Soriano B, Llorens C, Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasit Vectors 2021; 14:170. [PMID: 33743776 PMCID: PMC7980729 DOI: 10.1186/s13071-021-04671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. Tick salivary proteins secreted to the host at the feeding interface play critical roles for tick feeding and may contribute to host infection by tick-borne pathogens; accordingly, these proteins represent interesting antigen targets for the development of vaccines aimed at the control and prevention of tick infestations and tick-borne diseases. METHODS To identify these proteins, the transcriptome of the salivary glands of O. erraticus was de novo assembled and the salivary gene expression dynamics assessed throughout the trophogonic cycle using Illumina sequencing. The genes differentially upregulated after feeding were selected and discussed as potential antigen candidates for tick vaccines. RESULTS Transcriptome assembly resulted in 22,007 transcripts and 18,961 annotated transcripts, which represent 86.15% of annotation success. Most salivary gene expression took place during the first 7 days after feeding (2088 upregulated transcripts), while only a few genes (122 upregulated transcripts) were differentially expressed from day 7 post-feeding onwards. The protein families more abundantly overrepresented after feeding were lipocalins, acid and basic tail proteins, proteases (particularly metalloproteases), protease inhibitors, secreted phospholipases A2, 5'-nucleotidases/apyrases and heme-binding vitellogenin-like proteins. All of them are functionally related to blood ingestion and regulation of host defensive responses, so they can be interesting candidate protective antigens for vaccines. CONCLUSIONS The O. erraticus sialotranscriptome contains thousands of protein coding sequences-many of them belonging to large conserved multigene protein families-and shows a complexity and functional redundancy similar to those observed in the sialomes of other argasid and ixodid tick species. This high functional redundancy emphasises the need for developing multiantigenic tick vaccines to reach full protection. This research provides a set of promising candidate antigens for the development of vaccines for the control of O. erraticus infestations and prevention of tick-borne diseases of public and veterinary health relevance, such as TBRF and ASF. Additionally, this transcriptome constitutes a valuable reference database for proteomics studies of the saliva and salivary glands of O. erraticus.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Ángel Carnero-Morán
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | - Beatriz Soriano
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| |
Collapse
|
12
|
Changing the Recipe: Pathogen Directed Changes in Tick Saliva Components. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041806. [PMID: 33673273 PMCID: PMC7918122 DOI: 10.3390/ijerph18041806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Ticks are obligate hematophagous parasites and are important vectors of a wide variety of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease, rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large number of pharmacologically active molecules that are secreted in their saliva, which inhibits or modulates host immune defenses and wound healing responses upon injection into the bite site. These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted pathogens manipulate tick saliva composition to enhance their own survival, transmission, and evasion of host defenses. We review what is known about specific and functionally characterized tick saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies analyzing sialome-level responses to pathogen challenge.
Collapse
|
13
|
Oleaga A, Soriano B, Llorens C, Pérez-Sánchez R. Sialotranscriptomics of the argasid tick Ornithodoros moubata along the trophogonic cycle. PLoS Negl Trop Dis 2021; 15:e0009105. [PMID: 33544727 PMCID: PMC7891743 DOI: 10.1371/journal.pntd.0009105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The argasid tick Ornithodoros moubata is the main vector of human relapsing fever (HRF) and African swine fever (ASF) in Africa. Salivary proteins are part of the host-tick interface and play vital roles in the tick feeding process and the host infection by tick-borne pathogens; they represent interesting targets for immune interventions aimed at tick control. The present work describes the transcriptome profile of salivary glands of O. moubata and assesses the gene expression dynamics along the trophogonic cycle using Illumina sequencing. De novo transcriptome assembling resulted in 71,194 transcript clusters and 41,011 annotated transcripts, which represent 57.6% of the annotation success. Most salivary gene expression takes place during the first 7 days after feeding (6,287 upregulated transcripts), while a minority of genes (203 upregulated transcripts) are differentially expressed between 7 and 14 days after feeding. The functional protein groups more abundantly overrepresented after blood feeding were lipocalins, proteases (especially metalloproteases), protease inhibitors including the Kunitz/BPTI-family, proteins with phospholipase A2 activity, acid tail proteins, basic tail proteins, vitellogenins, the 7DB family and proteins involved in tick immunity and defence. The complexity and functional redundancy observed in the sialotranscriptome of O. moubata are comparable to those of the sialomes of other argasid and ixodid ticks. This transcriptome provides a valuable reference database for ongoing proteomics studies of the salivary glands and saliva of O. moubata aimed at confirming and expanding previous data on the O. moubata sialoproteome. The soft tick Ornithodoros moubata constitutes an important medical and veterinary problem in Africa because, in addition to being the vector of African swine fever, it transmits human relapsing fever (HRF), a hyper-endemic and lethal, but still neglected, tick-borne disease. Effective control of HRF requires eradicating its vector tick from domestic environments. As chemical acaricide application is ineffective against this tick, development of anti-tick vaccines seems the most promising method for tick control. Salivary proteins play essential functions for tick feeding and survival, which convert them in potential antigen targets for the development of tick vaccines. To know which these proteins are, we obtained the salivary transcriptome of O. moubata females and established, for the first time in a soft tick, the salivary gene transcription dynamics along its trophogonic cycle. Thereby, we have identified numerous genes encoding bioactive proteins essential for tick feeding. This information is essential to drive the selection of candidate antigens for anti-tick vaccine development and evaluate its protective potential in animal immunization trials. These data significantly enlarge the current repertory of known protein-coding sequences from soft tick salivary glands and establish a valuable reference database to improve our knowledge of the O. moubata salivary proteome.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, Salamanca, Spain
- * E-mail:
| | - Beatriz Soriano
- Biotechvana, Scientific Park, University of Valencia, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Valencia, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, Salamanca, Spain
| |
Collapse
|
14
|
Narasimhan S, Kurokawa C, DeBlasio M, Matias J, Sajid A, Pal U, Lynn G, Fikrig E. Acquired tick resistance: The trail is hot. Parasite Immunol 2020; 43:e12808. [PMID: 33187012 DOI: 10.1111/pim.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Acquired tick resistance is a phenomenon wherein the host elicits an immune response against tick salivary components upon repeated tick infestations. The immune responses, potentially directed against critical salivary components, thwart tick feeding, and the animal becomes resistant to subsequent tick infestations. The development of tick resistance is frequently observed when ticks feed on non-natural hosts, but not on natural hosts. The molecular mechanisms that lead to the development of tick resistance are not fully understood, and both host and tick factors are invoked in this phenomenon. Advances in molecular tools to address the host and the tick are beginning to reveal new insights into this phenomenon and to uncover a deeper understanding of the fundamental biology of tick-host interactions. This review will focus on the expanding understanding of acquired tick resistance and highlight the impact of this understanding on anti-tick vaccine development efforts.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Melody DeBlasio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front Cell Infect Microbiol 2020; 10:374. [PMID: 32850476 PMCID: PMC7396615 DOI: 10.3389/fcimb.2020.00374] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
Tick saliva contains a complex mixture of peptides and non-peptides that counteract their hosts' hemostasis, immunity, and tissue-repair reactions. Recent transcriptomic studies have revealed over one thousand different transcripts coding for secreted polypeptides in a single tick species. Not only do these gene products belong to many expanded families, such as the lipocalins, metalloproteases, Antigen-5, cystatins, and apyrases, but also families that are found exclusively in ticks, such as the evasins, Isac, DAP36, and many others. Phylogenetic analysis of the deduced protein sequences indicate that the salivary genes exhibit an increased rate of evolution due to a lower evolutionary constraint and/or positive selection, allowing for a large diversity of tick salivary proteins. Thus, for each new tick species that has its salivary transcriptome sequenced and assembled, a formidable task of annotation of these transcripts awaits. Currently, as of November 2019, there are over 287 thousand coding sequences deposited at the National Center for Biotechnology Information (NCBI) that are derived from tick salivary gland mRNA. Here, from these 287 thousand sequences we identified 45,264 potential secretory proteins which possess a signal peptide and no transmembrane domains on the mature peptide. By using the psiblast tools, position-specific matrices were constructed and assembled into the TickSialoFam (TSF) database. The TSF is a rpsblastable database that can help with the annotation of tick sialotranscriptomes. The TSA database identified 136 tick salivary secreted protein families, as well as 80 families of endosomal-related products, mostly having a protein modification function. As the number of sequences increases, and new annotation details become available, new releases of the TSF database may become available.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria, South Africa
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
16
|
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics 2020; 21:404. [PMID: 32546190 PMCID: PMC7296530 DOI: 10.1186/s12864-020-6705-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. Results An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. Conclusions In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia.
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Hana Pecková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| |
Collapse
|
17
|
Bhowmick B, Han Q. Understanding Tick Biology and Its Implications in Anti-tick and Transmission Blocking Vaccines Against Tick-Borne Pathogens. Front Vet Sci 2020; 7:319. [PMID: 32582785 PMCID: PMC7297041 DOI: 10.3389/fvets.2020.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate blood-feeding ectoparasites that transmit a wide variety of pathogens to animals and humans in many parts of the world. Currently, tick control methods primarily rely on the application of chemical acaricides, which results in the development of resistance among tick populations and environmental contamination. Therefore, an alternative tick control method, such as vaccines have been shown to be a feasible strategy that offers a sustainable, safe, effective, and environment-friendly solution. Nevertheless, novel control methods are hindered by a lack of understanding of tick biology, tick-pathogen-host interface, and identification of effective antigens in the development of vaccines. This review highlights the current knowledge and data on some of the tick-protective antigens that have been identified for the formulation of anti-tick vaccines along with the effects of these vaccines on the control of tick-borne diseases.
Collapse
Affiliation(s)
- Biswajit Bhowmick
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
18
|
Hart CE, Ribeiro JM, Kazimirova M, Thangamani S. Tick-Borne Encephalitis Virus Infection Alters the Sialome of Ixodes ricinus Ticks During the Earliest Stages of Feeding. Front Cell Infect Microbiol 2020; 10:41. [PMID: 32133301 PMCID: PMC7041427 DOI: 10.3389/fcimb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Ticks are hematophagous arthropods that transmit a number of pathogens while feeding. Among these is tick-borne encephalitis virus (TBEV), a flavivirus transmitted by Ixodes ricinus ticks in the temperate zone of Europe. The infection results in febrile illness progressing to encephalitis and meningitis with a possibility of fatality or long-term neurological sequelae. The composition of tick saliva plays an essential role in the initial virus transmission during tick feeding. Ticks secrete a diverse range of salivary proteins to modulate the host response, such as lipocalins to control the itch and inflammatory response, and both proteases and protease inhibitors to prevent blood coagulation. Here, the effect of viral infection of adult females of Ixodes ricinus was studied with the goal of determining how the virus alters the tick sialome to modulate host tissue response at the site of infection. Uninfected ticks or those infected with TBEV were fed on mice and removed and dissected one- and 3-h post-attachment. RNA from the salivary glands of these ticks, as well as from unfed ticks, was extracted and subjected to next-generation sequencing to determine the expression of key secreted proteins at each timepoint. Genes showing statistically significant up- or down-regulation between infected and control ticks were selected and compared to published literature to ascertain their function. From this, the effect of tick viral infection on the modulation of the tick-host interface was determined. Infected ticks were found to differentially express a number of uncategorized genes, proteases, Kunitz-type serine protease inhibitors, cytotoxins, and lipocalins at different timepoints. These virus-induced changes to the tick sialome may play a significant role in facilitating virus transmission during the early stages of tick feeding.
Collapse
Affiliation(s)
- Charles E. Hart
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Saravanan Thangamani
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
19
|
Wen S, Wang F, Ji Z, Pan Y, Jian M, Bi Y, Zhou G, Luo L, Chen T, Li L, Ding Z, Abi ME, Liu A, Bao F. Salp15, a Multifunctional Protein From Tick Saliva With Potential Pharmaceutical Effects. Front Immunol 2020; 10:3067. [PMID: 31998324 PMCID: PMC6968165 DOI: 10.3389/fimmu.2019.03067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Ixodes ticks are the main vectors for a number of zoonotic diseases, including Lyme disease. Ticks secrete saliva directly into a mammalian host while feeding on the host's blood. This action serves to modulate host immunity and coagulation, thus allowing ticks to attach and feed upon their host. One of the most extensively studied components of tick saliva is Salp15. Research has shown that this protein binds specifically to CD4 molecules on the surface of T lymphocytes, interferes with TCR-mediated signaling transduction, inhibits CD4+ T cell activation and proliferation, and impedes the secretion of interleukin 2 (IL-2). Salp15 also binds specifically to dendritic cell dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) to up-regulate the expression of CD73 in regulatory T cells. Collectively, these findings render this salivary protein a potential candidate for a range of therapeutic applications. Here, we discuss our current understanding of Salp15 and the mechanisms that might be used to treat disease.
Collapse
Affiliation(s)
- Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China.,The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Feng Wang
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| | - Zhenhua Ji
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - YingYi Pan
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Miaomiao Jian
- The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - YunFeng Bi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| | - Lisha Luo
- The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Zhe Ding
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Manzama-Esso Abi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,The Center of Tropical Diseases, The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming, China
| |
Collapse
|
20
|
Assumpção TC, Mizurini DM, Ma D, Monteiro RQ, Ahlstedt S, Reyes M, Kotsyfakis M, Mather TN, Andersen JF, Lukszo J, Ribeiro JMC, Francischetti IMB. Ixonnexin from Tick Saliva Promotes Fibrinolysis by Interacting with Plasminogen and Tissue-Type Plasminogen Activator, and Prevents Arterial Thrombosis. Sci Rep 2018; 8:4806. [PMID: 29555911 PMCID: PMC5859130 DOI: 10.1038/s41598-018-22780-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Tick saliva is a rich source of modulators of vascular biology. We have characterized Ixonnexin, a member of the "Basic-tail" family of salivary proteins from the tick Ixodes scapularis. Ixonnexin is a 104 residues (11.8 KDa), non-enzymatic basic protein which contains 3 disulfide bonds and a C-terminal rich in lysine. It is homologous to SALP14, a tick salivary FXa anticoagulant. Ixonnexin was produced by ligation of synthesized fragments (51-104) and (1-50) followed by folding. Ixonnexin, like SALP14, interacts with FXa. Notably, Ixonnexin also modulates fibrinolysis in vitro by a unique salivary mechanism. Accordingly, it accelerates plasminogen activation by tissue-type plasminogen activator (t-PA) with Km 100 nM; however, it does not affect urokinase-mediated fibrinolysis. Additionally, lysine analogue ε-aminocaproic acid inhibits Ixonnexin-mediated plasmin generation implying that lysine-binding sites of Kringle domain(s) of plasminogen or t-PA are involved in this process. Moreover, surface plasmon resonance experiments shows that Ixonnexin binds t-PA, and plasminogen (KD 10 nM), but not urokinase. These results imply that Ixonnexin promotes fibrinolysis by supporting the interaction of plasminogen with t-PA through formation of an enzymatically productive ternary complex. Finally, in vivo experiments demonstrates that Ixonnexin inhibits FeCl3-induced thrombosis in mice. Ixonnexin emerges as novel modulator of fibrinolysis which may also affect parasite-vector-host interactions.
Collapse
Affiliation(s)
- Teresa C Assumpção
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Daniella M Mizurini
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dongying Ma
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Robson Q Monteiro
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sydney Ahlstedt
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, USA
| | - Morayma Reyes
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Thomas N Mather
- Rhode Island Center for Vector-Borne Disease, University of Rhode Island, Kingston, Rhode Island, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Jan Lukszo
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
21
|
Abstract
Tick bites are common and may have non-infectious complications. Reactions range from local reactions to systemic syndromes, tick paralysis, mammalian meat allergy and tick anaphylaxis. Management revolves around prevention with vector avoidance and immediate removal of the tick if bitten. Treatment of bite reactions is usually symptomatic only with anti-histamines or corticosteroids. Adrenaline may be indicated for severe cases.
Collapse
|
22
|
Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, Costa FB, Palmisano G, Labruna MB, Sá-Nunes A, Ribeiro JMC, Fogaça AC. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva. Front Cell Infect Microbiol 2017; 7:476. [PMID: 29209593 PMCID: PMC5702332 DOI: 10.3389/fcimb.2017.00476] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG) in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current study, we compared the sialotranscriptome of unfed A. sculptum ticks and those fed for 72 h on rabbits using next generation RNA sequencing (RNA-seq). The total of reads obtained were assembled in 9,560 coding sequences (CDSs) distributed in different functional classes. CDSs encoding secreted proteins, including lipocalins, mucins, protease inhibitors, glycine-rich proteins, metalloproteases, 8.9 kDa superfamily members, and immunity-related proteins were mostly upregulated by blood feeding. Selected CDSs were analyzed by real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR), corroborating the transcriptional profile obtained by RNA-seq. Finally, high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis revealed 124 proteins in saliva of ticks fed for 96–120 h. The corresponding CDSs of 59 of these proteins were upregulated in SG of fed ticks. To the best of our knowledge, this is the first report on the proteome of A. sculptum saliva. The functional characterization of the identified proteins might reveal potential targets to develop vaccines for tick control and/or blocking of R. rickettsii transmission as well as pharmacological bioproducts with antihemostatic, anti-inflammatory and antibacterial activities.
Collapse
Affiliation(s)
- Eliane Esteves
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Rebeca Kawahara
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - André Fujita
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa A Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Adne A Righi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco B Costa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Andréa C Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
24
|
Franzin AM, Maruyama SR, Garcia GR, Oliveira RP, Ribeiro JMC, Bishop R, Maia AAM, Moré DD, Ferreira BR, Santos IKFDM. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasit Vectors 2017; 10:51. [PMID: 28143523 PMCID: PMC5282843 DOI: 10.1186/s13071-016-1945-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022] Open
Abstract
Background Ticks attach to and penetrate their hosts’ skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. Methods In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Results Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines. Conclusions Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1945-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Mara Franzin
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sandra Regina Maruyama
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Gustavo Rocha Garcia
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rosane Pereira Oliveira
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Integrative Medicine Program, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Bishop
- International Livestock Research Institute, Nairobi, Kenya.,Embrapa Pecuária Sudeste, São Carlos, SP, 13560-970, Brazil
| | - Antônio Augusto Mendes Maia
- Department of Basic Sciences, School of Animal Science and Food Technology, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Daniela Dantas Moré
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | | |
Collapse
|
25
|
de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol 2016; 38:754-769. [PMID: 27203187 DOI: 10.1111/pim.12339] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission.
Collapse
Affiliation(s)
- J de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - P Kopáček
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - A Lew-Tabor
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Qld, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - C Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Liu X, Zhou H, Zhao J, Hua H, He Y. Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and Shotgun LC-MS/MS approach. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:60-9. [PMID: 27080912 DOI: 10.1016/j.jinsphys.2016.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 05/26/2023]
Abstract
The rice brown planthopper, Nilaparvata lugens (Stål), a major rice insect pest in Asia, is a vascular bundle-feeder that ejects gelling and watery saliva during the feeding process. Although major proteins in the salivary glands of N. lugens have been identified using 2D PAGE, very little is known about the secreted saliva of this insect. In this study, we identified the major proteins in the secreted watery saliva of N. lugens, via collecting from a sucrose diet that adult planthoppers had fed upon through a membrane of stretched parafilm, and using shotgun LC-MS/MS analysis with reference to transcriptome database of salivary glands of N. lugens. A total of 107 proteins were identified in the watery saliva of N. lugens, over 80% of which showed significant similarity to known proteins. When annotated by the Blast2GO suite, 29 proteins had catalytic activity and 24 proteins were binding proteins. The saliva enzymes included oxidoreductases, hydrolases, phosphatases, peptidases (proteases), kinases, transferases, and lyases. Binding proteins in N. lugens watery saliva included ATP-binding, lipophorin, calcium-binding, actin-binding and DNA-, RNA-, and chromatin-binding proteins. Other non-enzymatic proteins, such as ubiquitins, heat shock proteins, ribosomal proteins, and immunoglobulin proteins were also found in N. lugens watery saliva. This is the first study to identify, characterize and list the proteins in watery saliva of N. lugens, which might be involved in planthopper-rice interactions.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Zhou
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhao
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Hua
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueping He
- Hubei Insect Resources Utilisation and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Bullard RL, Williams J, Karim S. Temporal Gene Expression Analysis and RNA Silencing of Single and Multiple Members of Gene Family in the Lone Star Tick Amblyomma americanum. PLoS One 2016; 11:e0147966. [PMID: 26872360 PMCID: PMC4752215 DOI: 10.1371/journal.pone.0147966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Saliva is an integral factor in the feeding success of veterinary and medically important ticks. Therefore, the characterization of the proteins present in tick saliva is an important area of tick research. Here, we confirmed previously generated sialotranscriptome data using quantitative real-time PCR. The information obtained in this in-depth study of gene expression was used to measure the effects of metalloprotease gene silencing on tick feeding. We analyzed the temporal expression of seven housekeeping genes and 44 differentially expressed salivary molecules selected from a previously published Amblyomma americanum sialotranscriptome. Separate reference genes were selected for the salivary glands and midgut from among the seven housekeeping genes, to normalize the transcriptional expression of differentially expressed genes. The salivary gland reference gene, ubiquitin, was used to normalize the expression of 44 salivary genes. Unsurprisingly, each gene family was expressed throughout the blood meal, but the expression of specific genes differed at each time point. To further clarify the complex nature of the many proteins found in the saliva, we disrupted the translation of several members of the metalloprotease family. Intriguingly, the nucleotide sequence similarity of the reprolysin metalloprotease gene family is so homologous that a single synthesized dsRNA sequence knocked down multiple members of the family. The use of multigene knockdown yielded a more significant picture of the role of metalloproteases in tick feeding success, and changes were observed in the female engorgement weight and larval hatching success. Interestingly, the depletion of metalloprotease transcripts also reduced the total number of bacteria present in the salivary glands. These data provide insight into the expression and functions of tick salivary proteins expressed while feeding on its host.
Collapse
Affiliation(s)
- Rebekah L. Bullard
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Jaclyn Williams
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Shahid Karim
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| |
Collapse
|
28
|
van Bel AJE, Will T. Functional Evaluation of Proteins in Watery and Gel Saliva of Aphids. FRONTIERS IN PLANT SCIENCE 2016; 7:1840. [PMID: 28018380 PMCID: PMC5156713 DOI: 10.3389/fpls.2016.01840] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/22/2016] [Indexed: 05/20/2023]
Abstract
Gel and watery saliva are regarded as key players in aphid-pIant interactions. The salivary composition seems to be influenced by the variable environment encountered by the stylet tip. Milieu sensing has been postulated to provide information needed for proper stylet navigation and for the required switches between gel and watery saliva secretion during stylet progress. Both the chemical and physical factors involved in sensing of the stylet's environment are discussed. To investigate the salivary proteome, proteins were collected from dissected gland extracts or artificial diets in a range of studies. We discuss the advantages and disadvantages of either collection method. Several proteins were identified by functional assays or by use of proteomic tools, while most of their functions still remain unknown. These studies disclosed the presence of at least two proteins carrying numerous sulfhydryl groups that may act as the structural backbone of the salivary sheath. Furthermore, cell-wall degrading proteins such a pectinases, pectin methylesterases, polygalacturonases, and cellulases as well as diverse Ca2+-binding proteins (e.g., regucalcin, ARMET proteins) were detected. Suppression of the plant defense may be a common goal of salivary proteins. Salivary proteases are likely involved in the breakdown of sieve-element proteins to invalidate plant defense or to increase the availability of organic N compounds. Salivary polyphenoloxidases, peroxidases and oxidoreductases were suggested to detoxify, e.g., plant phenols. During the last years, an increasing number of salivary proteins have been categorized under the term 'effector'. Effectors may act in the suppression (C002 or MIF cytokine) or the induction (e.g., Mp10 or Mp 42) of plant defense, respectively. A remarkable component of watery saliva seems the protein GroEL that originates from Buchnera aphidicola, the obligate symbiont of aphids and probably reflects an excretory product that induces plant defense responses. Furthermore, chitin fragments in the saliva may trigger defense reactions (e.g., callose deposition). The functions of identified proteins and protein classes are discussed with regard to physical and chemical characteristics of apoplasmic and symplasmic plant compartments.
Collapse
Affiliation(s)
- Aart J. E. van Bel
- Institute of General Botany, Justus-Liebig-UniversityGiessen, Germany
- *Correspondence: Aart J. E. van Bel,
| | - Torsten Will
- Institute of Phytopathology, Justus-Liebig-UniversityGiessen, Germany
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius-Kühn InstituteQuedlinburg, Germany
| |
Collapse
|
29
|
Sousa ACP, Szabó MPJ, Oliveira CJF, Silva MJB. Exploring the anti-tumoral effects of tick saliva and derived components. Toxicon 2015; 102:69-73. [DOI: 10.1016/j.toxicon.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 06/11/2015] [Indexed: 01/11/2023]
|
30
|
Becker M, Felsberger A, Frenzel A, Shattuck WMC, Dyer M, Kügler J, Zantow J, Mather TN, Hust M. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol 2015; 15:43. [PMID: 26024663 PMCID: PMC4449557 DOI: 10.1186/s12896-015-0167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Background Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. Results The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. Conclusion An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.
Collapse
Affiliation(s)
- Martin Becker
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA. .,Present Address: Max-Planck-Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| | - André Felsberger
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,Present Address: YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - André Frenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Wendy M C Shattuck
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Megan Dyer
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Jonas Kügler
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Thomas N Mather
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| |
Collapse
|
31
|
Furch ACU, van Bel AJE, Will T. Aphid salivary proteases are capable of degrading sieve-tube proteins. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:533-9. [PMID: 25540441 DOI: 10.1093/jxb/eru487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva.
Collapse
Affiliation(s)
- Alexandra C U Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, D-07743 Jena, Germany
| | - Aart J E van Bel
- Department of General Botany, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Torsten Will
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
32
|
Ali A, Parizi LF, Guizzo MG, Tirloni L, Seixas A, Vaz IDS, Termignoni C. Immunoprotective potential of a Rhipicephalus (Boophilus) microplus metalloprotease. Vet Parasitol 2014; 207:107-14. [PMID: 25480468 DOI: 10.1016/j.vetpar.2014.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/04/2014] [Accepted: 11/06/2014] [Indexed: 01/13/2023]
Abstract
Ticks have serious impacts on animal and human health, causing significant economic losses in cattle breeding. Besides damage due to the hematophagous behavior, they transmit several pathogens. Low cost and environmental safety have made vaccines a promising alternative control method against tick infestation. Metalloproteases (MPs) have been shown to be essential for diverse biological functions in hematophagous organisms, inhibiting blood clotting, degrading extracellular matrix proteins, and inhibiting host tissue repair via anti-angiogenic activity. In this study, we analyzed the immunoprotective potential of a recombinant MP against Rhipicephalus (Boophilus) microplus infestation. First, a cDNA encoding R. microplus amino acids sequence with highly conserved regions of the metzincin (reprolysin) group of MP was identified (BrRm-MP4). After expression and purification, recombinant BrRm-MP4 was used as a vaccinal antigen against R. microplus infestation in cattle (Bos taurus taurus). All vaccinated bovines developed immune response to the antigen, resulting in increased antibody level throughout the immunization protocol. Immunization with rBrRm-MP4 reduced tick feeding success, decreasing the number of engorged females and their reproduction potential, representing a 60% overall protection. These results show that rBrRm-MP4 provides protection against tick infestation, placing it is a potential candidate for an anti-tick vaccine.
Collapse
Affiliation(s)
- Abid Ali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre 90035-000, RS, Brazil; Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Melina Garcia Guizzo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Adriana Seixas
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre 90050-170, RS, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre 90035-000, RS, Brazil.
| |
Collapse
|
33
|
Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, da Silva Vaz Junior I, Termignoni C. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:559-578. [PMID: 24687173 DOI: 10.1007/s10493-014-9796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy.
Collapse
Affiliation(s)
- Abid Ali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, C.P. 15005, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Radulović ŽM, Kim TK, Porter LM, Sze SH, Lewis L, Mulenga A. A 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genomics 2014; 15:518. [PMID: 24962723 PMCID: PMC4099483 DOI: 10.1186/1471-2164-15-518] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/12/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple tick saliva proteins, the majority of which are unknown, confer tick resistance in repeatedly infested animals. The objective of this study was to identify the 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. The 24-48 h tick-feeding phase is critical to tick parasitism as it precedes important events in tick biology, blood meal feeding and disease agent transmission. Fed male, 24 and 96 h fed female phage display cDNA expression libraries were biopanned using rabbit antibodies to 24 and 48 h fed A. americanum female tick saliva proteins. Biopanned immuno-cDNA libraries were subjected to next generation sequencing, de novo assembly, and bioinformatic analysis. RESULTS More than 800 transcripts that code for 24-48 h fed A. americanum immuno-proteins are described. Of the 895 immuno-proteins, 52% (464/895) were provisionally identified based on matches in GenBank. Of these, ~19% (86/464) show high level of identity to other tick hypothetical proteins, and the rest include putative proteases (serine, cysteine, leukotriene A-4 hydrolase, carboxypeptidases, and metalloproteases), protease inhibitors (serine and cysteine protease inhibitors, tick carboxypeptidase inhibitor), and transporters and/or ligand binding proteins (histamine binding/lipocalin, fatty acid binding, calreticulin, hemelipoprotein, IgG binding protein, ferritin, insulin-like growth factor binding proteins, and evasin). Others include enzymes (glutathione transferase, cytochrome oxidase, protein disulfide isomerase), ribosomal proteins, and those of miscellaneous functions (histamine release factor, selenoproteins, tetraspanin, defensin, heat shock proteins). CONCLUSIONS Data here demonstrate that A. americanum secretes a complex cocktail of immunogenic tick saliva proteins during the first 24-48 h of feeding. Of significance, previously validated immunogenic tick saliva proteins including AV422 protein, calreticulin, histamine release factor, histamine binding/lipocalins, selenoproteins, and paramyosin were identified in this screen, supporting the specificity of the approach in this study. While descriptive, this study opens opportunities for in-depth tick feeding physiology studies.
Collapse
Affiliation(s)
- Željko M Radulović
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Tae K Kim
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Lindsay M Porter
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Sing-Hoi Sze
- />Department of Computer Sciences and Engineering, Texas A & M University, College Station, TX77843 USA
- />Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX77843 USA
| | - Lauren Lewis
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Albert Mulenga
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| |
Collapse
|
35
|
Stafford-Banks CA, Rotenberg D, Johnson BR, Whitfield AE, Ullman DE. Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS One 2014; 9:e94447. [PMID: 24736614 PMCID: PMC3988053 DOI: 10.1371/journal.pone.0094447] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/16/2014] [Indexed: 12/20/2022] Open
Abstract
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.
Collapse
Affiliation(s)
- Candice A. Stafford-Banks
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Brian R. Johnson
- Department of Entomology, University of California, Davis Davis, California, United States of America
| | - Anna E. Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Diane E. Ullman
- Department of Entomology, University of California, Davis Davis, California, United States of America
| |
Collapse
|
36
|
Cotté V, Sabatier L, Schnell G, Carmi-Leroy A, Rousselle JC, Arsène-Ploetze F, Malandrin L, Sertour N, Namane A, Ferquel E, Choumet V. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J Proteomics 2014; 96:29-43. [DOI: 10.1016/j.jprot.2013.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
|
37
|
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 2013; 4:337. [PMID: 24312085 PMCID: PMC3833115 DOI: 10.3389/fmicb.2013.00337] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/25/2013] [Indexed: 11/21/2022] Open
Abstract
Ticks are unique among hematophagous arthropods by continuous attachment to host skin and blood feeding for days; complexity and diversity of biologically active molecules differentially expressed in saliva of tick species; their ability to modulate the host defenses of pain and itch, hemostasis, inflammation, innate and adaptive immunity, and wound healing; and, the diverse array of infectious agents they transmit. All of these interactions occur at the cutaneous interface in a complex sequence of carefully choreographed host defense responses and tick countermeasures resulting in an environment that facilitates successful blood feeding and establishment of tick-borne infectious agents within the host. Here, we examine diverse patterns of tick attachment to host skin, blood feeding mechanisms, salivary gland transcriptomes, bioactive molecules in tick saliva, timing of pathogen transmission, and host responses to tick bite. Ticks engage and modulate cutaneous and systemic immune defenses involving keratinocytes, natural killer cells, dendritic cells, T cell subpopulations (Th1, Th2, Th17, Treg), B cells, neutrophils, mast cells, basophils, endothelial cells, cytokines, chemokines, complement, and extracellular matrix. A framework is proposed that integrates tick induced changes of skin immune effectors with their ability to respond to tick-borne pathogens. Implications of these changes are addressed. What are the consequences of tick modulation of host cutaneous defenses? Does diversity of salivary gland transcriptomes determine differential modulation of host inflammation and immune defenses and therefore, in part, the clades of pathogens effectively transmitted by different tick species? Do ticks create an immunologically modified cutaneous environment that enhances specific pathogen establishment? Can tick saliva molecules be used to develop vaccines that block pathogen transmission?
Collapse
Affiliation(s)
- Stephen Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University Hamden, CT, USA
| |
Collapse
|
38
|
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013; 3:43. [PMID: 23971008 PMCID: PMC3747359 DOI: 10.3389/fcimb.2013.00043] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences Bratislava, Slovakia.
| | | |
Collapse
|
39
|
Rhipicephalus microplus lipocalins (LRMs): Genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasitol 2013; 43:739-52. [DOI: 10.1016/j.ijpara.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
|
40
|
Marancik DP, Leary JH, Fast MM, Flajnik MF, Camus AC. Humoral response of captive zebra sharks Stegostoma fasciatum to salivary gland proteins of the leech Branchellion torpedinis. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1000-1007. [PMID: 22963935 DOI: 10.1016/j.fsi.2012.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/09/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
Parasitism by the marine leech Branchellion torpedinis is known to cause disease and mortality in captive elasmobranchs and is difficult to control when inadvertently introduced into public aquaria. Preliminary characterization of the salivary gland transcriptome of B. torpedinis has identified anticoagulants, proteases, and immunomodulators that may be secreted into host tissues to aid leech feeding. This retrospective study examined antigen-specific serum IgM responses in captive zebra sharks Stegostoma fasciatum to leech salivary gland extract. Antibody response was examined by ELISA and Western blot assays in 20 serum samples from six zebra sharks, with a 5 year history of leech infection, and 18 serum samples from 8 captive bred zebra sharks, with no history of leech exposure. ELISA demonstrated significantly higher serum IgM titers to salivary gland extract in exposed zebra sharks compared to the non-exposed population. No obvious trends in antibody titers were appreciated in exposed zebra sharks over a four-year period. One-dimensional and two-dimensional Western blot assays revealed IgM targeted specific salivary gland proteins within the 40, 55, 70 and 90 kD range. Antigenic proteins identified by liquid chromatography-tandem mass spectrometry and de novo peptide sequencing include a secreted disintegrin, metalloproteinase and thrombospondin motif containing protein (ADAMTS), tubulin, aldehyde dehydrogenase and two unknown proteins. Humoral immune responses to leech salivary gland proteins warrants further investigation as there may be options to exploit immune mechanisms to reduce parasite burdens in aquaria.
Collapse
Affiliation(s)
- David P Marancik
- Department of Pathology, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
42
|
Expression profiling, gene silencing and transcriptional networking of metzincin metalloproteases in the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Parasitol 2011; 186:403-14. [PMID: 22142943 DOI: 10.1016/j.vetpar.2011.11.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 10/19/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Tick proteins functioning in vital physiological processes such as blood meal uptake, digestion and reproduction are potential targets for anti-tick vaccines, since vaccination could inhibit these essential functions and ultimately affect tick survival. In this study we identified metzincin metalloproteases from Rhipicephalus microplus as potential vaccine candidates since they are implicated as essential to blood-cavity formation, bloodmeal digestion and reproduction in ixodid ticks. Eight transcripts encoding proteins that contain the characteristic metzincin zinc-binding motif HEXXHXXG/NXXH/D and a unique methionine containing "methionine-turn" were identified from native and in-house assembled R. microplus expressed sequence tag (EST) databases. These were representative of five reprolysin-like and three astacin-like metzincin metalloproteases. Reverse transcription-PCR analysis indicated that the reprolysins were most abundantly expressed in the salivary glands, whereas the astacins were most abundant in the midgut and ovaries. In vivo gene silencing was performed to assess a possible phenotype of these metalloproteases during adult female R. microplus blood feeding and reproduction. RNA interference (RNAi) against two of the reprolysins and one of the astacins significantly affected the average egg weight and oviposition rate. Evidently, this reverse genetic approach enabled the evaluation of the overall vital impact of tick proteins. Finally, integrated real time-PCR studies also revealed an extensive cross organ network between the R. microplus metzincin transcripts, supporting the use of a combinatorial metzincin-based anti- R. microplus vaccine.
Collapse
|
43
|
Mulenga A, Erikson K. A snapshot of the Ixodes scapularis degradome. Gene 2011; 482:78-93. [PMID: 21596113 DOI: 10.1016/j.gene.2011.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Parasitic encoded proteases are essential to regulating interactions between parasites and their hosts and thus they represent attractive anti-parasitic druggable and/or vaccine target. We have utilized annotations of Ixodes scapularis proteases in gene bank and version 9.3 MEROPS database to compile an index of at least 233 putatively active and 150 putatively inactive protease enzymes that are encoded by the I. scapularis genome. The 233 putatively active protease homologs hereafter referred to as the degradome (the full repertoire of proteases encoded by the I. scapularis genome) represent ~1.14% of the 20485 putative I. scapularis protein content. Consistent with observations in other animals, the content of the I. scapularis degradome is ~6.0% (14/233) aspartic, ~19% (44/233) cysteine, ~40% (93/233) metallo, ~28.3% (66/233) serine and ~6.4% (15/233) threonine proteases. When scanned against other tick sequences, ~11% (25/233) of I. scapularis putatively active proteases are conserved in other tick species with ≥ 60% amino acid identity levels. The I. scapularis genome does not apparently encode for putatively inactive aspartic proteases. Of the 150 putative inactive protease homologs none are from the aspartic protease class, ~8% (12/150) are cysteine, ~58.7% (88/150) metallo, 30% (45/150) serine and ~3.3% (5/150) are threonine proteases. The I. scapularis tick genome appears to have evolutionarily lost proteolytic activity of at least 6 protease families, C56 and C64 (cysteine), M20 and M23 (metallo), S24 and S28 (serine) as revealed by a lack of the putatively active proteases in these families. The overall protease content is comparable to other organisms. However, the paucity of the S1 chymotrypsin/trypsin-like serine protease family in the I. scapularis genome where it is ~12.7% (28/233) of the degradome as opposed to ~22-48% content in other blood feeding arthropods, Pediculus humanus humanus, Anopheles gambiae, Aedes Aegypti and Culex pipiens quinquefasciatus is notable. The data is presented as a one-stop index of proteases encoded by the I. scapularis genome.
Collapse
Affiliation(s)
- Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, College Station, TX 77843, USA.
| | | |
Collapse
|
44
|
Rodriguez-Valle M, Lew-Tabor A, Gondro C, Moolhuijzen P, Vance M, Guerrero FD, Bellgard M, Jorgensen W. Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and Bos taurus cattle. BMC Genomics 2010; 11:437. [PMID: 20637126 PMCID: PMC3224725 DOI: 10.1186/1471-2164-11-437] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/19/2010] [Indexed: 11/23/2022] Open
Abstract
Background Rhipicephalus (Boophilus) microplus is an obligate blood feeder which is host specific to cattle. Existing knowledge pertaining to the host or host breed effects on tick transcript expression profiles during the tick - host interaction is poor. Results Global analysis of gene expression changes in whole R. microplus ticks during larval, pre-attachment and early adult stages feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13,601 R. microplus transcripts from BmiGI Version 2 we identified 297 high and 17 low expressed transcripts that were significantly differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)] (p ≤ 0.001). These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor, and cuticle formation. Microarrays were validated by qRT-PCR analysis of selected transcripts using three housekeeping genes as normalization controls. Conclusion The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds, particularly Bos indicus cattle. R. microplus ticks demonstrate different transcript expression patterns when they encounter tick resistant and susceptible breeds of cattle. In this study we provide the first transcriptome evidence demonstrating the influence of tick resistant and susceptible cattle breeds on transcript expression patterns and the molecular physiology of ticks during host attachment and feeding. The microarray data used in this analysis have been submitted to NCBI GEO database under accession number GSE20605 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20605.
Collapse
|
45
|
Hojgaard A, Biketov SF, Shtannikov AV, Zeidner NS, Piesman J. Molecular identification of Salp15, a key salivary gland protein in the transmission of lyme disease spirochetes, from Ixodes persulcatus and Ixodes pacificus (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:1458-1463. [PMID: 19960697 DOI: 10.1603/033.046.0631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Salp15 is a multifunctional protein, vital to the tick in its need to obtain vertebrate host blood without stimulating a host inflammatory and immune response. The Salpl5 protein from both Ixodes scapularis Say and Ixodes ricinus (L.), the principal vectors of the Lyme disease spirochete in eastern North America and Europe, respectively, have been well characterized and found to bind the murine CD4 receptor, DC-SIGN, and the OspC protein of Borrelia burgdorferi. In the current study, we characterized the full salp15 gene in Ixodes pacificus Cooley & Kohls and Ixodes persulcatus Schulze, the principal vectors of Lyme disease spirochetes in western North America and Asia, respectively. In comparing the Salp15 protein of all four principal vector ticks of public health importance for the transmission of Lyme disease spirochetes, we find the 53 C-terminal amino acids to have a high degree of similarity. There are at least three clades in the tree of Salp15 and its homologues, probably representing a multigene family.
Collapse
Affiliation(s)
- Andrias Hojgaard
- Division of Vector-Borne Infectious Diseases, NCZVED, CCID, Centers for Disease Control and Prevention, 3150 Rampart Rd., Ft. Collins, CO 80521, USA
| | | | | | | | | |
Collapse
|
46
|
Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 2009; 9:2457-67. [PMID: 19402045 DOI: 10.1002/pmic.200800692] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Indexed: 11/07/2022]
Abstract
Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE-LC-MS/MS and LC-MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin-converting enzyme (an M2 metalloprotease), an M1 zinc-dependant metalloprotease, a glucose-methanol-choline (GMC)-oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium-binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium-mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.
Collapse
Affiliation(s)
- James C Carolan
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The saliva of hematophagous arthropods contains potent anti-inflammatory and antihemostatic activities that promote acquisition of the blood meal and enhance infection with pathogens. We have shown that polymorphonuclear leukocytes (PMN) treated with the saliva of the tick Ixodes scapularis have reduced expression of beta(2) integrins, impaired PMN adherence, and reduced killing of Borrelia burgdorferi, the causative agent of Lyme disease. Here we describe two Ixodes proteins that are induced upon tick feeding and expressed predominantly in the salivary glands. Using saliva harvested from ticks with reduced levels of ISL 929 and ISL 1373 through targeted RNA interference knockdown, as well as purified recombinant proteins, we show the effects of these proteins on downregulation of PMN integrins and inhibition of the production of O(2)(-) by PMN in vitro. Mice immunized with ISL 929/1373 had increased numbers of PMN at the site of tick attachment and a lower spirochete burden in the skin and joints 21 days after infection compared to control-immunized animals. Our results suggest that ISL 929 and ISL 1373 contribute to the inhibition of PMN functions shown previously with tick saliva and support important roles for these inhibitory proteins in the modulation of PMN function in vivo.
Collapse
|