1
|
Ban T, Kuroda K, Nishigori M, Yamashita K, Ohta K, Koshiba T. Prohibitin 1 tethers lipid membranes and regulates OPA1-mediated membrane fusion. J Biol Chem 2024:108076. [PMID: 39675719 DOI: 10.1016/j.jbc.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Prohibitins (PHBs) are ubiquitously expressed proteins in the mitochondrial inner membrane (MIM) that provide membrane scaffolds for both mitochondrial proteins and phospholipids. Eukaryotic PHB complexes contain two highly homologous PHB subunits, PHB1 and PHB2, which are involved in various cellular processes, including metabolic control through the regulation of mitochondrial dynamics and integrity. Their mechanistic actions at the molecular level, however, particularly those of PHB1, remain poorly understood. To gain insight into the mechanistic actions of PHB1, we established an overexpression system for the full-length recombinant protein using silkworm larvae and characterized its biophysical properties in vitro. Using recombinant PHB1 proteoliposomes reconstituted into MIM-mimicking phospholipids, we found that PHB1 forms an oligomer via its carboxy-terminal coiled-coil region. A proline substitution into the PHB1 coiled-coil collapsed its well-ordered oligomeric state, and its destabilization correlated with mitochondrial morphologic defects. Negative-staining electron microscopy revealed that homotypic PHB1-PHB1 interactions via the coiled-coil also induced liposome tethering with remodeling of the lipid membrane structure. We clarified that PHB1 promotes membrane fusion mediated by optic atrophy 1 (OPA1), a key regulator of MIM fusion. Additionally, the presence of PHB1 reduces the dependency of lipids and OPA1 for completing the fusion process. Our in vitro study provides structural insight into how the mitochondrial scaffold plays a crucial role in regulating mitochondrial dynamics. Modulating the structure and/or function of PHB1 may offer new therapeutic potential, not only for mitochondrial dysfunction but also for other cell-related disorders.
Collapse
Affiliation(s)
- Tadato Ban
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Fukuoka 830-0011, Japan
| | - Kimiya Kuroda
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Mitsuhiro Nishigori
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Keisuke Yamashita
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
2
|
Ghadimmollaloo M, Moharramipour S, Mehrabadi M. Suppression of a Spodoptera frugiperda (Sf9) cellular microRNA following Baculovirus infection and its role in the insect cell - virus interactions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106032. [PMID: 39084784 DOI: 10.1016/j.pestbp.2024.106032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Baculoviruses have been extensively studied for their potential in microbial pest control, but the mechanisms behind their mode of action still need to be addressed. Here we report differential expression of a cellular miRNA, Sfr-miR-184, from Sf9 cells in response to Autographa californica multicapsid Nucleopolyhedrovirus (AcMNPV) infection. Our results showed that Sfr-miR-184 is down-regulated in AcMNPV-infected cells but not with UV-inactivated virus. Prohibitin gene was determined as a target of the miRNA, which was up-regulated following AcMNPV infection. Using synthetic miRNA mimic, we found that oversupply of the miRNA resulted in decreased transcript levels of the target gene. Results suggest that Sfr-miR-184 negatively regulate prohibitin transcripts in the host cells. Antibody-mediated inhibition and silencing of the prohibitin gene revealed significant reductions in virus DNA replication suggesting a possible role for prohibitin in the virus-host interaction. These findings highlight another molecular mechanism used by baculovirus to manipulate host cells for its replication.
Collapse
Affiliation(s)
- Maryam Ghadimmollaloo
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
4
|
Si JY, Wu LJ, Xu FL, Cao XT, Lan JF. PHB2 inhibits WSSV replication by promoting the nuclear translocation of STAT. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109503. [PMID: 38479567 DOI: 10.1016/j.fsi.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes β-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.
Collapse
Affiliation(s)
- Jia-Yu Si
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Bernstein HG, Smalla KH, Keilhoff G, Dobrowolny H, Kreutz MR, Steiner J. The many "Neurofaces" of Prohibitins 1 and 2: Crucial for the healthy brain, dysregulated in numerous brain disorders. J Chem Neuroanat 2023; 132:102321. [PMID: 37524128 DOI: 10.1016/j.jchemneu.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are nearly ubiquitously expressed. They are localized in mitochondria, cytosol and cell nuclei. In the healthy CNS, they occur in neurons and non-neuronal cells (oligodendrocytes, astrocytes, microglia, and endothelial cells) and fulfill pivotal functions in brain development and aging, the regulation of brain metabolism, maintenance of structural integrity, synapse formation, aminoacidergic neurotransmission and, probably, regulation of brain action of certain hypothalamic-pituitary hormones.With regard to the diseased brain there is increasing evidence that prohibitins are prominently involved in numerous major diseases of the CNS, which are summarized and discussed in the present review (brain tumors, neurotropic viruses, Alzheimer disease, Down syndrome, Fronto-temporal and vascular dementia, dementia with Lewy bodies, Parkinson disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis, stroke, alcohol use disorder, schizophrenia and autism). Unfortunately, there is no PHB-targeted therapy available for any of these diseases.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, RG Neuroplasticity, D-39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology, RG Neuroplastcity, D-39118 Magdeburg, Germany; University Medical Center Hamburg Eppendorf, Leibniz Group "Dendritic Organelles and Synaptic Function" ZMNH, Hamburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
7
|
Lagarde H, Lallias D, Patrice P, Dehaullon A, Prchal M, François Y, D'Ambrosio J, Segret E, Acin-Perez A, Cachelou F, Haffray P, Dupont-Nivet M, Phocas F. Genetic architecture of acute hyperthermia resistance in juvenile rainbow trout (Oncorhynchus mykiss) and genetic correlations with production traits. Genet Sel Evol 2023; 55:39. [PMID: 37308823 DOI: 10.1186/s12711-023-00811-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.
Collapse
Affiliation(s)
- Henri Lagarde
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pierre Patrice
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Audrey Dehaullon
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Martin Prchal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Yoannah François
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Jonathan D'Ambrosio
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Emilien Segret
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | - Ana Acin-Perez
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | | | - Pierrick Haffray
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Fabian O, Bajer L, Drastich P, Harant K, Sticova E, Daskova N, Modos I, Tichanek F, Cahova M. A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review. Int J Mol Sci 2023; 24:ijms24119386. [PMID: 37298338 DOI: 10.3390/ijms24119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.
Collapse
Affiliation(s)
- Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, 140 59 Prague, Czech Republic
| | - Lukas Bajer
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology, Royal Vinohrady Teaching Hospital, Srobarova 1150/50, 100 00 Prague, Czech Republic
| | - Nikola Daskova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Filip Tichanek
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Monika Cahova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| |
Collapse
|
9
|
Li C, Zhang W, Shi L, Lu Y, Ye J, Liu X. Prohibitin mediates the cellular invasion of spring viremia of the carp virus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108689. [PMID: 36931480 DOI: 10.1016/j.fsi.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Spring viremia of carp virus (SVCV) is strongly contagious and pathogenic to common carp and cyprinoid species. However, knowledge of how SVCV enters host cells is still inadequate. In this study, mass spectrometry (MS) was incorporated with tandem affinity purification (TAP) to identify host proteins that interact with SVCV glycoprotein, the main attachment protein of SVCV. Specifically, prohibitin (PHB) received the utmost attention from all the candidate proteins, and its interaction with the SVCV-G protein was confirmed by immunoprecipitation and immunofluorescence assays. Treatment with PHB-specific inhibitors or knockdown of the expression of PHB by siRNAs resulted in a marked reduction in binding and entry of SVCV on host cells, while overexpression of PHB increased SVCV attachment and invasion. Furthermore, binding of SVCV to ZF4 and FHM cells was inhibited by pre-incubating the virus with recombinant PHB protein (rPHB) or blocking the cell surface PHB with its polyclonal antibodies. In addition, overexpression of PHB on SVCV-nonpermissive Grouper spleen cells (GSs) conferred susceptibility to SVCV infection. In vivo, treatment of rPHB could significantly inhibit SVCV propagation within zebrafish and benefit the survival rate of SVCV-infected zebrafish. These results demonstrate that PHB plays a crucial role in both the attachment and entry stages of SVCV infection.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Wenyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Lin Shi
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, The University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Weems AD, Welf ES, Driscoll MK, Zhou FY, Mazloom-Farsibaf H, Chang BJ, Murali VS, Gihana GM, Weiss BG, Chi J, Rajendran D, Dean KM, Fiolka R, Danuser G. Blebs promote cell survival by assembling oncogenic signalling hubs. Nature 2023; 615:517-525. [PMID: 36859545 PMCID: PMC10881276 DOI: 10.1038/s41586-023-05758-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.
Collapse
Affiliation(s)
- Andrew D Weems
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Felix Y Zhou
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gabriel M Gihana
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Byron G Weiss
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Kenkpen AK, Storey JJ, Olson ER, Guden TE, Card TT, Jensen AS, Ahrens JL, Hellmann Whitaker RA. Developing Connections Between LINC00298 RNA and Alzheimer's Disease Through Mapping Its Interactome and Through Biochemical Characterization. J Alzheimers Dis 2023; 95:641-661. [PMID: 37574728 DOI: 10.3233/jad-230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Long non-coding RNAs are ubiquitous throughout the human system, yet many of their biological functions remain unknown. LINC00298 RNA, a long intergenic non-coding RNA, has been shown to have preferential expression in the central nervous system where it contributes to neuronal differentiation and development. Furthermore, previous research has indicated that LINC00298 RNA is known to be a genetic risk factor for the development of Alzheimer's disease. OBJECTIVE To biochemically characterize LINC00298 RNA and to elucidate its biological function within hippocampal neuronal cells, thereby providing a greater understanding of its role in Alzheimer's disease pathogenesis. METHODS LINC00298 RNA was in vitro transcribed and then subjected to structural analysis using circular dichroism, and UV-Vis spectroscopy. Additionally, affinity column chromatography was used to capture LINC00298 RNA's protein binding partners from hippocampal neuronal cells, which were then identified using liquid chromatography and mass spectrometry (LC/MS). RESULTS LINC00298 RNA is comprised of stem-loop secondary structural elements, with a cylindrical tertiary structure that has highly dynamic regions, which result in high positional entropy. LC/MS identified 24 proteins within the interactome of LINC00298 RNA. CONCLUSION Through analysis of LINC00298 RNA's 24 protein binding partners, it was determined that LINC00298 RNA may play significant roles in neuronal development, proliferation, and cellular organization. Furthermore, analysis of LINC00298 RNA's interactome indicated that LINC00298 RNA is capable of intracellular motility with dual localization in the nucleus and the cytosol. This biochemical characterization of LINC00298 RNA has shed light on its role in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Angel K Kenkpen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Joshua J Storey
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Emma R Olson
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ty E Guden
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Tate T Card
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ashley S Jensen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Jordyn L Ahrens
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | | |
Collapse
|
12
|
Sun X, Tang F, Guo Q, Liu Y, He Y, Du Y, Gao F, Zhang G, Yang C. HAS2-Ezrin-ER axis plays a role in acquired antiestrogen resistance of ER-positive breast cancer. Front Pharmacol 2022; 13:1031487. [PMID: 36386154 PMCID: PMC9659586 DOI: 10.3389/fphar.2022.1031487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The development of endocrine resistance is a major clinical problem in estrogen receptor-positive (ER+) breast cancer (BrCa) treatment, in which how cancer cells acquire resistance remains obscure. Hyaluronan synthase 2 (HAS2) is the most critical synthase in producing hyaluronan and is well known for its involvement in cancer growth, metabolism and metastasis. Recent evidence has proved that HAS2 is involved in cellular acquired resistance to drug therapy in BrCa. In this work, we first observed that HAS2 expression was decreased in the endocrine-resistant ER+ BrCa cells. Further knocking-out experiments confirmed that the loss of HAS2 in parental ER+ BrCa cells resulted in a following antiestrogen resistance. Next, we found that the HAS2-loss could induce an upregulation of Ezrin, a member of the membrane cytoskeletal protein family who plays key roles in cellular signal transduction. Notably, we identified that the increase of Ezrin induced by HAS2-loss could inhibit the ERα expression and augment antiestrogen resistance, suggesting that a HAS2-Ezrin-ER axis may be associated with the acquirement of endocrine resistance in ER+ BrCa cells. Finally, knockdown or inhibition of Ezrin could restore the sensitivity of endocrine-resistant cells to antiestrogens treatment by activating ERα signaling. Taken together, our findings unraveled a novel HAS2-Ezrin-ER route in regulating the sensitivity of ER+ BrCa cells to antiestrogens, in which Ezrin may be a potential target in endocrine therapy.
Collapse
Affiliation(s)
- Xiaodan Sun
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fen Tang
- Department of Breast Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Jiang T, Wang Y, Wang X, Xu J. CHCHD2 and CHCHD10: Future therapeutic targets in cognitive disorder and motor neuron disorder. Front Neurosci 2022; 16:988265. [PMID: 36061599 PMCID: PMC9434015 DOI: 10.3389/fnins.2022.988265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
CHCHD2 and CHCHD10 are homolog mitochondrial proteins that play key roles in the neurological, cardiovascular, and reproductive systems. They are also involved in the mitochondrial metabolic process. Although previous research has concentrated on their functions within mitochondria, their functions within apoptosis, synaptic plasticity, cell migration as well as lipid metabolism remain to be concluded. The review highlights the different roles played by CHCHD2 and/or CHCHD10 binding to various target proteins (such as OPA-1, OMA-1, PINK, and TDP43) and reveals their non-negligible effects in cognitive impairments and motor neuron diseases. This review focuses on the functions of CHCHD2 and/or CHCHD10. This review reveals protective effects and mechanisms of CHCHD2 and CHCHD10 in neurodegenerative diseases characterized by cognitive and motor deficits, such as frontotemporal dementia (FTD), Lewy body dementia (LBD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). However, there are numerous specific mechanisms that have yet to be elucidated, and additional research into these mechanisms is required.
Collapse
Affiliation(s)
- Tianlin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Prohibitins: A Key Link between Mitochondria and Nervous System Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7494863. [PMID: 35847581 PMCID: PMC9286927 DOI: 10.1155/2022/7494863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Prohibitins (PHBs) are conserved proteins in eukaryotic cells, which are mainly located in the inner mitochondrial membrane (IMM), cell nucleus, and cell membrane. PHBs play crucial roles in various cellular functions, including the cell cycle regulation, tumor suppression, immunoglobulin M receptor binding, and aging. In addition, recent in vitro and in vivo studies have revealed that PHBs are important in nervous system diseases. PHBs can prevent apoptosis, inflammation, mitochondrial dysfunction, and autophagy in neurological disorders through different molecules and pathways, such as OPA-1, PINK1/Parkin, IL6/STAT3, Tau, NO, LC3, and TDP43. Therefore, PHBs show great promise in the protection of neurological disorders. This review summarizes the relevant studies on the relationship between PHBs and neurological disorders and provides an update on the molecular mechanisms of PHBs in nervous system diseases.
Collapse
|
15
|
Zhang L, He Y. Prohibitin inhibits high glucose‑induced apoptosis via maintaining mitochondrial function in human retinal capillary endothelial cells. Exp Ther Med 2022; 23:427. [PMID: 35607379 PMCID: PMC9121207 DOI: 10.3892/etm.2022.11354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction and excessive apoptosis of vascular endothelial cells play a critical role in the development of diabetic retinopathy (DR). Prohibitin (PHB), a significant regulator, maintains mitochondrial function and protects vascular endothelial cells against apoptosis. However, the mechanism underlying the protective effect of PHB on DR remains unclear. Since mitochondria are key regulators of vascular homeostasis, the present study aimed to investigate the molecular mechanism of PHB on maintaining mitochondrial function in human retinal capillary endothelial cells (HRCECs). To evaluate the role of PHB in cell apoptosis, HRCECs, transfected with or without PHB overexpression plasmid or small interfering RNA clones targeting PHB, were cultured in the presence of 5.5 mmol/l normal glucose (NG) or 30 mmol/l high glucose (HG). Subsequently, the apoptosis rate of HRCECs was determined using flow cytometry. The results showed that PHB was upregulated in HRCECs, while PHB knockdown promoted the generation of reactive oxygen species from mitochondria via inhibition of the activation of complex I. Additionally, the apoptosis rate of HRCECs in the HG group was notably enhanced compared with that in the NG group. Interestingly, PHB overexpression attenuated the increase in HG-mediated HRCEC apoptosis. Furthermore, treatment with HG upregulated expression of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase in vitro. The present study indicated that PHB could be a key modulator of mitochondrial homeostasis and could protect HRCECs against HG-induced apoptosis. Overall, the aforementioned findings provided experimental evidence supporting the potential protective effects of PHB on DR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ying He
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
16
|
Prohibitin plays a role in the functional plasticity of macrophages. Mol Immunol 2022; 144:152-165. [DOI: 10.1016/j.molimm.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
|
17
|
Liu L, Jiang Y, Steinle JJ. Prohibitin 1 Regulates Inflammatory Mediators and Reactive Oxygen Species in Retinal Endothelial Cells. J Clin Med 2022; 11:jcm11071915. [PMID: 35407523 PMCID: PMC9000038 DOI: 10.3390/jcm11071915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy is associated with increased inflammatory mediator levels. In these studies, we focused on prohibitin 1. We performed western blotting for retinal lysates from diabetic mice and Epac1 floxed and cdh5Cre-Epac1 mice. We also grew primary retinal endothelial cells (REC) in normal (5 mM) and high (25 mM) glucose, and treated some cells with an Epac 1 agonist or prohibitin 1 siRNA. Western blotting was done to confirm knockdown of prohibitin 1 and Epac 1 agonism. We measured the tumor necrosis factor alpha (TNFα), interleukin-1-beta (IL-1β), phosphorylated prohibitin 1, phosphorylated nuclear factor kappa beta (NFkB), high mobility group box 1 (HMGB1) and reactive oxygen species (ROS) levels in REC after transfection with prohibitin 1 siRNA. Results showed that high glucose increased the inflammatory mediators, as well as HMGB1 and ROS. The levels of ROS, HMGB1, and inflammatory pathways were all reduced after cells were transfected with prohibitin 1 siRNA. Epac1 reduced prohibitin 1 phosphorylation. In conclusion, decreased prohibitin 1 significantly reduced the inflammatory mediator and ROS levels in REC. Epac1 regulates the prohibitin 1 levels in REC.
Collapse
|
18
|
The Yun/Prohibitin complex regulates adult Drosophila intestinal stem cell proliferation through the transcription factor E2F1. Proc Natl Acad Sci U S A 2022; 119:2111711119. [PMID: 35115400 PMCID: PMC8832997 DOI: 10.1073/pnas.2111711119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
Abstract
Stem cells maintain tissue homeostasis. We identified a factor, Yun, required for proliferation of normal and transformed intestinal stem cells in adult Drosophila. Yun acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. The Yun/PHB complex acts downstream of EGFR/MAPK signaling and affects the levels of E2F1 to regulate intestinal stem cell proliferation. The role of the PHB complex in cell proliferation is evolutionarily conserved. Our results provide insight into the underlying mechanisms of how stem cell proliferation is properly controlled during tissue homeostasis and tumorigenesis. Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.
Collapse
|
19
|
Ferreira GM, Lima APB, Pereira GR, Silva GND, Brandão GC. Synthesis, characterization and antiproliferative effects of naphtho [2,3- b] thiophen-4,9-quinone on bladder tumor cells. Nat Prod Res 2022:1-8. [PMID: 35133203 DOI: 10.1080/14786419.2022.2036143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Naphthoquinones are natural plants products or synthesized compounds. They have α, β-cyclic aromatic dienones structure with a naphthalene skeleton. Little is known about naphthoquinone and nothing about naphtho [2,3-b] thiophen-4,9-quinone effects on bladder cancer. In this study, a naphthoquinone containing a hetero sulfur atom was synthesized using classical synthetic method. The molecular structure was elucidated by NMR techniques and the antitumor effects were evaluated on bladder tumor cell lines with different TP53 status using tripan blue and MTT cytotoxic method, quantification of reactive oxygen species (ROS), wound healing, cell morphology and cell cycle progression assays. The results showed selective cytotoxicity, colonies reduction, morphological change, inhibition of the cell migration process, induction of ROS production and cell cycle arrest. Naphtho [2,3-b] thiophen-4,9-quinone presents antiproliferative activity regardless TP53 status and may be a promising agent in the treatment of bladder cancer, as they have an oxidizing effect and interfere with cell cycle.
Collapse
Affiliation(s)
- Gabriel Monteze Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Guilherme Rocha Pereira
- Departamento de Física e Química Instituto de Ciências Exatas e Informática ICEI, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Geraldo Célio Brandão
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
20
|
Chen YJ, Li Y, Guo X, Huo B, Chen Y, He Y, Xiao R, Zhu XH, Jiang DS, Wei X. Upregulation of IRF9 Contributes to Pulmonary Artery Smooth Muscle Cell Proliferation During Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:773235. [PMID: 34925032 PMCID: PMC8672195 DOI: 10.3389/fphar.2021.773235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is a critical pathological feature in the pathogenesis of pulmonary arterial hypertension (PAH), but the regulatory mechanisms remain largely unknown. Herein, we demonstrated that interferon regulatory factor 9 (IRF9) accelerated PASMCs proliferation by regulating Prohibitin 1 (PHB1) expression and the AKT-GSK3β signaling pathway. Compared with control groups, the rats treated with chronic hypoxia (CH), monocrotaline (MCT) or sugen5416 combined with chronic hypoxia (SuHx), and mice challenged with CH had significantly thickened pulmonary arterioles and hyperproliferative PASMCs. More importantly, the protein level of IRF9 was found to be elevated in the thickened medial wall of the pulmonary arterioles in all of these PAH models. Notably, overexpression of IRF9 significantly promoted the proliferation of rat and human PASMCs, as evidenced by increased cell counts, EdU-positive cells and upregulated biomarkers of cell proliferation. In contrast, knockdown of IRF9 suppressed the proliferation of rat and human PASMCs. Mechanistically, IRF9 directly restrained PHB1 expression and interacted with AKT to inhibit the phosphorylation of AKT at thr308 site, which finally led to mitochondrial dysfunction and PASMC proliferation. Unsurprisingly, MK2206, a specific inhibitor of AKT, partially reversed the PASMC proliferation inhibited by IRF9 knockdown. Thus, our results suggested that elevation of IRF9 facilitates PASMC proliferation by regulating PHB1 expression and AKT signaling pathway to affect mitochondrial function during the development of PAH, which indicated that targeting IRF9 may serve as a novel strategy to delay the pathological progression of PAH.
Collapse
Affiliation(s)
- Yong-Jie Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yi Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
21
|
Tao L, Yin Z, Ni T, Chu Z, Hao S, Wang Z, Sunagawa M, Wang H, Liu Y. The Ethyl Acetate Extract From Celastrus orbiculatus Promotes Apoptosis of Gastric Cancer Cells Through Mitochondria Regulation by PHB. Front Pharmacol 2021; 12:635467. [PMID: 34122065 PMCID: PMC8194300 DOI: 10.3389/fphar.2021.635467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: To investigate the effect of ethyl acetate extract from Celastrus orbiculatus (COE) on gastric cancer cell apoptosis and reveal its underlying molecular mechanism. In addition, it was aimed to stablish a theoretical basis for the clinical application of Celastrus orbiculatus in the gastric cancer treatment. Material and Methods: Western blot and RT-qPCR were used to detect mRNA and protein expression of PHB in gastric cancer and adjacent tissues. MTT method was used to detect the COE effect on the proliferation of AGS cells and to determine the 50% inhibitory concentration COE on these cells. COE effect on AGS apoptosis was evaluated by flow cytometry. Changes in apoptosis-related proteins expression in AGS cells were detected by western blot and changes in mitochondrial membrane potential were detected by JC-1 fluorescence staining. PHB expression was knocked down in AGS cells by lentiviral-mediated RNA interference. The COE antitumor effect was assessed in vivo using a subcutaneous transplantation tumor model in nude mice and in vivo fluorescence tracing technique in small animals. Results: The clinical samples analysis results showed that the PHB expression in gastric cancer samples was significantly higher than in corresponding adjacent tissues. MTT results showed that the AGS cell proliferation was significantly inhibited. RT-qPCR and western blot results showed that COE can significantly inhibit the PHB mRNA and protein expression, respectively. Flow cytometry analysis showed that COE was able to significantly promote AGS cell apoptosis. Western blot results also indicated that apoptosis-related protein expression changed significantly; BCL-2 expression significantly reduced while the Caspase-3 and Bax expression significantly increased after COE treatment. JC-1 fluorescence staining results showed that COE changed the mitochondrial membrane potential and activated the mitochondrial apoptosis pathway. Furthermore, in vivo experiments results demonstrated that the growth of subcutaneous transplanted tumor was significantly inhibited by the PHB knockdown and by the COE intragastric administration. Conclusion: COE can significantly promote apoptosis of human gastric cancer cells, which can be achieved by inhibiting PHB expression, thus altering the structure and function of mitochondria and activating the mitochondria apoptosis pathway. The antitumor effect of COE has also been proved in vivo.
Collapse
Affiliation(s)
- Lide Tao
- Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zixin Yin
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tengyang Ni
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zewen Chu
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Shihua Hao
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Zeyu Wang
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Haibo Wang
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yanqing Liu
- Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Suzuki T, Terada N, Higashiyama S, Kametani K, Shirai Y, Honda M, Kai T, Li W, Tabuchi K. Non-microtubule tubulin-based backbone and subordinate components of postsynaptic density lattices. Life Sci Alliance 2021; 4:4/7/e202000945. [PMID: 34006534 PMCID: PMC8326785 DOI: 10.26508/lsa.202000945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
This study proposes a postsynaptic density (PSD) lattice model comprising a non-microtubule tubulin-based backbone structure and its associated proteins, including various PSD scaffold/adaptor proteins and other PSD proteins. A purification protocol was developed to identify and analyze the component proteins of a postsynaptic density (PSD) lattice, a core structure of the PSD of excitatory synapses in the central nervous system. “Enriched”- and “lean”-type PSD lattices were purified by synaptic plasma membrane treatment to identify the protein components by comprehensive shotgun mass spectrometry and group them into minimum essential cytoskeleton (MEC) and non-MEC components. Tubulin was found to be a major component of the MEC, with non-microtubule tubulin widely distributed on the purified PSD lattice. The presence of tubulin in and around PSDs was verified by post-embedding immunogold labeling EM of cerebral cortex. Non-MEC proteins included various typical scaffold/adaptor PSD proteins and other class PSD proteins. Thus, this study provides a new PSD lattice model consisting of non-microtubule tubulin-based backbone and various non-MEC proteins. Our findings suggest that tubulin is a key component constructing the backbone and that the associated components are essential for the versatile functions of the PSD.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Nagano, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, To-on, Ehime, Japan
| | - Kiyokazu Kametani
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Mamoru Honda
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Tsutomu Kai
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| |
Collapse
|
23
|
The influence of hypoxia on the cardiac transcriptomes of two estuarine species - C. variegatus and F. grandis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100837. [PMID: 33892309 DOI: 10.1016/j.cbd.2021.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
Increased nutrient loading has led to eutrophication of coastal shelf waters which has resulted in increased prevalence of persistent hypoxic zones - areas in which the dissolved oxygen content of the water drops below 2 mg/L. The northern Gulf of Mexico, fed primarily by the Mississippi River watershed, undergoes annual establishment of one of the largest hypoxic zones in the world. Exposure to hypoxia can induce physiological impacts in fish cardiac systems that include bradycardia, changes in stroke volume, and altered cardiovascular vessel development. While these impacts have been addressed at the functional level, there is little information regarding the molecular basis for these changes. This study used transcriptomic analysis techniques to interrogate the effects of hypoxia exposure on the developing cardiovascular system in newly hatched larvae of two estuarine species that occupy the same ecological niche - the sheepshead minnow (Cyprinodon variegatus) and the Gulf killifish (Fundulus grandis). Results suggest that while differential gene expression is largely distinct between the two species, downstream impacts on pathways and functional responses such as reduced cardiac hypertrophy, modulation of blood pressure, and increased incidence of apoptosis appear to be conserved. Further, differences in the magnitude of these conserved responses may suggest that the length of embryonic development could impart a level of resiliency to hypoxic perturbation in early life stage fish.
Collapse
|
24
|
Characterization and functional analysis of the proteins Prohibitin 1 and 2 in Trypanosoma cruzi. PLoS Negl Trop Dis 2021; 15:e0009322. [PMID: 33830991 PMCID: PMC8057595 DOI: 10.1371/journal.pntd.0009322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 04/20/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chagas disease is the third most important neglected tropical disease. There is no vaccine available, and only two drugs are generally prescribed for the treatment, both of which with a wide range of side effects. Our study of T. cruzi PHBs revealed a pleiotropic function in different stages of the parasite, participating actively in the transformation of the non-infective replicative epimastigote form into metacyclic trypomastigotes and also in the multiplication of intracellular amastigotes. METHODOLOGY/PRINCIPAL FINDINGS To obtain and confirm our results, we applied several tools and techniques such as electron microscopy, immuno-electron microscopy, bioinformatics analysis and molecular biology. We transfected T. cruzi clones with the PHB genes, in order to overexpress the proteins and performed a CRISPR/Cas9 disruption to obtain partially silenced PHB1 parasites or completely silenced PHB2 parasites. The function of these proteins was also studied in the biology of the parasite, specifically in the transformation rate from non-infective forms to the metacyclic infective forms, and in their capacity of intracellular multiplication. CONCLUSION/SIGNIFICANCE This research expands our understanding of the functions of PHBs in the life cycle of the parasite. It also highlights the protective role of prohibitins against ROS and reveals that the absence of PHB2 has a lethal effect on the parasite, a fact that could support the consideration of this protein as a possible target for therapeutic action.
Collapse
|
25
|
Development of New Antiproliferative Compound against Human Tumor Cells from the Marine Microalgae Nannochloropsis gaditana by Applied Proteomics. Int J Mol Sci 2020; 22:ijms22010096. [PMID: 33374179 PMCID: PMC7795124 DOI: 10.3390/ijms22010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Proteomics is a crucial tool for unravelling the molecular dynamics of essential biological processes, becoming a pivotal technique for basic and applied research. Diverse bioinformatic tools are required to manage and explore the huge amount of information obtained from a single proteomics experiment. Thus, functional annotation and protein-protein interactions are evaluated in depth leading to the biological conclusions that best fit the proteomic response in the system under study. To gain insight into potential applications of the identified proteins, a novel approach named "Applied Proteomics" has been developed by comparing the obtained protein information with the existing patents database. The development of massive sequencing technology and mass spectrometry (MS/MS) improvements has allowed the application of proteomics nonmodel microorganisms, which have been deeply described as a novel source of metabolites. Between them, Nannochloropsis gaditana has been pointed out as an alternative source of biomolecules. Recently, our research group has reported the first complete proteome analysis of this microalga, which was analysed using the applied proteomics concept with the identification of 488 proteins with potential industrial applications. To validate our approach, we selected the UCA01 protein from the prohibitin family. The recombinant version of this protein showed antiproliferative activity against two tumor cell lines, Caco2 (colon adenocarcinoma) and HepG-2 (hepatocellular carcinoma), proving that proteome data have been transformed into relevant biotechnological information. From Nannochloropsis gaditana has been developed a new tool against cancer-the protein named UCA01. This protein has selective effects inhibiting the growth of tumor cells, but does not show any effect on control cells. This approach describes the first practical approach to transform proteome information in a potential industrial application, named "applied proteomics". It is based on a novel bioalgorithm, which is able to identify proteins with potential industrial applications. From hundreds of proteins described in the proteome of N. gaditana, the bioalgorithm identified over 400 proteins with potential uses; one of them was selected as UCA01, "in vitro" and its potential was demonstrated against cancer. This approach has great potential, but the applications are potentially numerous and undefined.
Collapse
|
26
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
27
|
Zhang LF, Tan-Tai WJ, Li XH, Liu MF, Shi HJ, Martin-DeLeon PA, O WS, Chen H. PHB regulates meiotic recombination via JAK2-mediated histone modifications in spermatogenesis. Nucleic Acids Res 2020; 48:4780-4796. [PMID: 32232334 PMCID: PMC7229831 DOI: 10.1093/nar/gkaa203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023] Open
Abstract
Previously, we have shown that human sperm Prohibitin (PHB) expression is significantly negatively correlated with mitochondrial ROS levels but positively correlated with mitochondrial membrane potential and motility. However, the possible role of PHB in mammalian spermatogenesis has not been investigated. Here we document the presence of PHB in spermatocytes and its functional roles in meiosis by generating the first male germ cell-specific Phb-cKO mouse. Loss of PHB in spermatocytes resulted in complete male infertility, associated with not only meiotic pachytene arrest with accompanying apoptosis, but also apoptosis resulting from mitochondrial morphology and function impairment. Our mechanistic studies show that PHB in spermatocytes regulates the expression of STAG3, a key component of the meiotic cohesin complex, via a non-canonical JAK/STAT pathway, and consequently promotes meiotic DSB repair and homologous recombination. Furthermore, the PHB/JAK2 axis was found as a novel mechanism in the maintenance of stabilization of meiotic STAG3 cohesin complex and the modulation of heterochromatin formation in spermatocytes during meiosis. The observed JAK2-mediated epigenetic changes in histone modifications, reflected in a reduction of histone 3 tyrosine 41 phosphorylation (H3Y41ph) and a retention of H3K9me3 at the Stag3 locus, could be responsible for Stag3 dysregulation in spermatocytes with the loss of PHB.
Collapse
Affiliation(s)
- Ling-Fei Zhang
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jing Tan-Tai
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Hui Li
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui-Juan Shi
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and DevelopmentInstitution, Shanghai 200032, China
| | | | - Wai-Sum O
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hong Chen
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Cheng WJ, Gu MJ, Ye F, Zhang YD, Zhong QP, Dong HF, Liu R, Jiang H. Prohibitin 1 (PHB1) controls growth and development and regulates proliferation and apoptosis in Schistosoma japonicum. FASEB J 2020; 34:11030-11046. [PMID: 32627884 DOI: 10.1096/fj.201902787rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a zoonotic parasitic disease caused by the trematode blood flukes of the genus Schistosoma. The prodigious egg output of females is the main cause of the disease in definitive hosts, while the female worm relies on continuous pairing with the male worm to fuel the growth and maturation of the reproductive organs and egg production. Prohibitin, which contains the functionally interdependent PHB1 and PHB2 subunits in human and some other species, has been proposed to participate in the cell proliferation and apoptosis regulation in mammals. However, little is known about the function of PHB homolog in the growth and reproductive development of schistosomes. Here, we reported the Phb1 gene that was structurally and evolutionarily conserved in Schistosoma japonicum when compared with that of other species from Caenorhabditis elegans to human. Real-time PCR detected that SjPhb1 was highly transcribed in the vitellaria of female worms. SjPhb1 knockdown achieved through the dsRNA-mediated RNAi in vivo resulted in retarded growth, decreased pairing, and fecundity in adult worms, as well as attenuated pathogenicity or virulence of worms to their hosts. Cell proliferation and apoptosis examination found decreased cell proliferation and increased cell apoptosis in SjPhb1 dsRNA-treated worms. Therefore, our study provides the first characterization of S. japonicum PHB1 and reveals its fundamental role in the regulation of growth and development of S. japonicum by specific dsRNA-mediated RNAi in vivo. Our findings prompt for a promising molecular of schistosomes that can be targeted to effectively retard the growth and development of the schistosomes.
Collapse
Affiliation(s)
- Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Meng-Jie Gu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
29
|
Yurugi H, Zhuang Y, Siddiqui FA, Liang H, Rosigkeit S, Zeng Y, Abou-Hamdan H, Bockamp E, Zhou Y, Abankwa D, Zhao W, Désaubry L, Rajalingam K. A subset of flavaglines inhibits KRAS nanoclustering and activation. J Cell Sci 2020; 133:jcs244111. [PMID: 32501281 DOI: 10.1242/jcs.244111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/30/2020] [Indexed: 08/31/2023] Open
Abstract
The RAS oncogenes are frequently mutated in human cancers and among the three isoforms (KRAS, HRAS and NRAS), KRAS is the most frequently mutated oncogene. Here, we demonstrate that a subset of flavaglines, a class of natural anti-tumour drugs and chemical ligands of prohibitins, inhibit RAS GTP loading and oncogene activation in cells at nanomolar concentrations. Treatment with rocaglamide, the first discovered flavagline, inhibited the nanoclustering of KRAS, but not HRAS and NRAS, at specific phospholipid-enriched plasma membrane domains. We further demonstrate that plasma membrane-associated prohibitins directly interact with KRAS, phosphatidylserine and phosphatidic acid, and these interactions are disrupted by rocaglamide but not by the structurally related flavagline FL1. Depletion of prohibitin-1 phenocopied the rocaglamide-mediated effects on KRAS activation and stability. We also demonstrate that flavaglines inhibit the oncogenic growth of KRAS-mutated cells and that treatment with rocaglamide reduces non-small-cell lung carcinoma (NSCLC) tumour nodules in autochthonous KRAS-driven mouse models without severe side effects. Our data suggest that it will be promising to further develop flavagline derivatives as specific KRAS inhibitors for clinical applications.
Collapse
Affiliation(s)
- Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Farid A Siddiqui
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, Mcgovern Medical School, UT Health, 6431 Fannin St. MSE R382, Houston, TX 77030, USA
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Hussein Abou-Hamdan
- Therapeutic Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, Mcgovern Medical School, UT Health, 6431 Fannin St. MSE R382, Houston, TX 77030, USA
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
- Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit University of Luxembourg, L 4362 Esch-sur-Alzette, Luxembourg
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Laurent Désaubry
- Therapeutic Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, D 55131 Mainz, Germany
| |
Collapse
|
30
|
Guo SD, Yan ST, Li W, Zhou H, Yang JP, Yao Y, Shen MJ, Zhang LW, Zhang HB, Sun LC. HDAC6 promotes sepsis development by impairing PHB1-mediated mitochondrial respiratory chain function. Aging (Albany NY) 2020; 12:5411-5422. [PMID: 32221047 PMCID: PMC7138540 DOI: 10.18632/aging.102964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/19/2020] [Indexed: 04/09/2023]
Abstract
OBJECTIVE This study was aimed at investigating the regulation of mitochondrial function by histone deacetylase 6 (HDAC6) and the role of HDAC6 in the development and progression of sepsis. RESULTS HDAC6 downregulated PHB1 and subsequently promoted the development of CLP-induced sepsis. Inhibition of HDAC6 significantly attenuated CLP-induced sepsis through inhibition of mitochondrial dysfunction and reduced oxidant production, thus protecting the rats from oxidative injury. CONCLUSIONS In this sepsis model, HDAC6 inhibits the expression and function of PHB1 and alters the function of the mitochondrial respiratory chain mediated by PHB1, thus enhancing the production of oxidants and increasing oxidative stress and thereby leading to severe oxidative injury in multiple organs. METHODS The expression of HDAC6 and prohibitin 1 (PHB1) in humans and in a rat model of sepsis was measured by quantitative reverse-transcription PCR and western blotting. Sepsis induction by cecal ligation and puncture (CLP) was confirmed by histological analysis. Concentrations of different sepsis markers were measured by an enzyme-linked immunosorbent assay, and mitochondrial function was assessed via the mitochondrial respiratory control rate.
Collapse
Affiliation(s)
- Shi-dong Guo
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Sheng-tao Yan
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Wen Li
- Surgical Intensive Care Unit of China-Japan Friendship Hospital, Beijing, China
| | - Hong Zhou
- Department of Emergency, China Emergency General Hospital, Beijing, China
| | - Jian-ping Yang
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Yao Yao
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Mei-jia Shen
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Liu-wei Zhang
- Department of Physical Constitution and Health, Sport Science College, Beijing Sport University, Beijing, China
| | - Hong-Bo Zhang
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Li-Chao Sun
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
31
|
Abstract
Prohibitin 1 is an evolutionary conserved and ubiquitously expressed protein that exerts different biological functions depending on its subcellular localization. The role of prohibitin 1 in liver cancer is controversial as it can be pro- or anti-tumorigenic. However, most of the studies to date have described prohibitin 1 primarily as a tumor suppressor in the liver. Its deficiency sensitizes the liver to cholestatic liver injury, non-alcoholic fatty liver disease, inflammatory insults, and cancer. Liver-specific Phb1-knockout mice spontaneously develop hepatocellular carcinoma, Phb1 heterozygotes are more susceptible to develop cholangiocarcinoma, and the majority of human hepatocellular carcinomas and cholangiocarcinomas have reduced prohibitin 1 expression. Consistent with a tumor suppressive role in the liver, prohibitin 1 negatively regulates proliferation in hepatocytes and human hepatocellular carcinoma and cholangiocarcinoma cell lines, and multiple oncogenic signaling pathways are activated when prohibitin 1 is deficient. Although best known as a mitochondrial chaperone, prohibitin 1 can protect the liver by mitochondrial-independent mechanisms. This review summarizes what’s known about prohibitin 1’s role in liver pathology, with the focus on hepatoprotection and carcinogenesis. Impact statement This review summarizes the last decades of research on PHB1 in liver pathobiology. PHB1 is a key player for liver health as it is hepatoprotective and tumor suppressive. We highlight the importance of PHB1’s subcellular localization, post-translational modifications, and interacting proteins as major determinants of PHB1 cytoprotective function and anti-tumor activity in the liver.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
32
|
Xu YXZ, Bassi G, Mishra S. Prohibitin: a prime candidate for a pleiotropic effector that mediates sex differences in obesity, insulin resistance, and metabolic dysregulation. Biol Sex Differ 2019; 10:25. [PMID: 31118075 PMCID: PMC6530082 DOI: 10.1186/s13293-019-0239-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Adipocytes and macrophages, the two major constituents of adipose tissue, exhibit sex differences and work in synergy in adipose tissue physiology and pathophysiology, including obesity-linked insulin resistance and metabolic dysregulation. Sex steroid hormones play a major role in sex differences in adipose tissue biology. However, our knowledge of the molecules that mediate these effects in adipose tissue remains limited. Consequently, it remains unclear whether these effector molecules in different adipose and immune cell types are distinct or if there are also pleiotropic effectors. Recently, a protein named prohibitin (PHB) with cell compartment- and tissue-specific functions has been found to play a role in sex differences in adipose and immune functions. Transgenic (Tg) mouse models overexpressing PHB (PHB-Tg) and a phospho-mutant PHB (mPHB-Tg) from the fatty acid binding protein-4 (Fabp-4) gene promoter display sex-neutral obesity; however, obesity-related insulin resistance and metabolic dysregulation are male-specific. Intriguingly, with aging, the male PHB-Tg mice developed hepatic steatosis and subsequently liver tumors whereas the male mPHB-Tg mice developed lymph node tumors and splenomegaly. Unlike the male transgenic mice, the female PHB-Tg and mPHB-Tg mice remain protected from obesity-related metabolic dysregulation and tumor development. In conclusion, the sex-dimorphic metabolic and immune phenotypes of PHB-Tg and mPHB-Tg mice have revealed PHB as a pleiotropic effector of sex differences in adipose and immune functions. In this mini-review, we will discuss the pleiotropic attributes of PHB and potential mechanisms that may have contributed to the sex-dimorphic metabolic phenotypes in PHB-Tg and mPHB-Tg mice, which warrant future research. We propose that PHB is a prime candidate for a pleiotropic mediator of sex differences in adipose and immune functions in both physiology and pathophysiology, including obesity, insulin resistance, and metabolic dysregulation.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Geetika Bassi
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada. .,Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
33
|
LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-κB activity in nasopharyngeal carcinoma. Oncogene 2019; 38:5062-5075. [PMID: 30886235 PMCID: PMC6756001 DOI: 10.1038/s41388-019-0778-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
Long-palate, lung and nasal epithelium clone 1 (LPLUNC1) is a tumour suppressor gene in nasopharyngeal carcinoma (NPC), and low expression of LPLUNC1 is associated with poor prognosis. Our previous study showed that LPLUNC1 upregulates Prohibitin 1 (PHB1), a pleiotropic protein that functions as a tumour suppressor gene in various cancers. Low expression of PHB1 was also found to be associated with the poor prognosis of NPC patients. However, the mechanisms by which LPLUNC1 upregulates PHB1 and the potential role of PHB1 in NPC are unclear. Here, we found that LPLUNC1 stabilised PHB1 by inhibiting PHB1 ubiquitination, which is mediated by E3 ligase TRIM21. LPLUNC1 competitively impaired the binding of PHB1 to TRIM21 due to its stronger binding affinity to PHB1, suppressing the ubiquitination of PHB1. Therefore, our study indicates that PHB1 acted as a tumour suppressor gene by inhibiting NF-κB activity. Depletion of PHB1 significantly attenuated the anti-tumour effects of LPLUNC1 in NPC cells, and the inhibitory effect of LPLUNC1 on NF-κB activity was thus reversed. Together, our findings revealed a novel mechanism underlying the anticancer effect of LPLUNC1 and clarified that PHB1 may represent a novel, promising candidate tumour suppressor gene in NPC, with potential therapeutic target value.
Collapse
|
34
|
Gayen D, Gayali S, Barua P, Lande NV, Varshney S, Sengupta S, Chakraborty S, Chakraborty N. Dehydration-induced proteomic landscape of mitochondria in chickpea reveals large-scale coordination of key biological processes. J Proteomics 2019; 192:267-279. [PMID: 30243939 DOI: 10.1016/j.jprot.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating multiple biological processes particularly electron transfer and energy metabolism in eukaryotic cells. Exposure to water-deficit or dehydration may affect mitochondrial function, and dehydration response may dictate cell fate decisions. iTRAQ-based quantitative proteome of a winter legume, chickpea, demonstrated the central metabolic alterations in mitochondria, presumably involved in dehydration adaptation. Three-week-old chickpea seedlings were subjected to progressive dehydration and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical characteristics and mitochondrial architecture. The proteomics analysis led to the identification of 40 dehydration-responsive proteins whose expressions were significantly modulated by dehydration. The differentially expressed proteins were implicated in different metabolic processes, with obvious functional tendencies toward purine-thiamine metabolic network, pathways of carbon fixation and oxidative phosphorylation. The linearity of dehydration-induced proteome alteration was examined with transcript abundance of randomly selected candidates under multivariate stress conditions. The differentially regulated proteins were validated through sequence analysis. An extensive sequence based localization prediction revealed >62.5% proteins to be mitochondrial resident by, at least, one prediction algorithm. The results altogether provide intriguing insights into the dehydration-responsive metabolic pathways and useful clues to identify crucial proteins linked to stress tolerance. BIOLOGICAL SIGNIFICANCE: Investigation on plant mitochondrial proteome is of significance because it would allow a better understanding of mitochondrial function in plant adaptation to stress. Mitochondria are the unique organelles, which play a crucial role in energy metabolism and cellular homeostasis, particularly when exposed to stress conditions. Chickpea is one of the cultivated winter legumes, which enriches soil nitrogen and has very low water footprint and thus contributes to fortification of sustainable agriculture. We therefore examined the dehydration-responsive mitochondrial proteome landscape of chickpea and queried whether molecular interplay of mitochondrial proteins modulate dehydration tolerance. A total of 40 dehydration-induced mitochondrial proteins were identified, predicted to be involved in key metabolic processes. Our future efforts would focus on understanding both posttranslational modification and processing for comprehensive characterization of mitochondrial protein function. This approach will facilitate mining of more biomarkers linked to the tolerance trait and contribute to crop adaptation to climate change.
Collapse
Affiliation(s)
- Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
35
|
Mishra S, Nyomba BLG. Prohibitin: A hypothetical target for sex-based new therapeutics for metabolic and immune diseases. Exp Biol Med (Maywood) 2019; 244:157-170. [PMID: 30717609 PMCID: PMC6405819 DOI: 10.1177/1535370219828362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPACT STATEMENT Traditional sex-related biases in research are now obsolete, and it is important to identify the sex of humans, animals, and even cells in research protocols, due to the role of sex as a fundamental facet of biology, predisposition to disease, and response to therapy. Genetic sex, epigenetics and hormonal regulations, generate sex-dimorphisms. Recent investigations acknowledge sex differences in metabolic and immune health as well as chronic diseases. Prohibitin, an evolutionarily conserved molecule, has pleotropic functions in mitochondrial housekeeping, plasma membrane signaling, and nuclear genetic transcription. Studies in adipocytes, macrophages, and transgenic mice indicate that prohibitin interacts with sex steroids and plays a role in mediating sex differences in adipose tissues and immune cell types. Prohibitin may, depending on context, modulate predisposition to chronic metabolic diseases and malignancy and, because of these attributes, could be a target for sex-based therapies of metabolic and immune-related diseases as well as cancer.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
- Department of Physiology & Pathophysiology, University of
Manitoba, Manitoba R3E0J9, Canada
| | - BL Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
| |
Collapse
|
36
|
Peptidylarginine Deiminases Post-Translationally Deiminate Prohibitin and Modulate Extracellular Vesicle Release and MicroRNAs in Glioblastoma Multiforme. Int J Mol Sci 2018; 20:ijms20010103. [PMID: 30597867 PMCID: PMC6337164 DOI: 10.3390/ijms20010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.
Collapse
|
37
|
Brekk OR, Makridakis M, Mavroeidi P, Vlahou A, Xilouri M, Stefanis L. Impairment of chaperone-mediated autophagy affects neuronal homeostasis through altered expression of DJ-1 and CRMP-2 proteins. Mol Cell Neurosci 2018; 95:1-12. [PMID: 30562574 DOI: 10.1016/j.mcn.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a substrate-specific mode of lysosomal proteolysis, with multiple lines of evidence connecting its dysfunction to both ageing and disease. We have recently shown that CMA impairment through knock-down of the lysosomal receptor LAMP2A is detrimental to neuronal viability in vivo; however, it is not clear which subset of proteins regulated by the CMA pathway mediate such changes. In this study, we have manipulated CMA function through alterations of LAMP2A abundance in primary rat cortical neurons, to identify potential changes to the neuronal proteome occurring prior to neurotoxic effects. We have identified a list of proteins with significant, >2-fold change in abundance following our manipulations, of which PARK7/DJ-1 - an anti-oxidant implicated in hereditary forms of Parkinson's Disease (PD), and DPYSL2/CRMP-2 - a microtubule-binding phosphoprotein involved in schizophrenia pathogenesis - were both found to have measurable effects on neuronal homeostasis and phenotype. Taken together, this study describes alterations in the abundance of neuronal proteins involved in neuropsychiatric disorders upon CMA manipulation, and suggests that such alterations may in part be responsible for the neurodegeneration observed upon CMA impairment in vivo.
Collapse
Affiliation(s)
- Oeystein Roed Brekk
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece; University of Crete, School of Medicine, Heraklion, Crete, Greece.
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Panagiota Mavroeidi
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
38
|
Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, Lu SC. Prohibitin 1 Acts As a Negative Regulator of Wingless/Integrated-Beta-Catenin Signaling in Murine Liver and Human Liver Cancer Cells. Hepatol Commun 2018; 2:1583-1600. [PMID: 30556043 PMCID: PMC6287485 DOI: 10.1002/hep4.1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Prohibitin1 (PHB1) is a mitochondrial chaperone with diverse functions that include cell proliferation, apoptosis, and mitochondrial homoeostasis. Liver‐specific Phb1 knockout (KO) mice develop spontaneous injury and hepatocellular carcinoma (HCC). Our previous work demonstrated that PHB1 negatively regulates the H19‐insulin‐like growth factor 2 (IGF2)‐H19‐IGF2 axis signaling pathway and E‐box activity in hepatocytes and HCC cells. Phb1 KO livers exhibited increased expression of multiple wingless/integrated (WNT) target genes compared to control littermates. Therefore, we hypothesized that PHB1 is a negative regulator of WNT‐beta‐catenin signaling in the liver. Analysis of livers from Phb1 KO mice demonstrated an activation of the WNT‐beta‐catenin pathway as determined by phosphorylation of glycogen synthase kinase 3 (GSK3)betaserine [Ser]9 and protein kinase B (AKT)Ser473. Phb1 KO livers showed increased messenger RNA (mRNA) levels of multiple WNT ligands, with Wnt7a (79‐fold), Wnt10a (12‐fold), and Wnt16 (48‐fold) being most highly overexpressed compared to control littermates. Subcellular fractionation of liver cells from Phb1 KO mice indicated that hepatocytes are the main source of WNT ligands. Immunostaining and cellular colocalization analysis of Phb1 KO livers demonstrated expression of WNT7a, WNT10a, and WNT16 in hepatocytes. Chromatin immunoprecipitation revealed increased binding of transcription factor E2F1 (E2F1) to the Wnt10a promoter in Phb1 KO livers and WNT9A in HepG2 cells. PHB1 silencing in HepG2 cells activated WNT signaling, whereas its overexpression caused inactivation of this pathway. PHB1 silencing in HepG2 cells induced the expression of multiple WNT ligands of which WNT9A induction was partly regulated through E2F1. Conclusion: PHB1 acts as a negative regulator of WNT signaling, and its down‐regulation causes the induction of multiple WNT ligands and downstream activation of canonical WNT‐beta‐catenin signaling in murine liver and human HCC cells, in part through E2F1.
Collapse
Affiliation(s)
- Nirmala Mavila
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Yuanyuan Tang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Department of Oncology The Second Xiangya Hospital, Central South University Changsha China
| | - Joshua Berlind
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - Komal Ramani
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Jiaohong Wang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Technology Park of Bizkaia Derio Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| |
Collapse
|
39
|
Liu S, Yu F, Hu Q, Wang T, Yu L, Du S, Yu W, Li N. Development of in Planta Chemical Cross-Linking-Based Quantitative Interactomics in Arabidopsis. J Proteome Res 2018; 17:3195-3213. [DOI: 10.1021/acs.jproteome.8b00320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shichang Liu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Hu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tingliang Wang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lujia Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shengwang Du
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weichuan Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
40
|
Buehler U, Schulenburg K, Yurugi H, Šolman M, Abankwa D, Ulges A, Tenzer S, Bopp T, Thiede B, Zipp F, Rajalingam K. Targeting prohibitins at the cell surface prevents Th17-mediated autoimmunity. EMBO J 2018; 37:embj.201899429. [PMID: 30049713 DOI: 10.15252/embj.201899429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/31/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022] Open
Abstract
T helper (Th)17 cells represent a unique subset of CD4+ T cells and are vital for clearance of extracellular pathogens including bacteria and fungi. However, Th17 cells are also involved in orchestrating autoimmunity. By employing quantitative surface proteomics, we found that the evolutionarily conserved prohibitins (PHB1/2) are highly expressed on the surface of both murine and human Th17 cells. Increased expression of PHBs at the cell surface contributed to enhanced CRAF/MAPK activation in Th17 cells. Targeting surface-expressed PHBs on Th17 cells with ligands such as Vi polysaccharide (Typhim vaccine) inhibited CRAF-MAPK pathway, reduced interleukin (IL)-17 expression and ameliorated disease pathology with an increase in FOXP3+-expressing Tregs in an animal model for multiple sclerosis (MS). Interestingly, we detected a CD4+ T cell population with high PHB1 surface expression in blood samples from MS patients in comparison with age- and sex-matched healthy subjects. Our observations suggest a pivotal role for the PHB-CRAF-MAPK signalling axis in regulating the polarization and pathogenicity of Th17 cells and unveil druggable targets in autoimmune disorders such as MS.
Collapse
Affiliation(s)
- Ulrike Buehler
- Department of Neurology, Focus Program Translational Neurosciences (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Schulenburg
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland.,Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ulges
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neurosciences (FTN) and Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
41
|
Shi Y, Guo S, Wang Y, Liu X, Li Q, Li T. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins. Sci Rep 2018; 8:3932. [PMID: 29500418 PMCID: PMC5834496 DOI: 10.1038/s41598-018-22212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.
Collapse
Affiliation(s)
- Ying Shi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug discovery, Liaoning Normal University, Dalian, 116081, China
| | - Sicheng Guo
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug discovery, Liaoning Normal University, Dalian, 116081, China
| | - Ying Wang
- 210th Hospital of PLA, Dalian, 116011, China
| | - Xin Liu
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug discovery, Liaoning Normal University, Dalian, 116081, China.
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug discovery, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
42
|
Zi Xu YX, Ande SR, Mishra S. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Lett 2018; 415:208-216. [DOI: 10.1016/j.canlet.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|
43
|
Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 2018; 8:1479. [PMID: 29367618 PMCID: PMC5784149 DOI: 10.1038/s41598-018-19917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023] Open
Abstract
Prohibitin 2 (PHB2), as a conserved multifunctional protein, is traditionally localized in the mitochondrial inner membrane and essential for maintenance of mitochondrial function. Here, we investigated the role of PHB2 in human rhabdomyosarcoma (RMS) RD cells and found substantial localization of PHB2 in the nucleolus. We demonstrated that PHB2 knockdown inhibited RD cell proliferation through inducing cell cycle arrest and suppressing DNA synthesis. Meanwhile, down-regulation of PHB2 also induced apoptosis and promoted differentiation in fractions of RD cells. In addition, PHB2 silencing led to altered nucleolar morphology, as observed by transmission electron microscopy, and impaired nucleolar function, as evidenced by down-regulation of 45S and 18S ribosomal RNA synthesis. Consistently, upon PHB2 knockdown, occupancy of c-Myc at the ribosomal DNA (rDNA) promoter was attenuated, while more myoblast determination protein 1 (MyoD) molecules bound to the rDNA promoter. In conclusion, our findings suggest that nucleolar PHB2 is involved in maintaining nucleolar morphology and function in RD cells by regulating a variety of transcription factors, which is likely to be one of the underlying mechanisms by which PHB2 promotes tumor proliferation and represses differentiation. Our study provides new insight into the pathogenesis of RMS and novel characterizations of the highly conserved PHB2 protein.
Collapse
|
44
|
Prohibitin: a potential therapeutic target in tyrosine kinase signaling. Signal Transduct Target Ther 2017; 2:17059. [PMID: 29263933 PMCID: PMC5730683 DOI: 10.1038/sigtrans.2017.59] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
Prohibitin is a pleiotropic protein that has roles in fundamental cellular processes, such as cellular proliferation and mitochondrial housekeeping, and in cell- or tissue-specific functions, such as adipogenesis and immune cell functions. The different functions of prohibitin are mediated by its cell compartment-specific attributes, which include acting as an adaptor molecule in membrane signaling, a scaffolding protein in mitochondria, and a transcriptional co-regulator in the nucleus. However, the precise relationship between its distinct cellular localization and diverse functions remain largely unknown. Accumulating evidence suggests that the phosphorylation of prohibitin plays a role in a number of cell signaling pathways and in intracellular trafficking. Herein, we discuss the known and potential importance of the site-specific phosphorylation of prohibitin in regulating these features. We will discuss this in the context of new evidence from tissue-specific transgenic mouse models of prohibitin, including a mutant prohibitin lacking a crucial tyrosine phosphorylation site. We conclude with the opinion that prohibitin can be used as a potential target for tyrosine kinase signal transduction-targeting therapy, including in insulin, growth factors, and immune signaling pathways.
Collapse
|
45
|
Satheesh Kumar MK, Nair S, Mony U, Kalingavarman S, Venkat R, Sivanarayanan TB, Unni AKK, Rajeshkannan R, Anandakuttan A, Radhakrishnan S, Menon KN. Significance of elevated Prohibitin 1 levels in Multiple Sclerosis patients lymphocytes towards the assessment of subclinical disease activity and its role in the central nervous system pathology of disease. Int J Biol Macromol 2017; 110:573-581. [PMID: 29242126 DOI: 10.1016/j.ijbiomac.2017.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/26/2017] [Accepted: 12/10/2017] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune-neurodegenerative disorder managed therapeutically by modulating lymphocytes activity which has potential in disease management. Prohibitin 1(PHB) that controls the reactive oxygen species (ROS) and present on the activated lymphocytes have significance in the therapy of MS as esters of fumaric acid that regulates ROS is in phase II/III clinical trials. Thus, we evaluated the expression levels of PHB1 in experimental autoimmune encephalomyelitis (EAE), the animal model of MS and on MS patient's lymphocytes. PHB levels in brain tissue of EAE animals were determined by immunoblotting and on blood lymphocytes from MS relapse, Remission, Optic Neuritis, Neurological controls and Healthy volunteers by FACS using anti-PHB and anti-CD45 antibodies. We observed significant elevation of PHB in EAE brains (91.0 ± 17.59%) vs controls (29.8 ± 12.9%) (p = 0.01) and on lymphocytes of MS patients in acute (73.5 ± 11.20%) or relapsing (69.3 ± 17.33%) phase compared to remission (45.9 ± 8.08%) [p = 0.034 acute vs remission; p = 0.004 relapse vs remission]. Up regulation of PHB in relapsing vs remission MS patients imply the potential use of PHB to clinically evaluate subclinical disease status towards prognosis of an oncoming relapse. Elevated PHB levels in EAE brains signify the role of PHB in regulating ROS and implies PHB's role in oxidative stress.
Collapse
Affiliation(s)
| | - Sreepriya Nair
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ullas Mony
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sugavanan Kalingavarman
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ramaswamynathan Venkat
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Ramiah Rajeshkannan
- Department of Radiation Oncology, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Krishnakumar N Menon
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
46
|
Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, Penalva LOF. MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting Prohibitin 1. BMC Cancer 2017; 17:750. [PMID: 29126391 PMCID: PMC5681823 DOI: 10.1186/s12885-017-3721-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Background Melanoma is the most lethal type of skin cancer. Since chemoresistance is a significant barrier, identification of regulators affecting chemosensitivity is necessary in order to create new forms of intervention. Prohibitin 1 (PHB1) can act as anti-apoptotic or tumor suppressor molecule, depending on its subcellular localization. Our recent data shown that accumulation of PHB1 protects melanoma cells from chemotherapy-induced cell death. Lacking of post-transcriptional regulation of PHB1 could explain this accumulation. Interestingly, most of melanoma patients have down-regulation of microRNA-195. Here, we investigate the role of miR-195, its impact on PHB1 expression, and on chemosensitivity in melanoma cells. Methods TCGA-RNAseq data obtained from 341 melanoma patient samples as well as a panel of melanoma cell lines were used in an expression correlation analysis between PHB1 and predicted miRNAs. miR-195 impact on PHB1 mRNA and protein levels and relevance of this regulation were investigated in UACC-62 and SK-MEL-5 melanoma lines by RT-qPCR and western blot, luciferase reporter and genetic rescue experiments. Cell proliferation, cell-cycle analysis and caspase 3/7 assay were performed to investigate the potential action of miR-195 as chemosensitizer in melanoma cells treated with cisplatin and temozolomide. Results Analysis of the TCGA-RNAseq revealed a significant negative correlation (Pearson) between miR-195 and PHB1 expression. Moreover, RT-qPCR data showed that miR-195 is down-regulated while PHB1 is up-regulated in a collection of melanoma cells. We demonstrated that miR-195 regulates PHB1 directly by RT-qPCR and western blot in melanoma cells and luciferase assays. To establish PHB1 as a relevant target of miR-195, we conducted rescue experiments in which we showed that PHB1 transgenic expression could antagonize the suppressive effect miR-195 on the proliferation of melanoma cells. Finally, transfection experiments combined with drug treatments performed in the UACC-62 and SK-MEL-5 melanoma cells corroborated miR-195 as potential anti-proliferative agent, with potential impact in sensitization of melanoma cell death. Conclusions This study support the role of miR-195 as anti-proliferative miRNA via targeting of PHB1 in melanoma cells. Electronic supplementary material The online version of this article (10.1186/s12885-017-3721-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priscila Daniele Ramos Cirilo
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil.,The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA.,Instituto Hermes Pardini, Setor de Pesquisa e Desenvolvimento, Av das Nações, 2448, Distrito Industrial, Vespasiano, MG, CEP 33200-000, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil
| | - Bruna Renata Silva Corrêa
- The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA.,Instituto Sírio-Libanês de Ensino e Pesquisa, Centro de Oncologia Molecular, Rua Prof. Daher Cutait, 69, São Paulo, SP, CEP 01308-060, Brazil
| | - Mei Qiao
- The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA
| | - Tatiane Katsue Furuya
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil
| | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, Av. Dr. Arnaldo,251, São Paulo, SP, CEP 01246-000, Brazil
| | - Luiz Otavio Ferraz Penalva
- The University of Texas Health Science Center at San Antonio, Children's Cancer Research Institute, 7703 Floyd Curl Drive, San Antonio, TX, 78229-390, USA.
| |
Collapse
|
47
|
Lachén-Montes M, González-Morales A, Zelaya MV, Pérez-Valderrama E, Ausín K, Ferrer I, Fernández-Irigoyen J, Santamaría E. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer's disease progression. Sci Rep 2017; 7:9115. [PMID: 28831118 PMCID: PMC5567385 DOI: 10.1038/s41598-017-09481-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Olfactory dysfunction is among the earliest features of Alzheimer’s disease (AD). Although neuropathological abnormalities have been detected in the olfactory bulb (OB), little is known about its dynamic biology. Here, OB- proteome analysis showed a stage-dependent synaptic proteostasis impairment during AD evolution. In addition to progressive modulation of tau and amyloid precursor protein (APP) interactomes, network-driven proteomics revealed an early disruption of upstream and downstream p38 MAPK pathway and a subsequent impairment of Phosphoinositide-dependent protein kinase 1 (PDK1)/Protein kinase C (PKC) signaling axis in the OB from AD subjects. Moreover, a mitochondrial imbalance was evidenced by a depletion of Prohibitin-2 (Phb2) levels and a specific decrease in the phosphorylated isoforms of Phb1 in intermediate and advanced AD stages. Interestingly, olfactory Phb subunits were also deregulated across different types of dementia. Phb2 showed a specific up-regulation in mixed dementia, while Phb1 isoforms were down-regulated in frontotemporal lobar degeneration (FTLD). However, no differences were observed in the olfactory expression of Phb subunits in progressive supranuclear palsy (PSP). To sum up, our data reflect, in part, the missing links in the biochemical understanding of olfactory dysfunction in AD, unveiling Phb complex as a differential driver of neurodegeneration at olfactory level.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - María Victoria Zelaya
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain
| | - Estela Pérez-Valderrama
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Karina Ausín
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain. .,IDISNA, Navarra Institute for Health Research, Pamplona, Spain. .,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.
| |
Collapse
|
48
|
Ross JA, Robles-Escajeda E, Oaxaca DM, Padilla DL, Kirken RA. The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies. Oncotarget 2017; 8:65445-65456. [PMID: 29029444 PMCID: PMC5630344 DOI: 10.18632/oncotarget.18920] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Prohibitins (PHB1 and PHB2) have been proposed to play important roles in cancer development and progression, however their oncogenic mechanism of action has not been fully elucidated. Previously, we showed that the PHB1 and PHB2 protein complex is required for mitochondrial homeostasis and survival of normal human lymphocytes. In this study, novel evidence is provided that indicates mitochondrial prohibitins are overexpressed in hematologic tumor cells and promote cell survival under conditions of oxidative stress. Immunofluorescent confocal microscopy revealed both proteins to be primarily confined to mitochondria in primary patient lymphoid and myeloid tumor cells and tumor cell lines, including Kit225 cells. Subsequently, siRNA-mediated knockdown of PHB1 and PHB2 in Kit225 cells significantly enhanced sensitivity to H2O2-induced cell death, suggesting a protective or anti-apoptotic function in hematologic malignancies. Indeed, PHB1 and PHB2 protein levels were significantly higher in tumor cells isolated from leukemia and lymphoma patients compared to PBMCs from healthy donors. These findings suggest that PHB1 and PHB2 are upregulated during tumorigenesis to maintain mitochondrial integrity and therefore may serve as novel biomarkers and molecular targets for therapeutic intervention in certain types of hematologic malignancies.
Collapse
Affiliation(s)
- Jeremy A Ross
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Elisa Robles-Escajeda
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Derrick M Oaxaca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Diana L Padilla
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A Kirken
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
49
|
Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene 2017; 36:4778-4789. [PMID: 28414306 DOI: 10.1038/onc.2017.93] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
KRAS is one of the most frequently mutated oncogenes in human non-small cell lung cancers (NSCLCs). RAS proteins trigger multiple effector signalling pathways including the highly conserved RAF-MAPK pathway. CRAF, a direct RAS effector protein, is required for KRAS-mediated tumourigenesis. Thus, the molecular mechanisms driving the activation of CRAF are intensively studied. Prohibitin 1 (PHB1) is an evolutionarily conserved adaptor protein and interaction of CRAF with PHB1 at the plasma membrane is essential for CRAF activation. Here, we demonstrate that PHB1 is highly expressed in NSCLC patients and correlates with poor survival. Targeting of PHB1 with two chemical ligands (rocaglamide and fluorizoline) inhibits epidermal growth factor (EGF)/RAS-induced CRAF activation. Consistently, treatment with rocaglamide inhibited proliferation, migration and anchorage-independent growth of KRAS-mutated lung carcinoma cell lines. Surprisingly, rocaglamide treatment inhibited Ras-GTP loading in KRAS-mutated cells as well as in EGF-stimulated cells. Rocaglamide treatment further prevented the oncogenic growth of KRAS-driven lung cancer allografts and xenografts in mouse models. Our results suggest rocaglamide as a RAS inhibitor and that targeting plasma membrane-associated PHB1 with chemical ligands would be a viable therapeutic strategy to combat KRAS-mediated NSCLCs.
Collapse
|
50
|
Mishra S, Nyomba BG. Prohibitin - At the crossroads of obesity-linked diabetes and cancer. Exp Biol Med (Maywood) 2017; 242:1170-1177. [PMID: 28399645 DOI: 10.1177/1535370217703976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The promoter of a gene that is selectively expressed in just a few cell types provides unique opportunities to study: (1) the pleiotropic function of a protein in two different cell types including the cell compartment specific function, and (2) the crosstalk between two cell/tissue types at the systemic level. This is not possible with a ubiquitous or a highly specific gene promoter. The adipocyte protein-2 ( aP2) is one such gene. It is primarily expressed in adipocytes, but also selectively in monocytic macrophages and dendritic cells, among various immune cell types. Thus, the adipocyte protein-2 gene promoter provides an opportunity to simultaneously manipulate adipose and immune functions in a transgenic animal. Prohibitin (PHB) is a pleiotropic protein that has roles in both adipocytes and immune cells. Adipocyte specific functions of prohibitin are mediated through its mitochondrial function, whereas its immune functions are mediated in a phosphorylation-dependent manner. We capitalized on this attribute of prohibitin to explore the crosstalk between adipose and immune functions, and to discern mitochondrial and plasma membrane-associated cell signaling functions of prohibitin, by expressing wild type prohibitin (Mito-Ob) and a phospho-mutant form of prohibitin (m-Mito-Ob) from the protein-2 gene promoter, individually. Both transgenic mice develop obesity in a sex-neutral manner, but develop obesity-related metabolic dysregulation in a male sex-specific manner. Subsequently, the male Mito-Ob mice spontaneously developed type 2 diabetes and liver cancer, whereas the male m-Mito-Ob mice developed lymph node tumors or autoimmune diabetes in a context-dependent manner. This review provides a point of view on the role of prohibitin in mediating sex differences in adipose and immune functions at the systemic level. We discuss the unique attributes of prohibitin and provide a new paradigm in adipose-immune crosstalk mediated through a pleiotropic protein. Impact statement Prohibitin (PHB) is ubiquitously expressed and plays a role in adipocyte-immune cell cross-talk. Both male and female transgenic mice expressing wild-type PHB in adipose tissue and in macrophages are obese, but only males develop diabetes and liver cancer. When the mice express PHB mutated on tyrosine-114 in adipocytes and macrophages, both males and females are still obese, but none develops liver cancer; instead, males develop lymph node tumors. Adipocyte specific functions of PHB are mediated through its mitochondrial function, whereas its immune functions are mediated in a phosphorylation-dependent manner. Thus, PHB appears to be an important molecule linking obesity, diabetes, and cancer. In addition, this link appears to be affected by sex steroids. Therefore, targeting PHB may lead to a better understanding of the pathogenesis of obesity, diabetes and cancer.
Collapse
Affiliation(s)
- Suresh Mishra
- 1 Department of Internal Medicine, University of Manitoba, Winnipeg R3E3P4, Canada.,2 Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg R3E3P4, Canada
| | - Bl Grégoire Nyomba
- 1 Department of Internal Medicine, University of Manitoba, Winnipeg R3E3P4, Canada
| |
Collapse
|