1
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
2
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
3
|
Tang XF, Sun YF, Liang YS, Yang KY, Chen PT, Li HS, Huang YH, Pang H. Metabolism, digestion, and horizontal transfer: potential roles and interaction of symbiotic bacteria in the ladybird beetle Novius pumilus and their prey Icerya aegyptiaca. Microbiol Spectr 2024; 12:e0295523. [PMID: 38497713 PMCID: PMC11064573 DOI: 10.1128/spectrum.02955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we first time sequenced and analyzed the 16S rRNA gene data of predator ladybird beetles Novius pumilus and globally distributed invasive pest Icerya aegyptiaca at different stages, and combined data with bacterial genome sequences in N. pumilus to explored the taxonomic distribution, alpha and beta diversity, differentially abundant bacteria, co-occurrence network, and putative functions of their microbial community. Our finding revealed that Candidatus Walczuchella, which exhibited a higher abundance in I. aegyptiaca, possessed several genes in essential amino acid biosynthesis and seemed to perform roles in providing nutrients to the host, similar to other obligate symbionts in scale insects. Lactococcus, Serratia, and Pseudomonas, more abundant in N. pumilus, were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects. Notably, our result showed that Lactococcus had relatively higher abundances in adults and eggs compared to other stages in N. pumilus, indicating potential vertical transmission. Additionally, we found that Arsenophonus, known to influence sex ratios in whitefly and wasp, may also function in I. aegyptiaca, probably by influencing nutrient metabolism as it similarly had many genes corresponding to vitamin B and essential amino acid biosynthesis. Also, we observed a potential horizontal transfer of Arsenophonus between the scale insect and its predator, with a relatively high abundance in the ladybirds compared to other bacteria from the scale insects.IMPORTANCEThe composition and dynamic changes of microbiome in different developmental stages of ladybird beetles Novius pumilus with its prey Icerya aegyptiaca were detected. We found that Candidatus Walczuchella, abundant in I. aegyptiaca, probably provide nutrients to their host based on their amino acid biosynthesis-related genes. Abundant symbionts in N. pumilus, including Lactococcus, Serratia, and Pseudophonus, may help the host digest the scale insects with their hydrocarbon, fatty acid, and chitin degrading-related genes. A key endosymbiont Arsenophonus may play potential roles in the nutrient metabolisms and sex determination in I. aegyptiaca, and is possibly transferred from the scale insect to the predator.
Collapse
Affiliation(s)
- Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kun-Yu Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
Ortiz-Álvarez J, Becerra S, Baroncelli R, Hernández-Rodríguez C, Sukno SA, Thon MR. Evolutionary history of the cytochrome P450s from Colletotrichum species and prediction of their putative functional roles during host-pathogen interactions. BMC Genomics 2024; 25:56. [PMID: 38216891 PMCID: PMC10785452 DOI: 10.1186/s12864-023-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024] Open
Abstract
The genomes of species belonging to the genus Colletotrichum harbor a substantial number of cytochrome P450 monooxygenases (CYPs) encoded by a broad diversity of gene families. However, the biological role of their CYP complement (CYPome) has not been elucidated. Here, we investigated the putative evolutionary scenarios that occurred during the evolution of the CYPome belonging to the Colletotrichum Graminicola species complex (s.c.) and their biological implications. The study revealed that most of the CYPome gene families belonging to the Graminicola s.c. experienced gene contractions. The reductive evolution resulted in species restricted CYPs are predominant in each CYPome of members from the Graminicola s.c., whereas only 18 families are absolutely conserved among these species. However, members of CYP families displayed a notably different phylogenetic relationship at the tertiary structure level, suggesting a putative convergent evolution scenario. Most of the CYP enzymes of the Graminicola s.c. share redundant functions in secondary metabolite biosynthesis and xenobiotic metabolism. Hence, this current work suggests that the presence of a broad CYPome in the genus Colletotrichum plays a critical role in the optimization of the colonization capability and virulence.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
- Present Address: Programa "Investigadoras e Investigadores por México" Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Mexico City, México
| | - Sioly Becerra
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
| | - Riccardo Baroncelli
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Serenella A Sukno
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain.
| | - Michael R Thon
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain.
| |
Collapse
|
6
|
Bitzenhofer NL, Höfel C, Thies S, Weiler AJ, Eberlein C, Heipieper HJ, Batra‐Safferling R, Sundermeyer P, Heidler T, Sachse C, Busche T, Kalinowski J, Belthle T, Drepper T, Jaeger K, Loeschcke A. Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis. Microb Biotechnol 2024; 17:e14312. [PMID: 37435812 PMCID: PMC10832525 DOI: 10.1111/1751-7915.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Höfel
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andrea Jeanette Weiler
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Eberlein
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Hermann J. Heipieper
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Renu Batra‐Safferling
- Institute of Biological Information Processing – Structural Biochemistry (IBI‐7: Structural Biochemistry)Forschungszentrum JülichJülichGermany
| | - Pia Sundermeyer
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Thomas Heidler
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Carsten Sachse
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
- Bielefeld University, Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomke Belthle
- DWI─Leibniz‐Institute for Interactive MaterialsAachenGermany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
7
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Zheng Y, Zhang W, Xiong Y, Wang J, Jin S, Qiao H, Jiang S, Fu H. Dual roles of CYP302A1 in regulating ovarian maturation and molting in Macrobrachium nipponense. J Steroid Biochem Mol Biol 2023; 232:106336. [PMID: 37247747 DOI: 10.1016/j.jsbmb.2023.106336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
CYP302A1 is a member of the Halloween genes in the cytochrome P450 supergene family, which play an important regulatory role in the synthesis of 20-hydroxyecdysone (20E) in crustaceans and insects. In this study, we found that the Mn-CYP302A1sequence included typical CYP450 conserved domains. Phylogenic showed that it is closely related to crustaceans and insects. q-PCR analysis indicated that Mn-CYP302A1 was highly expressed in the ovaries and peaked before ovarian maturation. Mn-CYP302A1 expression was higher at the post-larval stage of day 15 than at other stages of embryogenesis. In situ hybridization indicated that Mn-CYP302A1 was mainly distributed in the nucleus, yolk granules, cell membrane and cytoplasm To further establish the function of CYP302A1, a 21-day RNA interference experiment was conducted. On day 16, the Gonad Somatic Index of the control group and the experimental group showed significant differences, with GSI of 11.72% in the control group and 3.21% in the experimental group. The cumulative proportion of the second entry into stage O-Ⅲ was 100% in the control group, while it was 41.67% in the experimental group on day 21. The ecdysone content was 8.91nmol/L in the control group and 6.11nmol/L in the experimental group on day 9. A significant difference in the molting proportion between the control group and the experimental group was also observed (49% in the control group and 34% in the experimental group) on day 16. Statistical results showed that the average molting cycle of the control group was 14.5 days, while that of the experimental group was 16.5 days. However, the morphological structure of ovarian tissue did not abnormal change. Therefore, the results of this study suggest that Mn-CYP302A1 can promote ovarian maturation and molting in female M. nipponense.
Collapse
Affiliation(s)
- Yalu Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
9
|
El Moudaka T, Murugan P, Abdul Rahman MB, Ario Tejo B. Discovery of Mycobacterium tuberculosis CYP121 New Inhibitor via Structure-based Drug Repurposing. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Tuberculosis (TB) remains a serious threat to human health with the advent of multi-drug resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). The urge to find novel drugs to deal with the appearance of drug-resistant TB and its variants is highly needed. This study aims to find new CYP121 inhibitors by screening 8,773 compounds from the drug repositioning database RepoDB. The selection of CYP121 potential inhibitors was based on two criteria: the new inhibitor should bind to CYP121 with higher affinity than its original ligand and interact with catalytically important residues for the function of CYP121. The ligands were docked onto CYP121 using AutoDock Vina, and the molecular dynamics simulation of the selected ligand was conducted using YASARA Structure. We found that antrafenine, an anti-inflammatory and analgesic agent with high CYP inhibitory promiscuity, was bound to CYP121 with a binding affinity of -12.6 kcal/mol and interacted with important residues at the CYP121 binding site. Molecular dynamics analysis of CYP121 bound to the original ligand and antrafenine showed that both ligands affected the dynamics of residues located distantly from the active site. Antrafenine caused more structural changes to CYP121 than the original ligand, as indicated by a significantly higher number of affected residues and rigid body movements caused by the binding of antrafenine to CYP121.
Collapse
|
10
|
Park G, Kim YC, Jang M, Park H, Lee HW, Jeon W, Kim BG, Choi KY, Ahn J. Biosynthesis of aliphatic plastic monomers with amino residues in Yarrowia lipolytica. Front Bioeng Biotechnol 2023; 10:825576. [PMID: 36714625 PMCID: PMC9875067 DOI: 10.3389/fbioe.2022.825576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Introduciton: The α,ω-diamines (NH2-(CH2)n-NH2) and ω -amino fatty acids (NH2-(CH2)n-COOH) have been widely used as building blocks in polymerindustries. Medium- to long-chain (C8 to C18) fatty acid monomers with amino residues are almost exclusively produced via chemical processes that generate hazardous waste and induce severe environmental problems, such as global warming and pollution. Here, we present the construction platformstrains of Yarrowia lipolytica a cheese-ripening yeast, for direct biotransformation of hydrocarbons into medium- to long-chain α,ω-diamines and ωamino fatty acids using metabolic engineering of endogenous fatty acid ω- and β-oxidation pathways and introducing heterologous ω-transaminase in Y. lipolytica. Methods: We deleted six genes encoding the acyl-CoA oxidase (ACO1-6) and four fatty aldehyde dehydrogenase genes (FALDH1-4), which catalyze fatty acid β-oxidation and downstream oxidation of fatty aldehydes in Y. lipolytica, respectively. The ω-transaminase from Chromobacterium violaceum DSM30191 was introduced into the genome of the ΔPOX ΔFALDH strain under the control of Y. lipolytica-derived EXP1 promoters. Results and Discussion: The ΔPOX ΔFALDH strains with ω-CvTA successfully accumulated the corresponding C12 αω-diamines into a shaking culture medium with dodecane or dodecanol. In addition, these strains accumulated C12 ω-amino fatty acids from dodecanoic acid. With the commercially available α,ω-diacid bioprocess, this yeast biosynthesis producing medium- and longchain α,ω-diamines and ω-amino fatty acids could complete the yeast platform technology generating all medium- and long-chain aliphatic polyamide monomers, α,ω-biofunctionalized with one or both carboxylic acid and amino residues.
Collapse
Affiliation(s)
- Gyuyeon Park
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, South Korea
| | - Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Minjeong Jang
- Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Daejeon, Chungcheongbuk-do, South Korea
| | - Hyuna Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Hong-Weon Lee
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, South Korea,Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Daejeon, Chungcheongbuk-do, South Korea
| | - Wooyoung Jeon
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, South Korea,Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Daejeon, Chungcheongbuk-do, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea,*Correspondence: Kwon-Young Choi, ; Jungoh Ahn,
| | - Jungoh Ahn
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, South Korea,Biotechnology Process Engineering Center, Korea Research Institute of Biosceince and Biotechnology (KRIBB), Daejeon, Chungcheongbuk-do, South Korea,*Correspondence: Kwon-Young Choi, ; Jungoh Ahn,
| |
Collapse
|
11
|
Gao S, Shi J, Wang K, Tan Y, Hong H, Luo Y. Protective effects of oyster protein hydrolysates on alcohol-induced liver disease (ALD) in mice: based on the mechanism of anti-oxidative metabolism. Food Funct 2022; 13:8411-8424. [PMID: 35857308 DOI: 10.1039/d2fo00660j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many bioactivities of hydrolysates from oyster (Crassostrea gigas) muscle have been reported, while there is no knowledge about their protective effects on alcohol-induced liver disease (ALD). In the present study, the anti-oxidative activities in vitro and molecular weight distribution of oyster protein hydrolysates (OPH) were detected and the OPH released by alcalase (AOPH) was used to treat C57BL/6 mice. C57BL/6 mice were treated with a Lindros control diet to establish an ethanol-exposed model. The content of small-weight components (<2.0 kDa) of OPH reached 90.85%. AOPH showed more potent antioxidant activities in vitro with higher reducing power and ferric reducing antioxidant power (FRAP), and those capacities could be maintained at a high level after simulated gastrointestinal digestion. Compared to the model mice, oral administration (4 weeks) of AOPH at 800 mg per kg body weight could lead to a decline in T-AOC, GSH-PX, and ADH in the liver. The hepatocellular lesions were effectively relieved and impaired liver tissue development was successfully inhibited. A total of 834 genes and 54 proteins showed differential expression in the AOPH group and the oxidative metabolic pathways of ethanol such as oxidative phosphorylation, glutathione metabolism, peroxisomes, the PPAR signaling pathway and drug metabolism-cytochrome P450 play a preeminent role in ALD according to the results of transcriptomics and proteomics. The beneficial effects of AOPH were available in the improvement of ALD. These results revealed that AOPH intervention ameliorated ALD by affecting oxidative metabolism and highlighting AOPH's potential application as a functional food.
Collapse
Affiliation(s)
- Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jing Shi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd., Beijing, 100192, China
| | - Kai Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
12
|
Kim V, Kim D, Lee S, Lee G, Lee SA, Kang LW, Kim D. Structural characterization and fatty acid epoxidation of CYP184A1 from Streptomyces avermitilis. Arch Biochem Biophys 2022; 727:109338. [PMID: 35779593 DOI: 10.1016/j.abb.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
The genome of Streptomyces avermitilis contains 33 cytochrome P450 genes. Among the P450 gene products of S. avermitilis, we characterized the biochemical function and structural aspects of CYP184A1. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that CYP184A1 induced an epoxidation reaction to produce 9,10-epoxystearic acid. Steady-state kinetic analysis yielded a kcat value of 0.0067 min-1 and a Km value 10 μM. The analysis of its crystal structures illustrated that the overall CYP184A1 structure adopts the canonical scaffold of cytochrome P450 and possesses a narrow and deep substrate pocket architecture that is required for binding to linear chain fatty acids. In the structure of the CYP184A1 oleic acid complex (CYP184A1-OA), C9-C10 of oleic acid was bound to heme for the productive epoxidation reaction. This study elucidates the roles of P450 enzymes in the oxidative metabolism of fatty acids in Streptomyces species.
Collapse
Affiliation(s)
- Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Sunggyu Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Gyuhyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Sang-A Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea.
| |
Collapse
|
13
|
Lin CC, Hoo SY, Ma LT, Lin C, Huang KF, Ho YN, Sun CH, Lee HJ, Chen PY, Shu LJ, Wang BW, Hsu WC, Ko TP, Yang YL. Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors. Commun Biol 2022; 5:454. [PMID: 35551233 PMCID: PMC9098870 DOI: 10.1038/s42003-022-03409-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents. In a multi-omics analysis, bacterial polyynes are found to act as antifungal agents by inhibiting the Candida albicans polyyne resistance gene ERG10, the homolog of MasL encoding acetyl-CoA acetyltransferase.
Collapse
Affiliation(s)
- Ching-Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Sin Yong Hoo
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Li-Ting Ma
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Jhongjheng Dist., Keelung, 202, Taiwan
| | - Chi-Hui Sun
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Han-Jung Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Bo-Wei Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Gushan Dist., Kaohsiung, 804, Taiwan
| | - Wei-Chen Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan.
| |
Collapse
|
14
|
Pinto M, Zhao Z, Klun K, Libowitzky E, Herndl GJ. Microbial Consortiums of Putative Degraders of Low-Density Polyethylene-Associated Compounds in the Ocean. mSystems 2022; 7:e0141521. [PMID: 35229650 PMCID: PMC8941889 DOI: 10.1128/msystems.01415-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Polyethylene (PE) is one of the most abundant plastics in the ocean. The development of a biofilm on PE in the ocean has been reported, yet whether some of the biofilm-forming organisms can biodegrade this plastic in the environment remains unknown. Via metagenomics analysis, we taxonomically and functionally analyzed three biofilm communities using low-density polyethylene (LDPE) as their sole carbon source for 2 years. Several of the taxa that increased in relative abundance over time were closely related to known degraders of alkane and other hydrocarbons. Alkane degradation has been proposed to be involved in PE degradation, and most of the organisms increasing in relative abundance over time harbored genes encoding proteins essential in alkane degradation, such as the genes alkB and CYP153, encoding an alkane monooxygenase and a cytochrome P450 alkane hydroxylase, respectively. Weight loss of PE sheets when incubated with these communities and chemical and electron microscopic analyses provided evidence for alteration of the PE surface over time. Taken together, these results provide evidence for the utilization of LDPE-associated compounds by the prokaryotic communities. This report identifies a group of genes potentially involved in the degradation of the LDPE polymeric structure and/or associated plastic additives in the ocean and describes a phylogenetically diverse community of plastic biofilm-dwelling microbes with the potential for utilizing LDPE-associated compounds as carbon and energy source. IMPORTANCE Low-density polyethylene (LDPE) is one of the most used plastics worldwide, and a large portion of it ends up in the ocean. Very little is known about its fate in the ocean and whether it can be biodegraded by microorganisms. By combining 2-year incubations with metagenomics, respiration measurements, and LDPE surface analysis, we identified bacteria and associated genes and metabolic pathways potentially involved in LDPE biodegradation. After 2 years of incubation, two of the microbial communities exhibited very similar taxonomic compositions mediating changes to the LDPE pieces they were incubated with. We provide evidence that there are plastic-biofilm dwelling bacteria in the ocean that might have the potential to degrade LDPE-associated compounds and that alkane degradation pathways might be involved.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society,’ University of Vienna, Vienna, Austria
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Katja Klun
- Marine Biology Station, National Institute of Biology, Piran, Slovenia
| | - Eugen Libowitzky
- Department of Mineralogy and Crystallography, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society,’ University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
15
|
Price CL, Warrilow AGS, Rolley NJ, Parker JE, Thoss V, Kelly DE, Corcionivoschi N, Kelly SL. Cytochrome P450 168A1 from Pseudomonas aeruginosa is involved in the hydroxylation of biologically relevant fatty acids. PLoS One 2022; 17:e0265227. [PMID: 35312722 PMCID: PMC8936499 DOI: 10.1371/journal.pone.0265227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The cytochrome P450 CYP168A1 from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli followed by purification and characterization of function. CYP168A1 is a fatty acid hydroxylase that hydroxylates saturated fatty acids, including myristic (0.30 min-1), palmitic (1.61 min-1) and stearic acids (1.24 min-1), at both the ω-1- and ω-2-positions. However, CYP168A1 only hydroxylates unsaturated fatty acids, including palmitoleic (0.38 min-1), oleic (1.28 min-1) and linoleic acids (0.35 min-1), at the ω-1-position. CYP168A1 exhibited a catalytic preference for palmitic, oleic and stearic acids as substrates in keeping with the phosphatidylcholine-rich environment deep in the lung that is colonized by P. aeruginosa.
Collapse
Affiliation(s)
- Claire L. Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Andrew G. S. Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Nicola J. Rolley
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Josie E. Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Vera Thoss
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
| | - Diane E. Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Nicolae Corcionivoschi
- Agri-Food and Biosciences Institute, Veterinary Science Division, Bacteriology Branch, Stoney Road, Stormont, Belfast, Northern Ireland, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Steven L. Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
16
|
Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:73-122. [DOI: 10.1007/10_2021_200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Liu H, Yang H, Zhao T, Lin C, Li Y, Zhang X, Ye Y, Liao J. Combined Metabolome and Transcriptome Analyses of Young, Mature, and Old Rhizome Tissues of Zingiber officinale Roscoe. Front Genet 2021; 12:795201. [PMID: 34956334 PMCID: PMC8692858 DOI: 10.3389/fgene.2021.795201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe) is known for its unique pungent taste and useability in traditional Chinese medicine. The main compounds in ginger rhizome can be classified as gingerols, diarylheptanoids, and volatile oils. The composition and concentrations of the bioactive compounds in ginger rhizome might vary according to the age of the rhizome. In this regard, the knowledge on the transcriptomic signatures and accumulation of metabolites in young (Y), mature (M), and old (O) ginger rhizomes is scarce. This study used HiSeq Illumina Sequencing and UPLC-MS/MS analyses to delineate how the expression of key genes changes in Y, M, and O ginger rhizome tissues and how it affects the accumulation of metabolites in key pathways. The transcriptome sequencing identified 238,157 genes of which 13,976, 11,243, and 24,498 were differentially expressed (DEGs) in Y vs. M, M vs. O, and Y vs. O, respectively. These DEGs were significantly enriched in stilbenoid, diarylheptanoid, and gingerol biosynthesis, phenylpropanoid biosynthesis, plant-hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and α-linoleic acid metabolism pathways. The metabolome profiling identified 661 metabolites of which 311, 386, and 296 metabolites were differentially accumulated in Y vs. M, Y vs. O, and M vs. O, respectively. These metabolites were also enriched in the pathways mentioned above. The DEGs and DAMs enrichment showed that the gingerol content is higher in Y rhizome, whereas the Y, M, and O tissues differ in linoleic and α-linoleic acid accumulation. Similarly, the starch and sucrose metabolism pathway is variably regulated in Y, M, and O rhizome tissues. Our results showed that ginger rhizome growth slows down (Y > M > O) probably due to changes in phytohormone signaling. Young ginger rhizome is the most transcriptionally and metabolically active tissue as compared to M and O. The transitioning from Y to M and O affects the gingerol, sugars, linoleic acid, and α-linoleic acid concentrations and related gene expressions.
Collapse
Affiliation(s)
- Huanfang Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Honghua Yang
- College of Biological and Brewing Engineering, Taishan University, Taian, China
| | - Tong Zhao
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Canjia Lin
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yushi Ye
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jingping Liao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Dynamics of Leaf- and Root-Specific Biomarkers during 1-Year of Litter Decomposition. FORESTS 2021. [DOI: 10.3390/f12121732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Root-specific and leaf-specific biomarkers have been used for decades to identify the origin of organic materials in soils and sediments. However, quantitative approaches require appropriate knowledge about the fate of these indicator molecules during degradation. To clarify this issue, we performed a 1-year incubation experiment with fine root and leaf material of six temperate tree species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica), Oak spec. (Quercus spec.), Linden spec. (Tilia spec.), Norway spruce (Picea abies) and Scots pine (Pinus sylvatica). Only one molecule, x,16-dihydroxy hexadecanoic acid (x,16-C16), could be validated as a general leaf-specific biomarker for the set of all species. For roots, no general root biomarker was found. Ester-bound tricosanol (C23-OH) could be validated for five out of six species; 20-hydroxy eicosanoic acid (ωC20) could be validated for four out of six species, leaving Norway spruce without a suitable root biomarker. The results of this study suggest that the validity of leaf- and root-derived ester-bound lipids as biomarkers is highly species dependent and does not always coincide with previous findings. Concentrations of root- and leaf-derived ester-bound lipids did not stay constant within 1 year of degradation and changed without a linear trend. The change of concentrations seems to be highly species dependent. This might be due to a different structure and arrangement of the individual monomers in cutin and suberin per species, and, therefore, a different accessibility of bond cleaving enzymes. The usefulness of root and leaf biomarkers is context dependent. Our results suggest that general assumptions about litter input to forest soils solely based on biomarker analysis have to be considered carefully.
Collapse
|
19
|
Donoso RA, Ruiz D, Gárate-Castro C, Villegas P, González-Pastor JE, de Lorenzo V, González B, Pérez-Pantoja D. Identification of a self-sufficient cytochrome P450 monooxygenase from Cupriavidus pinatubonensis JMP134 involved in 2-hydroxyphenylacetic acid catabolism, via homogentisate pathway. Microb Biotechnol 2021; 14:1944-1960. [PMID: 34156761 PMCID: PMC8449657 DOI: 10.1111/1751-7915.13865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a β-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays. The ohpA gene belongs to an operon including also ohpT, coding for a substrate-binding subunit of a putative transporter, whose expression is driven by an inducible promoter responsive to 2-HPA in presence of a predicted OhpR transcriptional regulator. OhpA homologues can be found in several genera belonging to Actinobacteria and α-, β- and γ-proteobacteria lineages indicating a widespread distribution of 2-HPA catabolism via homogentisate route. These results provide first time evidence for the natural function of members of the CYP116B self-sufficient oxygenases and represent a significant input to support novel kinetic and structural studies to develop cytochrome P450-based biocatalytic processes.
Collapse
Affiliation(s)
- Raúl A Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniela Ruiz
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Carla Gárate-Castro
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Pamela Villegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - José Eduardo González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Bernardo González
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| |
Collapse
|
20
|
Awad G, Garnier A. Maximization of saturated fatty acids through the production of P450BM3 monooxygenase in the engineered Escherichia coli. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Inada T, Machida S, Awai K, Suzuki I. Production of hydroxy fatty acids and its effects on photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Hou L, Majumder ELW. Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. MATERIALS (BASEL, SWITZERLAND) 2021; 14:503. [PMID: 33494256 PMCID: PMC7864516 DOI: 10.3390/ma14030503] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022]
Abstract
Polystyrene (PS) is one of the main polymer types of plastic wastes and is known to be resistant to biodegradation, resulting in PS waste persistence in the environment. Although previous studies have reported that some microorganisms can degrade PS, enzymes and mechanisms of microorganism PS biodegradation are still unknown. In this study, we summarized microbial species that have been identified to degrade PS. By screening the available genome information of microorganisms that have been reported to degrade PS for enzymes with functional potential to depolymerize PS, we predicted target PS-degrading enzymes. We found that cytochrome P4500s, alkane hydroxylases and monooxygenases ranked as the top potential enzyme classes that can degrade PS since they can break C-C bonds. Ring-hydroxylating dioxygenases may be able to break the side-chain of PS and oxidize the aromatic ring compounds generated from the decomposition of PS. These target enzymes were distributed in Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, suggesting a broad potential for PS biodegradation in various earth environments and microbiomes. Our results provide insight into the enzymatic degradation of PS and suggestions for realizing the biodegradation of this recalcitrant plastic.
Collapse
Affiliation(s)
| | - Erica L.-W. Majumder
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA;
| |
Collapse
|
23
|
Lin YH, Platt MP, Fu H, Gui Y, Wang Y, Gonzalez-Juarbe N, Zhou D, Yu Y. Global Proteome and Phosphoproteome Characterization of Sepsis-induced Kidney Injury. Mol Cell Proteomics 2020; 19:2030-2047. [PMID: 32963032 PMCID: PMC7710145 DOI: 10.1074/mcp.ra120.002235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute kidney injury (S-AKI) is the most common complication in hospitalized and critically ill patients, highlighted by a rapid decline of kidney function occurring a few hours or days after sepsis onset. Systemic inflammation elicited by microbial infections is believed to lead to kidney damage under immunocompromised conditions. However, although AKI has been recognized as a disease with long-term sequelae, partly because of the associated higher risk of chronic kidney disease (CKD), the understanding of kidney pathophysiology at the molecular level and the global view of dynamic regulations in situ after S-AKI, including the transition to CKD, remains limited. Existing studies of S-AKI mainly focus on deriving sepsis biomarkers from body fluids. In the present study, we constructed a mid-severity septic murine model using cecal ligation and puncture (CLP), and examined the temporal changes to the kidney proteome and phosphoproteome at day 2 and day 7 after CLP surgery, corresponding to S-AKI and the transition to CKD, respectively, by employing an ultrafast and economical filter-based sample processing method combined with the label-free quantitation approach. Collectively, we identified 2,119 proteins and 2950 phosphosites through multi-proteomics analyses. Among them, we identified an array of highly promising candidate marker proteins indicative of disease onset and progression accompanied by immunoblot validations, and further denoted the pathways that are specifically responsive to S-AKI and its transition to CKD, which include regulation of cell metabolism regulation, oxidative stress, and energy consumption in the diseased kidneys. Our data can serve as an enriched resource for the identification of mechanisms and biomarkers for sepsis-induced kidney diseases.
Collapse
Affiliation(s)
- Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, Maryland
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, Maryland
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of medicine, Farmington, Connecticut
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of medicine, Farmington, Connecticut
| | | | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of medicine, Farmington, Connecticut; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, Maryland.
| |
Collapse
|
24
|
Jarmusch SA, Lagos-Susaeta D, Diab E, Salazar O, Asenjo JA, Ebel R, Jaspars M. Iron-meditated fungal starvation by lupine rhizosphere-associated and extremotolerant Streptomyces sp. S29 desferrioxamine production. Mol Omics 2020; 17:95-107. [PMID: 33185220 DOI: 10.1039/d0mo00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siderophores are iron-chelating compounds that aid iron uptake, one of the key strategies for microorganisms to carve out ecological niches in microbially diverse environments. Desferrioxamines are the principal siderophores produced by Streptomyces spp. Their biosynthesis has been well studied and as a consequence, the chemical potential of the pathway continues to expand. With all of this in mind, our study aimed to explore extremotolerant and lupine rhizosphere-derived Streptomyces sp. S29 for its potential antifungal capabilities. Cocultivation of isolate S29 was carried out with Aspergillus niger and Botrytis cinerea, both costly fungal phytopathogens in the wine industry, to simulate their interaction within the rhizosphere. The results indicate that not only is Streptomyces sp. S29 extraordinary at producing hydroxamate siderophores but uses siderophore production as a means to 'starve' the fungi of iron. High resolution LC-MS/MS followed by GNPS molecular networking was used to observe the datasets for desferrioxamines and guided structure elucidation of new desferrioxamine analogues. Comparing the new chemistry, using tools like molecular networking and MS2LDA, with the known biosynthesis, we show that the chemical potential of the desferrioxamine pathway has further room for exploration.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Yu XH, Shanklin J. Solving a furan fatty acid biosynthesis puzzle. J Biol Chem 2020; 295:9802-9803. [PMID: 32680970 DOI: 10.1074/jbc.h120.014701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/06/2022] Open
Abstract
Furan fatty acids (FuFAs), characterized by a central furan moiety, are widely dispersed in nature, but their biosynthetic origins are not clear. A new study from Lemke et al employs a full court press of genetics, genomics, biochemical, and advanced analytical techniques to dissect the biosynthetic pathway of mono- and dimethyl FuFAs and their intermediates in two related bacteria. These findings lay the foundation both for detailed study of these novel enzymes and for gaining further insights into FuFA functions.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York, USA
| | - John Shanklin
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York, USA .,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
26
|
Lemke RAS, Olson SM, Morse K, Karlen SD, Higbee A, Beebe ET, Ralph J, Coon JJ, Fox BG, Donohue TJ. A bacterial biosynthetic pathway for methylated furan fatty acids. J Biol Chem 2020; 295:9786-9801. [PMID: 32434926 PMCID: PMC7380195 DOI: 10.1074/jbc.ra120.013697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.
Collapse
Affiliation(s)
- Rachelle A S Lemke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Stephanie M Olson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaitlin Morse
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven D Karlen
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Alan Higbee
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Brian G Fox
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA .,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts. Sci Rep 2020; 10:10269. [PMID: 32581293 PMCID: PMC7314818 DOI: 10.1038/s41598-020-67200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 01/16/2023] Open
Abstract
Cytochrome P450s from the CYP52 family participate in the assimilation of alkanes and fatty acids in fungi. In this work, the evolutionary history of a set of orthologous and paralogous CYP52 proteins from Saccharomycetales yeasts was inferred. Further, the phenotypic assimilation profiles were related with the distribution of cytochrome CYP52 members among species. The maximum likelihood phylogeny of CYP52 inferred proteins reveled a frequent ancient and modern duplication and loss events that generated orthologous and paralogous groups. Phylogeny and assimilation profiles of alkanes and fatty acids showed a family expansion in yeast isolated from hydrophobic-rich environments. Docking analysis of deduced ancient CYP52 proteins suggests that the most ancient function was the oxidation of C4-C11 alkanes, while the oxidation of >10 carbon alkanes and fatty acids is a derived character. The ancient CYP52 paralogs displayed partial specialization and promiscuous interaction with hydrophobic substrates. Additionally, functional optimization was not evident. Changes in the interaction of ancient CYP52 with different alkanes and fatty acids could be associated with modifications in spatial orientations of the amino acid residues that comprise the active site. The extended family of CYP52 proteins is likely evolving toward functional specialization, and certain redundancy for substrates is being maintained.
Collapse
|
28
|
DFT investigations of linear Zn3-type complex with compartmental N/O-donor Schiff base: Synthesis, characterizations, crystal structure, fluorescence and molecular docking. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Liu J, Li J, Gao N, Zhang X, Zhao G, Song X. Identification and characterization of a protein Bro1 essential for sophorolipids synthesis in Starmerella bombicola. J Ind Microbiol Biotechnol 2020; 47:437-448. [PMID: 32377991 DOI: 10.1007/s10295-020-02272-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/23/2020] [Indexed: 01/27/2023]
Abstract
Sophorolipids (SLs) are surface-active molecules produced by the non-pathogenic yeast Starmerella bombicola CGMCC 1576. Several genes involved in the synthesis of SLs have been identified. However, the regulation mechanism of the synthesis pathway for SLs has not been investigated. We recently discovered a protein in S. bombicola, which is structurally related to Yarrowia lipolytica YlBro1. To identify the function of the protein SbBro1 in S. bombicola, the deletion, overexpression, and complementary mutant strains were constructed. We found that the deletion mutant no longer produced SLs. Transcriptome analysis indicated that the expression levels of the key enzyme genes of SLs biosynthetic pathway were significantly down-regulated in the Δbro1, especially the expression level of cyp52m1 encoding the first rate-limiting enzyme in SL synthesis pathway was down-regulated 13-folds and the expression of fatty acid β-oxidation-related enzymes was also down-regulated. This study can give insight into the regulation of SL synthesis.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Jiashan Li
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Na Gao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Xinyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Guoqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China. .,National Glycoengineering Research Center, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Thesseling FA, Hutter MC, Wiek C, Kowalski JP, Rettie AE, Girhard M. Novel insights into oxidation of fatty acids and fatty alcohols by cytochrome P450 monooxygenase CYP4B1. Arch Biochem Biophys 2020; 679:108216. [PMID: 31801692 DOI: 10.1016/j.abb.2019.108216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
CYP4B1 is an enigmatic mammalian cytochrome P450 monooxygenase acting at the interface between xenobiotic and endobiotic metabolism. A prominent CYP4B1 substrate is the furan pro-toxin 4-ipomeanol (IPO). Our recent investigation on metabolism of IPO related compounds that maintain the furan functionality of IPO while replacing its alcohol group with alkyl chains of varying structure and length revealed that, in addition to cytotoxic reactive metabolite formation (resulting from furan activation) non-cytotoxic ω-hydroxylation at the alkyl chain can also occur. We hypothesized that substrate reorientations may happen in the active site of CYP4B1. These findings prompted us to re-investigate oxidation of unsaturated fatty acids and fatty alcohols with C9-C16 carbon chain length by CYP4B1. Strikingly, we found that besides the previously reported ω- and ω-1-hydroxylations, CYP4B1 is also capable of α-, β-, γ-, and δ-fatty acid hydroxylation. In contrast, fatty alcohols of the same chain length are exclusively hydroxylated at ω, ω-1, and ω-2 positions. Docking results for the corresponding CYP4B1-substrate complexes revealed that fatty acids can adopt U-shaped bonding conformations, such that carbon atoms in both arms may approach the heme-iron. Quantum chemical estimates of activation energies of the hydrogen radical abstraction by the reactive compound 1 as well as electron densities of the substrate orbitals led to the conclusion that fatty acid and fatty alcohol oxidations by CYP4B1 are kinetically controlled reactions.
Collapse
Affiliation(s)
- Florian A Thesseling
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| | - John P Kowalski
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA.
| | - Allan E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA.
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Jiménez‐Peñalver P, Koh A, Gross R, Gea T, Font X. Biosurfactants from Waste: Structures and Interfacial Properties of Sophorolipids Produced from a Residual Oil Cake. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro Jiménez‐Peñalver
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'EnginyeriaUniversitat Autònoma de Barcelona, Bellaterra Barcelona 08193 Spain
| | - Amanda Koh
- Department of Chemical and Biological EngineeringUniversity of Alabama Tuscaloosa AL 35487 USA
| | - Richard Gross
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and BiologyRensselaer Polytechnic Institute, Biotechnology Building Troy MI USA
| | - Teresa Gea
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'EnginyeriaUniversitat Autònoma de Barcelona, Bellaterra Barcelona 08193 Spain
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'EnginyeriaUniversitat Autònoma de Barcelona, Bellaterra Barcelona 08193 Spain
| |
Collapse
|
32
|
The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol 2019; 35:174. [PMID: 31673919 DOI: 10.1007/s11274-019-2755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
Actinobacteria in the Tsukamurella genus are aerobic, high-GC, Gram-positive mycolata, considered as opportunistic pathogens and isolated from various environmental sources, including sites contaminated with oil, urban or industrial waste and pesticides. Although studies look into xenobiotic biotransformation by Tsukamurella isolates, the relevant enzymes remain uncharacterized. We investigated the arylamine N-acetyltransferase (NAT) enzyme family, known for its role in the xenobiotic metabolism of prokaryotes and eukaryotes. Xenobiotic sensitivity of Tsukamurella paurometabola type strain DSM 20162T was assessed, followed by cloning, recombinant expression and functional characterization of its single NAT homolog (TSUPD)NAT1. The bacterium appeared quite robust against chloroanilines, but more sensitive to 4-anisidine and 2-aminophenol. However, metabolic activity was not evident towards those compounds, presumably due to mechanisms protecting cells from xenobiotic entry. Of the pharmaceutical arylhydrazines tested, hydralazine was toxic, but the bacterium was less sensitive to isoniazid, a drug targeting mycolic acid biosynthesis in mycobacteria. Although (TSUPD)NAT1 protein has an atypical Cys-His-Glu (instead of the expected Cys-His-Asp) catalytic triad, it is enzymatically active, suggesting that this deviation is likely due to evolutionary adaptation potentially serving a different function. The protein was indeed found to use malonyl-CoA, instead of the archetypal acetyl-CoA, as its preferred donor substrate. Malonyl-CoA is important for microbial biosynthesis of fatty acids (including mycolic acids) and polyketide chains, and the corresponding enzymatic systems have common evolutionary histories, also linked to xenobiotic metabolism. This study adds to accummulating evidence suggesting broad phylogenetic and functional divergence of microbial NAT enzymes that goes beyond xenobiotic metabolism and merits investigation.
Collapse
|
33
|
Meng S, Guo J, Li Z, Nie K, Xu H, Tan T, Liu L. Enzymatic cascade biosynthesis reaction of musky macrolactones from fatty acids. Enzyme Microb Technol 2019; 131:109417. [PMID: 31615680 DOI: 10.1016/j.enzmictec.2019.109417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
Musky macrolactones are an important group of compounds used in high-valued perfumery. An enzymatic cascade reaction including cytochrome P450 hydroxylase and lipase was explored to biosynthesize musky macrolactones. Firstly, fatty acids were hydroxylated by P450 hydroxylase to produce the corresponding ω-hydroxy fatty acids. Then ω-hydroxy fatty acids were lactonized by lipase. ω-Hydroxy fatty acids can difficultly be synthesized by traditional chemical methods, and the production of these compounds were key constraint factors during the whole reaction. To obtain enough precursors of macrolactones, an efficient production of ω-hydroxy fatty acids was explored. A mutant of P450 BM3 from Bacillus megaterium was used as terminal hydroxylases. To improve the yield of ω-hydroxy fatty acids, the coenzyme regeneration system and auxiliary organic solvent were optimized. The conversion using the P450 BM3 mutant under the biphase system was up to 42% towards ω-hydroxy pentadecanoic acid and 98% towards ω-hydroxy palmitic acid. The results reveal that the musky macrolactones, exaltolide and silvanone supra, could be synthesized in the hydroxylation-lactonization cascade reaction. Finally, 81 mg of exaltolide was obtained from 242 mg pentadecanoic acid, and 199 mg of silvanone supra from 256 mg palmitic acid.
Collapse
Affiliation(s)
- Shuaiqi Meng
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jia Guo
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co. Ltd, Shunping Road 2, Beijing, 100123, PR China
| | - Zhongyu Li
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Haijun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Tianwei Tan
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
34
|
Gregson BH, Metodieva G, Metodiev MV, McKew BA. Differential protein expression during growth on linear versus branched alkanes in the obligate marine hydrocarbon-degrading bacterium Alcanivorax borkumensis SK2 T. Environ Microbiol 2019; 21:2347-2359. [PMID: 30951249 PMCID: PMC6850023 DOI: 10.1111/1462-2920.14620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/19/2019] [Indexed: 02/02/2023]
Abstract
Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC–MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n‐C14) or branched (pristane) alkanes. During growth on n‐C14, A. borkumensis expressed a complete pathway for the terminal oxidation of n‐alkanes to their corresponding acyl‐CoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for β‐oxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of β‐oxidation proteins to overcome steric hinderance from branched substrates.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
35
|
Goc A, Sumera W, Niedzwiecki A, Rath M. 10-undecynoic acid is a new anti-adherent agent killing biofilm of oral Streptococcus spp. PLoS One 2019; 14:e0214763. [PMID: 30998699 PMCID: PMC6472753 DOI: 10.1371/journal.pone.0214763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
In the search for novel agents against oral pathogens in their planktonic and biofilm form, we have focused our attention on 10-undecynoic acid as the representative of the acetylenic fatty acids. Using macro-broth susceptibility testing method we first established MIC value. Next, the MBC value was determined from a broth dilution minimum inhibitory concentration test by sub-culturing it to BHI agar plates that did not contain the test agent. Anti-biofilm efficacy was tested in 96-well plates coated with saliva using BHI broth supplemented with 1% sucrose as a standard approach. Based on obtained results, MIC value for 10-undecynoic acid was established to be 2.5 mg/ml and the MBC value to be 5 mg/ml. The MBIC90 showed to be 2.5 mg/ml, however completed inhibition of biofilm formation was achieved at 5.0 mg/ml. MBBC concentration revealed to be the same as MBC value, causing approximately 30% reduction at the same time in biomass of pre-existing biofilm, whereas application of 7.0 mg/ml of 10-undecynoic acid crossed the 50% eradication mark. Strong anti-adherent effect was observed upon 10-undecynoic acid application at sub-MBC concentrations as well, complemented with suppression of acidogenicity and aciduricity. Thus, we concluded that 10-undecynoic acid might play an important role in the development of alternative or adjunctive antibacterial and anti-biofilm preventive and/or therapeutic approaches.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute BV, Santa Clara, California, United States of America
- * E-mail: (AG); (AN)
| | - Waldemar Sumera
- Department of Infectious Diseases, Dr. Rath Research Institute BV, Santa Clara, California, United States of America
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute BV, Santa Clara, California, United States of America
- * E-mail: (AG); (AN)
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute BV, Santa Clara, California, United States of America
| |
Collapse
|
36
|
Saika A, Nagatake T, Kunisawa J. Host- and Microbe-Dependent Dietary Lipid Metabolism in the Control of Allergy, Inflammation, and Immunity. Front Nutr 2019; 6:36. [PMID: 31024921 PMCID: PMC6468274 DOI: 10.3389/fnut.2019.00036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
The intestine is the largest immune organ in the body, provides the first line of defense against pathogens, and prevents excessive immune reactions to harmless or beneficial non-self-materials, such as food and intestinal bacteria. Allergic and inflammatory diseases in the intestine occur as a result of dysregulation of immunological homeostasis mediated by intestinal immunity. Several lines of evidence suggest that gut environmental factors, including nutrition and intestinal bacteria, play important roles in controlling host immune responses and maintaining homeostasis. Among nutritional factors, ω3 and ω6 essential polyunsaturated fatty acids (PUFAs) profoundly influence the host immune system. Recent advances in lipidomics technology have led to the identification of lipid mediators derived from ω3- and ω6-PUFAs. In particular, lipid metabolites from ω3-PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid) have recently been shown to exert anti-allergic and anti-inflammatory responses; these metabolites include resolvins, protectins, and maresins. Furthermore, a new class of anti-allergic and anti-inflammatory lipid metabolites of 17,18-epoxyeicosatetraenoic acid has recently been identified in the control of allergic and inflammatory diseases in the gut and skin. Although these lipid metabolites were found to be endogenously generated in the host, accumulating evidence indicates that intestinal bacteria also participate in lipid metabolism and thus generate bioactive unique lipid mediators. In this review, we discuss the production machinery of lipid metabolites in the host and intestinal bacteria and the roles of these metabolites in the regulation of host immunity.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Osaka, Japan.,Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
37
|
Child SA, Rossi VP, Bell SG. Selective ϖ-1 oxidation of fatty acids by CYP147G1 from Mycobacterium marinum. Biochim Biophys Acta Gen Subj 2019; 1863:408-417. [DOI: 10.1016/j.bbagen.2018.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
38
|
Mogul R, Barding GA, Lalla S, Lee S, Madrid S, Baki R, Ahmed M, Brasali H, Cepeda I, Gornick T, Gunadi S, Hearn N, Jain C, Kim EJ, Nguyen T, Nguyen VB, Oei A, Perkins N, Rodriguez J, Rodriguez V, Savla G, Schmitz M, Tedjakesuma N, Walker J. Metabolism and Biodegradation of Spacecraft Cleaning Reagents by Strains of Spacecraft-Associated Acinetobacter. ASTROBIOLOGY 2018; 18:1517-1527. [PMID: 29672134 PMCID: PMC6276816 DOI: 10.1089/ast.2017.1814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/23/2018] [Indexed: 05/17/2023]
Abstract
Spacecraft assembly facilities are oligotrophic and low-humidity environments, which are routinely cleaned using alcohol wipes for benchtops and spacecraft materials, and alkaline detergents for floors. Despite these cleaning protocols, spacecraft assembly facilities possess a persistent, diverse, dynamic, and low abundant core microbiome, where the Acinetobacter are among the dominant members of the community. In this report, we show that several spacecraft-associated Acinetobacter metabolize or biodegrade the spacecraft cleaning reagents of ethanol (ethyl alcohol), 2-propanol (isopropyl alcohol), and Kleenol 30 (floor detergent) under ultraminimal conditions. Using cultivation and stable isotope labeling studies, we show that ethanol is a sole carbon source when cultivating in 0.2 × M9 minimal medium containing 26 μM Fe(NH4)2(SO4)2. Although cultures expectedly did not grow solely on 2-propanol, cultivations on mixtures of ethanol and 2-propanol exhibited enhanced plate counts at mole ratios of ≤0.50. In support, enzymology experiments on cellular extracts were consistent with oxidation of ethanol and 2-propanol by a membrane-bound alcohol dehydrogenase. In the presence of Kleenol 30, untargeted metabolite profiling on ultraminimal cultures of Acinetobacter radioresistens 50v1 indicated (1) biodegradation of Kleenol 30 into products including ethylene glycols, (2) the potential metabolism of decanoate (formed during incubation of Kleenol 30 in 0.2 × M9), and (3) decreases in the abundances of several hydroxy- and ketoacids in the extracellular metabolome. In ultraminimal medium (when using ethanol as a sole carbon source), A. radioresistens 50v1 also exhibits a remarkable survival against hydrogen peroxide (∼1.5-log loss, ∼108 colony forming units (cfu)/mL, 10 mM H2O2), indicating a considerable tolerance toward oxidative stress under nutrient-restricted conditions. Together, these results suggest that the spacecraft cleaning reagents may (1) serve as nutrient sources under oligotrophic conditions and (2) sustain extremotolerances against the oxidative stresses associated with low-humidity environments. In perspective, this study provides a plausible biochemical rationale to the observed microbial ecology dynamics of spacecraft-associated environments.
Collapse
Affiliation(s)
- Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Gregory A. Barding
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Sidharth Lalla
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Sooji Lee
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Steve Madrid
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Ryan Baki
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Mahjabeen Ahmed
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Hania Brasali
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Ivonne Cepeda
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Trevor Gornick
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Shawn Gunadi
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Nicole Hearn
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Chirag Jain
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Eun Jin Kim
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Thi Nguyen
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Vinh Bao Nguyen
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Alex Oei
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Nicole Perkins
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Joseph Rodriguez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Veronica Rodriguez
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Gautam Savla
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Megan Schmitz
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Nicholas Tedjakesuma
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| | - Jillian Walker
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona (Cal Poly Pomona), Pomona, California
| |
Collapse
|
39
|
Affiliation(s)
- Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, 17487 Greifswald, Germany
| |
Collapse
|
40
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
41
|
Rühlmann A, Groth G, Urlacher VB. Characterization of CYP154F1 from Thermobifida fusca YX and Extension of Its Substrate Spectrum by Site-Directed Mutagenesis. Chembiochem 2018; 19:478-485. [PMID: 29266604 DOI: 10.1002/cbic.201700565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 11/05/2022]
Abstract
Previous studies on cytochrome P450 monooxygenases (CYP) from family 154 reported their substrate promiscuity and high activity. Hence, herein, the uncharacterized family member CYP154F1 is described. Screening of more than 100 organic compounds revealed that CYP154F1 preferably accepts small linear molecules with a carbon chain length of 8-10 atoms. In contrast to thoroughly characterized CYP154E1, CYP154F1 has a much narrower substrate spectrum and lower activity. A structural alignment of homology models of CYP154F1 and CYP154E1 revealed few differences in the active sites of both family members. By gradual mutagenesis of the CYP154F1 active site towards those of CYP154E1, a key residue accounting for the different activities of both enzymes was identified at position 234. Substitution of T234 for large hydrophobic amino acids led to up to tenfold higher conversion rates of small substrates, such as geraniol. Replacement of T234 by small hydrophobic amino acids, valine or alanine, resulted in mutants with extended substrate spectra. These mutants are able to convert some of the larger substrates of CYP154E1, such as (E)-stilbene and (+)-nootkatone.
Collapse
Affiliation(s)
- Ansgar Rühlmann
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| |
Collapse
|
42
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Biocatalytic Oxidative Cascade for the Conversion of Fatty Acids into α-Ketoacids via Internal H 2 O 2 Recycling. Angew Chem Int Ed Engl 2018; 57:427-430. [PMID: 29125663 PMCID: PMC5768024 DOI: 10.1002/anie.201710227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/18/2022]
Abstract
The functionalization of bio-based chemicals is essential to allow valorization of natural carbon sources. An atom-efficient biocatalytic oxidative cascade was developed for the conversion of saturated fatty acids to α-ketoacids. Employment of P450 monooxygenase in the peroxygenase mode for regioselective α-hydroxylation of fatty acids combined with enantioselective oxidation by α-hydroxyacid oxidase(s) resulted in internal recycling of the oxidant H2 O2 , thus minimizing degradation of ketoacid product and maximizing biocatalyst lifetime. The O2 -dependent cascade relies on catalytic amounts of H2 O2 and releases water as sole by-product. Octanoic acid was converted under mild conditions in aqueous buffer to 2-oxooctanoic acid in a simultaneous one-pot two-step cascade in up to >99 % conversion without accumulation of hydroxyacid intermediate. Scale-up allowed isolation of final product in 91 % yield and the cascade was applied to fatty acids of various chain lengths (C6:0 to C10:0).
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Alexander Dennig
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Andela Dordic
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lucas Hammerer
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Center of Industrial Biotechnology c/oDepartment of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Mathias Pickl
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Thomas Haas
- CreavisEvonik Industries, Bau 1420Paul Baumann Strasse 145772MarlGermany
| | - Mélanie Hall
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
43
|
Sarmiento‐Villamil JL, García‐Pedrajas NE, Baeza‐Montañez L, García‐Pedrajas MD. The APSES transcription factor Vst1 is a key regulator of development in microsclerotium- and resting mycelium-producing Verticillium species. MOLECULAR PLANT PATHOLOGY 2018; 19:59-76. [PMID: 27696683 PMCID: PMC6638171 DOI: 10.1111/mpp.12496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
Plant pathogens of the genus Verticillium pose a threat to many important crops worldwide. They are soil-borne fungi which invade the plant systemically, causing wilt symptoms. We functionally characterized the APSES family transcription factor Vst1 in two Verticillium species, V. dahliae and V. nonalfalfae, which produce microsclerotia and melanized hyphae as resistant structures, respectively. We found that, in V. dahliae Δvst1 strains, microsclerotium biogenesis stalled after an initial swelling of hyphal cells and cultures were never pigmented. In V. nonalfalfae Δvst1, melanized hyphae were also absent. These results suggest that Vst1 controls melanin biosynthesis independent of its role in morphogenesis. The absence of vst1 also had a great impact on sporulation in both species, affecting the generation of the characteristic verticillate conidiophore structure and sporulation rates in liquid medium. In contrast with these key roles in development, Vst1 activity was dispensable for virulence. We performed a microarray analysis comparing global transcription patterns of wild-type and Δvst1 in V. dahliae. G-protein/cyclic adenosine monophosphate (G-protein/cAMP) signalling and mitogen-activated protein kinase (MAPK) cascades are known to regulate fungal morphogenesis and virulence. The microarray analysis revealed a negative interaction of Vst1 with G-protein/cAMP signalling and a positive interaction with MAPK signalling. This analysis also identified Rho signalling as a potential regulator of morphogenesis in V. dahliae, positively interacting with Vst1. Furthermore, it exposed the association of secondary metabolism and development in this species, identifying Vst1 as a potential co-regulator of both processes. Characterization of the putative Vst1 targets identified in this study will aid in the dissection of specific aspects of development.
Collapse
Affiliation(s)
- Jorge L. Sarmiento‐Villamil
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ ‐ Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC), Estación Experimental ‘La Mayora’, 29750 Algarrobo‐CostaMálagaSpain
| | - Nicolás E. García‐Pedrajas
- Department of Computing and Numerical Analysis, C2 Building 3rd FloorCampus Universitario de RabanalesCórdoba14071Spain
| | - Lourdes Baeza‐Montañez
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ ‐ Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC), Estación Experimental ‘La Mayora’, 29750 Algarrobo‐CostaMálagaSpain
| | - María D. García‐Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ ‐ Universidad de Málaga ‐ Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC), Estación Experimental ‘La Mayora’, 29750 Algarrobo‐CostaMálagaSpain
| |
Collapse
|
44
|
|
45
|
Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, Hall M, Faber K. Eine biokatalytische oxidative Kaskade für die Umsetzung von Fettsäuren zu α-Ketosäuren mit interner H2
O2
-Regeneration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Somayyeh Gandomkar
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Alexander Dennig
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Andela Dordic
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Lucas Hammerer
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
- Austrian Center of Industrial Biotechnology c/o; Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Mathias Pickl
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Thomas Haas
- Creavis; Evonik Industries, Bau 1420; Paul Baumann Straße 1 45772 Marl Deutschland
| | - Mélanie Hall
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| | - Kurt Faber
- Institut für Chemie; Universität Graz; Heinrichstraße 28 8010 Graz Österreich
| |
Collapse
|
46
|
Perez-Garcia O, Mankelow C, Chandran K, Villas-Boas SG, Singhal N. Modulation of Nitrous Oxide (N 2O) Accumulation by Primary Metabolites in Denitrifying Cultures Adapting to Changes in Environmental C and N. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13678-13688. [PMID: 29083886 DOI: 10.1021/acs.est.7b03345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metabolomics provides insights into the actual physiology of cells rather than their mere "potential", as provided by genomic and transcriptomic analysis. We investigate the modulation of nitrous oxide (N2O) accumulation by intracellular metabolites in denitrifying bacteria using metabolomics and genome-based metabolic network modeling. Profiles of metabolites and their rates of production/consumption were obtained for denitrifying batch cultures under four conditions: initial COD:N ratios of 11:1 and 4:1 with and without nitrite spiking (28 mg-N L-1). Only the nitrite-spiked cultures accumulated N2O. The NO2- spiked cultures with an initial COD:N = 11:1 accumulated 3.3 ± 0.57% of the total nitrogen added as N2O and large pools of tricarboxylic acid cycle intermediates and amino acids. In comparison, the NO2- spiked cultures with COD:N = 4:1 showed significantly higher (p = 0.028) N2O accumulation (8.5.3 ± 0.9% of the total nitrogen added), which was linked to the depletion of C11-C20 fatty acids. Metabolic modeling analysis shows that at COD:N of 4:1 the denitrifying cells slowly generate electron equivalents as FADH2 through β-oxidation of saturated fatty acids, while COD:N of 11:1 do it through the TCA cycle. When combined with NO2- shock, this prolonged the duration over which insufficient electron equivalents were available to completely reduce NOx to N2, resulting in increased N2O accumulation. Results extend the understanding of how organic carbon and nitrite loads modulate N2O accumulation in denitrification, which may contribute to further design strategies to control greenhouse gas emissions from agricultural soils or wastewater treatment systems.
Collapse
Affiliation(s)
- Octavio Perez-Garcia
- Department of Civil and Environmental Engineering, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Cody Mankelow
- Department of Civil and Environmental Engineering, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University , New York, New York 10027, United States
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland 1010, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
47
|
Kim J, Lee PG, Jung EO, Kim BG. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:60-67. [PMID: 28821467 DOI: 10.1016/j.bbapap.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023]
Abstract
Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV-Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (kcat/Km) for indole was measured as 6.14±0.10min-1mM-1. Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.
Collapse
Affiliation(s)
- Joonwon Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pyung-Gang Lee
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ok Jung
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Gee Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
48
|
Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19640-19652. [PMID: 28681302 PMCID: PMC5570797 DOI: 10.1007/s11356-017-9496-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/08/2017] [Indexed: 05/15/2023]
Abstract
Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.
Collapse
Affiliation(s)
- Małgorzata Pawlik
- Department of Microbiology, University of Silesia, Katowice, Poland.
| | - Barbara Cania
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Munich, Germany
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | |
Collapse
|
49
|
Lee H, Sugiharto YEC, Lee S, Park G, Han C, Jang H, Jeon W, Park H, Ahn J, Kang K, Lee H. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Appl Microbiol Biotechnol 2017; 101:6333-6342. [PMID: 28589225 DOI: 10.1007/s00253-017-8321-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/18/2017] [Accepted: 04/29/2017] [Indexed: 12/13/2022]
Abstract
α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10-16) and fatty acid methyl esters (C10-16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid-a known inhibitor of β-oxidation-DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.
Collapse
Affiliation(s)
- Heeseok Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Yohanes Eko Chandra Sugiharto
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Seunghoon Lee
- R&D Center, Lotte Chemical Corporation, 115 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34110, Republic of Korea
| | - Gyuyeon Park
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Changpyo Han
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hyeran Jang
- R&D Center, Lotte Chemical Corporation, 115 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34110, Republic of Korea
| | - Wooyoung Jeon
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Heejoon Park
- R&D Center, Lotte Chemical Corporation, 115 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34110, Republic of Korea
| | - Jungoh Ahn
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Kyungbo Kang
- R&D Center, Lotte Chemical Corporation, 115 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34110, Republic of Korea
| | - Hongwoen Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| |
Collapse
|
50
|
Kaprakkaden A, Srivastava P, Bisaria VS. In vitro synthesis of 9,10-dihydroxyhexadecanoic acid using recombinant Escherichia coli. Microb Cell Fact 2017; 16:85. [PMID: 28521794 PMCID: PMC5437634 DOI: 10.1186/s12934-017-0696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background Hydroxy fatty acids are widely used in food, chemical and cosmetic industries. A variety of dihydroxy fatty acids have been synthesized so far; however, no studies have been done on the synthesis of 9,10-dihydroxyhexadecanoic acid. In the present study recombinant E. coli has been used for the heterologous expression of fatty acid hydroxylating enzymes and the whole cell lysate of the induced culture was used for in vitro production of 9,10-dihydroxyhexadecanoic acid. Results A first of its kind proof of principle has been successfully demonstrated for the production of 9,10-dihydroxyhexadecanoic acid using three different enzymes viz. fatty acid desaturase (FAD) from Saccharomyces cerevisiae, epoxide hydrolase (EH) from Caenorhabditis elegance and epoxygenase (EPOX) from Stokasia laevis. The genes for these proteins were codon-optimised, synthesised and cloned in pET 28a (+) vector. The culture conditions for induction of these three proteins in E. coli were optimised in shake flask. The induced cell lysates were used both singly and in combination along with the trans-supply of hexadecanoic acid and 9-hexadecenoic acid, followed by product profiling by GC–MS. Formation of 9,10-dihydroxyhexadecanoic acid was successfully achieved when combination of induced cell lysates of recombinant E. coli containing FAD, EH, and EPOX were incubated with 9-hexadecenoic acid. Conclusions The in vitro production of 9,10-dihydroxyhexadecanoic acid synthesis using three fatty acid modification genes from different sources has been successfully demonstrated. The strategy adopted can be used for the production of similar compounds. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0696-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anees Kaprakkaden
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.,Lac Production Division, ICAR-IINRG, Ranchi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Virendra Swarup Bisaria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|