1
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Li H, Wan L, Liu M, Ma E, Huang L, Yang Y, Li Q, Fang Y, Li J, Han B, Zhang C, Sun L, Hou X, Li H, Sun M, Qian S, Duan X, Zhao R, Yang X, Chen Y, Wu S, Zhang X, Zhang Y, Cheng G, Chen G, Gao Q, Xu J, Hou L, Wei C, Zhong H. SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure. PLoS Pathog 2024; 20:e1012291. [PMID: 39102426 PMCID: PMC11326701 DOI: 10.1371/journal.ppat.1012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/15/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Huilong Li
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yilong Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Qihong Li
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingqing Han
- Beijing Institute of Biotechnology, Beijing, China
| | - Chang Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Lijuan Sun
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Xufeng Hou
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Haiyang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingyu Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Sichong Qian
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuejing Duan
- Department of Pathology, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuhui Zhang
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | | | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengye Chen
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Gao
- Beijing Yaogen Biotechnology Co.Ltd, Beijing, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Yuk JM, Kim JK, Kim IS, Jo EK. TNF in Human Tuberculosis: A Double-Edged Sword. Immune Netw 2024; 24:e4. [PMID: 38455468 PMCID: PMC10917576 DOI: 10.4110/in.2024.24.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
5
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
6
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
7
|
Bighetti-Trevisan RL, Bueno NP, Souza ATP, Marques MM, Rosa AL, Beloti MM, Ferraz EP. Disruption of TNF-α signaling improves osteoblastic differentiation of adipose-derived mesenchymal stem cells and bone repair. Biotechnol Bioeng 2023; 120:3067-3078. [PMID: 37317560 DOI: 10.1002/bit.28468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Adipose tissue is an attractive source of mesenchymal stem cells (at-MSCs), but their low osteogenic potential limits their use in bone regeneration. Adipose tissue plays a role in pro-inflammatory diseases by releasing cytokines with a catabolic effect on bone, such as tumor necrosis factor-alpha (TNF-α). Thus, we hypothesized that endogenous TNF-α could have a negative effect on at-MSC differentiation into osteoblasts. Short interfering RNAs (siRNAs) targeting TNF-α receptors (siR1, siR2, and si1R/R2) were transfected into at-MSCs, and cell differentiation was assessed by measuring the expression of bone markers, ALP activity, and mineralized matrix. Scrambled was used as Control. Knockout at-MSCs (KOR1/R2) was injected in mice calvaria defects, and bone formation was evaluated by microtomography and histological analysis. Data were compared by Kruskal-Wallis or analysis of variance (5%). The expression of bone markers confirmed that at-MSCs differentiate less than bone marrow MSCs. In silenced cells, the expression of Alp, Runx2, and Opn was generally higher compared to Control. ALP, RUNX2, and OPN were expressed at elevated levels in silenced groups, most notably at-MSCs-siR1/R2. ALP was detected at high levels in at-MSCs-siR1/R2 and in-MSCs-siR1, followed by an increase in mineralized nodules in at-MSCs-siR1/R2. As the morphometric parameters increased, the groups treated with KOR1/R2 exhibited slight bone formation near the edges of the defects. Endogenous TNF-α inhibits osteoblast differentiation and activity in at-MSCs, and its disruption increases bone formation. While opening a path of investigation, that may lead to the development of new treatments for bone regeneration using at-MSC-based therapies.
Collapse
Affiliation(s)
- Rayana L Bighetti-Trevisan
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natália P Bueno
- School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcia M Marques
- Aachen Dental Laser Centre - Sigmund Freud University, Austria Campus Prater, Vienna, Austria
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Emanuela P Ferraz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Lange ME, Clarke ST, Boras VF, Brown CLJ, Zhang G, Laing CR, Uwiera RRE, Montina T, Kalmokoff ML, Taboada EN, Gannon VPJ, Metz GAS, Church JS, Inglis GD. Commensal Escherichia coli Strains of Bovine Origin Competitively Mitigated Escherichia coli O157:H7 in a Gnotobiotic Murine Intestinal Colonization Model with or without Physiological Stress. Animals (Basel) 2023; 13:2577. [PMID: 37627368 PMCID: PMC10451813 DOI: 10.3390/ani13162577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7. Currently, there are no effective methods of eliminating this important zoonotic pathogen from cattle, and colonization resistance in relation to EHEC O157:H7 in cattle is poorly understood. We developed a gnotobiotic EHEC O157:H7 murine model to examine aspects of the cattle pathogen-microbiota interaction, and to investigate competitive suppression of EHEC O157:H7 by 18 phylogenetically distinct commensal E. coli strains of bovine origin. As stress has been suggested to influence enteric colonization by EHEC O157:H7 in cattle, corticosterone administration (±) to incite a physiological stress response was included as an experimental variable. Colonization of the intestinal tract (IT) of mice by the bovine EHEC O157:H7 strain, FRIK-2001, mimicked characteristics of bovine IT colonization. In this regard, FRIK-2001 successfully colonized the IT and temporally incited minimal impacts on the host relative to other EHEC O157:H7 strains, including on the renal metabolome. The presence of the commensal E. coli strains decreased EHEC O157:H7 densities in the cecum, proximal colon, and distal colon. Moreover, histopathologic changes and inflammation markers were reduced in the distal colon of mice inoculated with commensal E. coli strains (both propagated separately and communally). Although stress induction affected the behavior of mice, it did not influence EHEC O157:H7 densities or disease. These findings support the use of a gnotobiotic murine model of enteric bovine EHEC O157:H7 colonization to better understand pathogen-host-microbiota interactions toward the development of effective on-farm mitigations for EHEC O157:H7 in cattle, including the identification of bacteria capable of competitively colonizing the IT.
Collapse
Affiliation(s)
- Maximo E. Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra T. Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada;
| | - Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Guangzhi Zhang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Chad R. Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Martin L. Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| | - Eduardo N. Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Victor P. J. Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4, Canada;
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - John S. Church
- Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| |
Collapse
|
9
|
Marzano P, Balin S, Terzoli S, Della Bella S, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Calcaterra F, Di Vito C, Cancellara A, Calvi M, Carletti A, Franzese S, Frigo A, Darwish A, Voza A, Mikulak J, Mavilio D. Transcriptomic profile of TNFhigh MAIT cells is linked to B cell response following SARS-CoV-2 vaccination. Front Immunol 2023; 14:1208662. [PMID: 37564651 PMCID: PMC10410451 DOI: 10.3389/fimmu.2023.1208662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Higher frequencies of mucosal-associated invariant T (MAIT) cells were associated with an increased adaptive response to mRNA BNT162b2 SARS-CoV-2 vaccine, however, the mechanistic insights into this relationship are unknown. In the present study, we hypothesized that the TNF response of MAIT cells supports B cell activation following SARS-CoV-2 immunization. Methods To investigate the effects of repeated SARS-CoV-2 vaccinations on the peripheral blood mononuclear cells (PBMCs), we performed a longitudinal single cell (sc)RNA-seq and scTCR-seq analysis of SARS-CoV-2 vaccinated healthy adults with two doses of the Pfizer-BioNTech BNT162b2 mRNA vaccine. Collection of PBMCs was performed 1 day before, 3 and 17 days after prime vaccination, and 3 days and 3 months following vaccine boost. Based on scRNA/TCR-seq data related to regulatory signals induced by the vaccine, we used computational approaches for the functional pathway enrichment analysis (Reactome), dynamics of the effector cell-polarization (RNA Velocity and CellRank), and cell-cell communication (NicheNet). Results We identified MAIT cells as an important source of TNF across circulating lymphocytes in response to repeated SARS-CoV-2 BNT162b2 vaccination. The TNFhigh signature of MAIT cells was induced by the second administration of the vaccine. Notably, the increased TNF expression was associated with MAIT cell proliferation and efficient anti-SARS-CoV-2 antibody production. Finally, by decoding the ligand-receptor interactions and incorporating intracellular signaling, we predicted TNFhigh MAIT cell interplay with different B cell subsets. In specific, predicted TNF-mediated activation was selectively directed to conventional switched memory B cells, which are deputed to high-affinity long-term memory. Discussion Overall, our results indicate that SARS-CoV-2 BNT162b2 vaccination influences MAIT cell frequencies and their transcriptional effector profile with the potential to promote B cell activation. This research also provides a blueprint for the promising use of MAIT cells as cellular adjuvants in mRNA-based vaccines.
Collapse
Affiliation(s)
- Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Calcaterra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ahmed Darwish
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
10
|
Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol 2023; 14:1213448. [PMID: 37483590 PMCID: PMC10360935 DOI: 10.3389/fimmu.2023.1213448] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune cytokine that belongs to the TNF superfamily of receptor ligands. The cytokine exists as either a transmembrane or a soluble molecule, and targets two distinct receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2), which activate different signaling cascades and downstream genes. TNF-α cellular responses depend on its molecular form, targeted receptor, and concentration levels. TNF-α plays a multifaceted role in normal physiology that is highly relevant to human health and disease. In the central nervous system (CNS), this cytokine regulates homeostatic functions, such as neurogenesis, myelination, blood-brain barrier permeability and synaptic plasticity. However, it can also potentiate neuronal excitotoxicity and CNS inflammation. The pleiotropism of TNF-α and its various roles in the CNS, whether homeostatic or deleterious, only emphasizes the functional complexity of this cytokine. Anti-TNF-α therapy has demonstrated effectiveness in treating various autoimmune inflammatory diseases and has emerged as a significant treatment option for CNS autoimmune diseases. Nevertheless, it is crucial to recognize that the effects of this therapeutic target are diverse and complex. Contrary to initial expectations, anti-TNF-α therapy has been found to have detrimental effects in multiple sclerosis. This article focuses on describing the various roles, both physiological and pathological, of TNF-α in the CNS. Additionally, it discusses the specific disease processes that are dependent or regulated by TNF-α and the rationale of its use as a therapeutic target.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Souza RF, Caetano MAF, Magalhães HIR, Castelucci P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J Gastroenterol 2023; 29:2733-2746. [PMID: 37274062 PMCID: PMC10237104 DOI: 10.3748/wjg.v29.i18.2733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn’s disease (CD) are part of Inflammatory Bowel Diseases (IBD) and have pathophysiological processes such as bowel necrosis and enteric neurons and enteric glial cells. In addition, the main inflammatory mediator is related to the tumor necrosis factor-alpha (TNF-α). TNF-α is a me-diator of the intestinal inflammatory processes, thus being one of the main cytokines involved in the pathogenesis of IBD, however, its levels, when measured, are present in the serum of patients with IBD. In addition, TNF-α plays an important role in promoting inflammation, such as the production of interleukins (IL), for instance IL-1β and IL-6. There are two receptors for TNF as following: The tumor necrosis factor 1 receptor (TNFR1); and the tumor necrosis factor 2 receptor (TNFR2). They are involved in the pathogenesis of IBD and their receptors have been detected in IBD and their expression is correlated with disease activity. The soluble TNF form binds to the TNFR1 receptor with, and its activation results in a signaling cascade effects such as apoptosis, cell proliferation and cytokine secretion. In contrast, the transmembrane TNF form can bind both to TNFR1 and TNFR2. Recent studies have suggested that TNF-α is one of the main pro-inflammatory cytokines involved in the pathogenesis of IBD, since TNF levels are present in the serum of both patients with UC and CD. Intravenous and subcutaneous biologics targeting TNF-α have revolutionized the treatment of IBD, thus becoming the best available agents to induce and maintain IBD remission. The application of antibodies aimed at neutralizing TNF-α in patients with IBD that induce a satisfactory clinical response in up to 60% of patients, and also induced long-term maintenance of disease remission in most patients. It has been suggested that anti-TNF-α agents inactivate the pro-inflammatory cytokine TNF-α by direct neutralization, i.e., resulting in suppression of inflammation. However, anti-TNF-α antibodies perform more complex functions than a simple blockade.
Collapse
Affiliation(s)
- Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
12
|
Fiedler T, Fairless R, Pichi K, Fischer R, Richter F, Kontermann RE, Pfizenmaier K, Diem R, Williams SK. Co-modulation of TNFR1 and TNFR2 in an animal model of multiple sclerosis. J Neuroinflammation 2023; 20:100. [PMID: 37122019 PMCID: PMC10149004 DOI: 10.1186/s12974-023-02784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG35-55) in humanized TNFR1 knock-in mice. These were treated with a human-specific TNFR1-selective antagonistic antibody (H398) and a mouse-specific TNFR2 agonist (EHD2-sc-mTNFR2), both in combination and individually. Histopathological analysis of spinal cords was performed to investigate demyelination and inflammatory infiltration, as well as axonal and neuronal degeneration. Retinas were examined for any protective effects on retinal ganglion cell (RGC) degeneration and neuroprotective signalling pathways analysed by Western blotting. RESULTS TNFR modulation successfully ameliorated symptoms of EAE and reduced demyelination, inflammatory infiltration and axonal degeneration. Furthermore, the combinatorial approach of blocking TNFR1 and stimulating TNFR2 signalling increased RGC survival and promoted the phosphorylation of Akt and NF-κB, both known to mediate neuroprotection. CONCLUSION These results further support the potential of regulating the balance of TNFR signalling, through the co-modulation of TNFR1 and TNFR2 activity, as a novel therapeutic approach in treating inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Timon Fiedler
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kira Pichi
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- BioNtech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Fabian Richter
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, University of Heidelberg, Otto-Mayerhof-Zentrum (OMZ), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Galeone A, Grano M, Brunetti G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State of the Art and Therapeutic Implications. Int J Mol Sci 2023; 24:4606. [PMID: 36902036 PMCID: PMC10003149 DOI: 10.3390/ijms24054606] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Ischemic heart disease is the principal cause of death worldwide and clinically manifests as myocardial infarction (MI), stable angina, and ischemic cardiomyopathy. Myocardial infarction is defined as an irreversible injury due to severe and prolonged myocardial ischemia inducing myocardial cell death. Revascularization is helpful in reducing loss of contractile myocardium and improving clinical outcome. Reperfusion rescues myocardium from cell death but also induces an additional injury called ischemia-reperfusion injury. Multiple mechanisms are involved in ischemia-reperfusion injury, such as oxidative stress, intracellular calcium overload, apoptosis, necroptosis, pyroptosis, and inflammation. Various members of the tumor necrosis factor family play a key role in myocardial ischemia-reperfusion injury. In this article, the role of TNFα, CD95L/CD95, TRAIL, and the RANK/RANKL/OPG axis in the regulation of myocardial tissue damage is reviewed together with their potential use as a therapeutic target.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
14
|
Oliveira CA, Mercês ÉAB, Portela FS, De Benedictis JM, De Benedictis LM, da Silva AVB, Campanati JDAG, de Melo FF, Oliveira MV, de Magalhães ACM, Soares TDJ, Amaral LSDB. Benefits of high-intensity interval training compared to continuous training to reduce apoptotic markers in female rats with cisplatin nephrotoxicity - possible modulatory role of IL-11. Apoptosis 2023; 28:566-575. [PMID: 36653732 DOI: 10.1007/s10495-023-01816-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Apoptotic signaling pathways are involved in acute kidney injury (AKI) induced by the antineoplastic drug cisplatin (Cis). Mechanical stress is known to increase interleukin (IL) -11, a pleiotropic cytokine with antiapoptotic and antinecrotic effects. We compared the impact of high-intensity interval training (HIIT) with low-intensity continuous training (LICT) and moderate-intensity continuous training (MICT) on renal levels of IL-11 and the expression of apoptotic markers in female rats with nephrotoxicity induced by Cis. For that, the animals were divided into five groups (n = 7): control and sedentary (C + S); Cis and sedentary (Cis + S); Cis and LICT (Cis + LICT); Cis and MICT (Cis + MICT) and Cis and HIIT (Cis + HIIT). At the end of 8 weeks of treadmill running, the rats received a single injection of Cis (5 mg/kg), and 7 days later they were euthanized. Serum and kidney samples were collected to assess the blood urea nitrogen (BUN), gene expression of TNF receptor 1 (TNFR1) and 2 (TNFR2), caspase-3, (p38) MAPK (MAPK14), p53, Bax, Bak, Bcl-2, and Bcl-xL, renal levels of IL-11, IL-8, and p53, and immunolocalization of cleaved caspase-3, Bax, Bcl-2, and (p38) MAPK in renal tissue. Our data indicate that all trained groups showed a significant intensity-dependent increase in renal levels of IL-11 associated with reduced local expression of proapoptotic and increased antiapoptotic markers, but these effects were more pronounced with HIIT. So, HIIT appears to provide superior renoprotection than traditional continuous training by modulating apoptotic signaling pathways, and this effect can be related to the increase in renal levels of IL-11.
Collapse
Affiliation(s)
- Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Érika Azenathe Barros Mercês
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Júlia Mafra De Benedictis
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Laís Mafra De Benedictis
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Antônio Victor Brito da Silva
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - João de Assis Gonçalves Campanati
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Amélia Cristina Mendes de Magalhães
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Rua Rio de Contas, 58, Candeias, 45029-094, Bahia, Brazil.
| |
Collapse
|
15
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
16
|
Crorkin P, Hao S, Ferreri NR. Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension 2022; 79:2656-2670. [PMID: 36129177 PMCID: PMC9649876 DOI: 10.1161/hypertensionaha.122.19464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.
Collapse
Affiliation(s)
- Patrick Crorkin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
17
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Quazi S. TNFR2 antagonist and agonist: a potential therapeutics in cancer immunotherapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:215. [PMID: 36175687 DOI: 10.1007/s12032-022-01772-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Tumour necrosis factor receptor 2 or TNFR2 is considered an appealing target protein due to its limited frequency to TREGs, which are highly immunosuppressive and present on human malignancies. Numerous studies have revealed that TNFR2 is primarily found on MDSCs (myeloid-derived suppressor cells) and CD + Foxp3 + regulatory T cells (TREGs). Therefore, it has great importance in the proliferation and functional activity of TREGs and MDSCs. TNFR2 suppression must be downregulated or upregulated as required to treat malignancies and diseases like autoimmune disorders. Therefore, at the molecular level, advances in the comprehension of TNFR2's complex structure and its binding to TNF have opened the door to structure-guided drug development. Two critical obstacles to cancer treatment are the dearth of TREG-specific inhibitors and the lack of widely applicable ways to target tumours via frequently expressed surface oncogenes directly. Many researchers have discovered potential antagonists and agonists of TNFR2, which were successful in inhibiting TREGs proliferation, reducing soluble TNFR2 secretion from normal cells, and expanding T effector cells. The data represented in the following review article elucidates the clinically administrated TNFR2 antagonist and agonist in treating cancers.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, 560043, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
19
|
Pesce B, Ribeiro CH, Larrondo M, Ramos V, Soto L, Catalán D, Aguillón JC. TNF-α Affects Signature Cytokines of Th1 and Th17 T Cell Subsets through Differential Actions on TNFR1 and TNFR2. Int J Mol Sci 2022; 23:ijms23169306. [PMID: 36012570 PMCID: PMC9408897 DOI: 10.3390/ijms23169306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is a pleiotropic cytokine implicated in the etiology of several autoimmune diseases, including rheumatoid arthritis (RA). TNF-α regulates diverse effector functions through the activation of TNF-α receptor (TNFR)1 and TNFR2. Although the detrimental role of this cytokine has been addressed in distinct disease settings, the effects of TNF-α on cytokine production by isolated CD4+ T helper type 1 (Th1) and Th17 cells, two T cell subpopulations that contribute to the pathogenesis of RA, have not been completely elucidated. Here, we show that TNF-α promotes a reduction and expansion in the frequency of both T cell subsets producing IFN-γ and IL-17, respectively. Selective blockade of TNFR1 or TNFR2 on Th1 and Th17 cells revealed that TNFR2 mediates the decrease in IFN-γ production, while signaling through both receptors augments IL-17 production. We also demonstrate that Th1, but not Th17 cells from RA patients present lower levels of TNFR1 compared to healthy controls, whereas TNFR2 expression on both T cell types is similar between patients and controls. Since TNF-α receptors levels in RA patients are not significantly changed by the therapeutic blockade of TNF-α, we propose that targeting TNFR2 may represent an alternative strategy to normalize the levels of key cytokines that contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Bárbara Pesce
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Laboratorio MED.UCHILE-FACS, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Carolina H. Ribeiro
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Milton Larrondo
- Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Verónica Ramos
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Lilian Soto
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Diego Catalán
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (D.C.); (J.C.A.)
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group (IRTGroup), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (D.C.); (J.C.A.)
| |
Collapse
|
20
|
Rossi AFT, da Silva Manoel-Caetano F, Biselli JM, Cabral ÁS, Saiki MDFC, Ribeiro ML, Silva AE. Downregulation of TNFR2 decreases survival gene expression, promotes apoptosis and affects the cell cycle of gastric cancer cells. World J Gastroenterol 2022; 28:2689-2704. [PMID: 35979166 PMCID: PMC9260869 DOI: 10.3748/wjg.v28.i24.2689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic inflammation due to Helicobacter pylori (H. pylori) infection promotes gastric carcinogenesis. Tumour necrosis factor-α (TNF-α), a key mediator of inflammation, induces cell survival or apoptosis by binding to two receptors (TNFR1 and TNFR2). TNFR1 can induce both survival and apoptosis, while TNFR2 results only in cell survival. The dysregulation of these processes may contribute to carcinogenesis.
AIM To evaluate the effects of TNFR1 and TNFR2 downregulation in AGS cells treated with H. pylori extract on the TNF-α pathway.
METHODS AGS cell lines containing TNFR1 and TNFR2 receptors downregulated by specific shRNAs and nonsilenced AGS cells were treated with H. pylori extract for 6 h. Subsequently, quantitative polymerase chain reaction with TaqMan® assays was used for the relative quantification of the mRNAs (TNFA, TNFR1, TNFR2, TRADD, TRAF2, CFLIP, NFKB1, NFKB2, CASP8, CASP3) and miRNAs (miR-19a, miR-34a, miR-103a, miR-130a, miR-181c) related to the TNF-α signalling pathway. Flow cytometry was employed for cell cycle analysis and apoptosis assays.
RESULTS In nonsilenced AGS cells, H. pylori extract treatment increased the expression of genes involved in cell survival and inhibited both apoptosis (NFKB1, NFKB2 and CFLIP) and the TNFR1 receptor. TNFR1 downregulation significantly decreased the expression of the TRADD and CFLIP genes, although no change was observed in the cellular process or miRNA expression. In contrast, TNFR2 downregulation decreased the expression of the TRADD and TRAF2 genes, which are both important downstream mediators of the TNFR1-mediated pathway, as well as that of the NFKB1 and CFLIP genes, while upregulating the expression of miR-19a and miR-34a. Consequently, a reduction in the number of cells in the G0/G1 phase and an increase in the number of cells in the S phase were observed, as well as the promotion of early apoptosis.
CONCLUSION Our findings mainly highlight the important role of TNFR2 in the TNF-α pathway in gastric cancer, indicating that silencing it can reduce the expression of survival and anti-apoptotic genes.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- Department of Biological Sciences, Sao Paulo State University (UNESP), São José do Rio Preto 15054-000, São Paulo, Brazil
| | | | - Joice Matos Biselli
- Department of Biological Sciences, Sao Paulo State University (UNESP), São José do Rio Preto 15054-000, São Paulo, Brazil
| | - Ágata Silva Cabral
- Department of Biological Sciences, Sao Paulo State University (UNESP), São José do Rio Preto 15054-000, São Paulo, Brazil
| | | | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University (USF), Bragança Paulista 12916-900, São Paulo, Brazil
| | - Ana Elizabete Silva
- Department of Biological Sciences, Sao Paulo State University (UNESP), São José do Rio Preto 15054-000, São Paulo, Brazil
| |
Collapse
|
21
|
Takahashi H, Yoshimatsu G, Faustman DL. The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy. Cells 2022; 11:1952. [PMID: 35741080 DOI: 10.3390/cells11121952pubmedhttps:/www.ncbi.nlm.nih.gov/pubmed/35741080pubmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 08/02/2024] Open
Abstract
The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted at the TME have systemic toxicity. Another approach is to target the TME with greater specificity by taking aim at the tumor necrosis factor receptor 2 (TNFR2) signaling pathway. TNFR2 is an attractive molecular target because it is rarely expressed in normal tissues (thus, has low potential for systemic toxicity) and because it is overexpressed on many types of cancer cells as well as on associated TME components, such as T regulatory cells (Tregs), tumor-associated macrophages, and other cells that facilitate tumor progression and spread. Novel therapies that block TNFR2 signaling show promise in cell culture studies, animal models, and human studies. Novel antibodies have been developed that expressly kill only rapidly proliferating cells expressing newly synthesized TNFR2 protein. This review traces the origins of our understanding of TNFR2's multifaceted roles in the TME and discusses the therapeutic potential of agents designed to block TNFR2 as the cornerstone of a TME-specific strategy.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gumpei Yoshimatsu
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan
| | - Denise Louise Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
22
|
Takahashi H, Yoshimatsu G, Faustman DL. The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy. Cells 2022; 11:cells11121952. [PMID: 35741080 PMCID: PMC9222015 DOI: 10.3390/cells11121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted at the TME have systemic toxicity. Another approach is to target the TME with greater specificity by taking aim at the tumor necrosis factor receptor 2 (TNFR2) signaling pathway. TNFR2 is an attractive molecular target because it is rarely expressed in normal tissues (thus, has low potential for systemic toxicity) and because it is overexpressed on many types of cancer cells as well as on associated TME components, such as T regulatory cells (Tregs), tumor-associated macrophages, and other cells that facilitate tumor progression and spread. Novel therapies that block TNFR2 signaling show promise in cell culture studies, animal models, and human studies. Novel antibodies have been developed that expressly kill only rapidly proliferating cells expressing newly synthesized TNFR2 protein. This review traces the origins of our understanding of TNFR2’s multifaceted roles in the TME and discusses the therapeutic potential of agents designed to block TNFR2 as the cornerstone of a TME-specific strategy.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan; (H.T.); (G.Y.)
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gumpei Yoshimatsu
- Department of Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka 814-0180, Japan; (H.T.); (G.Y.)
| | - Denise Louise Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Correspondence: ; Tel.: +1-617-726-4084; Fax: +1-617-726-4095
| |
Collapse
|
23
|
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front Immunol 2022; 13:903679. [PMID: 35663982 PMCID: PMC9157545 DOI: 10.3389/fimmu.2022.903679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Cui X, Chang Z, Dang T, Meng J, Wang P, Wu J, Chai J. TNF upregulates peptidoglycan recognition protein 1 in esophageal cancer cells to clear the path to its signaling: Making the “enemy” a friend. Arch Biochem Biophys 2022; 722:109192. [DOI: 10.1016/j.abb.2022.109192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
|
25
|
Lousa I, Reis F, Santos-Silva A, Belo L. The Signaling Pathway of TNF Receptors: Linking Animal Models of Renal Disease to Human CKD. Int J Mol Sci 2022; 23:3284. [PMID: 35328704 PMCID: PMC8950598 DOI: 10.3390/ijms23063284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a global public health problem. Despite the current advances in medicine, CKD-associated morbidity and mortality remain unacceptably high. Several studies have highlighted the contribution of inflammation and inflammatory mediators to the development and/or progression of CKD, such as tumor necrosis factor (TNF)-related biomarkers. The inflammation pathway driven by TNF-α, through TNF receptors 1 (TNFR1) and 2 (TNFR2), involves important mediators in the pathogenesis of CKD. Circulating levels of TNFRs were associated with changes in other biomarkers of kidney function and injury, and were described as predictors of disease progression, cardiovascular morbidity, and mortality in several cohorts of patients. Experimental studies describe the possible downstream signaling pathways induced upon TNFR activation and the resulting biological responses. This review will focus on the available data on TNFR1 and TNFR2, and illustrates their contributions to the pathophysiology of kidney diseases, their cellular and molecular roles, as well as their potential as CKD biomarkers. The emerging evidence shows that TNF receptors could act as biomarkers of renal damage and as mediators of the disease. Furthermore, it has been suggested that these biomarkers could significantly improve the discrimination of clinical CKD prognostic models.
Collapse
Affiliation(s)
- Irina Lousa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (A.S.-S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Alice Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (A.S.-S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (A.S.-S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Bai J, Ding B, Li H. Targeting TNFR2 in Cancer: All Roads Lead to Rome. Front Immunol 2022; 13:844931. [PMID: 35251045 PMCID: PMC8891135 DOI: 10.3389/fimmu.2022.844931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
TNF receptor 2 (TNFR2) has become one of the best potential immune checkpoints that might be targeted, mainly because of its vital role in tumor microenvironments (TMEs). Overexpression of TNFR2 in some tumor cells and essential function in immunosuppressive cells, especially regulatory T cells (Tregs), makes blocking TNFR2 an excellent strategy in cancer treatment; however, there is evidence showing that activating TNFR2 can also inhibit tumor progression in vivo. In this review, we will discuss drugs that block and activate TNFR2 under clinical trials or preclinical developments up till now. Meanwhile, we summarize and explore the possible mechanisms related to them.
Collapse
Affiliation(s)
- Jingchao Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bowen Ding
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
27
|
Mázala-de-Oliveira T, de Figueiredo CS, de Rezende Corrêa G, da Silva MS, Miranda RL, de Azevedo MA, Cossenza M, Dos Santos AA, Giestal-de-Araujo E. Ouabain-Na +/K +-ATPase Signaling Regulates Retinal Neuroinflammation and ROS Production Preventing Neuronal Death by an Autophagy-Dependent Mechanism Following Optic Nerve Axotomy In Vitro. Neurochem Res 2022; 47:723-738. [PMID: 34783975 DOI: 10.1007/s11064-021-03481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Ouabain is a classic Na+K+ATPase ligand and it has been described to have neuroprotective effects on neurons and glial cells at nanomolar concentrations. In the present work, the neuroprotective and immunomodulatory potential of ouabain was evaluated in neonatal rat retinal cells using an optic nerve axotomy model in vitro. After axotomy, cultured retinal cells were treated with ouabain (3 nM) at different periods. The levels of important inflammatory receptors in the retina such as TNFR1/2, TLR4, and CD14 were analyzed. We observed that TNFR1, TLR4, and CD14 were decreased in all tested periods (15 min, 45 min, 24 h, and 48 h). On the other hand, TNFR2 was increased after 24 h, suggesting an anti-inflammatory potential for ouabain. Moreover, we showed that ouabain also decreased Iba-1 (microglial marker) density. Subsequently, analyses of retrograde labeling of retinal ganglion cells (RGC) were performed after 48 h and showed that ouabain-induced RGC survival depends on autophagy. Using an autophagy inhibitor (3-methyladenine), we observed a complete blockage of the ouabain effect. Western blot analyses showed that ouabain increases the levels of autophagy proteins (LC3 and Beclin-1) coupled to p-CREB transcription factor and leads to autophagosome formation. Additionally, we found that the ratio of cleaved/pro-caspase-3 did not change after ouabain treatment; however, p-JNK density was enhanced. Also, ouabain decreased reactive oxygen species production immediately after axotomy. Taken together, our results suggest that ouabain controls neuroinflammation in the retina following optic nerve axotomy and promotes RGC neuroprotection through activation of the autophagy pathway.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Gustavo de Rezende Corrêa
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Mayra Santos da Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Renan Lyra Miranda
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Mariana Almeida de Azevedo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Aline Araujo Dos Santos
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
28
|
Splenic Architecture and Function Requires Tight Control of Transmembrane TNF Expression. Int J Mol Sci 2022; 23:ijms23042229. [PMID: 35216345 PMCID: PMC8876982 DOI: 10.3390/ijms23042229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Soluble tumor necrosis factor (sTNF) is an important inflammatory mediator and essential for secondary lymphoid organ (SLO) development and function. However, the role of its transmembrane counterpart (tmTNF) in these processes is less well established. Here, the effects of tmTNF overxpression on SLO architecture and function were investigated using tmTNF-transgenic (tmTNF-tg) mice. tmTNF overexpression resulted in enlarged peripheral lymph nodes (PLNs) and spleen, accompanied by an increase in small splenic lymphoid follicles, with less well-defined primary B cell follicles and T cell zones. In tmTNF-tg mice, the spleen, but not PLNs, contained reduced germinal center (GC) B cell fractions, with low Ki67 expression and reduced dark zone characteristics. In line with this, smaller fractions of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells were observed with a decreased Tfh:Tfr ratio. Moreover, plasma cell (PC) formation in the spleen of tmTNF-tg mice decreased and skewed towards IgA and IgM expression. Genetic deletion of TNFRI or –II resulted in a normalization of follicle morphology in the spleen of tmTNF-tg mice, but GC B cell and PC fractions remained abnormal. These findings demonstrate that tightly regulated tmTNF is important for proper SLO development and function, and that aberrations induced by tmTNF overexpression are site-specific and mediated via TNFRI and/or TNFRII signaling.
Collapse
|
29
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
30
|
Kibune R, Muraoka K, Morishita M, Ariyoshi W, Awano S. Relationship between Dynamics of TNF-α and Its Soluble Receptors in Saliva and Periodontal Health State. Dent J (Basel) 2022; 10:dj10020025. [PMID: 35200250 PMCID: PMC8870908 DOI: 10.3390/dj10020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Soluble tumor necrosis factor receptors 1 and 2 (sTNF-R1 and sTNF-R2) are reported to protect against excessive TNF-α, a primary mediator of systemic responses to infection. This study aimed to investigate the levels of TNF-α, sTNF-R1, and sTNF-R2 in saliva and to verify whether their dynamics are associated with periodontal health. The study population comprised 28 adult patients. Probing pocket depth, clinical attachment level, and bleeding on probing were assessed, and periodontal inflamed surface area (PISA) was calculated. Stimulated saliva was collected before the oral examinations. The levels of TNF-α, sTNF-R1, sTNF-R2, and total protein (TP) in saliva samples were determined. There were significant positive correlations between TNF-α, sTNF-R1, and sTNF-R2 to TP (/TP) in stimulated saliva. Moreover, there were significant positive correlations between PISA and sTNF-R2/TP. Stepwise multiple regression analysis revealed that PISA was significantly associated with sTNF-R2/TP in saliva; however, TNF-α/TP was not significantly associated with PISA. In conclusion, this study demonstrates that significant relationships exist between the salivary levels of TNF-α and sTNF-R1, and that salivary sTNF-R2 is associated with the expansion of inflamed periodontal tissue.
Collapse
Affiliation(s)
- Ryota Kibune
- Department of Clinical Education Development and Research, School of Dentistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; (R.K.); (K.M.); (M.M.)
| | - Kosuke Muraoka
- Department of Clinical Education Development and Research, School of Dentistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; (R.K.); (K.M.); (M.M.)
| | - Masaki Morishita
- Department of Clinical Education Development and Research, School of Dentistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; (R.K.); (K.M.); (M.M.)
| | - Wataru Ariyoshi
- Department of Infections and Molecular Biology, School of Dentistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Shuji Awano
- Department of Clinical Education Development and Research, School of Dentistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan; (R.K.); (K.M.); (M.M.)
- Correspondence:
| |
Collapse
|
31
|
Kang X, Jiao T, Wang H, Pernow J, Wirdefeldt K. Mendelian randomization study on the causal effects of tumor necrosis factor inhibition on coronary artery disease and ischemic stroke among the general population. EBioMedicine 2022; 76:103824. [PMID: 35074627 PMCID: PMC8792065 DOI: 10.1016/j.ebiom.2022.103824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumor necrosis factor (TNF) is a potent inflammatory cytokine that has been causally associated with coronary artery disease (CAD) and ischemic stroke (IS), implying opportunities for disease prevention by anti-TNF therapeutics. Methods Leveraging summary statistics of several genome-wide association studies (GWAS), we assessed the repurposing potential of TNF inhibitors for CAD and IS using drug-target Mendelian randomization (MR) design. Pharmacologic blockade of the pro-inflammatory TNF signalling mediated by TNF receptor 1 (TNFR1) was instrumented by four validated variants. Causal effects of TNF/TNFR1 blockade on CAD (Ncase/control upto 122,733/424,528) and IS (Ncase/control upto 60,341/454,450) were then estimated via various MR estimators using circulating C-reactive protein (CRP; NGWAS=204,402) as downstream biomarker to reflect treatment effect. Associations of a functional variant, rs1800693, with CRP, CAD and IS were also examined. Findings No protective effect of TNF/TNFR1 inhibition on CAD or IS was observed. For every 10% decrease of circulating CRP achieved by TNF/TNFR1 blockade, odds ratio was 0.98 (95% confidence interval [CI]: 0.60-1.60) for CAD and 0.77 (95% CI: 0.36-1.63) for IS. Findings remained null in all supplement analyses. Interpretation Our findings do not support TNFR1 as a promising target for CAD or IS prevention among the general population. Future research is warranted to investigate whether the detrimental effect of circulating TNF on CAD and IS might be counteracted by modulating other relevant drug targets. Funding No.
Collapse
Affiliation(s)
- Xiaoying Kang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Tong Jiao
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Haiyang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - John Pernow
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Ahsan T, Sajib AA. Missense variants in the TNFA epitopes and their effects on interaction with therapeutic antibodies-in silico analysis. J Genet Eng Biotechnol 2022; 20:7. [PMID: 35006391 PMCID: PMC8748575 DOI: 10.1186/s43141-021-00288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFA) is an important cytokine that influences multiple biological processes. It is one of the key mediators of acute and chronic systemic inflammatory reactions and plays a central role in several autoimmune diseases. A number of approved monoclonal antibodies (mAbs) are widely used to subside these autoimmune diseases. However, there is a high rate of non-responsiveness to treatments with these mAbs. Therefore, it is important to be able to predict responses of the patients in an individualistic manner to these therapeutic antibodies before administration. In the present study, we used in silico tools to explore the effects of missense variants in the respective epitopes of four therapeutic anti-TNFA mAbs-adalimumab (ADA), certolizumab pegol (CZP), golimumab (GLM), and infliximab (IFX)-on their interactions with TNFA. RESULTS The binding affinities of CZP and ADA to corresponding epitopes appear to be reduced by four (TNFAR131Q, TNFAE135G, TNFAR138Q, and TNFAR138W) and two (TNFAG66C and TNFAG66S) variants, respectively. The binding of GLM and IFX appears to be affected by TNFAR141S and TNFAR138W, respectively. TNFAG66C and TNFAG66S may be associated with autoimmune diseases, whereas TNFAE135G, TNFAR138W, and TNFAR141S may be pathogenic per se. CONCLUSION These variants may contribute to the observed inter-individual variability in response to anti-TNFA mAbs treatments and be used as markers to predict responses, and thus optimize therapeutic benefits to the patients.
Collapse
Affiliation(s)
- Tamim Ahsan
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, 1349 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
33
|
Ahmad S, Hatmal MM, Lambuk L, Al-Hatamleh MAI, Alshaer W, Mohamud R. The role of TNFR2 + Tregs in COVID-19: An overview and a potential therapeutic strategy. Life Sci 2021; 286:120063. [PMID: 34673116 PMCID: PMC8523334 DOI: 10.1016/j.lfs.2021.120063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
COVID-19 is a multi-faceted disease ranging from asymptomatic to severely ill condition that primarily affects the lungs and could advance to other organs as well. It's causing factor, SARS-CoV-2 is recognized to develop robust cell-mediated immunity that responsible to either control or exaggerate the infection. As an important cell subset that control immune responses and are significantly dysregulated in COVID-19, Tregs is proposed to be considered for COVID-19 management. Among its hallmark, TNFR2 is recently recognized to play important role in the function and survival of Tregs. This review gathers available TNFR2 agonists to directly target Tregs as a potential approach to overcome immune dysregulation that affect the severity in COVID-19. Furthermore, this review performs a rigid body docking of TNF-TNFR2 interaction and such interaction with TNFR2 agonist to predict the optimal targeting approach.
Collapse
Affiliation(s)
- Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohammad A I Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| |
Collapse
|
34
|
Wang T, Lyu CY, Jiang YH, Dong XY, Wang Y, Li ZH, Wang JX, Xu RR. A drug-biomarker interaction model to predict the key targets of Scutellaria barbata D. Don in adverse-risk acute myeloid leukaemia. Mol Divers 2021; 25:2351-2365. [PMID: 32676746 DOI: 10.1007/s11030-020-10124-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
A poor prognosis, relapse and resistance are burning issues during adverse-risk acute myeloid leukaemia (AML) treatment. As a natural medicine, Scutellaria barbata D. Don (SBD) has shown impressive antitumour activity in various cancers. Thus, SBD may become a potential drug in adverse-risk AML treatment. This study aimed to screen the key targets of SBD in adverse-risk AML using the drug-biomarker interaction model through bioinformatics and network pharmacology methods. First, the adverse-risk AML-related critical biomarkers and targets of SBD active ingredient were obtained from The Cancer Genome Atlas database and several pharmacophore matching databases. Next, the protein-protein interaction network was constructed, and topological analysis and pathway enrichment were used to screen key targets and main pathways of intervention of SBD in adverse-risk AML. Finally, molecular docking was implemented for key target verification. The results suggest that luteolin and quercetin are the main active components of SBD against adverse-risk AML, and affected drug resistance, apoptosis, immune regulation and angiogenesis through the core targets AKT1, MAPK1, IL6, EGFR, SRC, VEGFA and TP53. We hope the proposed drug-biomarker interaction model provides an effective strategy for the research and development of antitumour drugs.
Collapse
Affiliation(s)
- Teng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Chun-Yi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yue-Hua Jiang
- Central Laboratory of Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Xue-Yan Dong
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Zong-Hong Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Jin-Xin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Rui-Rong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China.
| |
Collapse
|
35
|
Czarnecka-Czapczyńska M, Aebisher D, Oleś P, Sosna B, Krupka-Olek M, Dynarowicz K, Latos W, Cieślar G, Kawczyk-Krupka A. The role of photodynamic therapy in breast cancer - A review of in vitro research. Biomed Pharmacother 2021; 144:112342. [PMID: 34678730 DOI: 10.1016/j.biopha.2021.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the most common cancer affecting women and the incidence of occurrence is increasing. Currently, there are many methods of detecting and treating breast cancer. Some treatments have a number of side effects. Photodynamic therapy (PDT) is a minimally invasive method of treatment which uses monochromatic light of low to medium energy to excite previously applied photosensitizers (PS) for ROS production. The purpose of this article is to present a general overview of the use of PDT in in vitro studies of various cancer cell lines. A literature search for articles corresponding to the topic of this review was performed using the PubMed and Scopus databases using the following keywords: 'photodynamic therapy', 'breast cancer', and 'photosensitizer(s).' Much of the reviewed literature is based on evaluations of the cytotoxic potential of various PSs, particularly against the MCF-7 cell line, and enhancement of PDT potential with nanotechnology. Research on photodynamic effects in vitro may be helpful in the pre-clinical search for optimal methods for in vivo clinical treatment.
Collapse
Affiliation(s)
- Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Magdalena Krupka-Olek
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | | | - Wojciech Latos
- Specialist Hospital No. 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland.
| |
Collapse
|
36
|
Lantoine J, Procès A, Villers A, Halliez S, Buée L, Ris L, Gabriele S. Inflammatory Molecules Released by Mechanically Injured Astrocytes Trigger Presynaptic Loss in Cortical Neuronal Networks. ACS Chem Neurosci 2021; 12:3885-3897. [PMID: 34614352 DOI: 10.1021/acschemneuro.1c00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deformation, compression, or stretching of brain tissues cause diffuse axonal injury (DAI) and induce structural and functional alterations of astrocytes, the most abundant cell type in the brain. To gain further insight into the role of mechanically activated astrocytes on neuronal networks, this study was designed to investigate whether cytokines released by mechanically activated astrocytes can affect the growth and synaptic connections of cortical neuronal networks. Astrocytes were cultivated on elastic membranes and subjected to repetitive mechanical insults, whereas well-defined protein micropatterns were used to form standardized neuronal networks. GFAP staining showed that astrocytes were mechanically activated after two cycles of stretch and mesoscale discovery assays indicated that injured astrocytes released four major cytokines. To understand the role of these cytokines, neuronal networks were cultured with the supernatant of healthy or mechanically activated astrocytes, and the individual contribution of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) was studied. We found that the supernatant of two-cycle stretched astrocytes decreased presynaptic terminals and indicated that TNF-α must be considered a key player of the synaptic loss. Furthermore, our results indicate that cytokines released by injured astrocytes significantly modulate the balance between TNFR1 and TNFR2 receptors by enhancing R2 receptors. We demonstrated that TNF-α is not involved in this process, suggesting a predominant role of other secreted cytokines. Together, these results contribute to a better understanding of the consequences of repetitive astrocyte deformations and highlight the role of inflammatory signaling pathways in synaptic plasticity and modulation of TNFR1 and TNFR2 receptors.
Collapse
Affiliation(s)
- Joséphine Lantoine
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Anthony Procès
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
- Laboratory of Neuroscience, Research Institute for Biosciences, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Agnès Villers
- Laboratory of Neuroscience, Research Institute for Biosciences, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France
| | - Laurence Ris
- Laboratory of Neuroscience, Research Institute for Biosciences, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
37
|
Dang T, Chang Z, Meng J, Cui X, Wang P, Chai J. TNF antagonizes CCN1 in apoptosis in esophageal adenocarcinoma. Cytokine 2021; 149:155728. [PMID: 34634651 DOI: 10.1016/j.cyto.2021.155728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
TNF signaling mostly supports cell growth by activating NFκB and only induces cell death when NFκB activation fails. CCN1 is a matricellular protein that has been reported capable to convert TNF from a pro-survival factor into a stimulus for cell death without interfering with NFκB signaling. In this study, we examined the relationship between CCN1 and TNF in the context of esophageal adenocarcinoma and found that CCN1 did not help TNF to induce cell death when they were together, instead, it inhibited TNF expression, as well as TNF-induced JNK activation and apoptosis. CCN1 induced apoptosis in the cancer cells by itself through upregulation of TRAIL and its death receptors. The presence of TNF significantly lowered CCN1 expression and its capability in apoptosis induction. Furthermore, we found that CCN1 boosted ADAM17-mediated cleavage of TNF receptors through ITGA11 and the soluble decoy receptors generated by this action neutralized TNF activity. Taken together, CCN1 and TNF antagonize each other in esophageal cancer cells.
Collapse
Affiliation(s)
- Tong Dang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Zhiheng Chang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Jing Meng
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Xia Cui
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Pei Wang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China; Laboratory of Gastrointestinal Injury and Cancer, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
38
|
Paccalet A, Crola Da Silva C, Mechtouff L, Amaz C, Varillon Y, de Bourguignon C, Cartier R, Prieur C, Tomasevic D, Genot N, Leboube S, Derimay F, Rioufol G, Bonnefoy-Cudraz E, Mewton N, Ovize M, Bidaux G, Bochaton T. Serum Soluble Tumor Necrosis Factor Receptors 1 and 2 Are Early Prognosis Markers After ST-Segment Elevation Myocardial Infarction. Front Pharmacol 2021; 12:656928. [PMID: 34539391 PMCID: PMC8440863 DOI: 10.3389/fphar.2021.656928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background: As inflammation following ST-segment elevation myocardial infarction (STEMI) is both beneficial and deleterious, there is a need to find new biomarkers of STEMI severity. Objective: We hypothesized that the circulating concentration of the soluble tumor necrosis factor α receptors 1 and 2 (sTNFR1 and sTNFR2) might predict clinical outcomes in STEMI patients. Methods: We enrolled into a prospective cohort 251 consecutive STEMI patients referred to our hospital for percutaneous coronary intervention revascularization. Blood samples were collected at five time points: admission and 4, 24, 48 h, and 1 month after admission to assess sTNFR1 and sTNFR2 serum concentrations. Patients underwent cardiac magnetic resonance imaging at 1 month. Results: sTNFR1 concentration increased at 24 h with a median of 580.5 pg/ml [95% confidence interval (CI): 534.4–645.6]. sTNFR2 increased at 48 h with a median of 2,244.0 pg/ml [95% CI: 2090.0–2,399.0]. Both sTNFR1 and sTNFR2 peak levels were correlated with infarct size and left ventricular end-diastolic volume and inversely correlated with left ventricular ejection fraction. Patients with sTNFR1 or sTNFR2 concentration above the median value were more likely to experience an adverse clinical event within 24 months after STEMI [hazards ratio (HR): 8.8, 95% CI: 4.2–18.6, p < 0.0001 for sTNFR1; HR: 6.1, 95% CI: 2.5 –10.5, p = 0.0003 for sTNFR2]. Soluble TNFR1 was an independent predictor of major adverse cardiovascular events and was more powerful than troponin I (p = 0.04 as compared to the troponin AUC). Conclusion: The circulating sTNFR1 and sTNFR2 are inflammatory markers of morphological and functional injury after STEMI. sTNFR1 appears as an early independent predictor of clinical outcomes in STEMI patients.
Collapse
Affiliation(s)
- Alexandre Paccalet
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - Claire Crola Da Silva
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - Laura Mechtouff
- Stroke Department, Hôpital Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Camille Amaz
- Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Yvonne Varillon
- Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Charles de Bourguignon
- Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Regine Cartier
- Centre de Biologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Cyril Prieur
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Danka Tomasevic
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Nathalie Genot
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Simon Leboube
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - François Derimay
- Department of Interventional Cardiology, Cardiovascular Hospital and Claude-Bernard University, Bron, France
| | - Gilles Rioufol
- Department of Interventional Cardiology, Cardiovascular Hospital and Claude-Bernard University, Bron, France
| | - Eric Bonnefoy-Cudraz
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Nathan Mewton
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France.,Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France.,Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France.,Service D'explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Gabriel Bidaux
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - Thomas Bochaton
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France.,Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
39
|
Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci 2021; 22:ijms22168691. [PMID: 34445397 PMCID: PMC8395431 DOI: 10.3390/ijms22168691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.
Collapse
|
40
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
41
|
Genome wide study of tardive dyskinesia in schizophrenia. Transl Psychiatry 2021; 11:351. [PMID: 34103471 PMCID: PMC8187404 DOI: 10.1038/s41398-021-01471-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Tardive dyskinesia (TD) is a severe condition characterized by repetitive involuntary movement of orofacial regions and extremities. Patients treated with antipsychotics typically present with TD symptomatology. Here, we conducted the largest GWAS of TD to date, by meta-analyzing samples of East-Asian, European, and African American ancestry, followed by analyses of biological pathways and polygenic risk with related phenotypes. We identified a novel locus and three suggestive loci, implicating immune-related pathways. Through integrating trans-ethnic fine mapping, we identified putative credible causal variants for three of the loci. Post-hoc analysis revealed that SNPs harbored in TNFRSF1B and CALCOCO1 independently conferred three-fold increase in TD risk, beyond clinical risk factors like Age of onset and Duration of illness to schizophrenia. Further work is necessary to replicate loci that are reported in the study and evaluate the polygenic architecture underlying TD.
Collapse
|
42
|
Bousounis P, Bergo V, Trompouki E. Inflammation, Aging and Hematopoiesis: A Complex Relationship. Cells 2021; 10:1386. [PMID: 34199874 PMCID: PMC8227236 DOI: 10.3390/cells10061386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and outcomes of this interaction during different life stages will have significant implications in the modulation and restoration of the hematopoietic system in human disease, recovery from cancer and chemotherapeutic treatments, stem cell transplantation, and aging.
Collapse
Affiliation(s)
- Pavlos Bousounis
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
43
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|
44
|
Singh M, Mansuri MS, Kadam A, Palit SP, Dwivedi M, Laddha NC, Begum R. Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine 2021; 140:155432. [PMID: 33517195 DOI: 10.1016/j.cyto.2021.155432] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a major mediator of inflammation and its increased levels have been analyzed in vitiligo patients. Vitiligo is a depigmentary skin disarray caused due to disapperance of functional melanocytes. The aim of the study was to investigate the role of TNF-α in melanocyte biology, analyzing candidate molecules of melanocytes and immune homeostasis. Our results showed increased TNF-α transcripts in vitiligenous lesional and non-lesional skin. Melanocytes upon exogenous stimulation with TNF-α exhibited a significant reduction in cell viability with elevated cellular and mitochondrial ROS and compromised complex I activity. Moreover, we observed a reduction in melanin content via shedding of dendrites, down-regulation of MITF-M, TYR and up-regulation of TNFR1, IL6, ICAM1 expression, whereas TNFR2 levels remain unaltered. TNF-α exposure stimulated cell apoptosis at 48 h and autophagy at 12 h, elevating ATG12 and BECN1 transcripts. Our novel findings establish the functional link between autophagy and melanocyte destruction. Overall, our study suggests a key function of TNF-α in melanocyte homeostasis and autoimmune vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Sayantani P Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Naresh C Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India.
| |
Collapse
|
45
|
Gouweleeuw L, Wajant H, Maier O, Eisel ULM, Blankesteijn WM, Schoemaker RG. Effects of selective TNFR1 inhibition or TNFR2 stimulation, compared to non-selective TNF inhibition, on (neuro)inflammation and behavior after myocardial infarction in male mice. Brain Behav Immun 2021; 93:156-171. [PMID: 33444731 DOI: 10.1016/j.bbi.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) coinciding with depression worsens prognosis. Although Tumor Necrosis Factor alpha (TNF) is recognized to play a role in both conditions, the therapeutic potential of TNF inhibition is disappointing. TNF activates two receptors, TNFR1 and TNFR2, associated with opposite effects. Therefore, anti-inflammatory treatment with specific TNF receptor interference was compared to non-specific TNF inhibition regarding effects on heart, (neuro)inflammation, brain and behavior in mice with MI. METHODS Male C57BL/6 mice were subjected to MI or sham surgery. One hour later, MI mice were randomized to either non-specific TNF inhibition by Enbrel, specific TNFR1 antagonist-, or specific TNFR2 agonist treatment until the end of the protocol. Control sham and MI mice received saline. Behavioral evaluation was obtained day 10-14 after surgery. Eighteen days post-surgery, cardiac function was measured and mice were sacrificed. Blood and tissue samples were collected for analyses of (neuro)inflammation. RESULTS MI mice displayed left ventricular dysfunction, without heart failure, (neuro) inflammation or depressive-like behavior. Both receptor-specific interventions, but not Enbrel, doubled early post-MI mortality. TNFR2 agonist treatment improved left ventricular function and caused hyper-ramification of microglia, with no effect on depressive-like behavior. In contrast, TNFR1 antagonist treatment was associated with enhanced (neuro)inflammation: more plasma eosinophils and monocytes; increased plasma Lcn2 and hippocampal microglia and astrocyte activation. Moreover, increased baseline heart rate, with reduced beta-adrenergic responsiveness indicated sympathetic activation, and coincided with reduced exploratory behavior in the open field. Enbrel did not affect neuroinflammation nor behavior. CONCLUSION Early receptor interventions, but not non-specific TNF inhibition, increased mortality. Apart from this undesired effect, the general beneficial profile after TNFR2 stimulation, rather than the unfavourable effects of TNFR1 inhibition, would render TNFR2 stimulation preferable over non-specific TNF inhibition in MI with comorbid depression. However, follow-up studies regarding optimal timing and dosing are needed.
Collapse
Affiliation(s)
- L Gouweleeuw
- Department of Neurobiology, GELIFES, University of Groningen, the Netherlands
| | - H Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Wurzburg, Germany
| | - O Maier
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - U L M Eisel
- Department of Neurobiology, GELIFES, University of Groningen, the Netherlands
| | - W M Blankesteijn
- Department of Pharmacology & Toxicology, CARIM, University of Maastricht, the Netherlands
| | - R G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, the Netherlands; Department of Cardiology, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
46
|
TNFR1-d2 carrying the p.(Thr79Met) pathogenic variant is a potential novel actor of TNFα/TNFR1 signalling regulation in the pathophysiology of TRAPS. Sci Rep 2021; 11:4172. [PMID: 33603056 PMCID: PMC7893027 DOI: 10.1038/s41598-021-83539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Binding of tumour necrosis factor α (TNFα) to its receptor (TNFR1) is critical for both survival and death cellular pathways. TNFα/TNFR1 signalling is complex and tightly regulated at different levels to control cell fate decisions. Previously, we identified TNFR1-d2, an exon 2-spliced transcript of TNFRSF1A gene encoding TNFR1, whose splicing may be modulated by polymorphisms associated with inflammatory disorders. Here, we investigated the impact of TNFRSF1A variants involved in TNFR-associated periodic syndrome (TRAPS) on TNFR1-d2 protein expression and activity. We found that TNFR1-d2 could be translated by using an internal translation initiation codon and a de novo internal ribosome entry site (IRES), which resulted in a putative TNFR1 isoform lacking its N-terminal region. The kinetic of assembly of TNFR1-d2 clusters at the cell surface was reduced as compared with full-length TNFR1. Although co-localized with the full-length TNFR1, TNFR1-d2 neither activated nuclear factor (NF)-κB signalling, nor interfered with TNFR1-induced NF-κB activation. Translation of TNFR1-d2 carrying the severe p.(Thr79Met) pathogenic variant (also known as T50M) was initiated at the mutated codon, resulting in an elongated extracellular domain, increased speed to form preassembled clusters in absence of TNFα, and constitutive NF-κB activation. Overall, TNFR1-d2 might reflect the complexity of the TNFR1 signalling pathways and could be involved in TRAPS pathophysiology of patients carrying the p.(Thr79Met) disease-causing variant.
Collapse
|
47
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
48
|
Ye T, Li Y, Xiong D, Gong S, Zhang L, Li B, Pan J, Wang Y, Qian J, Qu H. Combination of Danshen and ligustrazine has dual anti-inflammatory effect on macrophages and endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113425. [PMID: 33010405 DOI: 10.1016/j.jep.2020.113425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia Miltiorrhiza Radix et Rhizoma (Danshen) and Chuanxiong Rhizoma (Chuanxiong) are both traditional Chinese medicines with vascular protective effects, and their combination is widely used in China to treat occlusive or ischemic diseases of the cerebrovascular or cardiovascular system. Although it is widely accepted that these diseases have high relevance to inflammation, little is known about the anti-inflammatory effect of Danshen, Chuanxiong, and their combination. AIM OF STUDY We aimed to investigate the complex mode of action of Danshen, Chuanxiong, and their combination and the molecular mechanisms underlying their anti-inflammatory activity. Specifically, toll-like receptor (TLR1/2, 3, and 4)-triggered macrophages and endothelial cells, the two major cell players in atherosclerosis as well as in related cardiovascular and cerebrovascular injuries, were emphasized. METHODS TLR1/2-, TLR3-, and TLR4-induced bone marrow macrophages (BMMs) and human umbilical vein endothelial cells (HUVECs) were treated with Danshen extract (S. miltiorrhiza extract, SME), ligustrazine (2, 3, 5, 6-tetramethylpyrazine, TMP), and their combination (S. miltiorrhiza and TMP injection, SLI), respectively. The proinflammatory cytokines interleukin 6 (IL-6), IL-12, and tumor necrosis factor alpha (TNF-α) were detected as the preliminary indicators of inflammation. In addition, RNA sequencing (RNA-seq)-based transcriptional profiling analyses were conducted for TLR2-activated BMMs to determine the molecular mode of action of SLI as well as the contribution of SME to SLI activity. RESULTS SLI mitigated inflammation in both BMMs and HUVECs. Refer to the combination, SME had pronounced anti-inflammatory effect on BMMs but had only a slight effect on HUVECs. In contrast, TMP had considerable anti-inflammatory effect on HUVECs but not on BMMs. Bioinformatic analysis identified a broad spectrum of regulatory genes, in addition to IL-6 gene, and C-X-C motif chemokine ligand 10 (CXCL10) appeared to be another key molecule involved in the mechanism underlying SLI and SME effects. At the molecular level, SME was a major contributor of the anti-inflammatory activity of SLI. CONCLUSIONS In TLR-activated inflammation, SLI exhibits a "multiple ingredient-multiple target" effect, with SME primarily affecting macrophages and TMP affecting HUVECs. Our study provides evidence for the clinical application of SLI in treating complex diseases involving inflammation-induced injury of both macrophages and epithelial cells. Further bioinformatics studies are required to reveal the entire molecular network involved in TMP, SME, and SLI activity.
Collapse
Affiliation(s)
- Tingting Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yufei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | - Shuqing Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luquan Zhang
- Guizhou Baite Pharmaceutical Co., Ltd., Guizhou, China
| | - Bailing Li
- Guizhou Baite Pharmaceutical Co., Ltd., Guizhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
50
|
Nouri Barkestani M, Shamdani S, Afshar Bakshloo M, Arouche N, Bambai B, Uzan G, Naserian S. TNFα priming through its interaction with TNFR2 enhances endothelial progenitor cell immunosuppressive effect: new hope for their widespread clinical application. Cell Commun Signal 2021; 19:1. [PMID: 33397378 PMCID: PMC7784277 DOI: 10.1186/s12964-020-00683-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow derived endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) involved in neo-angiogenesis and endothelial homeostasis and are considered as a circulating reservoir for endothelial repair. Many studies showed that EPCs from patients with cardiovascular pathologies are impaired and insufficient; hence, allogenic sources of EPCs from adult or cord blood are considered as good choices for cell therapy applications. However, allogenic condition increases the chance of immune rejection, especially by T cells, before exerting the desired regenerative functions. TNFα is one of the main mediators of EPC activation that recognizes two distinct receptors, TNFR1 and TNFR2. We have recently reported that human EPCs are immunosuppressive and this effect was TNFα-TNFR2 dependent. Here, we aimed to investigate if an adequate TNFα pre-conditioning could increase TNFR2 expression and prime EPCs towards more immunoregulatory functions. Methods EPCs were pre-treated with several doses of TNFα to find the proper dose to up-regulate TNFR2 while keeping the TNFR1 expression stable. Then, co-cultures of human EPCs and human T cells were performed to assess whether TNFα priming would increase EPC immunosuppressive and immunomodulatory effect. Results Treating EPCs with 1 ng/ml TNFα significantly up-regulated TNFR2 expression without unrestrained increase of TNFR1 and other endothelial injury markers. Moreover, TNFα priming through its interaction with TNFR2 remarkably enhanced EPC immunosuppressive and anti-inflammatory effects. Conversely, blocking TNFR2 using anti-TNFR2 mAb followed by 1 ng/ml of TNFα treatment led to the TNFα-TNFR1 interaction and polarized EPCs towards pro-inflammatory and immunogenic functions. Conclusions We report for the first time the crucial impact of inflammation notably the TNFα-TNFR signaling pathway on EPC immunological function. Our work unveils the pro-inflammatory role of the TNFα-TNFR1 axis and, inversely the anti-inflammatory implication of the TNFα-TNFR2 axis in EPC immunoregulatory functions. Priming EPCs with 1 ng/ml of TNFα prior to their administration could boost them toward a more immunosuppressive phenotype. This could potentially lead to EPCs’ longer presence in vivo after their allogenic administration resulting in their better contribution to angiogenesis and vascular regeneration. Video Abstract
Collapse
Affiliation(s)
- Mahsa Nouri Barkestani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| | | | - Nassim Arouche
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Bijan Bambai
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France. .,Paris-Saclay University, Villejuif, France. .,CellMedEx, Saint Maur Des Fossés, France.
| |
Collapse
|