1
|
Ayari F, Ben Chaaben A, Ben Ammar H, Nefzi R, Ouni N, Mihoub O, Abaza H, Aissa A, Douik H, Gara S, Larnaout A, Salmi A, Ben Ammar-El Gaaied A, Leboyer M, El Hechmi Z, Guemira F, Tamouza R. Association of high-sensitivity C-reactive protein with susceptibility to Schizophrenia in Tunisian population. Encephale 2020; 46:241-247. [PMID: 31959465 DOI: 10.1016/j.encep.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
The pathogenic mechanisms underlying Schizophrenia (SZ), one of the most frequent mental disorders, are complex and poorly understood. Several evidences suggest that inflammatory processes may underpin some of its neurobiological correlates. The aim of this study was: (i) to analyze the potential association between circulating levels of the C-reactive protein (CRP), a crucial inflammatory marker, and Schizophrenia in Tunisian patients and healthy controls (HC) cohorts; (ii) to investigate the genetic diversity of three CRP variants (rs1417938, rs1130864 and rs1205) and; (iii) to analyze a potential relationship between expression and genetic data and clinical and socio demographical characteristics. CRP polymorphisms were exanimated for 155 patients and 203 HC by taqMan5'-nuclease. High-sensitivity CRP (hs-CRP) serum level was measured in 128 clinically stable out-patient SZ patients and 63 HC subjects via an automated biochemical analyzer. We found that hs-CRP levels were significantly higher in SZ patients as compared to HC. No significant differences were found when the proportions of CRP variants were compared in patients and HC. Further analysis according to clinical and socio demographical characteristics revealed a positive association with age and hypertension. Our data on an original Tunisian sample confirm the previous finding in others population groups.
Collapse
Affiliation(s)
- F Ayari
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia.
| | - A Ben Chaaben
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - H Ben Ammar
- Research Unit 03/04 Schizophrenia and Department of Psychiatry F, Razi Hospital, Mannouba, Tunisia
| | - R Nefzi
- Research Unit 03/04 Schizophrenia and Department of Psychiatry F, Razi Hospital, Mannouba, Tunisia
| | - N Ouni
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - O Mihoub
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - H Abaza
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - A Aissa
- Research Unit 03/04 Schizophrenia and Department of Psychiatry F, Razi Hospital, Mannouba, Tunisia
| | - H Douik
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - S Gara
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - A Larnaout
- Research Unit 03/04 Schizophrenia and Department of Psychiatry F, Razi Hospital, Mannouba, Tunisia
| | - A Salmi
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - A Ben Ammar-El Gaaied
- Immunology Department, Faculty of Mathematics, Physics and Natural Sciences, Tunis El Manar University, Tunis, Tunisia
| | - M Leboyer
- Inserm U 955, FondaMental foundation, department of psychiatry, university hospital Mondor, AP-HP, 1006 Créteil, France
| | - Z El Hechmi
- Research Unit 03/04 Schizophrenia and Department of Psychiatry F, Razi Hospital, Mannouba, Tunisia
| | - F Guemira
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - R Tamouza
- Inserm U 955, FondaMental foundation, department of psychiatry, university hospital Mondor, AP-HP, 1006 Créteil, France
| |
Collapse
|
2
|
Boukouaci W, Oliveira J, Etain B, Bennabi M, Mariaselvam C, Hamdani N, Manier C, Bengoufa D, Bellivier F, Henry C, Kahn JP, Charron D, Krishnamoorthy R, Leboyer M, Tamouza R. Association between CRP genetic diversity and bipolar disorder comorbid complications. Int J Bipolar Disord 2018; 6:4. [PMID: 29352395 PMCID: PMC6161963 DOI: 10.1186/s40345-017-0109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Chronic low-grade inflammation is believed to contribute, at least in a subset of patients, to the development of bipolar disorder (BD). In this context, the most investigated biological marker is the acute phase response molecule, C-reactive protein (CRP). While the genetic diversity of CRP was amply studied in various pathological settings, little is known in BD. Methods 568 BD patients along with 163 healthy controls (HC) were genotyped for the following single-nucleotide polymorphisms (SNPs) on the CRP gene: intron rs1417938 (+ 29) T/A, 3′-UTR rs1130864 (+ 1444) G/A, and downstream rs1205 (+ 1846) (C/T). The statistical analysis was performed using Chi-square testing and consisted of comparisons of allele/genotype frequencies between patients and controls and within patient sub-groups according to BD clinical phenotypes and the presence of thyroid disorders. Results We found that the frequencies of the studied SNPs were similar in BD and HC groups. However, the CRP rs1130864 A allele carrier state was significantly more frequent: (i) in BD patients with thyroid disorders than in those without (pc = 0.046), especially among females (pc = 0.01) and independently of lithium treatment, (ii) in BD patients with rapid cycling than in those without (pc = 0.004). Conclusions Overall, our findings suggest the possibility that CRP genetic diversity may contribute to the development of auto-immune comorbid disorders and rapid cycling, both proxy of BD severity. Such findings, if replicated, may allow to predict complex clinical presentations of the disease, a possible step towards precision medicine in psychiatry.
Collapse
Affiliation(s)
| | - José Oliveira
- INSERM, U1160, Hôpital Saint Louis, 75010, Paris, France.,Fondation FondaMental, 94000, Créteil, France
| | - Bruno Etain
- Fondation FondaMental, 94000, Créteil, France.,AP-HP, Département de psychiatrie et de medicine addictologique, Hôpital Fernand Widal, Paris, France.,INSERM, UMR-S1144-VariaPsy, Hôpital Fernand Widal, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris-Cité, 75013, Paris, France
| | - Meriem Bennabi
- INSERM, U1160, Hôpital Saint Louis, 75010, Paris, France.,Fondation FondaMental, 94000, Créteil, France
| | | | - Nora Hamdani
- Fondation FondaMental, 94000, Créteil, France.,INSERM, U955, Psychiatrie Translationnelle, 94000, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94000, Créteil, France.,AP-HP, DHU PePSY, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, 94000, Créteil, France
| | - Céline Manier
- INSERM, U1160, Hôpital Saint Louis, 75010, Paris, France
| | - Djaouida Bengoufa
- Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, 75010, Paris, France
| | - Frank Bellivier
- Fondation FondaMental, 94000, Créteil, France.,AP-HP, Département de psychiatrie et de medicine addictologique, Hôpital Fernand Widal, Paris, France.,INSERM, UMR-S1144-VariaPsy, Hôpital Fernand Widal, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris-Cité, 75013, Paris, France
| | - Chantal Henry
- Fondation FondaMental, 94000, Créteil, France.,INSERM, U955, Psychiatrie Translationnelle, 94000, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94000, Créteil, France.,AP-HP, DHU PePSY, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, 94000, Créteil, France
| | - Jean-Pierre Kahn
- Fondation FondaMental, 94000, Créteil, France.,Service de Psychiatrie et Psychologie Clinique, CHU de Nancy, Hôpitaux de Brabois, 54500, Vandoeuvre Les Nancy, France
| | - Dominique Charron
- INSERM, U1160, Hôpital Saint Louis, 75010, Paris, France.,Fondation FondaMental, 94000, Créteil, France
| | - Rajagopal Krishnamoorthy
- INSERM, U1160, Hôpital Saint Louis, 75010, Paris, France.,Fondation FondaMental, 94000, Créteil, France
| | - Marion Leboyer
- Fondation FondaMental, 94000, Créteil, France.,INSERM, U955, Psychiatrie Translationnelle, 94000, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94000, Créteil, France.,AP-HP, DHU PePSY, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, 94000, Créteil, France
| | - Ryad Tamouza
- INSERM, U1160, Hôpital Saint Louis, 75010, Paris, France. .,Fondation FondaMental, 94000, Créteil, France. .,Université Paris Diderot, Sorbonne Paris-Cité, 75013, Paris, France. .,Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, 75010, Paris, France.
| |
Collapse
|
3
|
Orsolini L, Sarchione F, Vellante F, Fornaro M, Matarazzo I, Martinotti G, Valchera A, Di Nicola M, Carano A, Di Giannantonio M, Perna G, Olivieri L, De Berardis D. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review. Curr Neuropharmacol 2018; 16:583-606. [PMID: 29357805 PMCID: PMC5997872 DOI: 10.2174/1570159x16666180119144538] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Schizophrenia is a complex illness in which genetic, environmental, and epigenetic components have been implicated. However, recently, psychiatric disorders appear to be related to a chronic inflammatory state, at the level of specific cerebral areas which have been found as well impaired and responsible for schizophrenia symptomatology. Hence, a role of inflammatory mediators and cytokines has been as well defined. Accordingly, the role of an acute inflammatory phase protein, the C-reactive protein (CRP) has been recently investigated. OBJECTIVE The objective of the present study is to evaluate how PCR may represent a biomarker in schizophrenia, i.e. correlated with illness phases and/or clinical manifestation and/or psychopathological severity. METHODS A systematic review was here carried out by searching the following keywords ((C-reactive protein AND ((schizophrenia) OR (psychotic disorder))) for the topics 'PCR' and 'Schizophrenia', by using MESH terms. RESULTS An immune dysfunction and inflammation have been described amongst schizophrenic patients. Findings reported elevated CRP levels in schizophrenia, mainly correlated with the severity of illness and during the recrudescent phase. CRP levels are higher when catatonic features, negative symptomatology and aggressiveness are associated. CRP levels appeared not to be related to suicidal behaviour and ideation. CONCLUSION CRP and its blood levels have been reported higher amongst schizophrenic patients, by suggesting a role of inflammation in the pathogenesis of schizophrenia. Further studies are needed to better understand if CRP may be considered a biomarker in schizophrenia.
Collapse
Affiliation(s)
- Laura Orsolini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, Hatfield, HertsAL10 9AB, UK
- Polyedra Research, Teramo, Italy
| | - Fabiola Sarchione
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Federica Vellante
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Michele Fornaro
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine ‘Federico II’ Naples, Naples, Italy
| | - Ilaria Matarazzo
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Alessandro Valchera
- Polyedra Research, Teramo, Italy
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, Ascoli Piceno, Italy
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli”, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “Madonna Del Soccorso”, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Massimo Di Giannantonio
- Department of Neurosciences and Imaging, Chair of Psychiatry, University “G. D’Annunzio”, Chieti, Italy
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, Como, Italy
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Florida, USA
| | - Luigi Olivieri
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4 Teramo, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini”, ASL 4 Teramo, Italy
| |
Collapse
|
4
|
Prins BP, Abbasi A, Wong A, Vaez A, Nolte I, Franceschini N, Stuart PE, Guterriez Achury J, Mistry V, Bradfield JP, Valdes AM, Bras J, Shatunov A, Lu C, Han B, Raychaudhuri S, Bevan S, Mayes MD, Tsoi LC, Evangelou E, Nair RP, Grant SFA, Polychronakos C, Radstake TRD, van Heel DA, Dunstan ML, Wood NW, Al-Chalabi A, Dehghan A, Hakonarson H, Markus HS, Elder JT, Knight J, Arking DE, Spector TD, Koeleman BPC, van Duijn CM, Martin J, Morris AP, Weersma RK, Wijmenga C, Munroe PB, Perry JRB, Pouget JG, Jamshidi Y, Snieder H, Alizadeh BZ. Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Med 2016; 13:e1001976. [PMID: 27327646 PMCID: PMC4915710 DOI: 10.1371/journal.pmed.1001976] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 02/03/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal. METHODS AND FINDINGS We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses. CONCLUSIONS Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.
Collapse
Affiliation(s)
- Bram. P. Prins
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- * E-mail: (BPP); (BZA)
| | - Ali Abbasi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anson Wong
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilja Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Philip E. Stuart
- Department of Dermatology, Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Javier Guterriez Achury
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Vanisha Mistry
- Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jonathan P. Bradfield
- Center for Applied Genomics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Ana M. Valdes
- Department of Academic Rheumatology, University of Nottingham, Nottingham, United Kingdom
| | - Jose Bras
- Department of Molecular Neuroscience, Institute of Neurology, London, United Kingdom
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - PAGE Consortium
- Department of Dermatology, Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Systemic Sclerosis consortium
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Treat OA consortium
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - DIAGRAM Consortium
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - ALS consortium
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | | | | | - CKDGen consortium
- NHLBI’s Framingham Heart Study, Center for Population Studies and Harvard Medical School, Framingham, Massachusetts, United States of America
| | - GERAD1 Consortium
- Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Chen Lu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Buhm Han
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, Massachusetts, United States of America
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Steve Bevan
- Neurology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Maureen D. Mayes
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rajan P. Nair
- Department of Dermatology, Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Struan F. A. Grant
- Center for Applied Genomics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Constantin Polychronakos
- Endocrine Genetics Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| | - Timothy R. D. Radstake
- Department of Rheumatology & Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A. van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Melanie L. Dunstan
- Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Complex Disease Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Rotterdam, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Hugh S. Markus
- Neurology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - James T. Elder
- Department of Dermatology, Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jo Knight
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Bobby P. C. Koeleman
- Complex Genetic Section, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Rotterdam, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Patricia B. Munroe
- NIHR Barts Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - John R. B. Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jennie G. Pouget
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yalda Jamshidi
- Cardiogenetics Lab, Cardiovascular and Cell Sciences Institute, St George’s Hospital Medical School, London, United Kingdom
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- * E-mail: (BPP); (BZA)
| |
Collapse
|