1
|
Russell GC, Percival A, Grant DM. Indirect ELISA for analysis of malignant catarrhal fever virus-specific antibodies in a range of species. J Virol Methods 2025; 331:115060. [PMID: 39488270 DOI: 10.1016/j.jviromet.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The culture-attenuated alcelaphine herpesvirus 1 (AlHV-1) C500 strain can be grown to high titre and has been used successfully as a candidate vaccine for wildebeest-associated malignant catarrhal fever (MCF). This vaccine virus was also used to develop an indirect ELISA to allow monitoring of virus-specific antibodies in vaccinated cattle. However the extraction method was expensive and time-consuming, and the resulting test was not suitable for use in sheep. Here we describe an improved antigen extraction method that also broadens the application of the assay, allowing its application to sheep samples. The updated assay was tested using control samples from cattle and sheep, and showed a high level of accuracy in both species. This novel assay should prove to be a useful tool in MCF diagnosis and in evaluation of MCF vaccine responses.
Collapse
Affiliation(s)
- George C Russell
- Moredun Research institute, Pentlands Science Park, Midlothian EH26 0PZ, UK.
| | - Ann Percival
- Moredun Research institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Dawn M Grant
- Moredun Research institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| |
Collapse
|
2
|
Andersen-Ranberg E, Nymo IH, Jokelainen P, Emelyanova A, Jore S, Laird B, Davidson RK, Ostertag S, Bouchard E, Fagerholm F, Skinner K, Acquarone M, Tryland M, Dietz R, Abass K, Rautio A, Hammer S, Evengård B, Thierfelder T, Stimmelmayr R, Jenkins E, Sonne C. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176869. [PMID: 39423885 DOI: 10.1016/j.scitotenv.2024.176869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The risk of zoonotic disease transmission from animals to humans is elevated for people in close contact with domestic and wild animals. About three-quarters of all known human infectious diseases are zoonotic, and potential health impacts of these diseases are higher where infectious disease surveillance and access to health care and public health services are limited. This is especially the case for remote circumarctic regions, where drivers for endemic, emerging, and re-emerging zoonotic diseases include anthropogenic influences, such as pollution by long-range transport of industrial chemicals, climate change, loss of biodiversity and ecosystem alterations. In addition to these, indirect effects including natural changes in food web dynamics, appearance of invasive species and thawing permafrost also affect the risk of zoonotic disease spill-over. In other words, the Arctic represents a changing world where pollution, loss of biodiversity and habitat, and maritime activity are likely driving forward occurrence of infectious diseases. As a broad international consortium with a wide range of expertise, we here describe a selection of case studies highlighting the importance of a One Health approach to zoonoses in the circumarctic, encompassing human health, animal health, and environmental health aspects. The cases highlight critical gaps in monitoring and current knowledge, focusing on environmental stressors and lifestyle factors, and they are examples of current occurrences in the Arctic that inform on critically needed actions to prepare us for the future. Through these presentations, we recommend measures to enhance awareness and management of existing and emerging zoonoses with epidemic and pandemic potential while also focusing on the impacts of various environmental stressors and lifestyle factors on zoonoses in the Arctic.
Collapse
Affiliation(s)
- Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, 1870 Frederiksberg, Denmark.
| | - Ingebjørg H Nymo
- Norwegian Veterinary Institute, Holtveien 66, 9016 Tromsø, Norway; Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsø, Norway
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Anastasia Emelyanova
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Solveig Jore
- Department of Zoonotic, Food & Waterborne Infections, Norwegian Institute of Public Health, Postbox 222 Skøyen, 0213 Oslo, Norway
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | | | - Sonja Ostertag
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Emilie Bouchard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, St Hyacinthe J2T 1B3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Freja Fagerholm
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Mario Acquarone
- Arctic Monitoring and Assessment Programme, Hjalmar Johansens gate 14, 9007 Tromsø, Norway
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Anne Evenstads Veg 80, 2480 Koppang, Norway
| | - Rune Dietz
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Khaled Abass
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, postbox 27272, United Arab Emirates
| | - Arja Rautio
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Sjúrður Hammer
- Faroese Environment Agency, Traðagøta 38, 165 Argir, Faroe Islands; University of the Faroe Islands, Vestara Bryggja 15, 100 Tórshavn, Faroe Islands
| | - Birgitta Evengård
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Tomas Thierfelder
- Department of Energy and Technology, Swedish University of Agricultural Sciences, postbox 75651, Uppsala, Sweden
| | - Raphaela Stimmelmayr
- Department of Wildlife management, North Slope Borough, postbox 69, 99723 Utqiagvik, AK, USA
| | - Emily Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Headley SA, Grant DM, Fritzen JTT, Martins FDC, Camilo SLO, Caldart ET, Lisbôa JAN, Alfieri AA, Russell GC. Serological Detection of Ovine Gammaherpesvirus 2 Antibodies in Dairy Farms from Southern Brazil. Microorganisms 2024; 12:2629. [PMID: 39770831 PMCID: PMC11676213 DOI: 10.3390/microorganisms12122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Sheep-associated malignant catarrhal fever (SA-MCF) is a severe lymphoproliferative vascular disease of cattle that is caused by ovine gammaherpesvirus 2 (OvGHV2), which is a Macavirus within the Gammaherpesvirinae subfamily. SA-MCF occurs worldwide in several mammalian hosts. Alternatively, alcelaphine gammaherpesvirus 1 (AlGHV1) is a Macavirus that causes wildebeest-associated malignant catarrhal fever (MCF), which principally occurs in cattle from Africa. Previous serological assays to evaluate the presence of MCF in mammals used a competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA). This CI-ELISA is based on the 15A antigenic epitope that is common to all Macavirus associated with the development of MCF in their respective hosts. This study evaluated an indirect MCF-specific ELISA assay based on the AlGHV1 C500 strain to detect antibodies against OvGHV2 in 43 closed dairy cattle farms from Southern Brazil. These farms are located in a region where subclinical infections by OvGHV2 have been detected in free-ranging wild boars (Sus scrofa). Sheep or goats were not reared at these farms or within the proximity of these farms. Risk factors associated with seropositivity to OvGHV2 were evaluated, while the possible participation of subclinically infected wild boars in the dissemination of OvGHV2 was estimated using spatial analysis. Sera from 29 dairy cows from 16 farms demonstrated sample/positive (S/P) values considered positive with this MCF-specific ELISA (cutoff S/P, 0.063). The S/P values for the positive dairy cows varied between 0.0633 and 0.2510 (mean, 0.0998; standard deviation, 0.0476). At least one cow was seropositive in 16/43 (37.2%) of these farms, with seropositivity identified in 29/367 (7.9%) of dairy cows maintained at these farms. Additionally, dairy cows raised within the intensive system had a more than threefold higher chance of being seropositive to OvGHV2 relative to those reared within the semi-intensive system. Furthermore, the spatial evaluation revealed that cows on dairy farms within a 50 km radius of the home range of subclinically infected wild boars had an increased risk of being seropositive to this assay. These findings demonstrated that the AlGHV1 C500-specific MCF ELISA can be efficiently used to monitor the occurrence of OvGHV2 in cattle. In addition, the occurrence of subclinically infected free-ranging wild boars within a radius of 50 km from susceptible cattle may be a possible risk factor for the occurrence of OvGHV2-related infections in these animals from Southern Brazil. These initial results are fundamental to understanding the epidemiology of OvGHV2-associated infections and clinical SA-MCF in mammals in Brazil.
Collapse
Affiliation(s)
- Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Dawn Marie Grant
- Moredun Research Institute, Pentlands Science Park, Midlothian, Edinburgh EH26 0PZ, UK (G.C.R.)
| | - Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | | | - Stefany Lia Oliveira Camilo
- Large Animal Internal Medicine, Department of Veterinary Clinics, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (S.L.O.C.); (J.A.N.L.)
| | - Eloiza Teles Caldart
- Laboratory of Protozoology and Parasitic Diseases, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Júlio Augusto Naylor Lisbôa
- Large Animal Internal Medicine, Department of Veterinary Clinics, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (S.L.O.C.); (J.A.N.L.)
| | - Amauri Alcindo Alfieri
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - George Cameron Russell
- Moredun Research Institute, Pentlands Science Park, Midlothian, Edinburgh EH26 0PZ, UK (G.C.R.)
| |
Collapse
|
4
|
Xavier AAC, Queiroz GR, Lisbôa JAN, Cunha CW, Headley SA. Immunohistochemical identification of a malignant catarrhal fever virus in cattle with renal diseases from Paraná state, Southern Brazil: a retrospective epidemiological study. Trop Anim Health Prod 2023; 55:344. [PMID: 37782428 DOI: 10.1007/s11250-023-03740-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Malignant catarrhal fever (MCF) is a viral infectious disease caused by specific members of the Macavirus genus that are referred to as the MCF virus (MCFV) complex group. This study determined the prevalence of MCFV-associated infections in cattle within the mesoregions of the state of Paraná, Southern Brazil, by analyzing the histopathologic patterns of renal lesions in association with positive immunoreactivity to intralesional antigens of MCFV. Intracytoplasmic MCFV antigens were identified in 41.7% (48/115) of the kidneys of cattle evaluated. Lymphocytic interstitial nephritis, vascular degeneration, and ballooning degeneration of the renal tubules were the principal histopathological findings associated with positive immunoreactivity to MCFV. The results indicate that MCFV infections are endemic within the state of Paraná and suggest that the kidney can be of diagnostic value in suspected cases of MCF-associated infections in cattle. Furthermore, the utilization of an in situ diagnostic technique resulted in the detection of a greater number of cases of infections by MCFV than previously identified using other diagnostic methods. Additionally, degenerative vascular lesions of the kidney should be considered during the establishment of a histological diagnosis of MCFV-induced infections in cattle in the absence of fibrinoid change or necrotizing vasculitis.
Collapse
Affiliation(s)
| | - Gustavo Rodrigues Queiroz
- Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil
- Department of Veterinary Clinics, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Júlio Augusto Naylor Lisbôa
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Department of Veterinary Clinics, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Cristina Wetzel Cunha
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Selwyn Arlington Headley
- Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
- Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil.
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Russell GC, Percival A, Grant DM, Bartley K, Turnbull D, McLean K, Lienhard J, Bachofen C. Development of a recombinant ELISA for ovine herpesvirus 2, suitable for use in sheep. J Virol Methods 2021; 299:114329. [PMID: 34653445 DOI: 10.1016/j.jviromet.2021.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
The minor capsid protein of ovine herpesvirus 2, identified as a potential antigen for serological testing, was over-expressed and purified to allow its assessment in ELISA. The corresponding gene sequence (OvHV-2 orf65, Ov65) was modified to incorporate epitope tags and internal restriction enzyme sites in an E. coli codon-optimised version of the gene. This codon-optimised gene was then subject to internal deletions to identify regions of the protein that could be removed while maintaining protein solubility and antigenicity. It was found that a derivative with deletion of the conserved 5'-end of the gene (Ov65delB) expressed a polypeptide that was soluble when over-expressed in bacteria and was detected by OvHV-2 specific sera. Proteomic analysis of the affinity purified Ov65delB showed that it contained multiple predicted Ov65 tryptic peptides but also showed contamination by co-purifying E. coli proteins. An indirect ELISA, based on this affinity-purified OV65delB, was optimised for use with sheep and cattle samples and cut-off values were established based on known negative serum samples. Analysis of groups of samples that were either presumed infected (UK sheep) or tested OvHV-2 positive or negative by PCR (cattle MCF diagnostic samples) showed that the assay had 95 % sensitivity and 96 % specificity for sheep serum; and 80 % sensitivity and 95 % specificity for cattle serum. The lower sensitivity with cattle samples appeared to be due to a lack of serological response in some MCF-affected cattle. This recombinant antigen therefore shows promise as the basis of an inexpensive, simple and reliable test that can be used to detect OvHV-2-specific antibody responses in both MCF-affected animals and in OvHV-2 reservoir hosts.
Collapse
Affiliation(s)
- George C Russell
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK.
| | - Ann Percival
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - Dawn M Grant
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - Dylan Turnbull
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - Julia Lienhard
- Institute of Virology, Vetsuisse Faculty of the University of Zurich, Zürich, Switzerland
| | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty of the University of Zurich, Zürich, Switzerland.
| |
Collapse
|
6
|
Roller M, Hansen S, Knauf-Witzens T, Oelemann WMR, Czerny CP, Abd El Wahed A, Goethe R. Mycobacterium avium Subspecies paratuberculosis Infection in Zoo Animals: A Review of Susceptibility and Disease Process. Front Vet Sci 2020; 7:572724. [PMID: 33426014 PMCID: PMC7785982 DOI: 10.3389/fvets.2020.572724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (ParaTB or Johne's disease), a contagious, chronic and typically fatal enteric disease of domestic and non-domestic ruminants. Clinically affected animals present wasting and emaciation. However, MAP can also infect non-ruminant animal species with less specific signs. Zoological gardens harbor various populations of diverse animal species, which are managed on limited space at higher than natural densities. Hence, they are predisposed to endemic trans-species pathogen distribution. Information about the incidence and prevalence of MAP infections in zoological gardens and the resulting potential threat to exotic and endangered species are rare. Due to unclear pathogenesis, chronicity of disease as well as the unknown cross-species accuracy of diagnostic tests, diagnosis and surveillance of MAP and ParaTB is challenging. Differentiation between uninfected shedders of ingested bacteria; subclinically infected individuals; and preclinically diseased animals, which may subsequently develop clinical signs after long incubation periods, is crucial for the interpretation of positive test results in animals and the resulting consequences in their management. This review summarizes published data from the current literature on occurrence of MAP infection and disease in susceptible and affected zoo animal species as well as the applied diagnostic methods and measures. Clinical signs indicative for ParaTB, pathological findings and reports on detection, transmission and epidemiology in zoo animals are included. Furthermore, case reports were re-evaluated for incorporation into accepted consistent terminologies and case definitions.
Collapse
Affiliation(s)
- Marco Roller
- Zoological-Botanical Gardens Wilhelma, Stuttgart, Germany
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
- Institute for Microbiology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Sören Hansen
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Walter M. R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claus-Peter Czerny
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
| | - Ahmed Abd El Wahed
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
7
|
Roller M, Hansen S, Böhlken-Fascher S, Knauf-Witzens T, Czerny CP, Goethe R, Abd El Wahed A. Molecular and Serological Footprints of Mycobacterium avium Subspecies Infections in Zoo Animals. Vet Sci 2020; 7:vetsci7030117. [PMID: 32842515 PMCID: PMC7558821 DOI: 10.3390/vetsci7030117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Mycobacteria of the Mycobacterium avium complex (MAC) pose a significant risk to zoological collections. Mycobacterium avium subspecies paratuberculosis (MAP) is a member of MAC and the causative agent of Johne’s disease. Despite many reports in animals kept in zoological gardens, systemic surveillance has rarely been reported. Methods: In this study, archived serum samples collected from animal species at the Wilhelma Zoological and Botanical Gardens in Stuttgart, Germany, were screened for the presence of antibodies against MAC and MAP. In addition, molecular investigations were performed on necropsy, fecal, and environmental samples. Results: In total, 30/381 serum samples of various mammalian species were positive for MAC antibodies in ELISA, while one sample of a reticulated giraffe (Giraffa camelopardalis reticulata) was positive in MAP-specific ELISA. Samples from many species were positive in pan-Mycobacterium real-time PCR (40/43 fecal samples, 27/43 environmental samples, and 31/90 necropsy samples). Surprisingly, no sample was positive in the MAP-specific molecular assays. However, two environmental samples from primate enclosures were positive in Mycobacterium avium subspecies hominissuis (MAH)-specific real-time PCR. Conclusions: The results reveal serological indications of MAC infections in the zoological collection. However, the presence of a MAP-contaminated environment by a high-shedding individual animal or MAP-infected population is unlikely.
Collapse
Affiliation(s)
- Marco Roller
- Wilhelma Zoological-Botanical Gardens Stuttgart, Wilhelma 13, D-70376 Stuttgart, Germany; (M.R.); (T.K.-W.)
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany;
| | - Sören Hansen
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
| | - Susanne Böhlken-Fascher
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
| | - Tobias Knauf-Witzens
- Wilhelma Zoological-Botanical Gardens Stuttgart, Wilhelma 13, D-70376 Stuttgart, Germany; (M.R.); (T.K.-W.)
| | - Claus-Peter Czerny
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany;
| | - Ahmed Abd El Wahed
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 43, D-04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-176-6136-0325
| |
Collapse
|
8
|
GREATER KUDU (TRAGELAPHUS STREPSICEROS) MORTALITY IN EUROPEAN ZOOLOGICAL INSTITUTIONS: A RETROSPECTIVE STUDY. J Zoo Wildl Med 2016; 47:531-9. [PMID: 27468026 DOI: 10.1638/2015-0214.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A questionnaire was sent to 39 European institutions holding greater kudus (Tragelaphus strepsiceros), in order to determine the causes of captive greater kudu mortality. All reported macroscopic lesions and histopathologic observations, as well as other information regarding individuals that died, were analyzed to determine the most affected body systems and causes of death. Overall response rate was 31%, and 131 individuals were included in the study. The most frequently affected body systems were the digestive system (47%), respiratory system (38%), musculoskeletal system (37%), and cardiovascular system (32%). Most frequent causes of death were infectious diseases (27%) and trauma/accidents (18%); the cause was undetermined in 28% of cases. Nutrition-related disorders were difficult to assess, but results highlight possible nutritional imbalances. This retrospective study represents the first overview of greater kudu mortality in a captive population.
Collapse
|
9
|
Kottwitz JJ, Ortiz M. Bovine Viral Diarrhea Virus in Zoos: A Perspective from the Veterinary Team. Front Microbiol 2016; 6:1496. [PMID: 26779151 PMCID: PMC4701925 DOI: 10.3389/fmicb.2015.01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/11/2015] [Indexed: 12/04/2022] Open
Abstract
The many different species in close proximity make zoological collections a unique environment for disease transmission. Bovine Viral Diarrhea Virus (BVDV) is of special concern with zoos due to the numerous exotic ruminant species that this virus can infect. BVDV occurs as both a non-cytopathic and a cytopathic strain both of which are capable of infecting exotic ruminants. The cytopathic strain causes mucosal disease (MD) and death. Infection with the non-cytopathic strain may produce persistently infected (PI) animals. PI individuals may show vague clinical signs, including abortion. Management of BVDV in zoos should focus on identification of PI individuals and prevention of infection of other animals of the collection. Variability makes serological testing as the sole method of screening for BVDV infection undesirable in exotic ruminants. Combination testing provides a definitive answer, especially in sensitive wildlife. Use of a combination of antigen-capture ELISA (ACE) with haired skin, Real Time-PCR (RT-PCR) on whole blood, and antibody detection via serum neutralization has the greatest potential to identify PI animals. An animal that is positive on both ACE and RT-PCR, but is negative on serology should be considered highly suspicious of being a PI, and should be isolated and undergo repeat testing 4–6 weeks later to confirm positive status. This testing methodology also allows screening of pregnant and newborn animals. Isolation or culling may need to be considered in animals determined to be positive via combination testing. These decisions should only be made after careful consideration and evaluation, especially with endangered species.
Collapse
Affiliation(s)
- Jack J Kottwitz
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University Auburn, AL, USA
| | - Melissa Ortiz
- Wildlife Conservation Society-Queens Zoo Flushing, NY, USA
| |
Collapse
|
10
|
Tularaemia seroprevalence of captured and wild animals in Germany: the fox (Vulpes vulpes) as a biological indicator. Epidemiol Infect 2012; 141:833-40. [DOI: 10.1017/s0950268812001008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYA total of 2475 animals from Germany, both captive and wild, were tested for antibodies againstFrancisella tularensisto obtain more knowledge about the presence of this pathogen in Germany. An indirect and a competitive ELISA served as screening methods, positive and inconclusive samples were confirmed by Western blot. Of the zoo animals sampled between 1992 and 2007 (n = 1122), three (0·3%) were seropositive. The seroconversion of a hippopotamus in Berlin Zoo was documented. From 1353 serum samples of wild foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) and wild boars (Sus scrofa), collected between 2005 and 2009 in the federal state of Brandenburg (surrounding Berlin), a total of 101 (7·5%) tested positive for antibodies toF. tularensislipopolysaccharide. Our results indicate a higher seroprevalence ofF.tularensisin wildlife in eastern Germany than commonly assumed. Furthermore, we found foxes and raccoon dogs to be biological indicators for tularaemia.
Collapse
|
11
|
|