1
|
Johnson SM, Johnson SM, Watters JJ, Baker TL. Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations. Respir Physiol Neurobiol 2024; 331:104351. [PMID: 39303801 DOI: 10.1016/j.resp.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10-100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude. With respect to frequency plasticity (long-lasting increase in burst frequency 60 min post-neuropeptide application), SubP-induced frequency plasticity was increased with sustained SubP/Endo2 co-applications at 20 and 100 nM. Intermittent SubP/Endo2 co-applications tended to decrease the level of frequency plasticity induced by intermittent SubP alone applications. SubP/Endo2 co-applications revealed potentially new functions for neurokinin-1 (NK1R) and mu-opioid (MOR) receptors on respiratory rhythm-generating medullary neurons.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021; 293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The preBötzinger complex (preBötC) is a medullary area essential for normal breathing and widely recognized as necessary and sufficient to generate the inspiratory phase of respiration. It has been studied mainly in rodents. Here we report the main results of our studies revealing the characteristics of the rabbit preBötC identified by means of neuronal recordings, D,L-homocysteic acid microinjections and histological controls. A crucial role in the respiratory rhythmogenesis within this neural substrate is played by excitatory amino acids, but also GABA and glycine display important contributions. Increases in respiratory frequency are induced by microinjections of neurokinins, somatostatin as well by serotonin (5-HT) through an action on 5-HT1A and 5-HT3 receptors or the disinhibition of a GABAergic circuit. Respiratory depression is observed in response to microinjections of the μ-opioid receptor agonist DAMGO. Our results show similarities and differences with the rodent preBötC and emphasize the importance of comparative studies on the mechanisms underlying respiratory rhythmogenesis in different animal species.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy.
| |
Collapse
|
3
|
Iovino L, Mutolo D, Cinelli E, Contini M, Pantaleo T, Bongianni F. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res 2019; 1704:26-39. [DOI: 10.1016/j.brainres.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
4
|
Bright FM, Vink R, Byard RW. The potential role of substance P in brainstem homeostatic control in the pathogenesis of sudden infant death syndrome (SIDS). Neuropeptides 2018; 70:1-8. [PMID: 29908886 DOI: 10.1016/j.npep.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Victims of sudden infant death syndrome (SIDS) are believed to have an underlying dysfunction in medullary homeostatic control that impairs critical responses to life threatening challenges such as hypoxia, hypercarbia and asphyxia, often during a sleep period. This failure is thought to result from abnormalities in a network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Studies have mainly focused on the role of serotonin, 5-hydroxytyptamine (5HT), although the neuropeptide substance P (SP) has also been shown to play an integral role in the modulation of medullary homeostatic function, often in conjunction with 5-HT. Actions of SP include regulation of respiratory rhythm generation, integration of cardiovascular control, modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may, therefore, also play a significant role in homeostatic dysfunction of the neurotransmitter network in SIDS. This review focuses on the pathways within the medulla involving SP and its tachykinin NK1 receptor, their potential relationship with the medullary 5-HT system, and possible involvement in the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Fiona M Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia
| |
Collapse
|
5
|
Bright FM, Byard RW, Vink R, Paterson DS. Normative distribution of substance P and its tachykinin neurokinin-1 receptor in the medullary serotonergic network of the human infant during postnatal development. Brain Res Bull 2018; 137:319-328. [PMID: 29331576 DOI: 10.1016/j.brainresbull.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Substance P (SP) and its tachykinin NK1 receptor (NK1R) function within key medullary nuclei to regulate cardiorespiratory and autonomic control. We examined the normative distribution of SP and NK1R in the serotonergic (5-Hydroxytryptamine, [5-HT]) network of the human infant medulla during postnatal development, to provide a baseline to facilitate future analysis of the SP/NK1R system and its interaction with 5-HT within pediatric brainstem disorders in early life. [125I] labelled Bolton Hunter SP (BH-SP) tissue receptor autoradiography (n = 15), single label immunohistochemistry (IHC) and double label immunofluorescence (IF) (n = 10) were used to characterize the normative distribution profile of SP and NK1R in the 5-HT network of the human infant medulla during postnatal development. Tissue receptor autoradiography revealed extensive distribution of SP and NK1R in nuclei intimately related to cardiorespiratory function and autonomic control, with significant co-distribution and co-localization with 5-HT in the medullary network in the normal human infant during development. A trend for NK1R binding to decrease with age was observed with significantly higher binding in premature and male infants. We provide further evidence to suggest a significant role for SP/NK1R in the early postnatal period in the modulation of medullary cardiorespiratory and autonomic control in conjunction with medullary 5-HT mediated pathways and provide a baseline for future analysis of the potential consequences of abnormalities in these brainstem neurotransmitter networks during development.
Collapse
Affiliation(s)
- Fiona M Bright
- Harvard University Medical School, Boston, MA, USA; School of Medicine, University of Adelaide SA, Australia; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Roger W Byard
- School of Medicine, University of Adelaide SA, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - David S Paterson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Bright FM, Vink R, Byard RW, Duncan JR, Krous HF, Paterson DS. Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex. PLoS One 2017; 12:e0184958. [PMID: 28931039 PMCID: PMC5607183 DOI: 10.1371/journal.pone.0184958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threatening events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in neurotransmitter systems within the medulla oblongata have been implicated, the specific pathways associated with autonomic and cardiorespiratory failure are unknown. The neuropeptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been shown to play an integral role in the modulation of homeostatic function in the medulla, including regulation of respiratory rhythm generation, integration of cardiovascular control, and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may therefore result in autonomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP autoradiography was used to map the distribution and density of the SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic control in the human infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the medulla. Furthermore the study revealed significantly decreased NK1R binding within key medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior olivary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO). Altered NK1R binding was significantly influenced by prematurity and male sex, which may explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding in these medullary nuclei may contribute to the defective interaction of critical medullary mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate respiratory and motor responses to life threatening challenges during sleep. These observations support the concept that abnormalities in a multi-neurotransmitter network within key nuclei of the medullary homeostatic system may underlie the pathogenesis of a subset of SIDS cases.
Collapse
Affiliation(s)
- Fiona M. Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W. Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jhodie R. Duncan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Henry F. Krous
- Department of Pathology, Children’s Hospital-San Diego, San Diego, CA, United States of America
| | - David S. Paterson
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
7
|
Substance P differentially modulates firing rate of solitary complex (SC) neurons from control and chronic hypoxia-adapted adult rats. PLoS One 2014; 9:e88161. [PMID: 24516602 PMCID: PMC3917864 DOI: 10.1371/journal.pone.0088161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+)-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.
Collapse
|
8
|
Berner J, Shvarev Y, Zimmer A, Wickstrom R. Hypoxic ventilatory response in Tac1-/- neonatal mice following exposure to opioids. J Appl Physiol (1985) 2012; 113:1718-26. [PMID: 23065762 DOI: 10.1152/japplphysiol.00188.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine is the dominating analgetic drug used in neonates, but opioid-induced respiratory depression limits its therapeutic use. In this study, we examined acute morphine effects on respiration during intermittent hypoxia in newborn Tac1 gene knockout mice (Tac1-/-) lacking substance P and neurokinin A. In vivo, plethysmography revealed a blunted hypoxic ventilatory response (HVR) in Tac1-/- mice. Morphine (10 mg/kg) depressed the HVR in wild-type animals through an effect on respiratory frequency, whereas it increased tidal volumes in Tac1-/- during hypoxia, resulting in increased minute ventilation. Apneas were reduced during the first hypoxic episode in both morphine-exposed groups, but were restored subsequently in Tac1-/- mice. Morphine did not affect ventilation or apnea prevalence during baseline conditions. In vitro, morphine (50 nM) had no impact on anoxic response of brain stem preparations of either strain. In contrast, it suppressed the inspiratory rhythm during normoxia and potentiated development of posthypoxic neuronal arrest, especially in Tac1-/-. Thus this phenotype has a higher sensitivity to the depressive effects of morphine on inspiratory rhythm generation, but morphine does not modify the reactivity to oxygen deprivation. In conclusion, although Tac1-/- mice are similar to wild-type animals during normoxia, they differed by displaying a reversed pattern with an improved HVR during intermittent hypoxia both in vivo and in vitro. These data suggest that opioids and the substance P-ergic system interact in the HVR, and that reducing the activity in the tachykinin system may alter the respiratory effects of opioid treatment in newborns.
Collapse
Affiliation(s)
- J Berner
- Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
9
|
Wilkinson KA, Fu Z, Powell FL. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats. Am J Physiol Regul Integr Comp Physiol 2011; 301:R343-50. [PMID: 21593425 PMCID: PMC3154706 DOI: 10.1152/ajpregu.00375.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 05/16/2011] [Indexed: 01/09/2023]
Abstract
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.
Collapse
Affiliation(s)
- Katherine A Wilkinson
- Division of Physiology, Department of Medicine, University of California, San Diego, USA.
| | | | | |
Collapse
|
10
|
Mutolo D, Bongianni F, Cinelli E, Pantaleo T. Role of neurokinin receptors and ionic mechanisms within the respiratory network of the lamprey. Neuroscience 2010; 169:1136-49. [PMID: 20540991 DOI: 10.1016/j.neuroscience.2010.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/04/2010] [Accepted: 06/03/2010] [Indexed: 11/27/2022]
Abstract
We have suggested that in the lamprey, a medullary region called the paratrigeminal respiratory group (pTRG), is essential for respiratory rhythm generation and could correspond to the pre-Bötzinger complex (pre-BötC), the hypothesized kernel of the inspiratory rhythm-generating network in mammals. The present study was performed on in vitro brainstem preparations of adult lampreys to investigate whether some functional characteristics of the respiratory network are retained throughout evolution and to get further insights into the recent debated hypotheses on respiratory rhythmogenesis in mammals, such as for instance the "group-pacemaker" hypothesis. Thus, we tried to ascertain the presence and role of neurokinins (NKs) and burst-generating ion currents, such as the persistent Na(+) current (I(NaP)) and the Ca(2+)-activated non-specific cation current (I(CAN)), described in the pre-Bötzinger complex. Respiratory activity was monitored as vagal motor output. Substance P (SP) as well as NK1, NK2 and NK3 receptor agonists (400-800 nM) applied to the bath induced marked increases in respiratory frequency. Microinjections (0.5-1 nl) of SP as well as the other NK receptor agonists (1 microM) into the pTRG increased the frequency and amplitude of vagal bursts. Riluzole (RIL) and flufenamic acid (FFA) were used to block I(NaP) and I(CAN), respectively. Bath application of either RIL or FFA (20-50 microM) depressed, but did not suppress respiratory activity. Coapplication of RIL and FFA at 50 microM abolished the respiratory rhythm that, however, was restarted by SP microinjected into the pTRG. The results show that NKs may have a modulatory role in the lamprey respiratory network through an action on the pTRG and that I(NaP) and I(CAN) may contribute to vagal burst generation. We suggest that the "group-pacemaker" hypothesis is tenable for the lamprey respiratory rhythm generation since respiratory activity is abolished by blocking both I(NaP) and I(CAN), but is restored by enhancing network excitability.
Collapse
Affiliation(s)
- D Mutolo
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale GB Morgagni 63, 50134 Firenze, Italy.
| | | | | | | |
Collapse
|
11
|
|
12
|
Berner J, Ringstedt T, Brodin E, Hökfelt T, Lagercrantz H, Wickström R. Prenatal exposure to nicotine affects substance p and preprotachykinin-A mRNA levels in newborn rat. Pediatr Res 2008; 64:621-4. [PMID: 18679163 DOI: 10.1203/pdr.0b013e318186e5f5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prenatal nicotine exposure influences neuronal development including effects on several neurotransmitter systems. It also attenuates the ventilatory response to hypoxia, known to require a functional substance P-ergic system. Previous studies have shown that nicotine increases the risk for sudden infant death syndrome (SIDS) by 4-fold, and that SIDS-victims have elevated brainstem levels of substance P. We, therefore, studied the effect of prenatal nicotine exposure on the levels of substance P-like immunoreactivity by RIA in the brain in newborn rat pups. The expression of the substance P precursor preprotachykinin A mRNA was also determined by real-time reverse transcriptase-polymerase chain reaction in carotid body, in petrosal/jugular and trigeminal ganglia, in cervical and lumbar dorsal root ganglia, and in the brainstem. We found that prenatal nicotine exposure increased levels of substance P-like immunoreactivity in the brainstem without changing levels in other parts of the brain or in the adrenals. Furthermore, mRNA levels were increased in the carotid bodies and in the petrosal ganglia, in contrast to the decreased levels in the cervical dorsal root ganglia. We conclude that nicotine causes alterations in the substance P-ergic system in the brainstem, possibly linked to the increased risk for SIDS after prenatal nicotine exposure.
Collapse
Affiliation(s)
- Jonas Berner
- Department of Woman and Child Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Bongianni F, Mutolo D, Cinelli E, Pantaleo T. Neurokinin receptor modulation of respiratory activity in the rabbit. Eur J Neurosci 2008; 27:3233-43. [PMID: 18554294 DOI: 10.1111/j.1460-9568.2008.06295.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory role of neurokinin (NK) receptors was investigated in alpha-chloralose-urethane-anaesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nL) of NK receptor agonists and antagonists. Microinjections were performed in a region located just caudal to the rostral expiratory neurons. This region displayed features similar to those of the pre-Bötzinger complex (pre-BötC) of adult cats and rats, and proved to produce excitatory respiratory effects in response to microinjections of D,L-homocysteic acid. We used as agonists (0.1, 0.5 and 5 mM) substance P (SP), the NK1 receptor agonists [Sar(9), Met(O2)(11)]-SP and GR 73632, the NK2 receptor agonist NKA, the NK3 receptor agonist senktide, and as antagonists (5 mM) the NK1 receptor antagonist CP-99,994 and the NK2 receptor antagonist MEN 10376. SP always increased respiratory frequency, but NK1 receptor agonists did not change respiratory variables. NKA and senktide at 5 mm increased respiratory frequency. CP-99,994 caused increases in respiratory frequency and did not antagonize the effects of SP. MEN 10376 prevented the respiratory responses induced by NKA and reduced those provoked by SP. SP or the NK1 receptor agonists (5 mM) injected (1 microL) into the IV ventricle caused marked excitatory effects on respiration. The results suggest that NK2 and NK3, but not NK1, receptors are involved in the excitatory modulation of inspiratory activity within the investigated region and are consistent with the notion that the pre-BötC neurons are important components of the inspiratory rhythm-generating mechanisms.
Collapse
Affiliation(s)
- Fulvia Bongianni
- Dipartimento di Scienze Fisiologiche, Universita' degli Studi di Firenze, Viale G.B. Morgagni 63, I-50134 Firenze, Italy
| | | | | | | |
Collapse
|
14
|
Berner J, Shvarev Y, Lagercrantz H, Bilkei-Gorzo A, Hökfelt T, Wickström R. Altered respiratory pattern and hypoxic response in transgenic newborn mice lacking the tachykinin-1 gene. J Appl Physiol (1985) 2007; 103:552-9. [PMID: 17525292 DOI: 10.1152/japplphysiol.01389.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substance P is known to be involved in respiratory rhythm and central pattern-generating mechanisms, especially during early development. We therefore studied respiratory responses in transgenic newborn mice (Tac1(-/-)) lacking substance P and neurokinin A (NKA). In vivo, the effects of intermittent isocapnic hypoxia (IH) and hypercapnia were studied using whole body flow plethysmography at P2-3 and P8-10. In vitro, anoxic responses and the effects of hypocapnic and hypercapnic conditions were studied in brain stem-spinal cord preparations (C4 activity) at P2. Hypoxic challenge considerably modified the respiratory activity in transgenic mice displayed in vivo as an attenuated increase in tidal volume during IH. Transgenic mice also showed a more prominent posthypoxic frequency decline in vivo, and posthypoxic neuronal arrests appeared more often in vitro. We recognized two types of sigh activity: with or without a following pause. During IH, the amount of sighs with a pause decreased and those without increased, a redistribution that became stronger with age only in controls. Intermittent anoxia induced long-term facilitation effects in controls, but not in Tac1(-/-) animals, manifested as an increase in burst frequency in vitro and by an augmentation of ventilation during posthypoxic periods in vivo. Thus our data demonstrate that a functional substance P/NKA system is of great importance for the generation of an adequate respiratory response to hypoxic provocation in newborn mice and during early maturation. It also indicates that substance P (and/or NKA) is involved in the development of the plasticity of the respiratory system.
Collapse
Affiliation(s)
- J Berner
- Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Laferrière A, Moss IR. Respiratory responses to intermittent hypoxia in unsedated piglets: relation to substance P binding in brainstem. Respir Physiol Neurobiol 2004; 143:21-35. [PMID: 15477170 DOI: 10.1016/j.resp.2004.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/17/2022]
Abstract
Respiratory responses to single intermittent hypoxia (5 min 21% O(2), 5 min 8% O(2) X6) in 5-6, 10-11, 21-22 and 26-27 day-old piglets, and to recurrent six daily intermittent hypoxia in 10-11 and 26-27 day-old piglets were assessed. Substance P binding in the piglets' brainstem immediately after the last hypoxic episode was measured. All piglets hyperventilated during hypoxia. Weight adjusted inspired ventilation, tidal volume and instantaneous flow decreased with age. The oldest piglets uniquely displayed attenuated ventilation and tidal volume during the sixth versus first hypoxic episode with single intermittent hypoxia, and reduced inspired ventilation and tidal volume during the first hypoxic episode on the sixth daily hypoxia compared to single hypoxia. By contrast, substance P binding was greatly reduced in the solitary, hypoglossal, paraambigual and lateral reticular brainstem nuclei of both younger and older piglets following either single or recurrent intermittent hypoxia. Thus, the reduction in membrane-bound neurokinin receptors by intermittent hypoxia, presumably consequent to endogenously released substance P, does not exclusively determine whether the ventilatory response to that hypoxia will be attenuated or not.
Collapse
Affiliation(s)
- André Laferrière
- Department of Pediatrics, McGill University Health Centre Research Institute, The Montreal Children's Hospital, 2300 Tupper Street, Montreal, QB, Canada
| | | |
Collapse
|
16
|
Wickström HR, Berner J, Holgert H, Hökfelt T, Lagercrantz H. Hypoxic response in newborn rat is attenuated by neurokinin-1 receptor blockade. Respir Physiol Neurobiol 2004; 140:19-31. [PMID: 15109925 DOI: 10.1016/j.resp.2004.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2004] [Indexed: 11/15/2022]
Abstract
Substance P (SP) is considered to be involved in the regulation of respiration, in particular when respiratory demands are increased, such as during hypoxic stress. In the present study we have investigated the effects of intracerebroventricular pre-treatment with the selective NK-1 receptor antagonist RP67580 on the respiratory response to hypoxia in 5-day-old rat pups. Basal respiration was not altered by RP67580. When subjected to hypoxia (10% O(2)), rat pups pre-treated with RP67580 were unable to sustain the increased respiratory frequency at 10 min. In situ hybridisation demonstrated increased expression of c-fos mRNA in several brainstem areas following hypoxia. This activation was blocked by the antagonist in the retrotrapezoid nucleus and the rostral ventrolateral medulla, areas known to be involved in the hypoxic ventilatory response. This study corroborates a role of endogenously released SP, mediated via NK-1 receptors, in the sustained response to hypoxia in 5-day-old rat pups and suggests that neurons in the rostral ventrolateral medulla are important in this function. It also represents a further example that neuropeptides are released under stressful conditions.
Collapse
Affiliation(s)
- H Ronny Wickström
- Department of Woman and Child Health, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 2004; 5:449-61. [PMID: 15152195 DOI: 10.1038/nrn1409] [Citation(s) in RCA: 378] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- George B Richerson
- Department of Neurology, Yale University School of Medicine, New Haven, and the Veteran's Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
18
|
Bailey CP, Maubach KA, Jones RSG. Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release. Neuroscience 2004; 127:467-79. [PMID: 15262336 DOI: 10.1016/j.neuroscience.2004.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 11/29/2022]
Abstract
Neurokinins such as substance P and neurokinin A have long been thought to act as neurotransmitters or modulators in the nucleus tractus solitarius. However, the role and location of the receptors for these peptides have remained unclear. We examined the consequences of activation of the neurokinin-1 (NK1) receptor subtype in the rat nucleus tractus solitarius using whole-cell patch clamp recordings in brain slices. Application of delta-Ala-Phe-Phe-Pro-MeLeu-D-Pro[spiro-gamma-lactam]-Leu-Trp-NH2 (a specific NK1 agonist) or neurokinin A resulted in depolarization, evident as a slow inward current, mediated by direct postsynaptic NK1 receptor activation. The effect was conserved in the presence of tetrodotoxin, and protein kinase C-dependent since it was blocked by 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide, a specific protein kinase C inhibitor. In addition, an increase in the frequency and amplitude of spontaneous excitatory postsynaptic currents was observed, reflecting increased glutamate release induced by NK1 receptor activation. This effect was abolished by tetrodotoxin, suggesting that it resulted from increased firing in afferent neurons, subsequent to somatodendritic excitation via NK1 receptors. Furthermore, spontaneous inhibitory postsynaptic currents were increased in frequency and amplitude showing that GABA release was promoted by NK1 receptor activation. However, amplitude of miniature inhibitory postsynaptic currents was unaltered by NK1 receptor activation, but the increase in frequency persisted. These findings suggest that NK1 receptors are located on presynaptic terminals as well as at somatodendritic sites of GABAergic neurons. The increase in GABA release was also shown to be protein kinase C-dependent. The data presented here show NK1 receptors in the rat nucleus tractus solitarius are present both excitatory and inhibitory neurons. Activation of these receptors can result in increases in release of both GABA and glutamate, suggesting a crucial modulatory role for NK1 receptors in the rat nucleus tractus solitarius.
Collapse
Affiliation(s)
- C P Bailey
- Department of Physiology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
19
|
Kumar GK, Prabhakar NR. Tachykinins in the control of breathing by hypoxia: pre- and post-genomic era. Respir Physiol Neurobiol 2003; 135:145-54. [PMID: 12809615 DOI: 10.1016/s1569-9048(03)00033-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This article highlights major findings from physiological and pharmacological studies conducted in the pre- and post-genomic era examining the roles of substance P (SP) and other tachykinins in the response of the carotid body to hypoxia, in the ventilatory response to hypoxia and in respiratory rhythm generation. In the post-genomic period, the hypoxic ventilatory responses of mice carrying targeted deletion of genes that affect synthesis or degradation or receptor interaction of SP have been examined by us and also by other investigators. A brief summary of the findings from these investigations will also be presented. The combined observations from the pre- and post-genomic era strongly support the involvement of SP and also other tachykinins in the control of respiration during hypoxia.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
20
|
Ozawa Y, Takashima S. Developmental neurotransmitter pathology in the brainstem of sudden infant death syndrome: a review and sleep position. Forensic Sci Int 2002; 130 Suppl:S53-9. [PMID: 12350301 DOI: 10.1016/s0379-0738(02)00139-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developmental studies on neurotransmitters and their receptors in sudden infant death syndrome (SIDS) infants and controls are reviewed, including comparison between the prone and supine positions at death. In SIDS infants, there are an increase of glial fibrillary acidic protein (GFAP)-positive astrocytes in the brainstem, an increase of substance P (SP) in the medulla and pons, a decrease of tyrosine hydroxylase (TH)-positive catecholaminergic neurons in the ventrolateral medulla (VLM), and vagal nuclei in the medulla oblongata and basal ganglia, a decrease of tryptophan hydroxylase (TrH)-positive serotonergic neurons in the periaqueductal gray matter (PAG), and decreases of 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2A receptor immunoreactivities in the VLM and vagal nuclei in the medulla oblongata. These findings may be the result of chronic or repeated hypoxia and at the same time suggest hypofunction or immaturity of cardiorespiratory regulation. In contrast, 5-HT1A and 5-HT2A receptor immunoreactivities are increased in the PAG of SIDS infants. These increased immunoreactivities may reflect delayed neuronal maturation or a developmental abnormality of the nocicetive reaction of cardiorespiratory and arousal control in SIDS. Also, there are no differences of brainstem gliosis and catecholaminergic neuron changes between the prone and supine positions. Therefore, these changes may be predisposing factors for SIDS.
Collapse
Affiliation(s)
- Y Ozawa
- Department of Neonatology, Toho University School of Medicine, 6-11-1 Ohmorinishi, Ohta, Tokyo 43-8541, Japan.
| | | |
Collapse
|
21
|
Telgkamp P, Cao YQ, Basbaum AI, Ramirez JM. Long-term deprivation of substance P in PPT-A mutant mice alters the anoxic response of the isolated respiratory network. J Neurophysiol 2002; 88:206-13. [PMID: 12091546 DOI: 10.1152/jn.2002.88.1.206] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to elucidate the role of the neuromodulator substance P and its related tachykinin neurokinin A (NKA) in the homeostasis of respiratory activity. Respiratory activities, in form of fictive eupneic and sigh activities, were recorded extracellularly from the preBötzinger complex (PBC) in normoxic and anoxic conditions using medullary slice preparations. The effect of a blockade of endogenous substance P was assessed by an acute pharmacological blockade of the receptors with spantide in wild-type animals and by the use of preprotachykinin-A (PPT-A) mutants. These mutants lack from birth the PPT-A gene, which codes for the precursor of substance P and NKA. Spantide treatment reduced frequency (-37%, n = 9) and regularity (twofold) of eupneic-like respiratory activity under normoxic conditions, whereas in PPT-A mutants, eupneic-like activity was under normoxic conditions not significantly different from the wild-type mice (WT). The response to short anoxic episodes (5 min) was characterized in the WT by an increase in respiratory frequencies at the onset of anoxia (ratio anoxic/control frequency = 1.9 +/- 0.2, n = 18). This anoxic ratio was unaltered in the presence of spantide (ratio = 2.3 +/- 0.4, n = 8) but increased in the mutant (ratio = 4.1, n = 15). We conclude that endogenously released substance P is important for the maintenance of regular respiratory activity. Short-term blockade of substance P receptors decreases the frequency and regularity of rhythmic activity. Long-term deficiency in substance P leads to compensatory mechanisms that result in an apparently normal respiratory activity under normoxic conditions but a significantly altered response of the respiratory network during anoxia.
Collapse
Affiliation(s)
- Petra Telgkamp
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
22
|
Moss IR, Laferrière A. Central neuropeptide systems and respiratory control during development. Respir Physiol Neurobiol 2002; 131:15-27. [PMID: 12106992 DOI: 10.1016/s1569-9048(02)00034-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The substance P/neurotachykinin-1 (NK-1) and the mu-opioid G protein-coupled receptor systems endow brainstem respiratory regions and display discrete developmental patterns. Hypoxia-induced neuropeptide release may increase receptor endocytosis, reducing receptor accessibility to ligands. We wondered whether the attenuated respiratory response to hypoxia of developing piglets after single (Respir. Physiol. 92 (1993a) 115) or repeated daily hypoxic exposure (J. Appl. Physiol. 83 (1997) 522) is influenced by differential endocytosis of NK-1 vs mu-opioid receptors. Whereas the long-term (24 h) response of both receptors to recurrent hypoxia in piglet brainstem is similar, i.e. upregulation, the short-term (5 min) response to single or recurrent hypoxia, albeit in rats, is different: radiolabelled NK-1 receptors are greatly reduced, suggesting enhanced endocytosis, but mu-opioid receptors remain unchanged, implying unaltered endocytosis. If confirmed in piglet brainstem, this difference would produce relatively more available mu-opioid receptors to opioid peptides in hypoxia that might contribute to the attenuated respiratory responses to single and repeated hypoxia during development.
Collapse
Affiliation(s)
- Immanuela Ravé Moss
- Developmental Respiratory Laboratory, The Research Institute of the McGill University Health Centre, The Montreal Children's Hospital, Room A-707, 2300 Tupper Street, Montreal, Que., Canada H3H 1P3.
| | | |
Collapse
|
23
|
Shvarev YN, Lagercrantz H, Yamamoto Y. Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:67-84. [PMID: 11851598 DOI: 10.1046/j.1365-201x.2002.00926.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effects of substance P (SP) on respiratory activity in the brainstem-spinal cord preparation from neonatal rats (0-4 days old) were investigated. The respiratory activity was recorded from C4 ventral roots and intracellularly from three types of respiration-related neurones, i.e. pre-inspiratory (or biphasic E), three subtypes of inspiratory; expiratory and tonic neurones in the ventrolateral medulla (VLM). After the onset of SP bath application (10 nM-1 microM) a dose-dependent decline of burst rate (by 48%) occurred, followed by a weaker dose-dependent increase (by 17.5%) in burst rate. The biphasic effect of SP on inspiratory burst rate was associated with sustained membrane depolarization (in a range of 0.5-13 mV) of respiration-related and tonic neurones. There were no significant changes in membrane resistance in any type of neurones when SP was applied alone or when synaptic transmission was blocked with tetrodotoxin (TTX). The initial depolarization was associated with an increase in inspiratory drive potential (by 25%) as well as in bursting time (by 65%) and membrane excitability in inspiratory and pre-inspiratory neurones, which corresponded to the decrease in burst rate (C4 activity). The spiking frequency of expiratory and tonic neurones was also increased (by 36 and 48%). This activation was followed by restoration of the synaptic drive potential and bursting time in inspiratory and to a less extent in pre-inspiratory neurones, which corresponded to the increase in burst rate. The discharge frequency of expiratory and tonic neurones also decreased to control values. This phase followed the peak membrane depolarization. At the peak depolarization, SP reduced the amplitude of the action potential by 4-8% in all types of neurones. Our results suggest that SP exerts a general excitatory effect on respiration-related neurones and synaptic coupling within the respiratory network in the VLM. The transient changes in neuronal activity in the VLM may underlie the biphasic effect of SP in the brainstem respiration activity recorded in C4 roots. However, the biphasic effect of SP on inspiratory burst rate seems to be also defined by the balance in activity of other SP-sensitive systems and neurones in the respiratory network in the brainstem and spinal cord, which can modify the activity of medullary respiratory rhythm generator.
Collapse
Affiliation(s)
- Y N Shvarev
- Neonatal Unit, Dept. of Woman and Child Health, Q2:07, Astrid Lindgren Children's Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Rodier ME, Laferrière A, Moss IR. Effects of age and clustered hypoxia on [(125)I] substance P binding to neurotachykinin-1 receptors in brainstem of developing swine. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:31-9. [PMID: 11287062 DOI: 10.1016/s0165-3806(01)00109-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This work focused on the postnatal development of substance P-bound neurotachykinin-1 (NK-1) receptors in the porcine brainstem using 2-3-, 6-11-, 16-18-, and 21-28-day-old piglets versus adult, and on alterations in these receptors after single and six-daily repeated clustered hypoxia using 6-11- and 21-28-day-old piglets. NK-1 receptor localization and densities were determined by quantitative autoradiography using mono-iodinated Bolton-Hunter substance P ([(125)I]BHSP). Slide-mounted brainstem sections, incubated in [(125)I]BHSP and then exposed to film, have shown [(125)I]BHSP binding throughout many brainstem nuclei and tracts, including the ambigual/periambigual (nAmb), dorsal motor vagal (dmnv), gigantocellular (nGC), hypoglossal (nHyp), medial parabrachial (nPBM), lateral reticular (nRL), raphe magnus (nRMg), raphe obscurus (nROb) and solitary tract (nTS) nuclei. NK-1 receptor densities decreased with age. As compared to normoxia, NK-1 receptor densities increased significantly after the six-daily hypoxia protocol in nAmb, dmnv, nHyp, nRL, nRMg, nROb, and nTS of both the young and older age groups. This increase may represent receptor upregulation as an adaptation to repeated hypoxia.
Collapse
Affiliation(s)
- M E Rodier
- Department of Physiology, Developmental Respiratory Laboratory, McGill University and McGill University Health Centre Research Institute (MUHC-RI), Montreal, Canada
| | | | | |
Collapse
|
25
|
Ptak K, Konrad M, Di Pasquale E, Tell F, Hilaire G, Monteau R. Cellular and synaptic effect of substance P on neonatal phrenic motoneurons. Eur J Neurosci 2000; 12:126-38. [PMID: 10651867 DOI: 10.1046/j.1460-9568.2000.00886.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experiments were carried out on the in vitro brainstem-spinal cord preparation of the newborn rat to analyse the effects of substance P (SP) on phrenic motoneuron (PMN) activity. In current-clamp mode, SP significantly depolarized PMNs, increased their input resistance, decreased the rheobase current and shifted the firing frequency-intensity relationships leftwards, but did not affect spike frequency adaptation or single spike configuration. The neurokinin receptor agonist NK1 had SP-mimetic effects, whereas the NK3 and NK2 receptor agonists were less effective and ineffective, respectively. In a tetrodotoxin-containing aCSF, only SP or the NK1 receptor agonist were still active. No depolarization was observed when the NK1 receptor agonist was applied in the presence of muscarine. In voltage-clamp mode, SP or the NK1 receptor agonist produced an inward current (ISP) which was not significantly reduced by extracellular application of tetraethylammonium, Co2+, 4-aminopyridine or Cs+. In aCSF containing tetrodotoxin, Co2+ and Cs+, ISP was blocked by muscarine. No PMN displayed any M-type potassium current but only a current showing no voltage sensitivity over the range -100 to 0 mV, reversing near the expected EK +, hence consistent with a leak current. SP application to the spinal cord only (using a partitioned chamber) significantly increased the phrenic activity. Pretreatment with the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) decreased the C4 discharge duration and blocked the effect of SP, thus exhibiting an NMDA potentiation by SP. In conclusion, SP modulates postsynaptically the response of phrenic motoneurons to the inspiratory drive through the reduction of a leak conductance and the potentiation of the NMDA component of the synaptic input.
Collapse
Affiliation(s)
- K Ptak
- ESA CNRS 6034, Faculté des Sciences de St Jérôme, 13397 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
26
|
Ptak K, Di Pasquale E, Monteau R. Substance P and central respiratory activity: a comparative in vitro study on foetal and newborn rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:217-27. [PMID: 10320761 DOI: 10.1016/s0165-3806(99)00044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experiments were performed in vitro on foetal (embryonic days 18 to 21, E18-21) and newborn rat (postnatal days 0 to 3, P0-3) brainstem spinal cord preparations to analyse the perinatal developmental changes in the effects induced by substance P. Superfusion of the preparations with SP-containing artificial cerebrospinal fluid (aCSF) induced significant increase in the respiratory frequency of newborn rats (10-9 M), whereas concentration up to 10-7 M induced no change in foetal preparations. A whole cell patch clamp approach was used to record intracellularly from phrenic motoneurones. In newborn or E20-21 foetal rats SP-containing aCSF depolarised the phrenic motoneurones, increased their input resistance, reduced the rheobase current and shifted the frequency-intensity curves upward. In E18 foetal rats, no change was evoked by SP. A peptidase inhibitor mixture was used to block the enzymatic degradation of endogenous SP. This mixture was ineffective in changing the respiratory frequency in newborn and foetal preparations. In newborn rat phrenic motoneurones, the peptidase inhibitor mixture induced changes similar to those caused by SP but no change was induced in foetal rats. These results indicate that SP may modulate (i) the activity of the respiratory rhythm generator in newborn but not in foetal rats, and (ii) the activity of phrenic motoneurones at E20, E21 and in newborn rats but not at E18. Results obtained using the peptidase inhibitor mixture suggest that endogenous SP is probably not involved in the control of the respiratory rhythm in the prenatal period, but may influence the activity of the phrenic motoneurones after birth.
Collapse
Affiliation(s)
- K Ptak
- Laboratoire de Neurobiologie des Fonctions Végétatives, ESA CNRS 6034, Faculté des Sciences de St. Jérôme, 13397, Marseille Cedex 20, France
| | | | | |
Collapse
|
27
|
Abstract
Experiments were performed on neonatal mice to know whether substance P (SP) modified the rhythm and the amplitude of the phrenic bursts generated in vitro in brainstem-cervical cord preparations. In OF1 and C3H neonatal preparations, SP or the tachykinin NK1 receptor agonist [Sar9,Met(O2)11] substance P both increased significantly phrenic burst amplitude (10(-7) M) but had no significant effect on respiratory rhythm unless used at concentrations 10 times larger. In neonates from the monoamine oxidase-A deficient transgenic Tg8 line, SP increased phrenic burst amplitude but had no effect on the respiratory rhythm at the tested concentrations. The role of SP in regulating neonatal respiratory activity is discussed on the basis of rat and mouse results.
Collapse
Affiliation(s)
- K Ptak
- UPR CNRS 9011, Neurobiology and Movements, Marseille, France
| | | |
Collapse
|
28
|
Abstract
In this review, the maturational changes occurring in the mammalian respiratory network from fetal to adult ages are analyzed. Most of the data presented were obtained on rodents using in vitro approaches. In gestational day 18 (E18) fetuses, this network functions but is not yet able to sustain a stable respiratory activity, and most of the neonatal modulatory processes are not yet efficient. Respiratory motoneurons undergo relatively little cell death, and even if not yet fully mature at E18, they are capable of firing sustained bursts of potentials. Endogenous serotonin exerts a potent facilitation on the network and appears to be necessary for the respiratory rhythm to be expressed. In E20 fetuses and neonates, the respiratory activity has become quite stable. Inhibitory processes are not yet necessary for respiratory rhythmogenesis, and the rostral ventrolateral medulla (RVLM) contains inspiratory bursting pacemaker neurons that seem to constitute the kernel of the network. The activity of the network depends on CO2 and pH levels, via cholinergic relays, as well as being modulated at both the RVLM and motoneuronal levels by endogenous serotonin, substance P, and catecholamine mechanisms. In adults, the inhibitory processes become more important, but the RVLM is still a crucial area. The neonatal modulatory processes are likely to continue during adulthood, but they are difficult to investigate in vivo. In conclusion, 1) serotonin, which greatly facilitates the activity of the respiratory network at all developmental ages, may at least partly define its maturation; 2) the RVLM bursting pacemaker neurons may be the kernel of the network from E20 to adulthood, but their existence and their role in vivo need to be further confirmed in both neonatal and adult mammals.
Collapse
Affiliation(s)
- G Hilaire
- Unité Propre de Recherche, Centre National de la Recherche Scientifique 9011, Biologie des Rythmes et du Développement, Marseille; and Laboratoire de Neurophysiologie Clinique et Expérimentale, Amiens, France
| | | |
Collapse
|
29
|
Wickström HR, Holgert H, Hökfelt T, Lagercrantz H. Birth-related expression of c-fos, c-jun and substance P mRNAs in the rat brainstem and pia mater: possible relationship to changes in central chemosensitivity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:255-66. [PMID: 9878771 DOI: 10.1016/s0165-3806(98)00174-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In situ hybridization was used to characterize respiration-related areas of the brainstem activated around the time of birth as well as their postnatal sensitivity to CO2. Levels of mRNA corresponding to the immediate early genes (IEG), c-fos and c-jun, and of substance P precursor, ppt-A, were determined in rat fetuses (E21) and neonatal pups (1 h, 1 day and 6 days after normal birth) and after exposure to hypercapnia (12% CO2 for 1 h). Transient increases in c-fos mRNA were observed in the central chemoreceptor area of the ventral medullary surface (VMS), in the lateral reticular nucleus (LRN), in the nucleus of the solitary tract (NTS), and in the nucleus raphé pallidus (RPA) 1 h after birth. Increased expression of c-fos mRNA in the VMS could also be evoked by hypercapnia and this response was particularly pronounced 1 day after birth. On the other hand, c-jun mRNA could be detected already at E21 in the hypoglossal nucleus (XII) and LRN and these levels were not significantly altered at 1 h after birth. There was, however, an increase in the expression of c-jun mRNA in the pia mater surrounding the brainstem after birth. At 1 day after birth, c-jun mRNA levels had decreased in the LRN and pia mater, and later on (6 days after birth) in XII. Furthermore, the ppt-A mRNA level in NTS increased immediately after birth and remained high 1 and 6 days later. These results suggest that (a) the central chemoreceptor area of the VMS, as well as the NTS, LRN, RPA and pia mater are activated following birth; (b) the VMS, but not the other structures examined, can be activated immediately after birth by hypercapnia; and (c) increased expression of ppt-A mRNA may be related to the transition of respiratory control at birth.
Collapse
Affiliation(s)
- H R Wickström
- Department of Women and Child Health, Karolinska Institute, S-171 77, Stockholm, Sweden.
| | | | | | | |
Collapse
|
30
|
Waters KA, Paquette J, Laferrière A, Goodyer C, Moss IR. Repeated microdialysis from the nucleus tractus solitarii of chronically instrumented, unsedated piglets. Int J Neurosci 1997; 92:53-61. [PMID: 9522255 DOI: 10.3109/00207459708986389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal development of respiratory rhythm and control, and perturbations thereof, likely relate to neuromodulators in brainstem regions. To assess the feasibility of repeated neurochemical sampling by in vivo microdialysis from the respiratory-related nucleus tractus solitarii (NTS) during development. 19-24 day-old piglets (n = 7) were implanted under anesthesia with chronic microdialysis guides near NTS around obex. Unsedated piglets then underwent in vivo microdialysis twice, 3 days apart, through probes inserted acutely via the guides to abut against the NTS. The probe tips, surrounded by normal neurons and only diffuse gliosis, either intersected, or were within < or = 300 microns from the NTS. Thirty-min microdialysates were collected for 120 min in normoxia, HPLC-fractionated, and assayed for substance-P (SP), a respiratory excitatory neuropeptide. SP levels stabilized within 90 min from probe placement, and did not differ between the 2 experimental days. Thus, repeated in vivo microdialysis from NTS of conscious piglets is feasible, and can illuminate respiratory-related normal and pathological neurochemical processes during development.
Collapse
Affiliation(s)
- K A Waters
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
31
|
Waters KA, Laferrière A, Paquette J, Goodyer C, Moss IR. Curtailed respiration by repeated vs. isolated hypoxia in maturing piglets is unrelated to NTS ME or SP levels. J Appl Physiol (1985) 1997; 83:522-9. [PMID: 9262448 DOI: 10.1152/jappl.1997.83.2.522] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In early development, respiratory disorders can produce recurring hypoxic episodes during sleep. To examine possible effects of daily repeated vs. isolated hypoxic hypoxia, cardiorespiratory functions and central, respiratory-related neuromodulator levels in 21- to 32-day-old, chronically instrumented, unsedated piglets were compared between a fifth sequential daily hypoxia and an isolated hypoxia (10% O2-90% N2 for 30 min). Diaphragmatic electromyographic activity, heart rate and arterial pressure, and pH and gas tensions were measured. In vivo microdialysis, via chronically implanted guides, served to sample interstitial substance P (SP) and methionine-enkephalin (ME) at the level of the respiratory-related nucleus tractus solitarii (NTS). Compared with an isolated hypoxia, repeated hypoxia resulted in 1) lower respiratory frequency (f), ventilation equivalent, and arterial pH, higher arterial PO2 during hypoxia, and lower f in recovery from hypoxia; and 2) increased SP concentrations but no change in ME concentrations. We conclude that, in these maturing swine, repeated vs. isolated hypoxic exposure curtails respiratory responses to hypoxia by a mechanism(s) unrelated to SP or ME levels at the NTS.
Collapse
Affiliation(s)
- K A Waters
- Department of Pediatrics, McGill University, and The Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada H3H 1P3
| | | | | | | | | |
Collapse
|
32
|
Lutz PL, Cherniack NS. Brain Hypoxia: Metabolic and Ventilatory Depression. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Monteau R, Ptak K, Broquère N, Hilaire G. Tachykinins and central respiratory activity: an in vitro study on the newborn rat. Eur J Pharmacol 1996; 314:41-50. [PMID: 8957217 DOI: 10.1016/s0014-2999(96)00529-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The newborn rat brainstem-spinal cord preparation was used to study the effects of tachykinins on the activity of the respiratory rhythm generator in vitro and to characterize the receptors involve. Substance P and tachykinin NK1 and NK3 receptor agonists induced a concentration-dependent increase in the respiratory frequency (10(-9)-10(-7) M), whereas the respiratory frequency was only slightly affected by the tachykinin NK2 receptor agonist. Pre-treatments with tachykinin NK1 receptor antagonists (SR140333, (S)1-¿2-[3-(3.4-dichlorophenyl) -1-(3-isopropoxyphenylacetyl)piperidin-n-3-yl]ethyl¿-4-ph eny l-1-azoniabicyclo [2,2,2]octane chloride; GR82334, pGlu-Ala- Asp-Pro-Asn-Lys-Phe-Tyr-(S-S)Pro-Leu(spiro-gamma-lactam)-Trp-NH2) reduced the substance P-induced increases in the respiratory frequency but the tachykinin NK2 receptor antagonist (SR48968, ((S)-N-methyl-N-[4-4-acetylamino-4-phenylpiperidine)-2-(3,4-dichlorop hen yl) butyl]benzamide); MEN 10376, Asp-Tyr-D-Trp-Val-D-Trp-Lys-NH2) had no effect; the increase in the respiratory frequency induced by the tachykinin NK3 receptor agonist was not affected by a pre-treatment with tachykinin NK1 and NK2 receptor antagonists. These result indicate that tachykinin NK1 and NK3 receptors may be involved in the control of the respiratory frequency.
Collapse
Affiliation(s)
- R Monteau
- URA CNRS 1832, Biologie des Rythmes et du Développement, Faculté des Sciences de St Jérôme, France.
| | | | | | | |
Collapse
|
34
|
Obonai T, Takashima S, Becker LE, Asanuma M, Mizuta R, Horie H, Tanaka J. Relationship of substance P and gliosis in medulla oblongata in neonatal sudden infant death syndrome. Pediatr Neurol 1996; 15:189-92. [PMID: 8916154 DOI: 10.1016/s0887-8994(96)00217-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Substance P and glial fibrillary acidic protein (GFAP) immunohistochemistry was applied to the medulla of neonatal infants who died of sudden infant death syndrome (SIDS). A quantitative analysis of cells demonstrating immunoreactivity to GFAP and substance P in 15 neonatal SIDS cases revealed increased GFAP immunoreactivity in the reticular formation, the dorsal vagal nucleus, and the solitary nucleus and an increase in substance P immunoreactivity in the spinal trigeminal nucleus and the solitary nucleus as compared with that in age-matched controls. GFAP immunopositivity suggests astrogliosis which implies a pathologic insult to neurons in the area of astrogliosis. The failure of neurons in these sites to show enhanced substance P immunopositivity may indirectly indicate altered neurons. Further study of prenatal events may be of importance in clarifying the pathogenesis of neonatal SIDS.
Collapse
Affiliation(s)
- T Obonai
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Poncet L, Denoroy L, Dalmaz Y, Pequignot JM, Jouvet M. Alteration in central and peripheral substance P- and neuropeptide Y-like immunoreactivity after chronic hypoxia in the rat. Brain Res 1996; 733:64-72. [PMID: 8891249 DOI: 10.1016/0006-8993(96)00539-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of long-term hypoxia on substance P (SP) and neuropeptide Y (NPY)-like immunoreactivity (LI) in discrete brain areas and peripheral structures was assessed by radioimmunoassay. Rats were exposed to normobaric hypoxia (10% O2 in nitrogen) for 14 days. In the carotid bodies of hypoxic animals, NPY-LI was significantly increased (56% vs. normoxic controls) while SP-LI was unchanged. In the brain, NPY-LI was increased in the ventrolateral medulla oblongata (23%) and in the striatum (53%); however, SP-LI was unaltered in these two regions. In the anterior pituitary, NPY-LI was increased (99%), while SP-LI was decreased (37%). No significant alteration in NPY-LI and SP-LI was observed in other discrete brain areas or peripheral structures studied. These results show that, in the rat, long-term hypoxia induces changes in NPY-LI or SP-LI in a few central and peripheral structures; these biochemical alterations may be linked to adaptative mechanisms involving morphological changes in carotid bodies or alterations in sympathetic control and neuroendocrine function.
Collapse
Affiliation(s)
- L Poncet
- Département de Médecine Expérimentale, INSERM U 52, CNRS ERS 5645, Université Claude Bernard, Lyon, France.
| | | | | | | | | |
Collapse
|
36
|
Gatti PJ, Shirahata M, Johnson TA, Massari VJ. Synaptic interactions of substance P immunoreactive nerve terminals in the baro- and chemoreceptor reflexes of the cat. Brain Res 1995; 693:133-47. [PMID: 8653401 DOI: 10.1016/0006-8993(95)00728-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The neurochemical anatomy and synaptic interactions of morphologically identified chemoreceptor or baroreceptor afferents in the nucleus of the solitary tract (NTS) are poorly understood. A substantial body of physiological and light microscopic evidence suggests that substance P (SP) may be a neurotransmitter contained in first order sensory chemo- or baroreceptor afferents, however ultrastructural support of this hypothesis is lacking. In the present report we have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase. Medullary tissues including the commissural NTS (cNTS) were processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical detection of SP by dual labeling light and electron microscopic methods. At the light microscopic level, dense bilateral labeling with TMB was found in the tractus solitarius (TS) and cNTS, caudal to the obex. Rostral to the obex, significant ipsilateral TMB labeling was detected in the dorsal, dorso-lateral, and medial subnuclei of the NTS, as well as in the TS. Significant staining of SP immunoreactive processes was detected in most subnuclei of the NTS. The cNTS was examined by electron microscopy. Either HRP or SP were readily identified in single labeled unmyelinated axons, myelinated axons, and nerve terminals in the cNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the cNTS which were simultaneously identified as CSN primary afferents. These ultrastructural data support the hypothesis that SP immunoreactive first order neurons are involved in the origination of the chemo- and baroreceptor reflexes. Axo-axonic synapses were observed between CSN primary afferent terminals and: (a) unlabeled nerve terminals; (b) other CSN primary afferent terminals; and (c) terminals containing SP. Axo-axonic synapses were also observed between CSN primary afferents which contained SP, and other SP terminals. These observations may mediate the morphological bases for multiple forms of presynaptic inhibition in the cNTS, including those involved in cardiorespiratory integration. In conclusion, our results indicate that SP immunoreactive nerve terminals may be important in both the origination and the modulation of the chemo- and/or baroreceptor reflexes.
Collapse
Affiliation(s)
- P J Gatti
- Department of Pharmacology, Howard University, College of Medicine, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
37
|
Rampin O, Pierrefiche O, Denavit-Saubié M. Effects of serotonin and substance P on bulbar respiratory neurons in vivo. Brain Res 1993; 622:185-93. [PMID: 7694767 DOI: 10.1016/0006-8993(93)90818-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We studied the effects of separate or co-applications by microiontophoresis of serotonin (5-HT) and substance P(4-11) onto brainstem respiratory neurons in anesthetized or decerebrate cats. 5-HT either produced an excitation (36%, n = 10) or an inhibition (43%, n = 12) or had no effect (21%, n = 6). SP(4-11) had predominantly an excitatory effect (84%, n = 26) or no effect. Fifteen respiratory neurons responded to both 5-HT and SP(4-11). Test applications of 5-HT were made during a long application of SP(4-11). We obtained 'additive effects' when the inhibitory effect of 5-HT was superimposed to the excitation of SP(4-11) with slight modification (n = 1) or without any modification (n = 2). In other cases, called 'non-additive effects', we observed a great modification of the responsiveness of the neuron to the inhibitory effect of 5-HT (n = 2) or a complete blockade of the excitatory effect of 5-HT (n = 2) during co-application. The remaining results presented a potentiation of 5-HT effect by SP(4-11) or a biphasic response to 5-HT during SP(4-11) application. The results indicate that both 5-HT and SP receptors coexist on the membrane of the same respiratory-related neurons in the brainstem of cat and suggest an interaction between both substances in vivo in the central respiratory system.
Collapse
Affiliation(s)
- O Rampin
- Institut Alfred Fessard, C.N.R.S., Gif-sur-Yvette, France
| | | | | |
Collapse
|
38
|
Srinivasan M, Srinivasan GR, Mathé AA, Theodorsson E. Endothelin concentrations in respiration-related structures of the medulla during the perinatal period of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 74:117-21. [PMID: 8403364 DOI: 10.1016/0165-3806(93)90090-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelin-like immunoreactivity (ET-LI) was quantified in the developing (foetal and postnatal) rat brain stem and cerebellum using radioimmunoassay. The brain stem structures chosen for this study were (a) dorsal medullary region (DMR) including the region of nucleus tractus solitarius where the peripheral chemoreceptor afferents are known to terminate, (b) ventral medullary region (VMR) where the central chemoreceptors are thought to be located and (c) cerebellum (CER), as a control area. Compared to the prenatal period, significantly elevated concentrations of ET-LI were detected in the early postnatal period and thereafter the concentrations decreased: DMR and VMR: in comparison to the prenatal concentrations, a two-fold increase was found on the day of birth which further increased significantly (P < 0.001) on postnatal day 1 only in the region of DMR; CER: low concentrations of ET-LI were found in the early postnatal period which were not significantly different from the prenatal values. No ET-LI could be detected in any of the three regions in the adult rats. The results are discussed in view of the hypothesis that (1) endothelin appears to play an important role in the perinatal period and (2) it is involved in the chemoreceptor pathway.
Collapse
Affiliation(s)
- M Srinivasan
- Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
39
|
Yamamoto Y, Onimaru H, Homma I. Effect of substance P on respiratory rhythm and pre-inspiratory neurons in the ventrolateral structure of rostral medulla oblongata: an in vitro study. Brain Res 1992; 599:272-6. [PMID: 1283971 DOI: 10.1016/0006-8993(92)90401-t] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pre-inspiratory (Pre-I) neurons which fire in the pre- and usually also during the post-inspiratory phase are located in the ventrolateral structures of the rostral medulla. They are suggested as primary rhythm generating neurons for respiration. These have been studied in isolated brainstem-spinal cord preparations from newborn 0-5-day-old rats. We have found that application of substance P (SP) enhanced the respiratory rhythm as measured by C4 ventral root and pre-I neuronal activities. Furthermore, the effect of SP was dependent on basal respiratory rate. An increase of the Pre-I and C4 burst rate by SP was clearer when the basal respiratory rhythm was somewhat lower. Moreover, long lasting depression of respiratory rate after the application of the alpha 2-agonist clonidine was reversed by SP. On the other hand, an inhibitory effect appeared in preparations with a higher basal respiratory rate, while the Pre-I burst rate tended to increase during SP perfusion. During chemical synaptic transmission blockade by perfusion with low Ca2+, high Mg2+ solution, a pre-I burst retained or completely blocked was found to be enhanced or reactivated by SP perfusion. The results suggest a direct postsynaptic action of SP, which could strongly stimulate burst generating properties of Pre-I neurons.
Collapse
Affiliation(s)
- Y Yamamoto
- Nobel Institute for Neurophysiology, Karolinska Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Lagercrantz H, Srinivasan M, Yamamoto Y, Prabhakar N. Functional role of substance P for respiratory control during development. Ann N Y Acad Sci 1991; 632:48-52. [PMID: 1719909 DOI: 10.1111/j.1749-6632.1991.tb33093.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Lagercrantz
- Department of Pediatrics, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Srinivasan M, Goiny M, Pantaleo T, Lagercrantz H, Brodin E, Runold M, Yamamoto Y. Enhanced in vivo release of substance P in the nucleus tractus solitarii during hypoxia in the rabbit: role of peripheral input. Brain Res 1991; 546:211-6. [PMID: 1712658 DOI: 10.1016/0006-8993(91)91483-h] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the adult, pentobarbitone-anaesthetized rabbit, the in vivo release of substance P-like immunoreactivity was measured in the nucleus tractus solitarii using microdialysis and radioimmunoassay. Increased 160 +/- 16%) extracellular concentrations of substance P-like immunoreactivity were observed during hypoxic provocations of 9% O2 in N2 which also resulted in an increase in phrenic nerve activity. In bilateral carotid sinus nerve-denervated animals no enhanced release of substance P was seen in response to hypoxic challenges (105 +/- 6%) and the phrenic nerve activity was not significantly affected. Perfusion of the nucleus tractus solitarii region with the dopamine agonist, apomorphine (10(-5) M) resulted in a significant decrease in the extracellular level of substance P. These results provide further evidence that substance P is involved in the mediation of the hypoxic drive inputs from the peripheral chemoreceptors. The interactions of apomorphine with substance P release might also suggest a presynaptic modulation of substance Pergic neurons by dopamine in the nucleus tractus solitarii.
Collapse
Affiliation(s)
- M Srinivasan
- Nobel Institute for Neurophysiology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Srinivasan M, Yamamoto Y, Brodin E, Persson H. Chronic treatment with SCH-23390, a selective dopamine D1 receptor blocker decreases preprotachykinin-A mRNA levels in nucleus tractus solitarii of the rabbit: role in respiratory control. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 9:233-8. [PMID: 1709440 DOI: 10.1016/0169-328x(91)90006-j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute intravenous administration of the selective D1 receptor blocker SCH-23390 resulted in an enhanced respiratory motor output as evidenced by the phrenic nerve activity, whereas local perfusion into the region of nucleus tractus solitarii had no effect. The increase in phrenic nerve activity was accompanied by a concomitant increase in the release of substance P in the region of nucleus tractus solitarii as measured by in vivo microdialysis technique. Chronic administration of SCH-23390 via subcutaneously implanted Alzet mini osmotic pumps, significantly decreased the level of preprotachykinin-A mRNA in the region of respiratory relay neurons in nucleus tractus solitarii but was without effect in the ventral medullary surface structure, wherein the central chemoreceptors are thought to be located. A smaller, but significant decrease was also seen in the striatum. The results suggest that chronic treatment with SCH-23390 leads to a disinhibition of an inhibitory dopaminergic input to the neurons in nucleus tractus solitarii from a suprapontine level, which may account for a subsequent inhibition of tachykinin-containing neurons in the nucleus tractus solitarii, the relay station for respiratory reflexes.
Collapse
Affiliation(s)
- M Srinivasan
- Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
43
|
Gingras JL, Brunner SL, McNamara MC. Developmental characteristics of substance P immunoreactivity within specific rabbit brainstem nuclei. REGULATORY PEPTIDES 1988; 23:183-92. [PMID: 2466306 DOI: 10.1016/0167-0115(88)90026-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microdissected areas of the rabbit brainstem were isolated at prenatal day E28, postnatal days P3, 7, 14, 21, at 2 months and adults. Substance P immunoreactivity (SPI) was assayed by RIA and SPI was expressed relative to the protein content of the extracted brain tissues. The developmental characteristics of SPI within specific brainstem nuclei are reported. In general, SPI was highest in the NTS (nucleus tractus solitarii) at all ages. The pattern of distribution of SPI, however, was age-specific. The development of SPI within select nuclei demonstrated marked variability and showed both age- and nucleus-specificity.
Collapse
Affiliation(s)
- J L Gingras
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
44
|
Lembeck F. The 1988 Ulf Euler Lecture. Substancce P: from extract to excitement. ACTA PHYSIOLOGICA SCANDINAVICA 1988; 133:435-54. [PMID: 2465671 DOI: 10.1111/j.1748-1716.1988.tb08427.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
|
46
|
Lindefors N, Yamamoto Y, Pantaleo T, Lagercrantz H, Brodin E, Ungerstedt U. In vivo release of substance P in the nucleus tractus solitarii increases during hypoxia. Neurosci Lett 1986; 69:94-7. [PMID: 2427979 DOI: 10.1016/0304-3940(86)90421-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vivo release of substance P (SP) was measured by microdialysis in the nucleus tractus solitarii (nTS) in adult cats. Small perfused semipermeable tubules (microdialysis probes) were implanted stereotaxically in the nTS, at the position of respiration-related neurons and perfused with artificial CSF. SP was determined by radioimmunoassay of the perfusate. Increased extracellular concentrations of SP-like immunoreactivity (SP-LI) were measured during hypoxia induced in artificially ventilated cats. In addition, a prolonged increase in the extracellular SP-LI concentration was encountered after cervical vagotomy. The results corroborate the suggestion that SP is a mediator of the central response to hypoxia.
Collapse
|