1
|
Baker LB, Nuccio RP, Jeukendrup AE. Acute effects of dietary constituents on motor skill and cognitive performance in athletes. Nutr Rev 2014; 72:790-802. [PMID: 25400063 DOI: 10.1111/nure.12157] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Performance in many sports is at least partially dependent on motor control, coordination, decision-making, and other cognitive tasks. This review summarizes available evidence about the ingestion of selected nutrients or isolated compounds (dietary constituents) and potential acute effects on motor skill and/or cognitive performance in athletes. Dietary constituents discussed include branched-chain amino acids, caffeine, carbohydrate, cocoa flavanols, Gingko biloba, ginseng, guarana, Rhodiola rosea, sage, L-theanine, theobromine, and tyrosine. Although this is not an exhaustive list, these are perhaps the most researched dietary constituents. Caffeine and carbohydrate have the greatest number of published reports supporting their ability to enhance acute motor skill and cognitive performance in athletes. At this time, there is insufficient published evidence to substantiate the use of any other dietary constituents to benefit sports-related motor skill or cognitive performance. The optimal dose and timing of caffeine and carbohydrate intake promoting enhanced motor skill and cognitive performance remain to be identified. Valid, reliable, and sensitive batteries of motor skills and cognitive tests should be developed for use in future efficacy studies.
Collapse
Affiliation(s)
- Lindsay B Baker
- Gatorade Sports Science Institute, Barrington, Illinois, USA
| | | | | |
Collapse
|
2
|
López-Cruz L, Pardo M, Salamone JD, Correa M. Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models. Behav Brain Res 2014; 270:213-22. [PMID: 24859174 DOI: 10.1016/j.bbr.2014.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. METHODS Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. RESULTS Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. CONCLUSION Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Marta Pardo
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
3
|
Pardo M, López-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M. Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A(2A)R KO mice. Behav Brain Res 2013; 247:217-26. [PMID: 23557694 DOI: 10.1016/j.bbr.2013.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/19/2022]
Abstract
Behavioral activation is regulated by dopamine (DA) in striatal areas. At low doses, while typical antipsychotic drugs produce psychomotor slowing, psychostimulants promote exploration. Minor stimulants such as caffeine, which act as adenosine receptor antagonists, can also potentiate behavioral activation. Striatal areas are rich in adenosine and DA receptors, and adenosine A2A receptors are mainly expressed in the striatum where they are co-localized with DA D2 receptors. Adenosine antagonists with different receptor-selectivity profiles were used to study spontaneous or haloperidol-impaired exploration and c-Fos expression in different striatal areas. Because A2A antagonists were expected to be more selective for reversing the effects of the D2 antagonist haloperidol, A2A receptor knockout (A2ARKO) mice were also assessed. CD1 and A2ARKO male mice were tested in an open field and in a running wheel. Only the A1/A2A receptor antagonist theophylline (5.0-15.0 mg/kg) and the A2A antagonist MSX-3 (2.0 mg/kg) increased spontaneous locomotion and rearing. Co-administration of theophylline (10.0-15.0 mg/kg), and MSX-3 (1.0-3.0 mg/kg) reversed haloperidol-induced suppression of locomotion. The A1 antagonist CPT was only marginally effective in reversing the effects of haloperidol. Although adenosine antagonists did not affect c-Fos expression on their own, theophylline and MSX-3, but not CPT, attenuated haloperidol induction of c-Fos expression. A2ARKO mice were resistant to the behavioral effects of haloperidol at intermediate doses (0.1 mg/kg) in the open field and in the running wheel. A2A receptors are important for regulating behavioral activation, and interact with D2 receptors in striatal areas to regulate neural processes involved in exploratory activity.
Collapse
Affiliation(s)
- M Pardo
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bhaskara S, Chandrasekharan MB, Ganguly R. Caffeine induction of Cyp6a2 and Cyp6a8 genes of Drosophila melanogaster is modulated by cAMP and D-JUN protein levels. Gene 2008; 415:49-59. [PMID: 18395996 DOI: 10.1016/j.gene.2008.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/06/2008] [Accepted: 02/17/2008] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 monooxygenases or CYPs, a family of endobiotics and xenobiotics metabolizing enzymes, are found in all organisms. We reported earlier that the promoters of Drosophila Cyp6a2 and Cyp6a8 genes are induced by caffeine. Since caffeine antagonizes adenosine receptor (AdoR) and inhibits cAMP phosphodiesterase (PDE), we used luciferase reporter gene to examine whether in SL-2 cells and adult Drosophila, induction of the two Cyp6 genes is mediated via AdoR and/or PDE pathway. Results showed that AdoR is not involved because AdoR agonists or antagonists do not affect the Cyp6 promoter activities. However, inhibition of PDE by specific inhibitors including caffeine causes induction of both Cyp6 gene promoters. We also found that flies mutant for dunce gene coding for cAMP-PDE, have higher Cyp6a8 promoter activity than the wild-type flies. We demonstrate that caffeine treatment increases intracellular cAMP levels, and cAMP treatment induces the Cyp6 gene promoters. Since both Cyp6 genes have multiple sites for JUN transcription factors, which generally play a positive role in cAMP pathway, effect of Drosophila jun (D-jun) on the Cyp6a8 promoter activity was examined. Results showed that the expression of D-jun sense plasmid causes downregulation rather than activation of the Cyp6a8 promoter. Conversely, expression of antisense plasmid increased the promoter activity. Interestingly, caffeine treatment decreased the D-JUN protein level in SL-2 cells as well as in adult flies. These results suggest that D-jun acts as a negative regulator, and caffeine induction of Cyp6a8 and Cyp6a2 genes is mediated by the upregulation of cAMP pathway and downregulation of the D-JUN protein level.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, United States
| | | | | |
Collapse
|
5
|
Moore CS, Earl N, Frenette R, Styhler A, Mancini JA, Nicholson DW, Hebb ALO, Owens T, Robertson GS. Peripheral phosphodiesterase 4 inhibition produced by 4-[2-(3,4-Bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]-3-methylpyridine-1-oxide (L-826,141) prevents experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther 2006; 319:63-72. [PMID: 16809479 DOI: 10.1124/jpet.106.106096] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Administration of phosphodiesterase 4 (PDE4) inhibitors suppresses the pathogenesis associated with experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In the present study, we compared the effects of rolipram and 4-[2-(3,4-bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]-3-methylpyridine-1-oxide (L-826,141), a novel nonbrain penetrant PDE4 inhibitor, on the onset and severity of clinical signs in a chronic, nonrelapsing/remitting model of EAE. Both rolipram (10 mg/kg p.o.) and L-826,141 (3 mg/kg p.o.) reduced the severity of EAE relative to controls, whereas L-826,141 (3 mg/kg p.o.) also delayed disease onset. To assess whether L-826,141 prevented EAE progression after the first signs of clinical onset, rolipram (10 mg/kg p.o.) or L-826,141 (3 or 30 mg/kg p.o.) were administered 24 h after the first signs of EAE were observed. Only L-826,141 at a dose of 30 mg/kg p.o. significantly decreased the clinical severity of EAE compared with vehicle controls. Immunohistochemical detection of the neuronal activity marker Fos confirmed that L-826,141 did not reach concentrations in the central nervous system sufficient to activate central neurons. Lipopolysaccharide-induced tumor necrosis factor-alpha in whole blood and plasma concentrations of L-826,141 revealed that only the 30-mg/kg dose resulted in levels sufficient to produce a near complete inhibition of PDE4 activity in immune cells. Taken together, these results demonstrate that peripheral PDE4 inhibition, produced by L-826,141, prevents the progression of EAE after the first onset of clinical signs, and suggest that similar compounds may have clinical efficacy in the treatment of MS.
Collapse
Affiliation(s)
- C S Moore
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Bldg., 5850 College St., Halifax, NS B3H 1X5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Deurveilher S, Lo H, Murphy JA, Burns J, Semba K. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. J Comp Neurol 2006; 498:667-89. [PMID: 16917819 DOI: 10.1002/cne.21084] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Despite the widespread use of caffeine, the neuronal mechanisms underlying its stimulatory effects are not completely understood. By using c-Fos immunohistochemistry as a marker of neuronal activation, we recently showed that stimulant doses of caffeine activate arousal-promoting hypothalamic orexin (hypocretin) neurons. In the present study, we investigated whether other key neurons of the arousal system are also activated by caffeine, via dual immunostaining for c-Fos and transmitter markers. Rats were administered three doses of caffeine or saline vehicle during the light phase. Caffeine at 10 and 30 mg/kg, i.p., increased motor activities, including locomotion, compared with after saline or a higher dose, 75 mg/kg. The three doses of caffeine induced distinct dose-related patterns of c-Fos immunoreactivity in several arousal-promoting areas, including orexin neurons and adjacent neurons containing neither orexin nor melanin-concentrating hormone; tuberomammillary histaminergic neurons; locus coeruleus noradrenergic neurons; noncholinergic basal forebrain neurons that do not contain parvalbumin; and nondopaminergic neurons in the ventral tegmental area. At any dose used, caffeine induced little or no c-Fos expression in cholinergic neurons of the basal forebrain and mesopontine tegmentum; dopaminergic neurons of the ventral tegmental area, central gray, and substantia nigra pars compacta; and serotonergic neurons in the dorsal raphe nucleus. Saline controls exhibited only few c-Fos-positive cells in most of the cell groups examined. These results indicate that motor-stimulatory doses of caffeine induce a remarkably restricted pattern of c-Fos expression in the arousal-promoting system and suggest that this specific neuronal activation may be involved in the behavioral arousal by caffeine.
Collapse
Affiliation(s)
- Samüel Deurveilher
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | |
Collapse
|
7
|
Prickaerts J, Sik A, van Staveren WCG, Koopmans G, Steinbusch HWM, van der Staay FJ, de Vente J, Blokland A. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 2004; 45:915-28. [PMID: 15312986 DOI: 10.1016/j.neuint.2004.03.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nitric oxide (NO)-cyclic GMP (cGMP) signaling pathway is assumed to play an important role in processes underlying learning and memory. We used phosphodiesterase type 5 (PDE5) inhibitors to study the role of cGMP in object- and spatial memory. Our results and those reported in other studies indicate that elevated hippocampal cGMP levels are required to improve the memory performance of rodents in object recognition and passive avoidance learning, but not in spatial learning. The timing of treatment modulates the effects on memory and strongly supports a role for cGMP in early stages of memory formation. Alternative explanations for the improved memory performance of PDE5 inhibitors are also discussed. Immunocytochemical studies showed that in vitro slice incubations with PDE5 inhibitors increase NO-stimulated cGMP levels mainly in hippocampal varicose fibers. Reviewing the available data on the localization of the different components of the NO-cGMP signaling pathway, indicates a complex interaction between NO and cGMP, which may be independent of each other. It is discussed that further studies are needed, immunocytochemical and behavioral, to better understand the cGMP-mediated molecular mechanisms underlying memory formation.
Collapse
Affiliation(s)
- Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Thompson BE, Sachs BD, Kantak KM, Cherry JA. The Type IV phosphodiesterase inhibitor rolipram interferes with drug-induced conditioned place preference but not immediate early gene induction in mice. Eur J Neurosci 2004; 19:2561-8. [PMID: 15128409 DOI: 10.1111/j.0953-816x.2004.03357.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Behavioural effects of psychostimulant and opiate drugs are mediated in part by cAMP pathways operating in the nucleus accumbens. Degradation of cAMP occurs through the action of phosphodiesterases, such as the Type IV phosphodiesterases (PDE4s) that are found throughout the brain. To examine the potential role of PDE4 in reward-mediated behaviour, we measured the effects of rolipram, a PDE4 selective inhibitor, on cocaine (18 mg/kg i.p.) and morphine (5 mg/kg s.c.) conditioned place preference in Swiss Webster mice. Rolipram (0, 0.2 or 1.0 mg/kg i.p.) given 30 min prior to drug administration dose-dependently reduced conditioning due to both cocaine and morphine. However, rolipram did not affect place preference induced by food, nor did it prevent the expression of a previously established place preference conditioned by cocaine or morphine. In a second experiment, rolipram administered 30 min prior to a single cocaine injection (50 mg/kg i.p.), did not alter cocaine-induced c-Fos expression in the caudate putamen or nucleus accumbens core. However, rolipram, but not cocaine, induced c-Fos in the nucleus accumbens shell. These results indicate that elevation of cAMP in neurons that express PDE4s may attenuate the rewarding properties of cocaine and morphine, but does not alter the cocaine signalling cascade that induces c-Fos expression. Thus, PDE4-mediated regulation of cAMP levels could underlie the establishment of reward valence to abused drugs.
Collapse
|
9
|
Adams AC, Keefe KA. Degree of immediate early gene induction in striatum by eticlopride determines sensitivity to N-methyl-D-aspartate receptor blockade. Brain Res 2000; 885:201-7. [PMID: 11102574 DOI: 10.1016/s0006-8993(00)02941-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cortical afferents excite striatal efferent neurons through activation of N-methyl-D-aspartate (NMDA) receptors, which can be modulated by D2 dopamine receptors. It is suggested that activation of PKA by D2 receptor blockade leads to NMDA receptor phosphorylation in the dendrites or phosphorylation of transcription factors in the nucleus. Thus, the levels and cellular localization of activated PKA may determine if D2 antagonist-mediated gene expression is dependent on NMDA receptor activation. We have previously demonstrated that NMDA receptor antagonists block gene expression induced by a high dose of eticlopride in medial and central but not lateral striatum. Here, we examined the effects of NMDA receptor antagonists on striatal gene expression after administration of a low dose of eticlopride. The results showed that NMDA receptor antagonists blocked gene induction by eticlopride throughout striatum. Less PKA activation by the low dose of eticlopride might explain why the expression was more sensitive in the lateral striatum to NMDA receptor blockade than in our previous study. To increase levels of PKA activation to the extent that NMDA receptor blockade would have less effect on eticlopride-mediated gene induction in all regions of striatum, we administered the phosphodiesterase inhibitor IBMX to animals treated with eticlopride. The combined administration of IBMX and eticlopride induced gene expression that was only partially attenuated (c-fos) or unaffected (zif268) by NMDA receptor blockade. These data support the suggestion that the degree of second messenger activation by D2 receptor blockade determines whether D2 dopamine receptor antagonist-mediated gene expression is dependent on NMDA receptor activation.
Collapse
Affiliation(s)
- A C Adams
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
10
|
Dassesse D, Vanderwinden JM, Goldberg I, Vanderhaeghen JJ, Schiffmann SN. Caffeine-mediated induction of c-fos, zif-268 and arc expression through A1 receptors in the striatum: different interactions with the dopaminergic system. Eur J Neurosci 1999; 11:3101-14. [PMID: 10510174 DOI: 10.1046/j.1460-9568.1999.00725.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine and the adenosine receptor antagonist, caffeine, modulate locomotor activity and striatal neuropeptide expression through interactions with the dopaminergic system by mechanisms which remain partially undetermined. We addressed this question by using quantitative immunocytochemistry and in situ hybridization, combined with retrograde tracing of striatal neurons, to characterize the mechanism(s) leading to the striatal increase in the immediate early genes (IEG), c-fos, zif-268 and arc, following a single injection of caffeine or the A1 antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). Caffeine and DPCPX induced c-fos, zif-268 and arc expression, both at mRNA and protein levels, in large proportions of striatonigral and striatopallidal neurons. The involvement of dopamine systems was evaluated by manipulations of the dopaminergic transmission. Quinpirole, a D2 agonist, almost completely blocked the caffeine-induced IEG increase in both striatopallidal and striatonigral neurons. Conversely, the lesion of the nigrostriatal pathway and the D1 antagonist SCH23390 abolished the caffeine effects in striatonigral neurons but had no or slight effect, respectively, on its action in striatopallidal neurons. These observations demonstrate that caffeine- and DPCPX-mediated IEG inductions involved different mechanisms in striatonigral and striatopallidal neurons through blockade of A1 receptors. Immediate early gene inductions result from a stimulation of dopamine release in striatonigral neurons and from activation of glutamate release and probably also acetylcholine release in striatopallidal neurons. These results also support the idea that, besides A2A receptors, adenosine acting at the A1 receptor plays pivotal functions in the basal ganglia physiology and that blockade of these receptors by specific or nonspecific antagonists, DPCPX and caffeine, may influence a broad range of neuronal functions in the striatum.
Collapse
Affiliation(s)
- D Dassesse
- Brain Research Unit and Laboratory of Neuropathology and Neuropeptides Research, School of Medicine, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Although caffeine is the most widely used central nervous system stimulant, the neuronal populations and pathways mediating its stimulant effects are not well understood. Using c-Fos protein as a marker for neuronal activation, the present study investigated the pattern of c-Fos induction at 2 hours after low locomotor-stimulant doses (1, 5, 10, and 30 mg/kg, i.p.) of caffeine and compared them with those after a higher dose (75 mg/kg, i.p.) or saline injection in adult male rats. Fos-immunoreactive neurons were counted in selected nuclei across the entire brain. Caffeine induced an increase in locomotor activity in a dose-dependent manner up to doses of 30 mg/kg and a decline at 75 mg/kg. Quantitative analysis of Fos-immunoreactive neurons indicated that no structures showed significant Fos expression at doses below 75 mg/kg or a biphasic pattern of Fos expression, as in locomotion. In contrast, caffeine at 75 mg/kg induced a significant increase compared with the saline condition in the number of Fos-immunoreactive neurons in the majority of structures examined. The structures included the striatum, nucleus accumbens, globus pallidus, and substantia nigra pars reticulata and autonomic and limbic structures including the basolateral and central nuclei of the amygdala, paraventricular and supraoptic hypothalamic nuclei, periventricular hypothalamus, paraventricular thalamic nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract. The locomotor-enhancing effects of low doses of caffeine did not appear to be associated with significant Fos expression in the rat brain.
Collapse
Affiliation(s)
- H J Bennett
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
12
|
Abstract
A diverse array of chemical agents have been self administered by humans to alter the psychological state. Such drugs of abuse include both stimulants and depressants of the central nervous system. However, some commonalties must underlie the neurobiological actions of these drugs, since the desire to take the drugs often crosses from one drug to another. Studies have emphasized a role of the ventral striatum, especially the nucleus accumbens, in the actions of all drugs of abuse, although more recent studies have implicated larger regions of the forebrain. Induction of immediate-early genes has been studied extensively as a marker for activation of neurons in the central nervous system. In this review, we survey the literature reporting activation of immediate-early gene expression in the forebrain, in response to administration of drugs of abuse. All drugs of abuse activate immediate-early gene expression in the striatum, although each drug induces a particular neuroanatomical signature of activation. Most drugs of abuse activate immediate-early gene expression in several additional forebrain regions, including portions of the extended amygdala, cerebral cortex, lateral septum, and midline/intralaminar thalamic nuclei, although regional variations are found depending on the particular drug administered. Common neuropharmacological mechanisms responsible for activation of immediate-early gene expression in the forebrain involve dopaminergic and glutamatergic systems. Speculations on the biological significance and clinical relevance of immediate-early gene expression in response to drugs of abuse are presented.
Collapse
Affiliation(s)
- R E Harlan
- Department of Anatomy, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
13
|
Prickaerts J, Steinbusch HW, Smits JF, de Vente J. Possible role of nitric oxide-cyclic GMP pathway in object recognition memory: effects of 7-nitroindazole and zaprinast. Eur J Pharmacol 1997; 337:125-36. [PMID: 9430406 DOI: 10.1016/s0014-2999(97)01301-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of 7-nitroindazole, a putative selective inhibitor of neuronal nitric oxide (NO) synthase and zaprinast, a cGMP-selective phosphodiesterase inhibitor, were evaluated on recognition memory of rats in the object recognition test. This test is based on the differential exploration of a new and a familiar object. Two doses of 7-nitroindazole (10 and 30 mg/kg) and zaprinast (3 and 10 mg/kg) were used. The substances were administered i.p. immediately after the exposure to two identical objects, i.e., at the start of the delay interval. After a delay interval of 1 h, control rats spent more time exploring the new object which demonstrates that they recognized the familiar one. Both doses of 7-nitroindazole impaired the discrimination between the two objects after the 1 h interval. After a 4 h interval, control rats did not discriminate between the objects. The highest dose of zaprinast facilitated object recognition after the 4 h interval. In addition, this dose of zaprinast (10 mg/kg) reversed the recognition memory deficit induced by 7-nitroindazole (10 mg/kg) at the 1 h interval. The highest dose of 7-nitroindazole slightly increased mean arterial blood pressure 1 h after its administration. 4 h after administration of zaprinast (10 mg/kg), mean arterial blood pressure was also slightly increased, but not after 1 h after zaprinast administration. However, these effects on blood pressure do not explain the differential effects on object recognition memory. These results therefore suggest that NO-cGMP signal transduction is involved in object recognition memory independently of its cardiovascular role. Finally, since 7-nitroindazole affected mean arterial blood pressure it can not be regarded as a selective inhibitor of neuronal NO synthase.
Collapse
Affiliation(s)
- J Prickaerts
- European Graduate School of Neuroscience EURON, Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Hashimoto K, Tomitaka S, Bi Y, Narita N, Minabe Y, Iyo M. Rolipram, a selective phosphodiesterase type-IV inhibitor, prevents induction of heat shock protein HSP-70 and hsp-70 mRNA in rat retrosplenial cortex by the NMDA receptor antagonist dizocilpine. Eur J Neurosci 1997; 9:1891-901. [PMID: 9383212 DOI: 10.1111/j.1460-9568.1997.tb00756.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-competitive NMDA receptor antagonists, such as (+)-MK-801 (dizocilpine), cause the expression of heat shock protein HSP-70 and pathomorphological damage in the retrosplenial cortex of the rat brain. However, the precise mechanism(s) underlying the neurotoxicity of NMDA receptor antagonists is unknown. The present study was undertaken to examine the role of phosphodiesterase type IV in the expression of heat shock genes induced by dizocilpine. Heat shock protein HSP-70, which is known as a sensitive marker of neuron injury, was induced in the retrosplenial cortex of the rat brain 24 h after a single administration of dizocilpine (1 mg/kg). Pretreatment with the specific phosphodiesterase type IV inhibitor rolipram (2.5, 5 or 10 mg/kg, 15 min before dizocilpine) attenuated the expression of HSP-70 and hsp-70 mRNA induced by dizocilpine (1 mg/kg) in a dose-dependent manner. Furthermore, another phosphodiesterase type IV inhibitor, Ro 20-1724 (5 or 10 mg/kg, 15 min before dizocilpine), and a non-selective phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) (5 or 10 mg/kg, 15 min before dizocilpine), significantly attenuated the expression of HSP-70 protein and hsp-70 mRNA induced in the retrosplenial cortex by dizocilpine. However, the induction of the immediate early gene c-fos and microglial activation in the retrosplenial cortex after administration of dizocilpine was not attenuated by pretreatment with rolipram (5 or 10 mg/kg, 15 min before dizocilpine). Moreover, histopathological study indicated that pretreatment with rolipram (5 or 10 mg/kg, 15 min before dizocilpine) did not prevent the formation of vacuoles caused by treatment with dizocilpine. The present findings suggest that phosphodiesterase type IV may play a significant role in the expression of HSP-70 protein and hsp-70 mRNA in the rat retrosplenial cortex after administration of dizocilpine, and that phosphodiesterase type IV may not play a role in the neurotoxicity of NMDA receptor antagonists such as dizocilpine.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Cortical Function Disorders, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Svenningsson P, Johansson B, Fredholm BB. Caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in caudate putamen and in nucleus accumbens are differentially affected by the N-methyl-D-aspartate receptor antagonist MK-801. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:183-9. [PMID: 8717354 DOI: 10.1016/0169-328x(95)00202-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Caffeine (100 mg/kg, i.p.) induces a rapid increase in the expression of mRNA for the immediate early genes (IEGs) c-fos and NGFI-A in rat striatum. We have examined how this response is affected by pretreatment with either the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (1 and 3 mg/kg, i.p.), the competitive NMDA receptor antagonist D-CPP (6 mg/kg, i.p.), or the non-selective excitatory amino acid receptor antagonist kynurenic acid (300 mg/kg, i.p). The two NMDA receptor antagonists significantly reduced the caffeine-induced expression of both c-fos mRNA and NGFI-A mRNA in the medial part of the caudate putamen. The effect was less pronounced in the lateral part of the caudate putamen. MK-801 caused an enhancement of c-fos and NGFI-A mRNA expression in nucleus accumbens. Pretreatment with kynurenic acid caused no marked alterations in the caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in any brain region. These findings suggest that glutamatergic transmission via NMDA receptors contributes to the induction of c-fos mRNA and NGFI-A mRNA by caffeine in striatum. In addition we show that MK-801 can either increase or decrease the caffeine effect on IEGs depending on the region studied.
Collapse
Affiliation(s)
- P Svenningsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|