1
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
2
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Babou Kammoe RB, Sévigny J. Extracellular nucleotides in smooth muscle contraction. Biochem Pharmacol 2024; 220:116005. [PMID: 38142836 DOI: 10.1016/j.bcp.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Extracellular nucleotides and nucleosides are crucial signalling molecules, eliciting diverse biological responses in almost all organs and tissues. These molecules exert their effects by activating specific nucleotide receptors, which are finely regulated by ectonucleotidases that break down their ligands. In this comprehensive review, we aim to elucidate the relevance of extracellular nucleotides as signalling molecules in the context of smooth muscle contraction, considering the modulatory influence of ectonucleotidases on this intricate process. Specifically, we provide a detailed examination of the involvement of extracellular nucleotides in the contraction of non-vascular smooth muscles, including those found in the urinary bladder, the airways, the reproductive system, and the gastrointestinal tract. Furthermore, we present a broader overview of the role of extracellular nucleotides in vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Romuald Brice Babou Kammoe
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
5
|
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders. Brain Sci 2023; 13:1088. [PMID: 37509018 PMCID: PMC10377192 DOI: 10.3390/brainsci13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent data suggest that defects in purinergic signalling are a common denominator of autism spectrum disorders (ASDs), though nothing is known about whether the disorder-related imbalance occurs at the receptor level. In this study, we investigated whether prenatal exposure to valproic acid (VPA) induces changes in purinergic receptor expression in adolescence and whether it corresponds to glial cell activation. Pregnant dams were subjected to an intraperitoneal injection of VPA at embryonic day 12.5. In the hippocampi of adolescent male VPA offspring, we observed an increase in the level of P2X1, with concomitant decreases in P2X7 and P2Y1 receptors. In contrast, in the cortex, the level of P2X1 was significantly reduced. Also, significant increases in cortical P2Y1 and P2Y12 receptors were detected. Additionally, we observed profound alterations in microglial cell numbers and morphology in the cortex of VPA animals, leading to the elevation of pro-inflammatory cytokine expression. The changes in glial cells were partially reduced via a single administration of a non-selective P2 receptor antagonist. These studies show the involvement of purinergic signalling imbalance in the modulation of brain inflammatory response induced via prenatal VPA exposure and may indicate that purinergic receptors are a novel target for pharmacological intervention in ASDs.
Collapse
Affiliation(s)
- Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Matuszewska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Imraish A, Abu-Thiab T, Hammad H. P 2X and P2Y receptor antagonists reduce inflammation in ATP-induced microglia. Pharm Pract (Granada) 2023; 21:2788. [PMID: 37090457 PMCID: PMC10117305 DOI: 10.18549/pharmpract.2023.1.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 04/25/2023] Open
Abstract
Background P2 receptors have been implicated in the release of neurotransmitter and pro-inflammatory cytokines due to their response to neuro-excitatory substances in the microglia. The P2X4, P2X7 and P2Y12 receptors are involved in the development of pain behavior induced by peripheral nerve injury. However, it is not known if blocking P2X4, P2X7 and P2Y12 receptors is associated with the expression and the release of interleukin-1B (IL-1β), interleukin-6 (IL-6), or tumor necrosis factor-α (TNF-α) in cultured neonatal spinal cord microglia. Objective For this reason, we examined the effects of P2X4, P2X7 and P2Y12 antagonists on the expression and the release of IL-1β, IL-6, and TNF-α in ATP-stimulated microglia. Methods In this study, we observed the effect of A-740003, PSB-12062 and MRS 2395 (P2X4, P2X7 and P2Y12 receptors antagonist, respectively), on the expression and release of IL-1β, IL-6 and TNF-α by using real-time fluorescence quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results ATP induced the increased expression of IL-1β, IL-6 and TNF-α at the level of messenger RNA (mRNA). ATP-evoked increase in IL-1β, IL-6 and TNF-α mRNA expression was inhibited by the P2X4 receptor antagonist A-740003 or P2X7 receptor antagonist PSB-12062, respectively. Similarly, ATP-evoked release of IL-1β, IL-6 and TNF-α was inhibited by A-740003 and PSB-12062. Furthermore, ATP-evoked increased expression of Iba-1, IL-1β, IL-6 and TNF-α mRNA, and release of IL-1β, IL-6 and TNF-α were nearly all blocked after co-administration of A-740003 plus PSB-12062. Finally, ATP-evoked increased gene expression and release of IL-1β, IL-6 and TNF-α were also inhibited by MRS 2395 (P2Y12 antagonist). Conclusion These observations suggest a new clue for therapeutic strategies to treat the neuro-inflammation.
Collapse
Affiliation(s)
- Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan.
| | - Tuqa Abu-Thiab
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan.
| | - Hana Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan.
| |
Collapse
|
7
|
Asghar J, Latif L, Alexander SPH, Kendall DA. Development of a novel cell-based, In-Cell Western/ERK assay system for the high-throughput screening of agonists acting on the delta-opioid receptor. Front Pharmacol 2022; 13:933356. [PMID: 36225576 PMCID: PMC9549385 DOI: 10.3389/fphar.2022.933356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extracellular signal-regulated kinases (ERKs) are important signaling mediators in mammalian cells and, as a result, one of the major areas of research focus. The detection and quantification of ERK phosphorylation as an index of activation is normally conducted using immunoblotting, which does not allow high-throughput drug screening. Plate-based immunocytochemical assays provide a cheaper and relatively high-throughput alternative method for quantifying ERK phosphorylation. Here, we present optimization steps aimed to increase assay sensitivity and reduce variance and cost using the LI-COR In-Cell Western (I-CW) system in a recombinant CHO-K1 cell line, over-expressing the human delta-opioid receptor (hDOPr) as a model.Methods: Cells cultured in 96-well microassay plates were stimulated with three standard/selective DOPr agonists (SNC80, ADL5859, and DADLE) and a novel selective DOPr agonist (PN6047) to elicit a phospho-ERK response as an index of activation. A number of experimental conditions were investigated during the assay development.Key results: Preliminary experiments revealed a clearly visible edge-effect which significantly increased assay variance across the plate and which was reduced by pre-incubation for 30 min at room temperature. ERK phosphorylation was detectable as early as 1 min after agonist addition, with a distinct peak at 3–5 min. Optimization of the cell seeding densities showed that 25,000 cells per well have the lowest basal phospho-ERK response and an optimal agonist ERK1/2 signal. Pre-incubation with apyrase (an ATPase) did not reduce the basal or agonist responses. All agonists produced concentration-dependent increases in phospho-ERK activation, and pertussis toxin was able to attenuate these ERK responses. Naltrindole, which is a selective DOPr antagonist, was able to antagonize the DOPr-mediated ERK activation of the ligands.Conclusion: We have developed an optimization protocol and highlighted a number of considerations when performing this high-throughput fluorescence immunocytochemical (ICC) assay measuring ERK phosphorylation in the human DOPr. The optimized protocol was found to be a more conducive option for the screening of delta agonists. This provides a basis for additional assay development to investigate opioid pharmacology. This protocol should be widely applicable for measuring ERK phosphorylation in any cell line and investigating other protein targets in GPCR drug discovery.
Collapse
Affiliation(s)
- Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Junaid Asghar,
| | - Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
| | - Stephen P. H. Alexander
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
| | - David A. Kendall
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Wu X, Wei S, Chen M, Li J, Wei Y, Zhang J, Dong W. P2RY13 Exacerbates Intestinal Inflammation by Damaging the Intestinal Mucosal Barrier via Activating IL-6/STAT3 Pathway. Int J Biol Sci 2022; 18:5056-5069. [PMID: 35982893 PMCID: PMC9379400 DOI: 10.7150/ijbs.74304] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is unclear, while genetic factors have been confirmed to play an important role in its development. P2RY13 is a G protein-coupled receptor (GPCRs), which are involved in the pathogenesis of inflammation and immune disorders. According to GEO database analysis, we first observed that the expression of P2Y13 was increased in UC patients. Therefore, we sought to determine the role of P2Y13 in the development of colitis. Our data showed that P2RY13 was highly expressed in the inflamed intestinal tissues of UC patients. In mice, pharmacological antagonism of P2Y13 can significantly attenuate the intestinal mucosal barrier disruption. In LPS-induced NCM460 cell, knockdown or pharmacological inhibition of P2RY13 increased the expression of intestinal tight junction protein and reduced apoptosis. In addition, we found that the effect of P2Y13 on colitis is related to the activation of the IL-6/STAT3 pathway. Activation of P2Y13 increases IL-6 expression and promotes STAT3 phosphorylation and nuclear transport. Deletion of the STAT3 gene in the intestinal epithelial cells of mice significantly mitigated the exacerbation of colitis due to P2Y13 activation. Thus, P2Y13 can aggravate intestinal mucosal barrier destruction by activating the IL-6/STAT3 pathway. P2Y13 might be a potential drug target for UC.
Collapse
Affiliation(s)
- Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Meilin Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Jinting Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Yuping Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Rao R, Shah S, Bhattacharya D, Toukam DK, Cáceres R, Pomeranz Krummel DA, Sengupta S. Ligand-Gated Ion Channels as Targets for Treatment and Management of Cancers. Front Physiol 2022; 13:839437. [PMID: 35350689 PMCID: PMC8957973 DOI: 10.3389/fphys.2022.839437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ligand-gated ion channels are an ionotropic receptor subtype characterized by the binding of an extracellular ligand, followed by the transient passage of ions through a transmembrane pore. Ligand-gated ion channels are commonly subcategorized into three superfamilies: purinoreceptors, glutamate receptors, and Cys-loop receptors. This classification is based on the differing topographical morphology of the receptors, which in turn confers functional differences. Ligand-gated ion channels have a diverse spatial and temporal expression which implicate them in key cellular processes. Given that the transcellular electrochemical gradient is finely tuned in eukaryotic cells, any disruption in this homeostasis can contribute to aberrancies, including altering the activity of pro-tumorigenic molecular pathways, such as the MAPK/ERK, RAS, and mTOR pathways. Ligand-gated ion channels therefore serve as a potential targetable system for cancer therapeutics. In this review, we analyze the role that each of the three ligand-gated ion channel superfamilies has concerning tumor proliferation and as a target for the treatment of cancer symptomatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
10
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
11
|
Adenosine 5'-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand. Shock 2021; 54:237-244. [PMID: 31460871 DOI: 10.1097/shk.0000000000001440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5'-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (<1% O2) conditions when compared to untreated mice. These findings suggest that AMP induces a hypometabolic state that slows mitochondrial respiration, reduces oxygen demand, and delays the processes that damage mitochondria in the brain and other organs following hypoxia and reperfusion. Further examination of these mechanisms may lead to new treatments that preserve organ function in critical care patients.
Collapse
|
12
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Jacobson KA, IJzerman AP, Müller CE. Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochem Pharmacol 2021; 187:114311. [PMID: 33130128 PMCID: PMC8081756 DOI: 10.1016/j.bcp.2020.114311] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Prof. Geoffrey Burnstock originated the concept of purinergic signaling. He demonstrated the interactions and biological roles of ionotropic P2X and metabotropic P2Y receptors. This review paper traces the historical origins of many currently used antagonists and agonists for P2 receptors, as well as adenosine receptors, in early attempts to identify ligands for these receptors - prior to the use of chemical libraries for screening. Rather than presenting a general review of current purinergic ligands, we focus on common chemical scaffolds (privileged scaffolds) that can be adapted for multiple receptor targets. By carefully analyzing the structure activity relationships, one can direct the selectivity of these scaffolds toward different receptor subtypes. For example, the weak and non-selective P2 antagonist reactive blue 2 (RB-2) was derivatized using combinatorial synthetic approaches, leading to the identification of selective P2Y2, P2Y4, P2Y12 or P2X2 receptor antagonists. A P2X4 antagonist NC-2600 is in a clinical trial, and A3 adenosine agonists show promise, for chronic pain. P2X7 antagonists have been in clinical trials for depression (JNJ-54175446), inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, inflammatory pain and chronic obstructive pulmonary disease (COPD). P2X3 antagonists are in clinical trials for chronic cough, and an antagonist named after Burnstock, gefapixant, is expected to be the first P2X3 antagonist filed for approval. We are seeing that the vision of Prof. Burnstock to use purinergic signaling modulators, most recently at P2XRs, for treating disease is coming to fruition.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, the Netherlands
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
14
|
Quiroga J, Alarcón P, Manosalva C, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Mitochondria-derived ATP participates in the formation of neutrophil extracellular traps induced by platelet-activating factor through purinergic signaling in cows. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103768. [PMID: 32692996 DOI: 10.1016/j.dci.2020.103768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Neutrophil extracellular trap (NET) formation eliminates/prevents the spread of infectious agents. Platelet activating factor (PAF) is involved in infectious diseases of cattle because it recruits and activates neutrophils. However, its ability to induce NET release and the role of metabolism in this process is not known. We investigated if inhibition of glycolysis, mitochondrial-derived adenosine triphosphate (ATP) synthesis and purinergic signaling though P2X1 purinoceptors interfered with NET formation induced by PAF. We inhibited bovine neutrophils with 2-deoxy-d-glucose, rotenone, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and NF449 to evaluate PAF-mediated NET extrusion. PAF induced mitochondrial hyperpolarization and triggered extracellular ATP release via pannexin-1. Inhibition of mitochondrial metabolism prevented extracellular ATP release. Inhibition of glycolysis, complex-I activity and oxidative phosphorylation prevented NET formation induced by PAF. Inhibition of P2X1 purinergic receptors inhibited mitochondrial hyperpolarization and NET formation. We concluded that PAF-induced NET release is dependent upon glycolysis, mitochondrial ATP synthesis and purinergic signaling.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
15
|
Di Virgilio F, Jacobson KA, Williams M. Geoffrey Burnstock - An accidental pharmacologist. Biochem Pharmacol 2020; 187:114300. [PMID: 33203518 DOI: 10.1016/j.bcp.2020.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Geoffrey Burnstock, the founder of the field of purinergic signaling research passed away in Melbourne, Australia on June 3rd, 2020, at the age of 91. With his death, the world of biomedical research lost one of its most passionate, creative and unconventional thought leaders. He was an inspiration to the many researchers he interacted with for more than 50 years and a frequent irritation to those in the administrative establishment. Geoff never considered himself a pharmacologist having being trained as a zoologist and becoming an autonomic neurophysiologist based on his evolving interests in systems and disease-related research. By the end of his life he had: published some 1550 papers; been cited more than 125,000 times; had an h-index of 156 and had supervised over 100 Ph.D. students. His indelible legacy, based on a holistic, data-based, multidisciplinary, unconventional "outside the box" approach to research was reflected in two of the seminal findings in late 20th century biomedical research: the purinergic neurotransmitter hypothesis and the concept of co-neurotransmission, both of which were initially received by his peers with considerable skepticism that at times verged on disdain. Nonetheless, while raising hackles and threatening the status quo, Geoff persevered and prevailed, becoming a mentor for several generations of biomedical researchers. In this review we provide a joint perspective on Geoff Burnstock's legacy in research.
Collapse
Affiliation(s)
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
16
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
17
|
Ledderose C, Junger WG. Mitochondria Synergize With P2 Receptors to Regulate Human T Cell Function. Front Immunol 2020; 11:549889. [PMID: 33133068 PMCID: PMC7550529 DOI: 10.3389/fimmu.2020.549889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular ATP is the universal energy carrier that fuels many cellular processes. However, immune cells can also release a portion of their ATP into the extracellular space. There, ATP activates purinergic receptors that mediate autocrine and paracrine signaling events needed for the initiation, modulation, and termination of cell functions. Mitochondria contribute to these processes by producing ATP that is released. Here, we summarize the synergistic interplay between mitochondria and purinergic signaling that regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1, P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen recognition. These mitochondrial and purinergic signaling mechanisms are indispensable for host immune defense. However, they also represent an Achilles heel that can render the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while inflammation and tissue damage generate excessive systemic ATP levels that distort autocrine purinergic signaling and impair T cell function. An improved understanding of the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel strategies for the diagnosis and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
de Oliveira M, Mathias LS, de Sibio MT, Noronha-Matos JB, Costa MA, Nogueira CR, Correia-de-Sá P. Pitfalls and challenges of the purinergic signaling cascade in obesity. Biochem Pharmacol 2020; 182:114214. [PMID: 32905795 DOI: 10.1016/j.bcp.2020.114214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.
Collapse
Affiliation(s)
- Miriane de Oliveira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Maria Teresa de Sibio
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Célia Regina Nogueira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
19
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
20
|
Ledderose C, Bromberger S, Slubowski CJ, Sueyoshi K, Junger WG. Frontline Science: P2Y11 receptors support T cell activation by directing mitochondrial trafficking to the immune synapse. J Leukoc Biol 2020; 109:497-508. [PMID: 32531829 DOI: 10.1002/jlb.2hi0520-191r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022] Open
Abstract
T cells form an immune synapse (IS) with antigen-presenting cells (APCs) to detect antigens that match their TCR. Mitochondria, pannexin-1 (panx1) channels, and P2X4 receptors congregate at the IS where mitochondria produce the ATP that panx1 channels release in order to stimulate P2X4 receptors. P2X4 receptor stimulation causes cellular Ca2+ influx that up-regulates mitochondrial metabolism and localized ATP production at the IS. Here we show that P2Y11 receptors are essential players that sustain these T cell activation mechanisms. We found that P2Y11 receptors retract from the IS toward the back of cells where their stimulation by extracellular ATP induces cAMP/PKA signaling that redirects mitochondrial trafficking to the IS. P2Y11 receptors thus reinforce IS signaling by promoting the aggregation of mitochondria with panx1 ATP release channels and P2X4 receptors at the IS. This dual purinergic signaling mechanism involving P2X4 and P2Y11 receptors focuses mitochondrial metabolism to the IS where localized ATP production sustains synaptic activity in order to allow successful completion of T cell activation responses. Our findings have practical implications because rodents lack P2Y11 receptors, raising concerns as to the validity of rodent models to study treatment of infections and inflammatory conditions.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Bromberger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Koichiro Sueyoshi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Zumerle S, Calì B, Munari F, Angioni R, Di Virgilio F, Molon B, Viola A. Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis. Cell Rep 2020; 27:1-10.e4. [PMID: 30943393 PMCID: PMC6449513 DOI: 10.1016/j.celrep.2019.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/26/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular ATP is a signaling molecule exploited by the immune cells for both autocrine regulation and paracrine communication. By performing live calcium imaging experiments, we show that triggered mouse macrophages are able to propagate calcium signals to resting bystander cells by releasing ATP. ATP-based intercellular communication is mediated by P2X4 and P2X7 receptors and is a feature of pro-inflammatory macrophages. In terms of functional significance, ATP signaling is required for efficient phagocytosis of pathogen-derived molecules and apoptotic cells and may represent a target for macrophage regulation by CD39-expressing cells. These results highlight a cell-to-cell communication mechanism tuning innate immunity.
Collapse
Affiliation(s)
- Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Roberta Angioni
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
22
|
Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Cells 2020; 9:cells9051108. [PMID: 32365642 PMCID: PMC7290360 DOI: 10.3390/cells9051108] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglial cells, the resident macrophages of the central nervous system (CNS), exist in a process-bearing, ramified/surveying phenotype under resting conditions. Upon activation by cell-damaging factors, they get transformed into an amoeboid phenotype releasing various cell products including pro-inflammatory cytokines, chemokines, proteases, reactive oxygen/nitrogen species, and the excytotoxic ATP and glutamate. In addition, they engulf pathogenic bacteria or cell debris and phagocytose them. However, already resting/surveying microglia have a number of important physiological functions in the CNS; for example, they shield small disruptions of the blood–brain barrier by their processes, dynamically interact with synaptic structures, and clear surplus synapses during development. In neurodegenerative illnesses, they aggravate the original disease by a microglia-based compulsory neuroinflammatory reaction. Therefore, the blockade of this reaction improves the outcome of Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. The function of microglia is regulated by a whole array of purinergic receptors classified as P2Y12, P2Y6, P2Y4, P2X4, P2X7, A2A, and A3, as targets of endogenous ATP, ADP, or adenosine. ATP is sequentially degraded by the ecto-nucleotidases and 5′-nucleotidase enzymes to the almost inactive inosine as an end product. The appropriate selective agonists/antagonists for purinergic receptors as well as the respective enzyme inhibitors may profoundly interfere with microglial functions and reconstitute the homeostasis of the CNS disturbed by neuroinflammation.
Collapse
|
23
|
Accuracy and Precision of the Receptorial Responsiveness Method (RRM) in the Quantification of A 1 Adenosine Receptor Agonists. Int J Mol Sci 2019; 20:ijms20246264. [PMID: 31842299 PMCID: PMC6940880 DOI: 10.3390/ijms20246264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
The receptorial responsiveness method (RRM) is a procedure that is based on a simple nonlinear regression while using a model with two variables (X, Y) and (at least) one parameter to be determined (cx). The model of RRM describes the co-action of two agonists that consume the same response capacity (due to the use of the same postreceptorial signaling in a biological system). While using RRM, uniquely, an acute increase in the concentration of an agonist (near the receptors) can be quantified (as cx), via evaluating E/c curves that were constructed with the same or another agonist in the same system. As this measurement is sensitive to the implementation of the curve fitting, the goal of the present study was to test RRM by combining different ways and setting options, namely: individual vs. global fitting, ordinary vs. robust fitting, and three weighting options (no weighting vs. weighting by 1/Y2 vs. weighting by 1/SD2). During the testing, RRM was used to estimate the known concentrations of stable synthetic A1 adenosine receptor agonists in isolated, paced guinea pig left atria. The estimates were then compared to the known agonist concentrations (to assess the accuracy of RRM); furthermore, the 95% confidence limits of the best-fit values were also considered (to evaluate the precision of RRM). It was found that, although the global fitting offered the most convenient way to perform RRM, the best estimates were provided by the individual fitting without any weighting, almost irrespective of the fact whether ordinary or robust fitting was chosen.
Collapse
|
24
|
Wang Z, Li L, Yang R, Xu X, Liang S. P2X receptors mediated abnormal interaction between satellite glial cells and neurons in visceral pathological changes. Cell Biol Int 2019; 43:1346-1352. [PMID: 31228306 DOI: 10.1002/cbin.11195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/24/2023]
Abstract
The adenosine triphosphate (ATP)-gated P2X receptor cation channel family consists of permeable ligand-gated ion channels that expand on the binding of extracellular adenosine 5'-ATP. ATP-gated P2X receptors are trimer ion channels that assemble homo or isomer from seven cloned subunits. P2X receptors are discovered mostly in mammalian and are being found in an increasing number of non-vertebrates, such as zebrafish, bullfrog, and ameba. P2X receptors are involved in many physiological processes, including regulation of heart rhythm and contractility, and regulation of pain, especially chronic pain and glia integration. This review summarizes the current studies on the regulation of P2X receptors in abnormal neuronal-glial interaction and the pathological changes in viscera, especially in myocardial ischemia.
Collapse
Affiliation(s)
- Zilin Wang
- Undergraduate student of class 156 of Nanchang University Queen Marry University of London Joint programme, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
25
|
Szabo AM, Erdei T, Viczjan G, Kiss R, Zsuga J, Papp C, Pinter A, Juhasz B, Szilvassy Z, Gesztelyi R. An Advanced In Silico Modelling of the Interaction between FSCPX, an Irreversible A 1 Adenosine Receptor Antagonist, and NBTI, a Nucleoside Transport Inhibitor, in the Guinea Pig Atrium. Molecules 2019; 24:E2207. [PMID: 31212849 PMCID: PMC6630508 DOI: 10.3390/molecules24122207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
In earlier studies, we generated concentration-response (E/c) curves with CPA (N6-cyclopentyladenosine; a selective A1 adenosine receptor agonist) or adenosine, in the presence or absence of S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine (NBTI, a selective nucleoside transport inhibitor), and with or without a pretreatment with 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)-benzoyloxy)propyl]-N1-propylxanthine (FSCPX, a chemical known as a selective, irreversible A1 adenosine receptor antagonist), in isolated, paced guinea pig left atria. Meanwhile, we observed a paradoxical phenomenon, i.e. the co-treatment with FSCPX and NBTI appeared to enhance the direct negative inotropic response to adenosine. In the present in silico study, we aimed to reproduce eight of these E/c curves. Four models (and two additional variants of the last model) were constructed, each one representing a set of assumptions, in order to find the model exhibiting the best fit to the ex vivo data, and to gain insight into the paradoxical phenomenon in question. We have obtained in silico evidence for an interference between effects of FSCPX and NBTI upon our ex vivo experimental setting. Regarding the mechanism of this interference, in silico evidence has been gained for the assumption that FSCPX inhibits the effect of NBTI on the level of endogenous (but not exogenous) adenosine. As an explanation, it may be hypothesized that FSCPX inhibits an enzyme participating in the interstitial adenosine formation. In addition, our results suggest that NBTI does not stop the inward adenosine flux in the guinea pig atrium completely.
Collapse
Affiliation(s)
- Adrienn Monika Szabo
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Tamas Erdei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gabor Viczjan
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Akos Pinter
- Institute of Mathematics, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
26
|
Gong D, Zhang J, Chen Y, Xu Y, Ma J, Hu G, Huang Y, Zheng J, Zhai W, Xue W. The m 6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca 2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:233. [PMID: 31159832 PMCID: PMC6547495 DOI: 10.1186/s13046-019-1223-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Previous study demonstrated that extracellular ATP could promote cell migration and invasion in multiple human cancers. Till now, the pro-invasive mechanisms of ATP and P2RX6, a preferred receptor for ATP, are still poorly studied in RCC. Methods Bioinformatics analysis was performed to identify the differentially expressed genes during RCC different stages. Tissue microarray, IHC staining and survival analysis was respectively used to evaluate potential clinical function. In vitro and in vivo assays were performed to explore the P2RX6 biological effects in RCC progression. Results We found that ATP might increase RCC cells migration and invasion through P2RX6. Mechanism dissection revealed that ATP-P2RX6 might modulate the Ca2+-mediated p-ERK1/2/MMP9 signaling to increase the RCC cells migration and invasion. Furthermore, METTL14 implicated m6A modification in RCC and down-regulated P2RX6 protein translation. In addition, human clinical survey also indicated the positive correlation of this newly identified signaling in RCC progression and prognosis. Conclusions Our findings revealed that the newly identified ATP-P2RX6-Ca2+-p-ERK1/2-MMP9 signaling facilitates RCC cell invasion and metastasis. Targeting this novel signaling pathway with small molecules might help us to develop a new approach to better suppress RCC progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1223-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Junjie Ma
- Department of Urology, Pudong Hospital, School of Medicine in Fudan University, Shanghai, 201300, China
| | - Guanghui Hu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
27
|
Schmidt A, Alsop RJ, Rimal R, Lenzig P, Joussen S, Gervasi NN, Khondker A, Gründer S, Rheinstädter MC, Wiemuth D. Modulation of DEG/ENaCs by Amphiphiles Suggests Sensitivity to Membrane Alterations. Biophys J 2019; 114:1321-1335. [PMID: 29590590 DOI: 10.1016/j.bpj.2018.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and β-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Rick J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Rahul Rimal
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Natalie N Gervasi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
28
|
Subiabre M, Villalobos-Labra R, Silva L, Fuentes G, Toledo F, Sobrevia L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165370. [PMID: 30660686 DOI: 10.1016/j.bbadis.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
Affiliation(s)
- Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen 9700 RB, the Netherlands
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cell Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío Bío, Chillán 3780000, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston 4029, Queensland, Australia.
| |
Collapse
|
29
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
30
|
Huo JF, Chen XB. P2X4R silence suppresses glioma cell growth through BDNF/TrkB/ATF4 signaling pathway. J Cell Biochem 2018; 120:6322-6329. [PMID: 30362154 DOI: 10.1002/jcb.27919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Purinergic receptor P2X 4 (P2X4R), a member of purinergic channels family and a subtype of ionotropic adenosine triphosphate receptors, plays a critical role in tumorigenesis. Evidence suggested that P2X4R is expressed in rat C6 glioma model, however, its role and the underlying mechanism of action are still unclear in human glioblastoma multiforme (GBM). In the current study, our aim is to examine the function and the molecular basis of P2X4R in GBM. We first observed that GBM cells, U251, T98, U87, U373, and A172 were all high expressed P2X4R, when compared with the normal human astrocytes (NHA) cells. To gain the function of P2X4R, P2X4R silence cells were constructed by transfection with P2X4R small interfering RNA (siRNA). We found that P2X4R deletion impeded T98 and U87 cell viability and proliferation, and further studies indicated that cell apoptosis and caspase-3 activity was increased in T98 and U87 cell transfected with P2X4R siRNA. Subsequently, we confirmed that P2X4R silence suppressed brain-derived neurotrophic factor (BDNF), Trk receptor tyrosine kinases (TrkB), and activating transcription factor 4 (ATF4) expression in T98 and U87 cells. And P2X4R siRNA-induced ATF4-expression inhibition dependent on BDNF/TrkB signaling pathway. The impact of P2X4R silence on T98 and U87 cell growth and apoptosis was reversed by ATF4 overexpression. In summary, this study provides the first evidence that P2X4R plays important roles in GBM cell growth and apoptosis.
Collapse
Affiliation(s)
- Jun-Feng Huo
- Second Ward, Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiao-Bing Chen
- Second Ward, Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
31
|
Fois G, Föhr KJ, Kling C, Fauler M, Wittekindt OH, Dietl P, Frick M. P2X 4 receptor re-sensitization depends on a protonation/deprotonation cycle mediated by receptor internalization and recycling. J Physiol 2018; 596:4893-4907. [PMID: 30144063 DOI: 10.1113/jp275448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.
Collapse
Affiliation(s)
| | - Karl J Föhr
- Department of Anesthesiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
32
|
FSCPX, a Chemical Widely Used as an Irreversible A₁ Adenosine Receptor Antagonist, Modifies the Effect of NBTI, a Nucleoside Transport Inhibitor, by Reducing the Interstitial Adenosine Level in the Guinea Pig Atrium. Molecules 2018; 23:molecules23092186. [PMID: 30200192 PMCID: PMC6225130 DOI: 10.3390/molecules23092186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022] Open
Abstract
Based on in silico results, recently we have assumed that FSCPX, an irreversible A1 adenosine receptor antagonist, inhibits the action of NBTI that is apparent on E/c curves of adenosine receptor agonists. As a mechanism for this unexpected effect, we hypothesized that FSCPX might modify the equilibrative and NBTI-sensitive nucleoside transporter (ENT1) in a way that allows ENT1 to transport adenosine but impedes NBTI to inhibit this transport. This assumption implies that our method developed to estimate receptor reserve for agonists with short half-life such as adenosine, in its original form, overestimates the receptor reserve. In this study, therefore, our goals were to experimentally test our assumption on this effect of FSCPX, to improve our receptor reserve-estimating method and then to compare the original and improved forms of this method. Thus, we improved our method and assessed the receptor reserve for the direct negative inotropic effect of adenosine with both forms of this method in guinea pig atria. We have found that FSCPX inhibits the effects of NBTI that are mediated by increasing the interstitial concentration of adenosine of endogenous (but not exogenous) origin. As a mechanism for this action of FSCPX, inhibition of enzymes participating in the interstitial adenosine production can be hypothesized, while modification of ENT1 can be excluded. Furthermore, we have shown that, in comparison with the improved form, the original version of our method overestimates receptor reserve but only to a small extent. Nevertheless, use of the improved form is recommended in the future.
Collapse
|
33
|
Pedata F. From the 7th Joint Italian-German Purine Club Meeting to European Purine Club Meetings. Purinergic Signal 2018; 13:683-685. [PMID: 28875249 DOI: 10.1007/s11302-017-9580-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy. .,Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
34
|
Ledderose C, Liu K, Kondo Y, Slubowski CJ, Dertnig T, Denicoló S, Arbab M, Hubner J, Konrad K, Fakhari M, Lederer JA, Robson SC, Visner GA, Junger WG. Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J Clin Invest 2018; 128:3583-3594. [PMID: 29894310 DOI: 10.1172/jci120972] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
T cells must migrate in order to encounter antigen-presenting cells (APCs) and to execute their varied functions in immune defense and inflammation. ATP release and autocrine signaling through purinergic receptors contribute to T cell activation at the immune synapse that T cells form with APCs. Here, we show that T cells also require ATP release and purinergic signaling for their migration to APCs. We found that the chemokine stromal-derived factor-1α (SDF-1α) triggered mitochondrial ATP production, rapid bursts of ATP release, and increased migration of primary human CD4+ T cells. This process depended on pannexin-1 ATP release channels and autocrine stimulation of P2X4 receptors. SDF-1α stimulation caused localized accumulation of mitochondria with P2X4 receptors near the front of cells, resulting in a feed-forward signaling mechanism that promotes cellular Ca2+ influx and sustains mitochondrial ATP synthesis at levels needed for pseudopod protrusion, T cell polarization, and cell migration. Inhibition of P2X4 receptors blocked the activation and migration of T cells in vitro. In a mouse lung transplant model, P2X4 receptor antagonist treatment prevented the recruitment of T cells into allograft tissue and the rejection of lung transplants. Our findings suggest that P2X4 receptors are therapeutic targets for immunomodulation in transplantation and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaifeng Liu
- Department of Medicine/Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yutaka Kondo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian J Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Dertnig
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Denicoló
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mona Arbab
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Johannes Hubner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kirstin Konrad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahtab Fakhari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary A Visner
- Department of Medicine/Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| |
Collapse
|
35
|
Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:166-173. [PMID: 28389204 PMCID: PMC5628093 DOI: 10.1016/j.bbamem.2017.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 11000 Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
37
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
38
|
Abstract
The response to adenosine 5'-triphosphate (ATP) identifies patients with syncope who might benefit from pacemaker therapy (ATP test). Two measures have been used to determine the outcome of the ATP test, which have lead to contrasting conclusions regarding its utility: (1) the duration of cardiac pause (CP) mainly due to AV block and (2) the longest RR interval (RRmax). We tested the hypothesis that the discrepancy regarding the utility of the ATP test is mainly because of the different way the 2 measures determine the outcome of the test. Post hoc analysis was applied to data obtained from patients with syncope (n = 33) with a positive and negative ATP test based on the CP duration and RRmax, respectively, subjected to pacemaker therapy. In 19 and 14 patients, the pacemaker was programmed to function as AAI pacing at 30 ppm (control) and as DDD pacing at 70 ppm, respectively. During the follow-up period of 17.0 ± 8.6 months, syncope recurred in only 1 of the 14 patients with DDD pacing; in contrast, 10 of 19 patients with AAI30 pacing experienced syncope within the first 5.3 ± 5.2 months of follow-up (P < 0.009; recurrence rate). The ATP test, the outcome of which is determined by the CP measure, is a useful diagnostic test for the identification of patients with bradycardic syncope who may benefit from pacemaker therapy; the identification of such patients would be missed when the RRmax measure is used to determine the outcome of the test. The efficacy of DDD pacing suggests that atrioventricular nodal conduction block is the primary cause of syncope in patients with a positive ATP test based on the CP measure.
Collapse
|
39
|
Dal Ben D, Marchenkova A, Thomas A, Lambertucci C, Spinaci A, Marucci G, Nistri A, Volpini R. 2',3'-O-Substituted ATP derivatives as potent antagonists of purinergic P2X3 receptors and potential analgesic agents. Purinergic Signal 2017; 13:61-74. [PMID: 27757785 PMCID: PMC5334199 DOI: 10.1007/s11302-016-9539-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022] Open
Abstract
Blocking membrane currents evoked by the activation of purinergic P2X3 receptors localized on nociceptive neurons represents a promising strategy for the development of agents useful for the treatment of chronic pain conditions. Among compounds endowed with such antagonistic action, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) is an ATP analogue, whose inhibitory activity on P2X receptors has been previously reported. Based on the results of molecular modelling studies performed with homology models of the P2X3 receptor, novel adenosine nucleotide analogues bearing cycloalkyl or arylalkyl substituents replacing the trinitrophenyl moiety of TNP-ATP were designed and synthesized. These new compounds were functionally evaluated on native P2X3 receptors from mouse trigeminal ganglion (TG) sensory neurons using patch clamp recordings under voltage clamp configuration. Our data show that some of these molecules are potent (nanomolar range) and reversible inhibitors of P2X3 receptors, without any apparent effect on trigeminal GABAA and 5-HT3 receptors, whose membrane currents were unaffected by the tested compounds.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Anna Marchenkova
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy.
| |
Collapse
|
40
|
Doleski PH, Adefegha SA, Cabral FL, Leal DBR. Characterization of E-NTPDase (EC 3.6.1.5) activity in hepatic lymphocytes: A different activity profile from peripheral lymphocytes. Cell Biochem Funct 2017; 35:105-112. [PMID: 28217922 DOI: 10.1002/cbf.3253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
The activity of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) was characterized in hepatic lymphocytes (HL) of rats. For this purpose, a specific method for the isolation of lymphocytes from hepatic tissue was developed. Subsequently, E-NTPDase activity of rat HL was compared with that of rat peripheral lymphocytes. The HL showed high cell count and viability. Also, the characterization test revealed that the optimal E-NTPDase activities were attained at 37°C and pH 8.0 in the presence of Ca2+ . In addition, in the presence of specific E-NTPDase inhibitors (20mM sodium azide and 0.3mM suramin), there were significant inhibitions in nucleotide hydrolysis. However, there was no significant change in adenosine triphosphate (ATP) or adenosine diphosphate (ADP) hydrolysis in the presence of inhibitors of other E-ATPase (0.1mM Ouabain, 0.5mM orthovanadate, and 1mM, 5mM, and 10mM sodium azide). Furthermore, the kinetic behavior of the enzyme in HL showed apparent Km of 134.90 ± 0.03μM and 214.40 ± 0.06μM as well as Vmax of 345.0 ± 28.32 and 242.0 ± 27.55 ƞmol Pi/min/mg of protein for ATP and ADP, respectively. The Chevillard plot revealed that ATP and ADP were hydrolyzed at the same active site of the enzyme. Our results suggest that the degradation of extracellular nucleotides in HL may have been primarily accomplished by E-NTPDase. The higher E-NTPDase activity observed in HL may be attributed to the important physiological functions of ATP and ADP in HL. SIGNIFICANCE OF THE STUDY Extracellular purine nucleotides are able to interact with specific receptors and trigger a number of important physiological functions in cells. This interaction is controlled by ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), enzyme that present their catalytic site at the extracellular space and degrades nucleotides. This purinergic signaling has important functions in peripheral lymphocytes and may represent an important new therapeutic target for the treatment of immunological diseases. However, there is dearth of information on the involvement of E-NTPDase in liver lymphocytes. The liver is an important organ, which performs both metabolic and toxicological roles in living organism, and hepatic lymphocytes may play crucial action in the regulation of immune responses in the liver tissue. Furthermore, various chronic diseases such as cirrhosis may be treated with novel pharmacotherapy by targeting the modulation of hepatic lymphocytes. Thus, the significance of this study is to evaluate the activity of E-NTPDase in liver lymphocyte and compare its activity with the peripheral lymphocytes.
Collapse
Affiliation(s)
- Pedro H Doleski
- Program of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Stephen A Adefegha
- Program of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Fernanda L Cabral
- Program of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Program of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Program of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
41
|
A1 Adenosine Receptor Activation Modulates Central Nervous System Development and Repair. Mol Neurobiol 2016; 54:8128-8139. [DOI: 10.1007/s12035-016-0292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 01/22/2023]
|
42
|
Ding Q, Tan KS. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal. Front Cell Infect Microbiol 2016; 6:155. [PMID: 27909688 PMCID: PMC5112537 DOI: 10.3389/fcimb.2016.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/02/2016] [Indexed: 01/15/2023] Open
Abstract
Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach from biofilms. Our results further showed that dispersed F. nucleatum possessed distinct virulence characteristics compared to their biofilm and planktonic counterparts.
Collapse
Affiliation(s)
- Qinfeng Ding
- Faculty of Dentistry, National University of Singapore Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore Singapore, Singapore
| |
Collapse
|
43
|
Ledderose C, Bao Y, Kondo Y, Fakhari M, Slubowski C, Zhang J, Junger WG. Purinergic Signaling and the Immune Response in Sepsis: A Review. Clin Ther 2016; 38:1054-65. [PMID: 27156007 DOI: 10.1016/j.clinthera.2016.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Sepsis remains an unresolved clinical problem with high in-hospital mortality. Despite intensive research over decades, no treatments for sepsis have become available. Here we explore the role of ATP in the pathophysiology of sepsis. ATP is not only a universal energy carrier but it also acts as an extracellular signaling molecule that regulates immune function. ATP stimulates a large family of purinergic receptors found on the cell surface of virtually all mammalian cells. In severe sepsis and septic shock, ATP is released in large amounts into the extracellular space where it acts as a "danger" signal. In this review, we focus on the roles of ATP as a key regulator of immune cell function and as a disruptive signal that contributes to immune dysfunction in sepsis. METHODS We summarized the current understanding of the pathophysiology of sepsis, with special emphasis on the emerging role of systemic ATP as a disruptive force that promotes morbidity and mortality in sepsis. FINDINGS Over the past two decades, the discovery that regulated ATP release and purinergic signaling represent a novel regulatory mechanism in immune cell physiology has opened up new possibilities in the treatment of sepsis. Immune cells respond to stimulation with the release of cellular ATP, which regulates cell functions in autocrine and paracrine fashions. In sepsis, large amounts of systemic ATP produced by tissue damage and inflammation disrupt these regulatory purinergic signaling mechanisms, leading to immune dysfunction that promotes the pathophysiologic processes involved in sepsis. IMPLICATIONS The knowledge of these ATP-dependent signaling processes is likely to reveal exciting new avenues in the treatment of the unresolved clinical problem of sepsis.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yutaka Kondo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mahtab Fakhari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christian Slubowski
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jingping Zhang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Ludwig Boltzmann Institute for Traumatology, Vienna, Austria.
| |
Collapse
|
44
|
Ledderose C, Woehrle T, Ledderose S, Strasser K, Seist R, Bao Y, Zhang J, Junger WG. Cutting off the power: inhibition of leukemia cell growth by pausing basal ATP release and P2X receptor signaling? Purinergic Signal 2016; 12:439-51. [PMID: 27020575 DOI: 10.1007/s11302-016-9510-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/16/2016] [Indexed: 01/12/2023] Open
Abstract
T cells respond to antigen stimulation with the rapid release of cellular ATP, which stimulates an autocrine feedback mechanism that regulates calcium influx through P2X receptors. This autocrine purinergic feedback mechanism plays an essential role in the activation of T cells resulting in cell proliferation and clonal expansion. We recently reported that increases in mitochondrial ATP production drive this stimulation-induced purinergic signaling mechanism but that low-level mitochondrial ATP production fuels basal T cell functions required to maintain vigilance of unstimulated T cells. Here we studied whether defects in these purinergic signaling mechanisms are involved in the unwanted proliferation of leukemia T cells. We found that acute leukemia T cells (Jurkat) possess a larger number and more active mitochondria than their healthy counterparts. Jurkat cells have higher intracellular ATP concentrations and generat more extracellular ATP than unstimulated T cells from healthy donors. As a result, increased purinergic signaling through P2X1 and P2X7 receptors elevates baseline levels of cytosolic Ca(2+) in Jurkat cells. We found that pharmacological inhibition of this basal purinergic signaling mechanism decreases mitochondrial activity, Ca(2+) signaling, and cell proliferation. Similar results were seen in the leukemic cell lines THP-1, U-937, and HL-60. Combined treatment with inhibitors of P2X1 or P2X7 receptors and the chemotherapeutic agent 6-mercaptopurine completely blocked Jurkat cell proliferation. Our results demonstrate that increased mitochondrial metabolism promotes autocrine purinergic signaling and uncontrolled proliferation of leukemia cells. These findings suggest that deranged purinergic signaling can result in T cell malignancy and that therapeutic targeting aimed at purinergic signaling is a potential strategy to combat T cell leukemia.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tobias Woehrle
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Stephan Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Katharina Strasser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Richard Seist
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jingping Zhang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Ludwig Boltzmann Institute for Traumatology, 1200, Vienna, Austria.
| |
Collapse
|
45
|
Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, Zhang J, Junger WG. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol 2015; 210:1153-64. [PMID: 26416965 PMCID: PMC4586745 DOI: 10.1083/jcb.201503066] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neutrophil chemotaxis is regulated by opposing autocrine purinergic signaling mechanisms, which are stimulated by mitochondrial ATP formation that is up-regulated via mTOR and P2Y2 receptors at the front and down-regulated via A2a receptors and cAMP/PKA signaling at the back of cells. Neutrophils use chemotaxis to locate invading bacteria. Adenosine triphosphate (ATP) release and autocrine purinergic signaling via P2Y2 receptors at the front and A2a receptors at the back of cells regulate chemotaxis. Here, we examined the intracellular mechanisms that control these opposing signaling mechanisms. We found that mitochondria deliver ATP that stimulates P2Y2 receptors in response to chemotactic cues, and that P2Y2 receptors promote mTOR signaling, which augments mitochondrial activity near the front of cells. Blocking mTOR signaling with rapamycin or PP242 or mitochondrial ATP production (e.g., with CCCP) reduced mitochondrial Ca2+ uptake and membrane potential, and impaired cellular ATP release and neutrophil chemotaxis. Autocrine stimulation of A2a receptors causes cyclic adenosine monophosphate accumulation at the back of cells, which inhibits mTOR signaling and mitochondrial activity, resulting in uropod retraction. We conclude that mitochondrial, purinergic, and mTOR signaling regulates neutrophil chemotaxis and may be a pharmacological target in inflammatory diseases.
Collapse
Affiliation(s)
- Yi Bao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Amelie F Graf
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bianca Brix
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Theresa Birsak
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Albert Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jingping Zhang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 Ludwig Boltzmann Institute for Traumatology, Vienna A-1200, Austria
| |
Collapse
|
46
|
Ding Q, Quah SY, Tan KS. Secreted adenosine triphosphate from Aggregatibacter actinomycetemcomitans triggers chemokine response. Mol Oral Microbiol 2015; 31:423-34. [PMID: 26470857 DOI: 10.1111/omi.12143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
Extracellular ATP (eATP) is an important intercellular signaling molecule secreted by activated immune cells or released by damaged cells. In mammalian cells, a rapid increase of ATP concentration in the extracellular space sends a danger signal, which alerts the immune system of an impending danger, resulting in recruitment and priming of phagocytes. Recent studies show that bacteria also release ATP into the extracellular milieu, suggesting a potential role for eATP in host-microbe interactions. It is currently unknown if any oral bacteria release eATP. As eATP triggers and amplifies innate immunity and inflammation, we hypothesized that eATP secreted from periodontal bacteria may contribute to inflammation in periodontitis. The aims of this study were to determine if periodontal bacteria secrete ATP, and to determine the function of bacterially derived eATP as an inducer of inflammation. Our results showed that Aggregatibacter actinomycetemcomitans, but not Porphyromonas gingivalis, Prevotella intermedia, or Fusobacterium nucleatum, secreted ATP into the culture supernatant. Exposure of periodontal fibroblasts to filter sterilized culture supernatant of A. actinomycetemcomitans induced chemokine expression in an eATP-dependent manner. This occurred independently of cyclic adenosine monophosphate and phospholipase C, suggesting that ionotrophic P2X receptor is involved in sensing of bacterial eATP. Silencing of P2X7 receptor in periodontal fibroblasts led to a significant reduction in bacterial eATP-induced chemokine response. Furthermore, bacterial eATP served as a potent chemoattractant for neutrophils and monocytes. Collectively, our findings provide evidence for secreted ATP of A. actinomycetemcomitans as a novel virulence factor contributing to inflammation during periodontal disease.
Collapse
Affiliation(s)
- Q Ding
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - S Y Quah
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - K S Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect 2015; 3:e00181. [PMID: 26516591 PMCID: PMC4618650 DOI: 10.1002/prp2.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
In this review, we discussed pharmacological implications of the Ca2+/cAMP signaling interaction in the antihypertensive and neurological/psychiatric disorders therapies. Since 1975, several clinical studies have reported that acute and chronic administration of L-type voltage-activated Ca2+ channels (VACCs) blockers, such as nifedipine, produces reduction in peripheral vascular resistance and arterial pressure associated with an increase in plasma noradrenaline levels and heart rate, typical of sympathetic hyperactivity. Despite this sympathetic hyperactivity has been initially attributed to adjust reflex of arterial pressure, the cellular and molecular mechanisms involved in this apparent sympathomimetic effect of the L-type VACCs blockers remained unclear for decades. In addition, experimental studies using isolated tissues richly innervated by sympathetic nerves (to exclude the influence of adjusting reflex) showed that neurogenic responses were completely inhibited by L-type VACCs blockers in concentrations above 1 μmol/L, but paradoxically potentiated in concentrations below 1 μmol/L. During almost four decades, these enigmatic phenomena remained unclear. In 2013, we discovered that this paradoxical increase in sympathetic activity produced by L-type VACCs blocker is due to interaction of the Ca2+/cAMP signaling pathways. Then, the pharmacological manipulation of the Ca2+/cAMP interaction produced by combination of the L-type VACCs blockers used in the antihypertensive therapy, and cAMP accumulating compounds used in the antidepressive therapy, could represent a potential cardiovascular risk for hypertensive patients due to increase in sympathetic hyperactivity. In contrast, this pharmacological manipulation could be a new therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, Brazil
| | - Antonio G García
- Instituto Teófilo Hernando de I+D del Medicamento, Universidad Autónoma de Madrid Madrid, Spain
| | - Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, Brazil
| |
Collapse
|
48
|
King BF. Purinergic signalling in the enteric nervous system (An overview of current perspectives). Auton Neurosci 2015; 191:141-7. [PMID: 26049261 DOI: 10.1016/j.autneu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Department of Neuroscience, Physiology and Pharmacology (NPP), Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, United Kingdom.
| |
Collapse
|
49
|
Pacheco PAF, Faria RX, Ferreira LGB, Paixão ICNP. Putative roles of purinergic signaling in human immunodeficiency virus-1 infection. Biol Direct 2014; 9:21. [PMID: 25351961 PMCID: PMC4218944 DOI: 10.1186/1745-6150-9-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023] Open
Abstract
Reviewers This article was reviewed by Neil S. Greenspan and Rachel Gerstein. Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies.
Collapse
Affiliation(s)
| | - Robson X Faria
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Av, Brazil, 4365 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
50
|
Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur J Med Chem 2014; 89:561-80. [PMID: 25462266 DOI: 10.1016/j.ejmech.2014.10.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 01/04/2023]
Abstract
The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists.
Collapse
|