1
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
2
|
Lin WY, Zhu R, Zhang Z, Lu X, Wang H, He W, Hu Y, Tang L. RNAi targeting heparin cofactor II promotes hemostasis in hemophilia A. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:658-668. [PMID: 33996250 PMCID: PMC8093307 DOI: 10.1016/j.omtn.2021.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 01/15/2023]
Abstract
Hemophilia A is a hemorrhagic disease due to congenital deficiencies of coagulation factor VIII (FVIII). Studies show that hemophilia patients with anticoagulant deficiency present less severe hemorrhagic phenotypes. We aimed to find a new therapeutic option for hemophilia patients by RNA interference (RNAi) targeting heparin cofactor II (HCII), a critical anticoagulant protein inactivating the thrombin. The optimal small interfering RNA (siRNA) was conjugated to an asialoglycoprotein receptor ligand (N-acetylgalactosamine [GalNAc]-HCII), promoting targeted delivery to the liver. After administration, GalNAc-HCII demonstrated effective, dose-dependent, and persistent HCII inhibition. After 7 days, in normal mice, GalNAc-HCII reduced HCII levels to 25.04% ± 2.56%, 11.65% ± 2.41%, and 6.50% ± 1.73% with 2, 5, and 10 mg/kg GalNAc-HCII, respectively. The hemostatic ability of hemophilia mice in the GalNAc-HCII-treated group significantly improved, with low thrombus formation time in the carotid artery thrombosis models and short bleeding time in the tail-clipping assays. After repeated administration, the prolonged activated partial thromboplastin time (APTT) was reduced. A 30 mg/kg dose did not cause pathological thrombosis. Our study confirmed that GalNAc-HCII therapy is effective for treating hemophilia mice and can be considered a new option for treating hemophilia patients.
Collapse
Affiliation(s)
- Wen-Yi Lin
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiqi Zhu
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhang
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan He
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Institute of Hematology, Union Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
5
|
Induction of Syndecan-4 by Organic-Inorganic Hybrid Molecules with a 1,10-Phenanthroline Structure in Cultured Vascular Endothelial Cells. Int J Mol Sci 2017; 18:ijms18020352. [PMID: 28208699 PMCID: PMC5343887 DOI: 10.3390/ijms18020352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 11/16/2022] Open
Abstract
Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline (o-Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o-Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.
Collapse
|
6
|
Pomin VH. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals. Pharmaceuticals (Basel) 2015; 8:848-64. [PMID: 26690451 PMCID: PMC4695813 DOI: 10.3390/ph8040848] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022] Open
Abstract
Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limitations of the GAG-based therapies, SFs and SGs comprise new carbohydrate-based therapeutics available for clinical studies. Here, the principal structural features and the major mechanisms of action of the SFs and SGs in the above-mentioned pathophysiological systems are presented. Discussion is also given on the current challenges and the future perspectives in drug development of these marine glycans.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| |
Collapse
|
7
|
Prabhakar V, Sasisekharan R. The biosynthesis and catabolism of galactosaminoglycans. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 53:69-115. [PMID: 17239763 DOI: 10.1016/s1054-3589(05)53005-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
8
|
Pike RN, Buckle AM, le Bonniec BF, Church FC. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. FEBS J 2005; 272:4842-51. [PMID: 16176258 DOI: 10.1111/j.1742-4658.2005.04880.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the serine protease inhibitor (serpin) superfamily play important roles in the inhibition of serine proteases involved in complex systems. This is evident in the regulation of coagulation serine proteases, especially the central enzyme in this system, thrombin. This review focuses on three serpins which are known to be key players in the regulation of thrombin: antithrombin and heparin cofactor II, which inhibit thrombin in its procoagulant role, and protein C inhibitor, which primarily inhibits the thrombin/thrombomodulin complex, where thrombin plays an anticoagulant role. Several structures have been published in the past few years which have given great insight into the mechanism of action of these serpins and have significantly added to a wealth of biochemical and biophysical studies carried out previously. A major feature of these serpins is that they are under the control of glycosaminoglycans, which play a key role in accelerating and localizing their action. While further work is clearly required to understand the mechanism of action of the glycosaminoglycans, the biological mechanisms whereby cognate glycosaminoglycans for each serpin come into contact with the inhibitors also requires much further work in this important field.
Collapse
Affiliation(s)
- Robert N Pike
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
9
|
Mitchell JW, Church FC. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition. J Biol Chem 2002; 277:19823-30. [PMID: 11856753 DOI: 10.1074/jbc.m200630200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used site-directed mutagenesis to investigate the role of Glu(69), Asp(70), Asp(71), Asp(72), Tyr-sulfate(73), and Asp(75) in the second acidic region (AR2) of the serpin heparin cofactor II (HCII) during formation of the thrombin.HCII complex with and without glycosaminoglycans. E69Q/D70N/D71N recombinant (r)HCII, D72N/Y73F/D75N rHCII, and E69Q/D70N/D71N/D72N/Y73F/D75N rHCII were prepared to localize acidic residues important for thrombin inhibition. Interestingly, D72N/Y73F/D75N rHCII had significantly enhanced thrombin inhibition without glycosaminoglycan (4-fold greater) and with heparin (6-fold greater), showing maximal activity at 2 microg/ml heparin compared with wild-type recombinant HCII (wt-rHCII) with maximal activity at 20 microg/ml heparin. The other rHCII mutants had lesser-enhanced activities, but they all eluted from heparin-Sepharose at significantly higher ionic strengths compared with wt-rHCII. Neutralizing and reversing the charge of Asp(72), Tyr-sulfate(73), and Asp(75) were done to characterize their individual contribution to HCII activity. Only Y73K rHCII and D75K rHCII have significantly increased heparin cofactor activity compared with wt-rHCII; however, all of the individual rHCII mutants required substantially less glycosaminoglycan at maximal inhibition than did wt-rHCII. Inhibition of either alpha-thrombin/hirugen or gamma(T)-thrombin (both with an altered anion-binding exosite-1) by the AR2 rHCII mutants was similar to wt-rHCII. D72N/Y73F/D75N rHCII and D75K rHCII were significantly more active than wt-rHCII in a plasma-based thrombin inhibition assay with glycosaminoglycans. These results indicate that improved thrombin inhibition in the AR2 HCII mutants is mediated by enhanced interactions between the acidic domain and anion-binding exosite-1 of thrombin and that AR2 may be a "molecular rheostat" to promote thrombin inhibition in the presence of glycosaminoglycans.
Collapse
Affiliation(s)
- Jennifer W Mitchell
- Department of Pathology, Center for Thrombosis and Hemostasis, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599-7035, USA
| | | |
Collapse
|
10
|
Baugh R. Coagulation Theory, Principles and Concepts. Diagn Pathol 2000. [DOI: 10.1201/b13994-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Hileman RE, Fromm JR, Weiler JM, Linhardt RJ. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 1998; 20:156-67. [PMID: 9631661 DOI: 10.1002/(sici)1521-1878(199802)20:2<156::aid-bies8>3.0.co;2-r] [Citation(s) in RCA: 467] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein-GAG binding have not been well-characterised. Ionic interactions are important in promoting protein-GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein-GAG affinity and specificity. Consensus sequences such as XBBBXXBX, XBBXBX and a critical 20 A spacing of basic residues are found in some protein sites that bind GAG. A new consensus sequence TXXBXXTBXXXTBB is described, where turns bring basic interacting amino acid residues into proximity. Clearly, protein-GAG interactions play a prominent role in cell-cell interaction and cell growth. Pathogens including virus particles might target GAG-binding sites in envelope proteins leading to infection.
Collapse
Affiliation(s)
- R E Hileman
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Vascular endothelium is strategically located at the interface between tissue and blood. It is pivotal for protecting against vascular injury and maintaining blood fluidity. Normal endothelium releases prostacyclin and nitric oxide, potent inhibitors of platelet and monocyte activation and vasodilators. Their syntheses are governed by isoforms of enzymes. Normal endothelial surface expresses ecto-adenosine diphosphatase, which degrades adenosine diphosphate and inhibits platelet aggregation; thrombomodulin, which serves as a binding site for thrombin to activate protein C; and heparin-like molecules, which serve as a cofactor for antithrombin III. Normal endothelium secretes tissue plasminogen activator, which activates the fibrinolysis system. Endothelium produces and secretes von Willebrand factor, which mediates platelet adhesion and shear-stress-induced aggregation. Injury to endothelium is accompanied by loss of protective molecules and expression of adhesive molecules, procoagulant activities, and mitogenic factors, leading to development of thrombosis, smooth muscle cell migration, and proliferation and atherosclerosis.
Collapse
Affiliation(s)
- K K Wu
- Department of Internal Medicine, University of Texas-Houston Medical School 77030, USA
| | | |
Collapse
|
13
|
Griffin CC, Linhardt RJ, Van Gorp CL, Toida T, Hileman RE, Schubert RL, Brown SE. Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res 1995; 276:183-97. [PMID: 8536254 DOI: 10.1016/0008-6215(95)00166-q] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A method for the preparation of heparan sulfate from peptidoglycan heparin is described. The objective of this research was to provide a basis for the development and validation of an industrial process to support the preclinical development of heparan sulfate and/or heparan sulfate derivatives. In the preparation of heparan sulfate, heparin was recovered by alcohol fractionation and dermatan sulfate was isolated by selective precipitation. The remaining crude heparan sulfate was fractionated by anion-exchange chromatography into five subfractions. The biological activities of these subfractions were examined by anticoagulant and amidolytic assays. Molecular weight and molecular size were determined using capillary viscometry and polyacrylamide gel electrophoresis. Charge density and degree of sulfation were determined by cellulose acetate electrophoresis and elemental analysis. Oligosaccharide and disaccharide analysis relied on enzymatic depolymerization using heparin lyases followed by polyacrylamide gel and capillary electrophoresis. 1H NMR analysis provided detailed structural information on each subfraction. Crude heparin sulfate and its subfractions showed significant differences in physical, structural and biological properties.
Collapse
Affiliation(s)
- C C Griffin
- Miami University, Department of Chemistry, Oxford, OH 45056, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
1. Dermatan sulfate is a linear, sulfated polysaccharide and is a glycosaminoglycan component of several important proteoglycans. This minireview discusses the biosynthesis, structure and biological function of dermatan sulfate proteoglycans. 2. Dermatan sulfate and its derivatives are being investigated as a new class of anticoagulant and antithrombotic agents. 3. The preparation, chemistry and structure-activity relationship of dermatan sulfate is described. 4. Dermatan sulfate, low molecular weight dermatan sulfate and glycosaminoglycan mixtures containing dermatan sulfate have been used clinically. 5. The future prospects of these agents and other new, potentially useful dermatan sulfate based therapeutics are discussed.
Collapse
Affiliation(s)
- R J Linhardt
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
15
|
Belford DA, Hendry IA, Parish CR. Investigation of the ability of several naturally occurring and synthetic polyanions to bind to and potentiate the biological activity of acidic fibroblast growth factor. J Cell Physiol 1993; 157:184-9. [PMID: 7691835 DOI: 10.1002/jcp.1041570124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of several animal, plant, and bacterial derived polyanions (PAs) as well as synthetic PAs to compete with heparin for the binding of acidic fibroblast growth factor (aFGF) was correlated with their ability to potentiate the mitogenic and neurotrophic actions of this factor. Dextran sulphate, kappa-carrageenan, pentosan sulphate, polyanethole sulfonate, heparin, and fucoidin competed for the heparin binding site on aFGF at relatively low concentrations (< 50 micrograms/ml). lambda-carrageenan, iota-carrageenan, and polyvinyl sulphate exhibited lower affinity for aFGF, whereas hyaluronic acid, dermatan sulphate, chondroitin-6-sulphate, chondroitin-4-sulphate, and uncharged dextran displayed very low or no demonstrable affinity. Potentiation of the mitogenic action of aFGF for Balb/c 3T3 fibroblasts tended to be in general agreement with the aFGF binding affinity of the PAs. However, polyanethole sulfonate, the carrageenans, polyvinyl sulphate, fucoidin, and pentosan sulphate exerted a mitogenic action on the 3T3 cells that was independent of, and in addition to, the ability of these GAGs to potentiate the action of aFGF. The ability to potentiate the neurotrophic action of aFGF for E8 chick ciliary neurons was a general property of those PA with low or no activity in the mitogen assay. Thus hyaluronic acid, dermatan sulphate, chondroitin-4-sulphate, chondroitin-6-sulphate, and even unchanged dextran all potentiated aFGF induced neuronal survival. The differential effects of these PA in potentiating the biological activities of aFGF are discussed in relation to their ability to compete for the heparin-binding site of aFGF.
Collapse
Affiliation(s)
- D A Belford
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra ACT
| | | | | |
Collapse
|
16
|
Cella G, Boeri G, Saggiorato G, Paolini R, Luzzatto G, Terribile VI. Interaction between histidine-rich glycoprotein and platelet factor 4 with dermatan sulfate and low-molecular-weight dermatan sulfate. Angiology 1992; 43:59-62. [PMID: 1554154 DOI: 10.1177/000331979204300107] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a controversy about whether or not histidine-rich glycoprotein (HRG), the most abundant plasma protein with glycosaminoglycans-neutralizing capacity, is able to prevent the inhibition of human thrombin by heparin cofactor II (HC II) in the presence of dermatan sulfate (DS). The authors studied the interaction of DS and low molecular weight DS, in a purified system with HRG, platelet factor 4 (PF 4), and with HC II. Their results show that HRG, like PF 4, has an affinity, not only for heparin, but also for DS. However, this affinity seems very weak. In fact, HRG is 10 times less effective than PF 4 in neutralizing the 50% antithrombin activity of HC II in the presence of DS.
Collapse
Affiliation(s)
- G Cella
- Institute of Medical Semeiotics, University of Padua, Medical School, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Hayashi T, Kaji T, Hayakawa Y, Niiya K, Sakamoto M, Sakuragawa N. Inhibitory effect of heparin cofactor II on thrombin-stimulated prostacyclin production by cultured vascular smooth muscle cells. Thromb Res 1991; 64:321-30. [PMID: 1805447 DOI: 10.1016/0049-3848(91)90003-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the effect of heparin cofactor II (HCII) on thrombin-induced prostacyclin (PGI2) production by A10 cells, an established cell line of vascular smooth muscle cells from murine aorta. Confluent monolayers of A10 cells were incubated with 0.1 NIH U/ml of thrombin for 30 min in the presence of antithrombin III (ATIII) or HCII, and PGI2 production by the cells was measured by radioimmunoassay as 6-keto-prostaglandin F1a, the stable metabolite of PGI2. ATIII at 40 mInh.U/ml and more significantly inhibited thrombin-induced PGI2 production by A10 cells, but HCII at the same doses did only slightly. However, when A10 cells were preincubated with HCII for 30 min before exposure to thrombin, the PGI2 production was markedly inhibited. The medium conditioned by A10 cells for 30 min did not enhance the inhibitory effect of HCII on thrombin-induced PGI2 production by the cells. On the other hand, A10 cells synthesized both dermatan sulfate and heparan sulfate which are capable of activating HCII. From these results, it was suggested that HCII would be activated by glycosaminoglycans (GAGs) such as dermatan sulfate of the cell layers and could inhibit thrombin-induced PGI2 production. HCII may be a modulator of thrombin on the physiological functions of vascular smooth muscle cells, reacting to the cell surface GAGs.
Collapse
Affiliation(s)
- T Hayashi
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|