1
|
Gould R, Brady S. Identifying mRNAs Residing in Myelinating Oligodendrocyte Processes as a Basis for Understanding Internode Autonomy. Life (Basel) 2023; 13:945. [PMID: 37109474 PMCID: PMC10142070 DOI: 10.3390/life13040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.
Collapse
Affiliation(s)
- Robert Gould
- Whitman Research Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Scott Brady
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:431-440. [PMID: 36241002 DOI: 10.1016/j.fsi.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Many disease agents infect the central nervous system (CNS) of teleost fish causing severe losses for the fish farming sector. Yet, neurotropic fish pathogens remain poorly documented and immune responses in the teleost CNS essentially unknown. Previously thought to be devoid of an immune system, the mammalian CNS is now recognized to be protected from infection by diverse immune cells that mostly reside in the meningeal lymphatic system. Here we review the current body of work pertaining immune responses in the teleost CNS to infection. We identify important knowledge gaps with regards to CNS immunity in fish and make recommendations for rigorous experimentation and reporting in manuscripts so that fish immunologists can advance this burgeoning field.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Siems SB, Jahn O, Hoodless LJ, Jung RB, Hesse D, Möbius W, Czopka T, Werner HB. Proteome Profile of Myelin in the Zebrafish Brain. Front Cell Dev Biol 2021; 9:640169. [PMID: 33898427 PMCID: PMC8060510 DOI: 10.3389/fcell.2021.640169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
The velocity of nerve conduction along vertebrate axons depends on their ensheathment with myelin. Myelin membranes comprise specialized proteins well characterized in mice. Much less is known about the protein composition of myelin in non-mammalian species. Here, we assess the proteome of myelin biochemically purified from the brains of adult zebrafish (Danio rerio), considering its increasing popularity as model organism for myelin biology. Combining gel-based and gel-free proteomic approaches, we identified > 1,000 proteins in purified zebrafish myelin, including all known constituents. By mass spectrometric quantification, the predominant Ig-CAM myelin protein zero (MPZ/P0), myelin basic protein (MBP), and the short-chain dehydrogenase 36K constitute 12%, 8%, and 6% of the total myelin protein, respectively. Comparison with previously established mRNA-abundance profiles shows that expression of many myelin-related transcripts coincides with the maturation of zebrafish oligodendrocytes. Zebrafish myelin comprises several proteins that are not present in mice, including 36K, CLDNK, and ZWI. However, a surprisingly large number of ortholog proteins is present in myelin of both species, indicating partial evolutionary preservation of its constituents. Yet, the relative abundance of CNS myelin proteins can differ markedly as exemplified by the complement inhibitor CD59 that constitutes 5% of the total zebrafish myelin protein but is a low-abundant myelin component in mice. Using novel transgenic reporter constructs and cryo-immuno electron microscopy, we confirm the incorporation of CD59 into myelin sheaths. These data provide the first proteome resource of zebrafish CNS myelin and demonstrate both similarities and heterogeneity of myelin composition between teleost fish and rodents.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Laura J Hoodless
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
4
|
Abstract
Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| |
Collapse
|
5
|
Möbius W, Hümmert S, Ruhwedel T, Kuzirian A, Gould R. New Species Can Broaden Myelin Research: Suitability of Little Skate, Leucoraja erinacea. Life (Basel) 2021; 11:136. [PMID: 33670172 PMCID: PMC7916940 DOI: 10.3390/life11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.
Collapse
Affiliation(s)
- Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Sophie Hümmert
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Alan Kuzirian
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02540, USA;
| | - Robert Gould
- Whitman Science Center, Marin Biological Laboratory, Woods Hole, MA 02540, USA
| |
Collapse
|
6
|
Rey S, Zalc B, Klämbt C. Evolution of glial wrapping: A new hypothesis. Dev Neurobiol 2020; 81:453-463. [PMID: 32133794 DOI: 10.1002/dneu.22739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Animals are able to move and react in numerous ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed and finally an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. In the last decades, a neurono-centric view on nervous system function channeled most of the scientific interest toward the analysis of neurons and neuronal functions. Neurons appeared early in animal evolution and the main principles of neuronal function from synaptic transmission to propagation of action potentials are conserved during evolution. In contrast, not much is known on the evolution of glial cells that were initially considered merely as static support cells. Although it is now accepted that glial cells have an equally important contribution as their neuronal counterpart to nervous system function, their evolutionary origin is unknown. Did glial cells appear several times during evolution? What were the first roles glial cells had to fulfil in the nervous system? What triggered the formation of the amazing diversity of glial morphologies and functions? Is there a possible mechanism that might explain the appearance of complex structures such as myelin in vertebrates? Here, we postulate a common evolutionary origin of glia and depict a number of selective forces that might have paved the way from a simple supporting cell to a wrapping and myelin forming glial cell.
Collapse
Affiliation(s)
- Simone Rey
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Bernard Zalc
- Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
7
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
8
|
Erwig MS, Hesse D, Jung RB, Uecker M, Kusch K, Tenzer S, Jahn O, Werner HB. Myelin: Methods for Purification and Proteome Analysis. Methods Mol Biol 2019; 1936:37-63. [PMID: 30820892 DOI: 10.1007/978-1-4939-9072-6_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive "omics"-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifications, RNA, or myelin from peripheral nerves. Notably, technical advancements in solubilizing myelin are beneficial for gel-based and gel-free myelin proteome analyses. We conclude this article by exemplifying the exceptional power of label-free proteomics in the mass-spectrometric quantification of myelin proteins.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Marina Uecker
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
9
|
Yoshimura T, Hayashi A, Handa-Narumi M, Yagi H, Ohno N, Koike T, Yamaguchi Y, Uchimura K, Kadomatsu K, Sedzik J, Kitamura K, Kato K, Trapp BD, Baba H, Ikenaka K. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system. Sci Rep 2017; 7:42257. [PMID: 28186137 PMCID: PMC5301494 DOI: 10.1038/srep42257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 01/09/2023] Open
Abstract
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Akiko Hayashi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mai Handa-Narumi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hirokazu Yagi
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Takako Koike
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Jan Sedzik
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Chemical Engineering and Technology, Protein Crystallization Facility, Royal Institute of Technology, KTH, Stockholm 10044, Sweden
| | - Kunio Kitamura
- Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Koichi Kato
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
10
|
Abstract
Myelin is probably one of the most fascinating and innovative biological acquisition: a glia plasma membrane tightly wrapped around an axon and insulating it. Chondrichthyans (cartilaginous fishes) form a large group of vertebrates, and they are among oldest extant jawed vertebrate lineage. It has been known from studies 150 years ago, that they are positioned at the root of the successful appearance of compact myelin and main adhesive proteins in vertebrates. More importantly, the ultrastructure of their compact myelin is indistinguishable from the one observed in tetrapods and the first true myelin basic protein (MBP) and myelin protein zero (MPZ) seem to have originated on cartilaginous fish or their ancestors, the placoderms. Thus, the study of their myelin formation would bring new insights in vertebrate׳s myelin evolution. Chondrichthyans central nervous system (CNS) myelin composition is also very similar to peripheral nervous system (PNS) myelin composition. And while they lack true proteolipid protein (PLP) like tetrapods, they express a DM-like protein in their myelin. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Maria Elena de Bellard
- California State University Northridge, Biology Department, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
11
|
Patzig J, Kusch K, Fledrich R, Eichel MA, Lüders KA, Möbius W, Sereda MW, Nave KA, Martini R, Werner HB. Proteolipid protein modulates preservation of peripheral axons and premature death when myelin protein zero is lacking. Glia 2015; 64:155-74. [PMID: 26393339 DOI: 10.1002/glia.22922] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022]
Abstract
Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine-Sottas syndrome (DSS) and in the corresponding mouse model (P0(null)-mice). In the mammalian CNS, the tetraspan-membrane protein PLP is the major structural myelin constituent and required for the long-term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type-2) and the relevant mouse model (Plp(null)-mice). The Plp-gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0(null)-mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0(null)*Plp(null)-double-mutant mice. Compared with either single-mutant, P0(null)*Plp(null)-mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non-myelinated but in a one-to-one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0(null)*Plp(null)-mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell-dependent support of peripheral axons and the oligodendrocyte-dependent support of central axons.
Collapse
Affiliation(s)
- Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital, Würzburg, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
12
|
Myllykoski M, Seidel L, Muruganandam G, Raasakka A, Torda AE, Kursula P. Structural and functional evolution of 2',3'-cyclic nucleotide 3'-phosphodiesterase. Brain Res 2015; 1641:64-78. [PMID: 26367445 DOI: 10.1016/j.brainres.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant membrane-associated enzyme within the vertebrate myelin sheath. While the physiological function of CNPase still remains to be characterized in detail, it is known - in addition to its in vitro enzymatic activity - to interact with other proteins, small molecules, and membrane surfaces. From an evolutionary point of view, it can be deduced that CNPase is not restricted to myelin-forming cells or vertebrate tissues. Its evolution has involved gene fusion, addition of other small segments with distinct functions, such as membrane attachment, and possibly loss of function at the polynucleotide kinase-like domain. Currently, it is unclear whether the enzymatic function of the conserved phosphodiesterase domain in vertebrate myelin has a physiological role, or if CNPase could actually function - like many other classical myelin proteins - in a more structural role. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Leonie Seidel
- Centre for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | | | - Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Andrew E Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland; German Electron Synchrotron, Notkestraße 85, 22607 Hamburg, Germany; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
13
|
Yin X, Kiryu-Seo S, Kidd GJ, Feltri ML, Wrabetz L, Trapp BD. Proteolipid protein cannot replace P0 protein as the major structural protein of peripheral nervous system myelin. Glia 2014; 63:66-77. [PMID: 25066805 DOI: 10.1002/glia.22733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/14/2014] [Indexed: 11/10/2022]
Abstract
The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when proteolipid protein (PLP) replaced P0 protein as the most abundant protein of CNS myelin. However, PLP did not replace P0 in peripheral nervous system (PNS) myelin. To investigate the possible consequences of a PLP to P0 shift in PNS myelin, we engineered mice to express PLP instead of P0 in PNS myelin (PLP-PNS mice). PLP-PNS mice had severe neurological disabilities and died between 3 and 6 months of age. Schwann cells in sciatic nerves from PLP-PNS mice sorted axons into one-to-one relationships but failed to form myelin internodes. Mice with equal amounts of P0 and PLP had normal PNS myelination and lifespans similar to wild-type (WT) mice. When PLP was overexpressed with one copy of the P0 gene, sciatic nerves were hypomyelinated; mice displayed motor deficits, but had normal lifespans. These data support the hypothesis that while PLP can co-exist with P0 in PNS myelin, PLP cannot replace P0 as the major structural protein of PNS myelin.
Collapse
Affiliation(s)
- Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
14
|
Nawaz S, Schweitzer J, Jahn O, Werner HB. Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia 2013; 61:1364-77. [DOI: 10.1002/glia.22520] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Schanila Nawaz
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| | - Jörn Schweitzer
- Developmental Biology; Institute of Biology 1; University of Freiburg; Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine; Göttingen; Germany
| |
Collapse
|
15
|
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012; 69:2879-94. [PMID: 22441408 PMCID: PMC11114939 DOI: 10.1007/s00018-012-0958-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.
Collapse
Affiliation(s)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven P. Wichert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
16
|
Wilson CH, Hartline DK. Novel organization and development of copepod myelin. ii. nonglial origin. J Comp Neurol 2012; 519:3281-305. [PMID: 21674501 DOI: 10.1002/cne.22699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nerve-impulse conduction is greatly speeded by myelin sheaths in vertebrates, oligochaete annelids, penaeid and caridean shrimp, and calanoid copepods. In the first three invertebrate cases, myelin arises from glial cells, as it does in vertebrates. The contribution of the glial cells to the layered structure of the myelin is clear: their nuclei are either embedded in the layers or reside in contiguous cytoplasmic compartments, and their cell membranes are seen to be continuous with those of the myelin layers. However, with calanoids, the association with glial cells presumed necessary to generate the myelin has never been satisfactorily identified. We have conducted a systematic examination of thin sections through different parts of the copepod nervous system to identify the structural organization of copepod myelin and the likely mechanism for its formation. We find that myelination appears to commence by laying down and compacting a cisternal tongue against the inside of the axolemma. This is followed by the successive layering and compaction of additional tongues to create a stack of tongues. The margins of the tongues then expand to encircle the interior of a neurite, meeting and fusing to form complete concentric myelin. No sign of glial involvement could be detected at any stage. Unlike glially derived myelin, the extracellular tracer lanthanum did not penetrate between the myelin layers in copepods, further evidence against a glial source. We believe this to be the first demonstration of a nonglial origin for myelin in any species.
Collapse
Affiliation(s)
- Caroline H Wilson
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
| | | |
Collapse
|
17
|
Werner HB, Jahn O. Myelin matters: proteomic insights into white matter disorders. Expert Rev Proteomics 2010; 7:159-64. [PMID: 20377380 DOI: 10.1586/epr.09.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Abstract
All vertebrate nervous systems, except those of agnathans, make extensive use of the myelinated fiber, a structure formed by coordinated interplay between neuronal axons and glial cells. Myelinated fibers, by enhancing the speed and efficiency of nerve cell communication allowed gnathostomes to evolve extensively, forming a broad range of diverse lifestyles in most habitable environments. The axon-covering myelin sheaths are structurally and biochemically novel as they contain high portions of lipid and a few prominent low molecular weight proteins often considered unique to myelin. Here we searched genome and EST databases to identify orthologs and paralogs of the following myelin-related proteins: (1) myelin basic protein (MBP), (2) myelin protein zero (MPZ, formerly P0), (3) proteolipid protein (PLP1, formerly PLP), (4) peripheral myelin protein-2 (PMP2, formerly P2), (5) peripheral myelin protein-22 (PMP22) and (6) stathmin-1 (STMN1). Although widely distributed in gnathostome/vertebrate genomes, neither MBP nor MPZ are present in any of nine invertebrate genomes examined. PLP1, which replaced MPZ in tetrapod CNS myelin sheaths, includes a novel 'tetrapod-specific' exon (see also Möbius et al., 2009). Like PLP1, PMP2 first appears in tetrapods and like PLP1 its origins can be traced to invertebrate paralogs. PMP22, with origins in agnathans, and STMN1 with origins in protostomes, existed well before the evolution of gnathostomes. The coordinated appearance of MBP and MPZ with myelin sheaths and of PLP1 with tetrapod CNS myelin suggests interdependence - new proteins giving rise to novel vertebrate structures.
Collapse
|
19
|
Genetic dissection of myelinated axons in zebrafish. Curr Opin Neurobiol 2009; 19:486-90. [PMID: 19740648 DOI: 10.1016/j.conb.2009.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/19/2009] [Indexed: 01/29/2023]
Abstract
In the vertebrate nervous system, the myelin sheath allows for rapid and efficient conduction of action potentials along axons. Despite the essential function of myelin, many questions remain unanswered about the mechanisms that govern the development of myelinated axons. The fundamental properties of myelin are widely shared among vertebrates, and the zebrafish has emerged as a powerful system to study myelination in vivo. This review will highlight recent advances from genetic screens in zebrafish, including the discovery of the role of kif1b in mRNA localization in myelinating oligodendrocytes.
Collapse
|
20
|
Abstract
To analyze myelin structure and the composition of myelinated tissue in the African lungfish(Protopterus dolloi), we used a combination of ultrastructural and biochemical techniques. Electron microscopy showed typical multilamellar myelin: CNS sheaths abutted one another, and PNS sheaths were separated by endoneurial collagen. The radial component, prominent in CNS myelin of higher vertebrates, was suggested by the pattern of staining but was poorly organized. The lipid and myelin protein compositions of lungfish tissues more closely resembled those of teleost than those of higher vertebrates (frog, mouse). Of particular note, for example, lungfish glycolipids lacked hydroxy fatty acids. Native myelin periodicities from unfixed nerves were in the range of those for higher vertebrates rather than for teleost fish. Lungfish PNS myelin had wider inter-membrane spaces compared with other vertebrates, and lungfish CNS myelin had spaces that were closer in value to those in mammalian than to amphibian or teleost myelins. The membrane lipid bilayer was narrower in lungfish PNS myelin compared to other vertebrates, whereas in the CNS myelin the bilayer was in the typical range. Lungfish PNS myelin showed typical compaction and swelling responses to incubation in acidic or alkaline hypotonic saline. The CNS myelin, by contrast, did not compact in acidic saline but did swell in the alkaline solution. This lability was more similar to that for the higher vertebrates than for teleost.
Collapse
|
21
|
Embryonic development of glial cells and myelin in the shark, Chiloscyllium punctatum. Gene Expr Patterns 2009; 9:572-85. [PMID: 19733690 DOI: 10.1016/j.gep.2009.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022]
Abstract
Glial cells are responsible for a wide range of functions in the nervous system of vertebrates. The myelinated nervous systems of extant elasmobranchs have the longest independent history of all gnathostomes. Much is known about the development of glia in other jawed vertebrates, but research in elasmobranchs is just beginning to reveal the mechanisms guiding neurodevelopment. This study examines the development of glial cells in the bamboo shark, Chiloscyllium punctatum, by identifying the expression pattern of several classic glial and myelin proteins. We show for the first time that glial development in the bamboo shark (C. punctamum) embryo follows closely the one observed in other vertebrates and that neural development seems to proceed at a faster rate in the PNS than in the CNS. In addition, we observed more myelinated tracts in the PNS than in the CNS, and as early as stage 32, suggesting that the ontogeny of myelin in sharks is closer to osteichthyans than agnathans.
Collapse
|
22
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|
23
|
P0 protein is required for and can induce formation of schmidt-lantermann incisures in myelin internodes. J Neurosci 2008; 28:7068-73. [PMID: 18614675 DOI: 10.1523/jneurosci.0771-08.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons in the PNS and CNS are ensheathed by multiple layers of tightly compacted myelin membranes. A series of cytoplasmic channels connect outer and inner margins of PNS, but not CNS, myelin internodes. Membranes of these Schmidt-Lantermann (S-L) incisures contain the myelin-associated glycoprotein (MAG) but not P(0) or proteolipid protein (PLP), the structural proteins of compact PNS (P(0)) and CNS (PLP) myelin. We show here that incisures are present in MAG-null and absent from P(0)-null PNS internodes. To test the possibility that P(0) regulates incisure formation, we replaced PLP with P(0) in CNS myelin. S-L incisures formed in P(0)-CNS myelin internodes. Furthermore, axoplasm ensheathed by 65% of the CNS incisures examined by electron microscopy had focal accumulations of organelles, indicating that these CNS incisures disrupt axonal transport. These data support the hypotheses that P(0) protein is required for and can induce S-L incisures and that P(0)-induced CNS incisures can be detrimental to axonal function.
Collapse
|
24
|
Rotenstein L, Herath K, Gould RM, de Bellard ME. Characterization of the shark myelin Po protein. BRAIN, BEHAVIOR AND EVOLUTION 2008; 72:48-58. [PMID: 18635929 DOI: 10.1159/000145717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/28/2008] [Indexed: 11/19/2022]
Abstract
Myelin, the insulating sheath made by extensive plasma membrane wrapping, is dependent on the presence of highly adhesive molecules that keep the two sides of the membrane in tight contact. The Po glycoprotein (Po) is the major component of the peripheral nervous system (PNS) myelin of mammals. The exact role that Po protein has played in the evolution of myelin is still unclear, but several phylogenetic observations suggest that it is a crucial component in the development of myelin as a multi-lamellar membrane structure. Sharks, which appeared in the fossil record about 400 million years ago, are the first fully myelinated organisms. In this study we investigated the expression pattern of shark myelin Po to suggest a way it might have played a role in the evolution of myelin in the central nervous system. We found that sharks have more than two isoforms (32, 28 and 25 kD), and that some of these might not be fully functional because they lack the domains known for Po homophilic adhesion.
Collapse
Affiliation(s)
- L Rotenstein
- California State University Northridge, Biology Department, Northridge, Calif, USA
| | | | | | | |
Collapse
|
25
|
Neuron Glia Biology. Commentary. NEURON GLIA BIOLOGY 2008; 4:57-8. [PMID: 19737429 DOI: 10.1017/s1740925x09990275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Aruga J, Yoshikawa F, Nozaki Y, Sakaki Y, Toyoda A, Furuichi T. An oligodendrocyte enhancer in a phylogenetically conserved intron region of the mammalian myelin gene Opalin. J Neurochem 2007; 102:1533-1547. [PMID: 17442045 DOI: 10.1111/j.1471-4159.2007.04583.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opalin is a transmembrane protein detected specifically in mammalian oligodendrocytes. Opalin homologs are found only in mammals and not in the genome sequences of other animal classes. We first determined the nucleotide sequences of Opalin orthologs and their flanking regions derived from four prosimians, a group of primitive primates. A global comparison revealed that an evolutionarily conserved region exists in the first intron of Opalin. When the conserved domain was assayed for its enhancer activity in transgenic mice, oligodendrocyte-directed expression was observed. In an oligodendroglial cell line, Oli-neu, the conserved domain showed oligodendrocyte-directed expression. The conserved domain is composed of eight subdomains, some of which contain binding sites for Myt1 and cAMP-response element binding protein (CREB). Deletion analysis and cotransfection experiments revealed that the subdomains have critical roles in Opalin gene expression. Over-expression of Myt1, treatment of the cell with leukemia inhibitory factor (LIF), and cAMP analog (CREB activator) enhanced the expression of endogenous Opalin in Oli-neu cells and activated the oligodendrocyte enhancer. These results suggest that LIF, cAMP signaling cascades and Myt1 play significant roles in the differentiation of oligodendrocytes through their action on the Opalin oligodendrocyte enhancer.
Collapse
Affiliation(s)
- Jun Aruga
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Fumio Yoshikawa
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Yayoi Nozaki
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Yoshiyuki Sakaki
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Atsushi Toyoda
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Teiichi Furuichi
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| |
Collapse
|
27
|
Abstract
Nervous systems have evolved two basic mechanisms for increasing the conduction speed of the electrical impulse. The first is through axon gigantism: using axons several times larger in diameter than the norm for other large axons, as for example in the well-known case of the squid giant axon. The second is through encasing axons in helical or concentrically wrapped multilamellar sheets of insulating plasma membrane--the myelin sheath. Each mechanism, alone or in combination, is employed in nervous systems of many taxa, both vertebrate and invertebrate. Myelin is a unique way to increase conduction speeds along axons of relatively small caliber. It seems to have arisen independently in evolution several times in vertebrates, annelids and crustacea. Myelinated nerves, regardless of their source, have in common a multilamellar membrane wrapping, and long myelinated segments interspersed with 'nodal' loci where the myelin terminates and the nerve impulse propagates along the axon by 'saltatory' conduction. For all of the differences in detail among the morphologies and biochemistries of the sheath in the different myelinated animal classes, the function is remarkably universal.
Collapse
Affiliation(s)
- D K Hartline
- Békésy Laboratory of Neurobiology, PBRC, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA, and Montreal Neurological Institute and Hospital, Quebec, Canada.
| | | |
Collapse
|
28
|
Avila RL, Tevlin BR, Lees JPB, Inouye H, Kirschner DA. Myelin Structure and Composition in Zebrafish. Neurochem Res 2006; 32:197-209. [PMID: 16951904 DOI: 10.1007/s11064-006-9136-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
To establish a standard for genotype/phenotype studies on the myelin of zebrafish (Danio rerio), an organism increasingly popular as a model system for vertebrates, we have initiated a detailed characterization of the structure and biochemical composition of its myelinated central and peripheral nervous system (CNS; PNS) tissues. Myelin periods, determined by X-ray diffraction from whole, unfixed optic and lateral line nerves, were approximately 153 and approximately 162 Angstrom, respectively. In contrast with the lability of PNS myelin in higher vertebrates, zebrafish lateral line nerve myelin exhibited structural stability when exposed to substantial changes in pH and ionic strength. Neither optic nor lateral line nerves showed swelling at the cytoplasmic apposition in CaCl(2)-containing Ringer's solution, in contrast with nerves from other teleost and elasmobranch fishes. Zebrafish optic nerve showed greater stability against changes in NaCl and CaCl(2) than lateral line nerve. The nerves from zebrafish having mutations in the gene for myelin basic protein (mbpAla2Thr and mbpAsp25Val) showed similar myelin periods as the wildtype (WT), but gave approximately 20% less compact myelin. Analysis of proteins by SDS-PAGE and Western blotting identified in both CNS and PNS of WT zebrafish two orthologues of myelin P0 glycoprotein that have been characterized extensively in trout--intermediate protein 1 (24 kDa) and intermediate protein 2 (28 kDa). Treatment with endoglycosidase-F demonstrated a carbohydrate moiety of approximately 7 kDa, which is nearly threefold larger than for higher vertebrates. Thin-layer chromatography for lipids revealed a similar composition as for other teleosts. Taken together, these data will serve as a baseline for detecting changes in the structure and/or amount of myelin resulting from mutations in myelin-related genes or from exogenous, potentially cytotoxic compounds that could affect myelin formation or stability.
Collapse
Affiliation(s)
- Robin L Avila
- Biology Department, Boston College, Chestnut Hill, MA 02467-3811, USA
| | | | | | | | | |
Collapse
|
29
|
Yin X, Baek RC, Kirschner DA, Peterson A, Fujii Y, Nave KA, Macklin WB, Trapp BD. Evolution of a neuroprotective function of central nervous system myelin. ACTA ACUST UNITED AC 2006; 172:469-78. [PMID: 16449196 PMCID: PMC2063655 DOI: 10.1083/jcb.200509174] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when a tetraspan membrane protein, myelin proteolipid protein (PLP), replaced the type I integral membrane protein, P0, as the major protein of myelin. To investigate possible reasons for this molecular switch, we genetically engineered mice to express P0 instead of PLP in CNS myelin. In the absence of PLP, the ancestral P0 provided a periodicity to mouse compact CNS myelin that was identical to mouse PNS myelin, where P0 is the major structural protein today. The PLP–P0 shift resulted in reduced myelin internode length, degeneration of myelinated axons, severe neurological disability, and a 50% reduction in lifespan. Mice with equal amounts of P0 and PLP in CNS myelin had a normal lifespan and no axonal degeneration. These data support the hypothesis that the P0–PLP shift during vertebrate evolution provided a vital neuroprotective function to myelin-forming CNS glia.
Collapse
Affiliation(s)
- Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
31
|
Dietschy JM, Turley SD. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2005; 45:1375-97. [PMID: 15254070 DOI: 10.1194/jlr.r400004-jlr200] [Citation(s) in RCA: 766] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Unesterified cholesterol is an essential structural component of the plasma membrane of every cell. During evolution, this membrane came to play an additional, highly specialized role in the central nervous system (CNS) as the major architectural component of compact myelin. As a consequence, in the human the mean concentration of unesterified cholesterol in the CNS is higher than in any other tissue (approximately 23 mg/g). Furthermore, even though the CNS accounts for only 2.1% of body weight, it contains 23% of the sterol present in the whole body pool. In all animals, most growth and differentiation of the CNS occurs in the first few weeks or years after birth, and the cholesterol required for this growth apparently comes exclusively from de novo synthesis. Currently, there is no evidence for the net transfer of sterol from the blood into the brain or spinal cord. In adults, the rate of synthesis exceeds the need for new structural sterol, so that net movement of cholesterol out of the CNS must take place. At least two pathways are used for this excretory process, one of which involves the formation of 24(S)-hydroxycholesterol. Whether or not changes in the plasma cholesterol concentration alter sterol metabolism in the CNS or whether such changes affect cognitive function in the brain or the incidence of dementia remain uncertain at this time.
Collapse
Affiliation(s)
- John M Dietschy
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-8887, USA.
| | | |
Collapse
|
32
|
Vourc'h P, Andres C. Oligodendrocyte myelin glycoprotein (OMgp): evolution, structure and function. ACTA ACUST UNITED AC 2004; 45:115-24. [PMID: 15145622 DOI: 10.1016/j.brainresrev.2004.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2004] [Indexed: 12/16/2022]
Abstract
The oligodendrocyte myelin glycoprotein (OMgp) is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system (CNS). Although the precise function of OMgp is yet to be determined in vivo, recent in vitro studies suggested roles for this protein in both the developing and adult central nervous system. In vitro experiments demonstrated the participation of OMgp in growth cone collapse and inhibition of neurite outgrowth through its interaction with NgR, the receptor for Nogo. This function requires its leucine-rich repeat domain, a highly conserved region in OMgp during mammal evolution. OMgp leucine-rich repeat domain is also implicated in the inhibition of cell proliferation. Based on its developmental expression, localization and structure, OMgp may also be involved in the formation and maintenance of myelin sheaths. Cell proliferation, neuronal sprouting and myelination are crucial processes involved in brain development and regeneration after injury. Here, we review the information available on the structure and evolution of OMgp, summarize its tissue expression and discuss its putative role(s) during the development and in adult CNS.
Collapse
Affiliation(s)
- Patrick Vourc'h
- Génétique et physiopathologie de l'autisme et des déficiences mentales, INSERM U619, CHRU Tours and Faculté de Médecine, 2 bis Bd Tonnellé, 37032 Tours Cedex, France
| | | |
Collapse
|
33
|
da Silva SF, Bressan CM, Cavalcante LA, Allodi S. Binding of an antibody against a noncompact myelin protein to presumptive glial cells in the visual system of the crab Ucides cordatus. Glia 2003; 43:292-8. [PMID: 12898708 DOI: 10.1002/glia.10264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glial cells, in both vertebrate and invertebrate nervous systems, provide an essential environment for developmental, supportive, and physiological functions. However, information on glial cells themselves and on glial cell markers, with the exception of those of Drosophila and other insects, is not abundant in invertebrate organisms. A common ultrastructural feature of invertebrate nervous systems is that layers of glial cell cytoplasm-rich processes ensheath axons and neuronal and glial somata. In the present study, we have examined the binding of a monoclonal antibody to 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the compound eye and optic lobe of the crab Ucides cordatus using both light and electron microscopy. CNPase is a noncompact myelin protein that is a phenotypic marker of oligodendroglial and Schwann cells, is apparently involved in the ensheathment step prior to myelin compaction, and is also expressed by the potentially myelinating olfactory ensheathing glia. CNPase has raised much interest, first by virtue of its unusual enzymatic activity and more recently by its membrane-skeletal features and possible involvement in migration or expansion of membranes. We have found CNPase-like immunoreactivity in most cells of the compound eye basement membrane and both in optic cartridges of the synaptic layer and cells of the outer sublayer of the lamina ganglionaris. The results suggest that in the crab visual system some, but not all, glial cells, including some adaxonal glia, may express the noncompact myelin protein CNPase or a related protein.
Collapse
Affiliation(s)
- Simone Florim da Silva
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
34
|
Zand R, Jin X, Kim J, Wall DB, Gould R, Lubman DM. Studies of posttranslational modifications in spiny dogfish myelin basic protein. Neurochem Res 2001; 26:539-47. [PMID: 11513482 DOI: 10.1023/a:1010921230859] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this investigation was to determine whether nonmammalian myelin basic protein contained charge isomers resulting from extensive posttranslational modifications as seen in mammalian MBP. Four charge isomer components from dogfish MBP have been isolated. These forms arise by phosphorylation and deamidation modifications. Components C1, C2 and C3 have been characterized. We are currently characterizing component C8. Dogfish MBP is less cationic than mammalian MBP and has about 50% lower mobility on a basic pH gel electrophoresis relative to human and to bovine MBP. The mammalian component C1, which is unmodified, is modified in the dogfish by phosphorylation. The reduced electrophoretic mobility is largely attributable to the charge reduction resulting from phosphorylation in serine 72, 83, and 120 or 121 in C1, and C3. In component C2, two or three phosphate groups were distributed among residues 134, 138 and 139. It was found that dogfish amino acid residue 30 was a lysine residue and not a glutamate residue as reported in the literature.
Collapse
Affiliation(s)
- R Zand
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
35
|
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81:871-927. [PMID: 11274346 DOI: 10.1152/physrev.2001.81.2.871] [Citation(s) in RCA: 1242] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the proteolipid protein, which lead to dysmyelinating diseases in animals and human (jimpy mutation and Pelizaeus-Merzbacher disease or spastic paraplegia, respectively). Oligodendrocytes, as astrocytes, are able to respond to changes in the cellular and extracellular environment, possibly in relation to a glial network. There is also a remarkable plasticity of the oligodendrocyte lineage, even in the adult with a certain potentiality for myelin repair after experimental demyelination or human diseases.
Collapse
Affiliation(s)
- N Baumann
- Institut National de la Santé et de la Recherche Médicale U. 495, Biology of Neuron-Glia Interactions, Salpêtrière Hospital, Paris, France.
| | | |
Collapse
|
36
|
Affiliation(s)
- D Geltner
- Department of Medicine, Kaplan Hospital, Rehovot, Israel
| | | | | |
Collapse
|
37
|
Ankerhold R, Leppert CA, Bastmeyer M, Stuermer CA. E587 antigen is upregulated by goldfish oligodendrocytes after optic nerve lesion and supports retinal axon regeneration. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199807)23:3<257::aid-glia8>3.0.co;2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
|
39
|
Abstract
The past few years have seen a dramatic increase in our understanding, in molecular terms, of the involvement of the central nervous system proteolipid protein in myelinogenesis and X-linked genetic diseases. In addition, we have expanded our knowledge of the proteins that have been recruited into the vertebrate myelin membrane over the past 400 million years with the molecular cloning of several cDNAs encoding proteins which are homologous to the proteolipid protein gene. In searching for a name to distinguish these proteins from other "proteolipid" proteins of nonneural origin I propose that we resurrect the term "lipophilins" which describes a small family of unusually hydrophobic integral membrane proteins exhibiting identical topologies and similar physical properties. Two subgroups are distinguishable among the lipophilins based on the patterns of expression during development and the presence or absence of a small motif that is exposed to the extracellular space.
Collapse
Affiliation(s)
- A Gow
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
40
|
Torron J, Ljubetic CI, Huang L, Kimbro KS, Dyer C, Saavedra RA. Two proteins bind to a novel motif in the promoter of the myelin basic protein gene from mouse. J Mol Neurosci 1997; 8:181-91. [PMID: 9297631 DOI: 10.1007/bf02736832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The box 1 and 2 motif of the myelin basic protein (MBP) promoter is a potential regulatory sequence of the MBP transcription unit. A DNA fragment that contained the sequence of the box 1 and 2 motif from mouse was synthesized, and its protein binding properties were examined by gel-shift assays. The box 1 and 2 probe and nuclear extracts from mouse brain generated a pattern of six major DNA-protein complexes (a, b, c, d, e, and f). The box 1 and 2 probe and nuclear extracts from oligodendrocyte-like glioma cells 1C10 generated a pattern of DNA-protein complexes that exhibited only complexes a, b, e, and f. Complex b generated by extracts from 1C10 cells, however, was very intense compared to any of the other complexes. It was determined that dephosphorylation of the proteins in nuclear extracts from 1C10 cells with acid phosphatase significantly altered their DNA binding properties. Two proteins of minimum M, approximately 32 and approximately 38 kDa (MBP32 and MBP38) that bind to the box 1 and 2 motif were identified in these nuclear extracts by using a UV crosslinking method. MBP32 and MBP38 are found in cell types and tissues known to express the golli transcription unit of the golli-MBP gene complex and may be involved in the modulation of the MBP unit in those cells.
Collapse
Affiliation(s)
- J Torron
- Department of Neurosurgery, Children's Hospital, Enders Pediatric Research Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pedraza L, Fidler L, Staugaitis SM, Colman DR. The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 1997; 18:579-89. [PMID: 9136767 DOI: 10.1016/s0896-6273(00)80299-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The myelin basic proteins (MBPs) are a set of membrane proteins that function to adhere the cytoplasmic leaflets of the myelin bilayer. During oligodendrocyte maturation prior to compact myelin formation, however, certain MBPs have been observed within the cell body and nucleus. We explored the parameters of the translocation of the exon II-containing MBPs (MBPexII) from the site of synthesis in the cell cytoplasm into the nucleus and in some experiments used GFP as a molecular reporter to monitor the intracellular distribution of MBP-GFP fusion proteins in living cells. We show here that the transport of MBPexII into cell nuclei is an active process, which is temperature and energy dependent, and may be regulated by phosphorylation state. Further, MBPexII can direct the entry of macromolecular complexes into cell nuclei, revealing that the exon II peptide segment may provide a nuclear localization signal (NLS), perhaps a novel one, or may induce a conformational change in the full-length protein that exposes a cryptic NLS. The MBPexII are thus very unusual in that they are plasma membrane proteins that are also targeted to the nucleus. In oligodendrocytes and Schwann cells, where the MBPs are naturally expressed, it is likely that karyophilic MBPs subserve a regulatory function in implementing the myelination program.
Collapse
Affiliation(s)
- L Pedraza
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
42
|
Yoshida M, Colman DR. Parallel evolution and coexpression of the proteolipid proteins and protein zero in vertebrate myelin. Neuron 1996; 16:1115-26. [PMID: 8663988 DOI: 10.1016/s0896-6273(00)80138-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vertebrate myelin contains two proteins that mediate compaction: protein zero (P0), an immunoglobulin gene superfamily member, or proteolipid proteins, 4-hydrophobic domain-motif proteins biogenetically unrelated to P0. The prevailing view has been that expression of P0 and proteolipid proteins is mutually exclusive; P0, which mediates myelin compaction in fish, is thought to be completely replaced by the newer proteolipid proteins in the terrestrial vertebrate CNS. However, we now find that proteolipid proteins are actually major myelin constituents in bony fish and amphibia, and so are coexpressed with P0. Clearly, myelin proteolipids are not new additions to the myelin protein repertoire, but instead were ancestral sheath components, expressed approximately 440 million years ago in the first myelinated fish that existed at least approximately 100 million years before the origin of amphibians. In conclusion, P0 and the proteolipid proteins are evolving in parallel in myelinating cells of most vertebrate species.
Collapse
Affiliation(s)
- M Yoshida
- The Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York 10029, USA
| | | |
Collapse
|
43
|
Bartsch U. Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein. JOURNAL OF NEUROCYTOLOGY 1996; 25:303-13. [PMID: 8818975 DOI: 10.1007/bf02284804] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The myelin-associated glycoprotein, a member of the immunoglobulin superfamily, has been implicated in the formation and maintenance of myelin sheaths. In addition, recent studies have demonstrated that myelin-associated glycoprotein is inhibitory for neurite elongation in vitro and it has therefore been suggested that myelin-associated glycoprotein prevents axonal regeneration in lesioned nervous tissue. The generation of mice deficient in the expression of myelin-associated glycoprotein by targeted disruption of the mag gene via homologous recombination in embryonic stem cells has allowed the study of the functional role of this molecule in vivo. This review summarizes experiments aimed at answering the following questions: (i) is myelin-associated glycoprotein involved in the formation and maintenance of myelin in the CNS? and (ii) does myelin-associated glycoprotein restrict axonal regeneration in the adult mammalian CNS? Analysis of optic nerves from mutant mice revealed a delay in myelination when compared to optic nerves of wild-type animals, a lack of a periaxonal cytoplasmic collar from most myelin sheaths, and the presence of some doubly and multiply myelinated axons. Axonal regeneration in the CNS of adult myelin-associated glycoprotein deficient mice was not improved when compared to wild-type animals. These observations indicate that myelin-associated glycoprotein is functionally involved in the recognition of axons by oligodendrocytes and in the morphological maturation of myelin sheaths. However, results do not support a role of myelin-associated glycoprotein as a potent inhibitor of axonal regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- U Bartsch
- Department of Neurobiology, Swiss Federal Institute of Technology, Zürich, Switzerland
| |
Collapse
|
44
|
Freedman SJ. Immune rainbow trout serum has an anti-proliferation effect on isolated mouse T-cells: possible autoimmune downregulatory implications. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1996; 113:181-4. [PMID: 8624906 DOI: 10.1016/0300-9629(95)02050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple sclerosis is generally believed to involve an autoimmune syndrome in which affected individuals experience degradation of the myelin sheath in the central nervous system. In this study, rainbow trout were immunized with myelin basic protein and myelin in an attempt to induce a myelin-specific autoimmune response using the experimentally induced autoimmune response in Lewis rats as a model. Subsequent to immunization, rainbow trout antibodies to myelin basic protein were detected via an ELISA. Although clinical signs of nerve dysfunction were never apparent, disease due to demyelinization cannot be ruled out until histological studies are performed. It is shown that both rainbow trout immune and normal sera exert an inhibitory affect on the mitogenic stimulation of isolated mouse splenic T-cells. This in vitro inhibitory activity, which is clearly greater in immune serum, is hypothesized to be derived from a nonspecific antiinflammatory factor. While the identity of the factor(s) is not yet known, likely possibilities are discussed.
Collapse
Affiliation(s)
- S J Freedman
- Department of Fisheries and Wildlife, Utah State University, Logan 84322, USA
| |
Collapse
|
45
|
Gould RM, Fannon AM, Moorman SJ. Neural cells from dogfish embryos express the same subtype-specific antigens as mammalian neural cells in vivo and in vitro. Glia 1995; 15:401-18. [PMID: 8926035 DOI: 10.1002/glia.440150405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neural cells are classically identified in vivo and in vitro by a combination of morphological and immunocytochemical criteria. Here, we demonstrate that antibodies used to identify mammalian oligodendrocytes, neurons, and astrocytes recognize these cell types in the developing spiny dogfish central nervous system and in cultures prepared from this tissue. Oligodendrocyte-lineage-specific antibodies O1, O4, and R-mAb labeled cells in the 9 cm dogfish brain stem's medial longitudinal fascicle (MLF) and in areas lateral to it. Process-bearing cells, cultured from the dogfish brain stem, were also labeled with these antibodies. An anti-lamprey neurofilament antibody (LCM), which recognized 60 and 150 kDa proteins in dogfish brain stem homogenates, labeled axons and neurons in the brain stem and axons in the cerebellum of the dogfish embryo. It also labeled cell bodies and/or processes of some cultured cerebellar cells. An anti-bovine glial fibrillary acidic protein antibody, which recognized 42-44 kDa protein(s) in dogfish brain stem homogenates, labeled astrocyte-like processes in the brain stem and cerebellum of the dogfish embryo and numerous large and small flat cells in the cerebellar cultures. These results demonstrate that dogfish oligodendrocytes, neurons, and astrocytes express antigens that are conserved in mammalian neural cells. The ability to culture and identify neural cell types from cartilaginous fish sets the stage for studies to determine if proliferation, migration, and differentiation of these cell types are regulated in a similar fashion to mammalian cells.
Collapse
Affiliation(s)
- R M Gould
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314-6399, USA
| | | | | |
Collapse
|
46
|
Nadon NL, Crotzer DR, Stewart JR. Embryonic development of central nervous system myelination in a reptilian species, Eumeces fasciatus. J Comp Neurol 1995; 362:433-40. [PMID: 8576449 DOI: 10.1002/cne.903620310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The myelin proteolipid proteins are a vital component of the vertebrate central nervous system (CNS), contributing essential functions to the development of the myelinating cells of the CNS and to the structure of CNS myelin. Alternative splicing of the proteolipid protein (PLP) gene to produce two related isoforms occurs in Mammalia, Aves, and Reptilia, but not Amphibia. As part of a long-term investigation into the function of the different isoforms of PLP, embryonic development, myelination, and PLP gene expression in reptilian CNS were examined. PLP gene expression was already substantial by day 19 (stage 39) of the 27-day Eumeces fasciatus egg incubation period. By day 21 of incubation, also stage 39, PLP mRNA was at peak levels; there was a significant amount of CNS myelination as demonstrated by electron microscopy of the spinal cord; and the reflexive motor response was evident. Although most axons were myelinated by the time of hatching, myelin sheaths continued to increase in size and compactness after hatching. The correlation of physiological development, CNS myelination, and expression of the PLP gene in the lizard corresponded well with the developmental pattern seen in mammals.
Collapse
Affiliation(s)
- N L Nadon
- Department of Biological Sciences, University of Tulsa, Oklahoma 74104, USA
| | | | | |
Collapse
|
47
|
Abstract
Proteolipid protein (PLP) is the major myelin protein of the CNS and is believed to have a structural role in maintaining the intraperiod line of compact myelin. An isoform, DM-20, produced by alternative splicing of exon 3B is expressed earlier than PLP in the CNS and may be involved in glial cell development. DM-20 is also present in myelin-forming and non-myelin-forming Schwann cells, olfactory nerve ensheathing cells, some glial cell lines and cardiac myocytes. Molecular studies suggest the existence of a PLP gene family with sequence similarities between molecules of different species. Such studies also lend credence to the suggestion that PLP and/or DM-20 may function as a membrane pore. Mutations in the PLP gene occur in several animal species and cause severe pleiotropic effects on myelination. In man this presents as Pelizaeus-Merzbacher disease (PMD). The phenotype of such mutants is characterized by dysmyelination with myelin of abnormal periodicity, paucity of mature oligodendrocytes and astrocytosis. Duplication of the PLP gene in transgenic animals or in one form of PMD also results in dysmyelination. X-linked spastic paraplegia (SPG2) is allelic to PMD and is associated with PLP mutations in which the levels of the DM-20 isoform are probably relatively normal. The effects of PLP gene dosage on CNS myelination can be compared in many ways to the variety of phenotypes in the PNS in hereditary neuropathies of the Charcot-Marie-Tooth type in which the peripheral myelin-22 gene is mutated.
Collapse
Affiliation(s)
- I R Griffiths
- Applied Neurobiology Group, University of Glasgow Veterinary School, UK
| | | | | |
Collapse
|
48
|
Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Blüthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave KA. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 1994; 13:229-46. [PMID: 7519026 DOI: 10.1016/0896-6273(94)90472-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using homologous recombination in embryonic stem cells, we have generated mice with a null mutation in the gene encoding the myelin-associated glycoprotein (MAG), a recognition molecule implicated in myelin formation. MAG-deficient mice appeared normal in motor coordination and spatial learning tasks. Normal myelin structure and nerve conduction in the PNS, with N-CAM overexpression at sites normally expressing MAG, suggested compensatory mechanisms. In the CNS, the onset of myelination was delayed, and subtle morphological abnormalities were detected in that the content of oligodendrocyte cytoplasm at the inner aspect of most myelin sheaths was reduced and that some axons were surrounded by two or more myelin sheaths. These observations suggest that MAG participates in the formation of the periaxonal cytoplasmic collar of oligodendrocytes and in the recognition between oligodendrocyte processes and axons.
Collapse
Affiliation(s)
- D Montag
- Department of Neurobiology, Swiss Federal Institute of Technology Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kimbro KS, Rosenberg PA, Saavedra RA. Box I and II motif from myelin basic protein gene promoter binds to nuclear proteins from rodent brain. J Mol Neurosci 1994; 5:27-37. [PMID: 7531995 DOI: 10.1007/bf02736692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The box I and II motif located within the promoter of the myelin basic protein gene contains a simian virus 40 T-antigen-binding site, a MyoD/E2a-binding site, and a glucocorticoid receptor-binding site. We have found proteins within nuclear extracts from adult mouse brain, rat embryonic cerebral cortex in culture, and a mouse oligodendrocyte-like cell line that bind to a 32P-labeled synthetic DNA fragment containing the sequences of the box I and II motif. Three major complexes (A, B, and C) were seen in gel-shift assays. Only complexes A and B were competed out by the unlabeled box I and II fragment or by another synthetic DNA fragment that also contains sequences similar to a glucocorticoid receptor-binding site. Therefore, complexes A and B were thought to be specific. The expression pattern of the proteins responsible for the formation of these complexes was also assessed during development in mouse brain.
Collapse
Affiliation(s)
- K S Kimbro
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
50
|
Saavedra RA, Lipson A, Kimbro KS, Ljubetic C. The structural complexities of the myelin basic protein gene from mouse are also present in shark. J Mol Neurosci 1993; 4:215-23. [PMID: 7522502 DOI: 10.1007/bf02821553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Golli-mbp gene complex contains two overlapping transcription units with two distinct promoters, of which the downstream (myelin basic protein [mbp]) promoter is more frequently used. A previous comparison of the downstream promoter sequences from shark and mouse allowed the identification of two DNA sequences called the boxes I and II and the wobble zone. The boxes I and II sequence is a composite cis-acting motif that is thought to be involved in the regulation of the downstream promoter. It contains sequences similar to T-antigen, MyoD/E2A, and glucocorticoid receptor-binding sites. The wobble zone codes for an exon (5a in the nomenclature of Campagnoni et al., 1993) that is included in messenger RNAs transcribed from the upstream promoter. The polypeptides encoded by this exon from shark and mouse are 86 and 84 amino acids long, respectively. These polypeptides are overall 59% identical and include a region (residues 41-75 in shark and 39-73 in mouse) that is 89% identical between the two species. A primary sequence analysis showed that each of these polypeptides contains an N-glycosylation site, phosphorylation sites for Ca2+/calmodulin-dependent protein kinase, protein kinase C and casein kinase II, and partial ATP- and GTP-binding sites. The shark polypeptide also contains a phosphorylation site for proline-directed protein kinase. These observations are consistent with the notion that the intricate structure and regulation of the Golli-mbp gene complex arose during vertebrate evolution within a common ancestor to sharks and mammals.
Collapse
Affiliation(s)
- R A Saavedra
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|