1
|
Félix J, Díaz-Del Cerro E, De la Fuente M. Improvement of Immune Function and Redox State in Several Organs of Old and Prematurely Aging Female Mice After a Short Social Interaction With Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae181. [PMID: 39045862 DOI: 10.1093/gerona/glae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/25/2024] Open
Abstract
Aging is associated with chronic oxidative stress, which contributes to the deterioration of the immune system, increasing morbidity and mortality. A positive social environment permits health maintenance and a slower rate of aging. Improvements in immune function and oxidative stress were shown in peritoneal leukocytes and organs of old mice and adult prematurely aging mice (PAM) after cohabitation with adults or exceptional non-prematurely aging mice (ENPAM), respectively, for 2 months, but adults and ENPAM experienced deterioration. This was solved by shortening the cohabitation time to 15 minutes per day for 2 months, where old mice and PAM maintained immune and redox state improvements in their peritoneal leukocytes, as well as a greater longevity, and adults and ENPAM did not show deterioration. However, it is unknown whether the positive effects of this short cohabitation are reflected in the immunity and redox state of the organs. The aim of the present study was to test whether a cohabitation of 15 minutes per day for 2 months maintains these positive effects in the organs of retired breeder female old mice and PAM and avoids the negative ones in adults and ENPAM. After cohabitation the animals were sacrificed, and the thymus and spleen were extracted to evaluate the immune function. The oxidative state was also analyzed in the spleen, liver, heart, lung, and kidney. The results show that after cohabitation, old mice and PAM improved their immunity and redox state, and adults and ENPAM showed no deterioration. This cohabitation can be suggested to improve health and slow down aging.
Collapse
Affiliation(s)
- Judith Félix
- Faculty of Biological Sciences, Department of Genetics, Physiology, and Microbiology (Animal Physiology Unit), Complutense University of Madrid, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Faculty of Biological Sciences, Department of Genetics, Physiology, and Microbiology (Animal Physiology Unit), Complutense University of Madrid, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Mónica De la Fuente
- Faculty of Biological Sciences, Department of Genetics, Physiology, and Microbiology (Animal Physiology Unit), Complutense University of Madrid, Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| |
Collapse
|
2
|
Deficiency in gp91Phox (NOX2) Protects against Oxidative Stress and Cardiac Dysfunction in Iron Overloaded Mice. HEARTS 2020. [DOI: 10.3390/hearts1020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of NADPH oxidase subunit, gp91phox (NOX2) in development of oxidative stress and cardiac dysfunction due to iron (Fe)-overload was assessed. Control (C57BL/6J) and gp91phox knockout (KO) mice were treated for up to 8 weeks with Fe (2.5 mg/g/wk, i.p.) or Na-dextran; echocardiography, plasma 8-isoprostane (lipid peroxidation marker), cardiac Fe accumulation (Perl’s staining), and CD11b+ (WBCs) infiltrates were assessed. Fe caused no adverse effects on cardiac function at 3 weeks. At 6 weeks, significant declines in left ventricular (LV) ejection fraction (14.6% lower), and fractional shortening (19.6% lower) occurred in the Fe-treated control, but not in KO. Prolonging Fe treatment (8 weeks) maintained the depressed LV systolic function with a trend towards diastolic dysfunction (15.2% lower mitral valve E/A ratio) in controls but produced no impact on the KO. Fe-treatment (8 weeks) caused comparable cardiac Fe accumulation in both strains, but a 3.3-fold elevated plasma 8-isoprostane, and heightened CD11b+ staining in controls. In KO mice, lipid peroxidation and CD11b+ infiltration were 50% and 68% lower, respectively. Thus, gp91phox KO mice were significantly protected against oxidative stress, and systolic and diastolic dysfunction, supporting an important role of NOX2-mediated oxidative stress in causing cardiac dysfunction during Fe overload.
Collapse
|
3
|
Wang ZS, Zhou HH, Han Q, Guo YL, Li ZY. Effects of grape seed proanthocyanidin B2 pretreatment on oxidative stress and renal tubular epithelial cell apoptosis after renal ischemia reperfusion in mice. Acta Cir Bras 2020; 35:e202000802. [PMID: 32901679 PMCID: PMC7478463 DOI: 10.1590/s0102-865020200080000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate the effects of grape seed proanthocyanidin B2 (GSPB2) preconditioning on oxidative stress and apoptosis of renal tubular epithelial cells in mice after renal ischemia-reperfusion (RIR). METHODS Forty male ICR mice were randomly divided into 4 groups: Group A: mice were treated with right nephrectomy. Group B: right kidney was resected and the left renal vessel was clamped for 45 minutes. Group C: mice were intraperitoneally injected with GSPB2 before RIR established. Group D: mice were intraperitoneally injected with GSPB2 plus brusatol before RIR established. Creatinine and urea nitrogen of mice were determined. Pathological and morphological changes of kidney were checked. Expressions of Nrf-2, HO-1, cleaved-caspase3 were detected by Western-blot. RESULTS Compared to Group B, morphology and pathological damages of renal tissue were less serious in Group C. Western-blot showed that expressions of Nrf-2 and HO-1 in Group C were obviously higher than those in Group B. The expression of cleaved-caspase3 in Group C was significantly lower than that in Group B. CONCLUSION GSPB2 preconditioning could attenuate renal oxidative stress injury and renal tubular epithelial cell apoptosis by up-regulating expressions of Nrf-2 and HO-1 and down-regulating the expression of cleaved-caspase-3, but the protective effect could be reversed by brusatol.
Collapse
Affiliation(s)
- Zhi-shun Wang
- Huazhong University of Science and Technology, China
| | - Hai-hong Zhou
- Huazhong University of Science and Technology, China
| | - Qi Han
- The Fifth Hospital of Wuhan, China
| | - Yong-lian Guo
- Huazhong University of Science and Technology, China
| | - Zhong-yuan Li
- Huazhong University of Science and Technology, China
| |
Collapse
|
4
|
Xu L, Yang M, Fu H, Sun S, Qiao H, Zhang W, Gong Y, Jiang S, Xiong Y, Jin S, Wu Y. Molecular cloning, expression, and in situ hybridization analysis of MnGPx-3 and MnGPx-4 from oriental river prawn, Macrobrachium nipponense, in response to hypoxia and reoxygenation. PLoS One 2020; 15:e0229171. [PMID: 32084182 PMCID: PMC7034814 DOI: 10.1371/journal.pone.0229171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/31/2020] [Indexed: 11/18/2022] Open
Abstract
Glutathione peroxidase (GPx) has been the focus of increased research because of its important role as an antioxidant and in reactive oxygen species (ROS) induced damage repair. Studies on GPxs have relevance with Macrobrachium nipponense because it has poor tolerance to hypoxia in Macrobrachium nipponense. The two subunits named as MnGPx-3 and MnGPx-4 according to the glutathione peroxidase nomenclature system. Both full-length cDNAs were cloned from the hepatopancreas. In this study, we analyzed the expression of two GPxs in Macrobrachium nipponense in response to changes in environmental oxygen. Expression levels of MnGPx-3 and MnGPx-4 indicated that both have strong responses to hypoxia. In situ hybridization showed that MnGPx-3 and MnGPx-4 were located in secretory and storage cells in hepatopancreas. These results suggest that GPx gene is expressed and released by secretory cells and released response to hypoxia. In the gill tissue, however, GPxs are located in blood cells, suggesting that they perform different functions in different tissues or organs. The results of in situ hybridization were consistent with those of quantitative Real-time PCR. This study provides a basis for understanding the oxidative stress response in M. nipponense under hypoxia.
Collapse
Affiliation(s)
- Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People’s Republic of China
| | - Ming Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People’s Republic of China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People’s Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Irisin Protects Heart Against Ischemia-Reperfusion Injury Through a SOD2-Dependent Mitochondria Mechanism. J Cardiovasc Pharmacol 2019; 72:259-269. [PMID: 29979350 DOI: 10.1097/fjc.0000000000000608] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Irisin, a muscle-origin protein derived from the extracellular domain of the fibronectin domain-containing 5 protein (FNDC5), has been shown to modulate mitochondria welfare through paracrine action. Here, we test the hypothesis that irisin contributes to cardioprotection after myocardial infarction by preserving mitochondrial function in cardiomyocytes. Animal model studies show that intravenous administration of exogenous irisin produces dose-dependent protection against ischemia/reperfusion (I/R)-induced injury to the heart as reflected by the improvement of left ventricular ejection fraction and the reduction in serum level of cTnI (n = 15, P < 0.05). I/R-induced apoptosis of cardiomyocytes is reduced after irisin treatment. The irisin-mediated protection has, at least in part, an effect on mitochondrial function because administration of irisin increases irisin staining in the mitochondria of the infarct area. Irisin also reduces I/R-induced oxidative stress as determined by mitochondrial membrane potential evaluation and superoxide FLASH event recording (n = 4, P < 0.05). The interaction between irisin and superoxide dismutase2 (SOD2) plays a key role in the protective process because irisin treatment increases SOD activity (n = 10, P < 0.05) and restores the mitochondria localization of SOD2 in cardiomyocytes (n = 5, P < 0.05). These results demonstrate that irisin plays a protective role against I/R injury to the heart. Targeting the action of irisin in mitochondria presents a novel therapeutic intervention for myocardial infarction.
Collapse
|
6
|
Xu L, Yang M, Fu H, Sun S, Qiao H, Zhang W, Gong Y, Jiang S, Xiong Y, Jin S, Wu Y. Molecular Cloning and Expression of MnGST-1 and MnGST-2 from Oriental River Prawn, Macrobrachium nipponense, in Response to Hypoxia and Reoxygenation. Int J Mol Sci 2018; 19:E3102. [PMID: 30308983 PMCID: PMC6213060 DOI: 10.3390/ijms19103102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
The glutathione-S-transferase (GST) superfamily includes seven classes, and different classes have different functions. GST superfamily members function in various processes including detoxification of xenobiotics, protection against oxidative damage, and intracellular transport of hormones, endogenous metabolites, and exogenous chemicals. Herein, to elucidate the tissue-specific expression pattern of GSTs in response to hypoxia stress, which induces cell death, we investigated the expression of GSTs in response to hypoxia and reoxygenation in oriental river prawn, Macrobrachium nipponense. Full-length cDNAs of two δ class GSTs were cloned from the hepatopancreas, and named MnGST-1 and MnGST-2 based on the established GST nomenclature system. Expression profiles of both GSTs in various tissues were different under acute and chronic experimental hypoxia stress conditions, suggesting that both respond strongly to hypoxia-induced oxidative stress. However, the intensity of responses to hypoxia and reoxygenation were different in different tissues. During acute hypoxia stress, MnGST-1 responds earlier than MnGST-2 in the hepatopancreas and gill, but more slowly in muscle. By contrast, during chronic hypoxia stress, MnGST-2 plays a more important role in the hepatopancreas and gill than MnGST-1.
Collapse
Affiliation(s)
- Lei Xu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Ming Yang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Hongtuo Fu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
7
|
Johannsson OE, Giacomin M, Sadauskas-Henrique H, Campos DF, Braz-Mota S, Heinrichs-Caldas WD, Baptista R, Wood CM, Almeida-Val VMF, Val AL. Does hypoxia or different rates of re-oxygenation after hypoxia induce an oxidative stress response in Cyphocharax abramoides (Kner 1858), a Characid fish of the Rio Negro? Comp Biochem Physiol A Mol Integr Physiol 2018; 224:53-67. [PMID: 29864518 DOI: 10.1016/j.cbpa.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023]
Abstract
We examined whether oxidative damage and antioxidant responses are more likely to occur during hypoxia or re-oxygenation in hypoxia-tolerant fish, and whether there is an influence of the rate of re-oxygenation. An hypoxia/re-oxygenation experiment using wild-caught Cyphocharax abramoides (Rio Negro, Brazil), was designed to answer these questions. Lipid peroxidation (MDA), a measure of oxidative damage, and antioxidant activities (superoxide dismutase (SOD), glutathione peroxidase (GPx), antioxidant capacity against peroxyl radicals (ACAP)), were measured in brain, gill and liver tissues after normoxia, 3-h hypoxia (2.7 kPa), and 3-h hypoxia followed by 1-h or 3-h re-oxygenation, implemented either immediately or slowly (3.0 kPa·h-1). Critical oxygen tension of routine oxygen consumption rate (Pcrit) (4.1 kPa) and the PO2 at loss of equilibrium (LOE) (1.7 kPa) were determined to set the experimental hypoxia exposure. The Regulation Index, a measure of oxyregulation with declining PO2, was 0.32. Oxidative damage occurred during hypoxia: no additional damage was observed during re-oxygenation. Tissues responded differentially. GPx and MDA rose in the brain and gills, and SOD (and likely GPx) in the liver during hypoxia. Antioxidants increased further at LOE. Rate of oxygen increase during re-oxygenation did not affect antioxidant responses. In brain and gills, GPx and MDA decreased or recovered after 1-h re-oxygenation. In liver, SOD remained high and GPx increased. In summary, C. abramoides incurred oxidative damage during hypoxic exposure with no additional damage inflicted during re-oxygenation: the rate of re-oxygenation was inconsequential. Literature data support conclusion of greater damage during hypoxia than during re-oxygenation in hypoxia-tolerant fish.
Collapse
Affiliation(s)
- Ora E Johannsson
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil; Zoology Department, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada.
| | - Marina Giacomin
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil; Zoology Department, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | - Helen Sadauskas-Henrique
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil; UNISANTA (Universidade Santa Cecília), Sustainability of Coastal and Marine Ecosystems, 277 Oswaldo Cruz, Boqueirão, 11045-907 Santos, São Paulo, Brazil
| | - Derek F Campos
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil
| | - Waldir D Heinrichs-Caldas
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil
| | - Ramon Baptista
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil
| | - Chris M Wood
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil; Zoology Department, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada.
| | - Vera Maria F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, INPA, Manaus, AM, Brazil.
| |
Collapse
|
8
|
Girn HRS, Ahilathirunayagam S, Mavor AID, Homer-Vanniasinkam S. Reperfusion Syndrome: Cellular Mechanisms of Microvascular Dysfunction and Potential Therapeutic Strategies. Vasc Endovascular Surg 2016; 41:277-93. [PMID: 17704330 DOI: 10.1177/1538574407304510] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reperfusion injury is the paradoxical and complex phenomenon of exacerbation of cellular dysfunction and increase in cell death after the restoration of blood flow to previously ischemic tissues. It involves biochemical and cellular changes causing oxidant production and complement activation, which culminates in an inflammatory response, mediated by neutrophil and platelet cell interactions with the endothelium and among the cells themselves. The mounted inflammatory response has both local and systemic manifestations. Despite improvements in imaging, interventional techniques, and pharmacological agents, morbidity from reperfusion remains high. Extensive research has furthered the understanding of the various pathophysiological mechanisms involved and the development of potential therapeutic strategies. Preconditioning has emerged as a powerful method of ameliorating ischemia reperfusion injury to the myocardium and in transplant surgery. More recently, postconditioning has been shown to provide a therapeutic counter to vasoocclusive emergencies. More research and well-designed trials are needed to bridge the gap between experimental evidence and clinical implementation.
Collapse
|
9
|
Duann P, Li H, Lin P, Tan T, Wang Z, Chen K, Zhou X, Gumpper K, Zhu H, Ludwig T, Mohler PJ, Rovin B, Abraham WT, Zeng C, Ma J. MG53-mediated cell membrane repair protects against acute kidney injury. Sci Transl Med 2015; 7:279ra36. [PMID: 25787762 DOI: 10.1126/scitranslmed.3010755] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injury to the renal proximal tubular epithelium (PTE) represents the underlying consequence of acute kidney injury (AKI) after exposure to various stressors, including nephrotoxins and ischemia/reperfusion (I/R). Although the kidney has the ability to repair itself after mild injury, insufficient repair of PTE cells may trigger inflammatory and fibrotic responses, leading to chronic renal failure. We report that MG53, a member of the TRIM family of proteins, participates in repair of injured PTE cells and protects against the development of AKI. We show that MG53 translocates to acute injury sites on PTE cells and forms a repair patch. Ablation of MG53 leads to defective membrane repair. MG53-deficient mice develop pronounced tubulointerstitial injury and increased susceptibility to I/R-induced AKI compared to wild-type mice. Recombinant human MG53 (rhMG53) protein can target injury sites on PTE cells to facilitate repair after I/R injury or nephrotoxin exposure. Moreover, in animal studies, intravenous delivery of rhMG53 ameliorates cisplatin-induced AKI without affecting the tumor suppressor efficacy of cisplatin. These findings identify MG53 as a vital component of reno-protection, and targeting MG53-mediated repair of PTE cells represents a potential approach to prevention and treatment of AKI.
Collapse
Affiliation(s)
- Pu Duann
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Haichang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peihui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Kristyn Gumpper
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas Ludwig
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,Department of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Brad Rovin
- Department of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - William T Abraham
- Department of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury. J Mol Cell Cardiol 2014; 80:10-19. [PMID: 25533937 DOI: 10.1016/j.yjmcc.2014.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022]
Abstract
Ischemic heart disease is a leading cause of death in human population and protection of myocardial infarction (MI) associated with ischemia-reperfusion (I/R) remains a challenge. MG53 is an essential component of the cell membrane repair machinery that protects injury to the myocardium. We investigated the therapeutic value of using the recombinant human MG53 (rhMG53) protein for treatment of MI. Using Langendorff perfusion of isolated mouse heart, we found that I/R caused injury to cardiomyocytes and release of endogenous MG53 into the extracellular solution. rhMG53 protein was applied to the perfusion solution concentrated at injury sites on cardiomyocytes to facilitate cardioprotection. With rodent models of I/R-induced MI, we established the in vivo dosing range for rhMG53 in cardioprotection. Using a porcine model of angioplasty-induced MI, the cardioprotective effect of rhMG53 was evaluated. Intravenous administration of rhMG53, either prior to or post-ischemia, reduced infarct size and troponin I release in the porcine model when examined at 24h post-reperfusion. Echocardiogram and histological analyses revealed that the protective effects of rhMG53 observed following acute MI led to long-term improvement in cardiac structure and function in the porcine model when examined at 4weeks post-operation. Our study supports the concept that rhMG53 could have potential therapeutic value for treatment of MI in human patients with ischemic heart diseases.
Collapse
|
11
|
Liu JW, Montero M, Bu L, De Leon M. Epidermal fatty acid-binding protein protects nerve growth factor-differentiated PC12 cells from lipotoxic injury. J Neurochem 2014; 132:85-98. [PMID: 25147052 PMCID: PMC4270845 DOI: 10.1111/jnc.12934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP/FABP5/DA11) binds and transport long-chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E-FABP protects nerve growth factor-differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM-induced lipotoxicity (PAM-LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E-FABP. Antioxidants MCI-186 and N-acetyl cysteine prevented E-FABP's induction in expression by PAM-LTx, while tert-butyl hydroperoxide increased ROS and E-FABP expression. Non-metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E-FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE-FABP showed reduced E-FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E-FABP cellular levels by pre-loading the cells with recombinant E-FABP diminished the PAM-induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E-FABP expression and enhanced the resistance of NGFDPC12 cells to PAM-LTx. We conclude that E-FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS. Epidermal fatty acid-binding protein (E-FABP) may protect nerve cells from the damaging exposure to high levels of free fatty acids (FA). We show that E-FABP can neutralize the effects of reactive oxygen species (ROS) generated by the high levels of FA in the cell and protect PC12 cells from lipotoxic injuries common in Type 2 diabetes neuropathy. Potentially, E-FABP gene up-regulation may be mediated through the NFkB pathway and future studies are needed to further evaluate this proposition.
Collapse
Affiliation(s)
- Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | | | | |
Collapse
|
12
|
Zelzer S, Oberreither R, Bernecker C, Stelzer I, Truschnig-Wilders M, Fauler G. Measurement of total and free malondialdehyde by gas-chromatography mass spectrometry--comparison with high-performance liquid chromatography methology. Free Radic Res 2013; 47:651-6. [PMID: 23745592 DOI: 10.3109/10715762.2013.812205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Malondialdehyde (MDA) is considered to be a biomarker for enzymatic degradation and lipid peroxidation of polyunsaturated fatty acids. Usually, MDA determination from different biological materials is performed by reaction with thiobarbituric acid (TBA) followed by high-performance liquid chromatography (HPLC) analysis and fluorometric detection. As this method lacks specificity and sensitivity, we developed a gas chromatography-mass spectrometry (GC-MS) method based on derivatization of MDA with 2,4-dinitrophenylhydrazine. Representative ions in negative ion chemical ionization (NICI) mode were recorded at m/z 204 for MDA and at m/z 206 for the deuterated analogon (MDA-d₂) as internal standard. This stable and precise GC-MS method showed good linearity (r² = 0.999) and higher specificity and sensitivity than the HPLC method and was validated for both total MDA (t-MDA) and free MDA (f-MDA). Within-day precisions were 1.8-5.4%, between-day precisions were 4.8-9.2%; and accuracies were between 99% and 101% for the whole calibration range (0.156-5.0 μmol/L for t-MDA and 0.039-0.625 μmol/L for f-MDA). Although comparison of t-MDA levels from GC-MS and HPLC results using Passing-Bablok regression analysis as well as Bland-Altman plot showed a correlation of the data, a tendency to increased results for the HPLC values was detectable, due to possible formation of unspecific products of the TBA reaction.
Collapse
Affiliation(s)
- S Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | |
Collapse
|
13
|
Quan W, Yin Y, Xi M, Zhou D, Zhu Y, Guan Y, Guo C, Wang Y, Duan J, Wen A. Antioxidant properties of magnesium lithospermate B contribute to the cardioprotection against myocardial ischemia/reperfusion injury in vivo and in vitro. J TRADIT CHIN MED 2013; 33:85-91. [DOI: 10.1016/s0254-6272(13)60106-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Kramer JH, Spurney CF, Iantorno M, Tziros C, Chmielinska JJ, Mak IT, Weglicki WB. d-Propranolol protects against oxidative stress and progressive cardiac dysfunction in iron overloaded rats. Can J Physiol Pharmacol 2012; 90:1257-68. [PMID: 22913465 PMCID: PMC3715050 DOI: 10.1139/y2012-091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
d-Propranolol (d-Pro: 2-8 mg·(kg body mass)(-1)·day(-1)) protected against cardiac dysfunction and oxidative stress during 3-5 weeks of iron overload (2 mg Fe-dextran·(g body mass)(-1)·week(-1)) in Sprague-Dawley rats. At 3 weeks, hearts were perfused in working mode to obtain baseline function; red blood cell glutathione, plasma 8-isoprostane, neutrophil basal superoxide production, lysosomal-derived plasma N-acetyl-β-galactosaminidase (NAGA) activity, ventricular iron content, and cardiac iron deposition were assessed. Hearts from the Fe-treated group of rats exhibited lower cardiac work (26%) and output (CO, 24%); end-diastolic pressure rose 1.8-fold. Further, glutathione levels increased 2-fold, isoprostane levels increased 2.5-fold, neutrophil superoxide increased 3-fold, NAGA increased 4-fold, ventricular Fe increased 4.9-fold; and substantial atrial and ventricular Fe-deposition occurred. d-Pro (8 mg) restored heart function to the control levels, protected against oxidative stress, and decreased cardiac Fe levels. After 5 weeks of Fe treatment, echocardiography revealed that the following were depressed: percent fractional shortening (%FS, 31% lower); left ventricular (LV) ejection fraction (LVEF, 17%), CO (25%); and aortic pressure maximum (P(max), 24%). Mitral valve E/A declined by 18%, indicating diastolic dysfunction. Cardiac CD11b+ infiltrates were elevated. Low d-Pro (2 mg) provided modest protection, whereas 4-8 mg greatly improved LVEF (54%-75%), %FS (51%-81%), CO (43%-78%), P(max) (56%-100%), and E/A >100%; 8 mg decreased cardiac inflammation. Since d-Pro is an antioxidant and reduces cardiac Fe uptake as well as inflammation, these properties may preserve cardiac function during Fe overload.
Collapse
Affiliation(s)
- Jay H Kramer
- Biochemistry & Molecular Biology, Division of Experimental Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Arata KI, Iguro Y, Yotsumoto G, Ueno T, Terai H, Sakata R. Use of continuous retrograde gaseous oxygen persufflation for myocardial protection during open heart surgery. Surg Today 2010; 40:549-54. [PMID: 20496137 DOI: 10.1007/s00595-008-4093-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 08/06/2008] [Indexed: 10/19/2022]
Abstract
PURPOSE The infusion of a cardioplegic solution is the standard method of myocardial protection during open heart surgery. However, this method interrupts the surgical procedure and it is difficult to ensure a bloodless surgical field. To address these problems, the effect of continuous retrograde gaseous oxygen persufflation (ROP) on myocardial protection was assessed in comparison to St. Thomas' solution (STS). METHODS Eighteen adult mongrel dogs were divided into three groups of six. Group G received continuous ROP, Group C received STS every 30 min, and Group N received hypothermia alone during the 120 min hypothermic ischemia. The myocardial metabolism was assessed by measuring the coronary sinus lactate concentration, lactate extraction ratio (LER), coronary sinus lipid peroxidation (LPO) concentration, left ventricular myocardial adenosine triphosphate (ATP) concentration, and water content. Cardiac function was assessed by the percent recovery relative to the baseline. RESULTS In Group G, the lactate, LPO, and water content were significantly lower (P = 0.0062, P = 0.03, and P = 0.0065, respectively), and ATP was significantly higher (P = 0.028) than in Group C. The LER was only positive in Group G. In addition, the cardiac functions in Groups G and C were not significantly different. CONCLUSIONS Retrograde gaseous oxygen persufflation was not inferior to STS in regard to myocardial protection. This technique could therefore represent a potentially promising cardioplegic method.
Collapse
Affiliation(s)
- Ken-Ichi Arata
- Department of Thoracic and Cardiovascular Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Curcumin Protects Rat Myocardium Against Isoproterenol-Induced Ischemic Injury: Attenuation of Ventricular Dysfunction Through Increased Expression of Hsp27 Alongwith Strengthening Antioxidant Defense System. J Cardiovasc Pharmacol 2010; 55:377-84. [DOI: 10.1097/fjc.0b013e3181d3da01] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Wakamatsu D, Morimura S, Imai T, Tang Y, Maeda H, Kida K. Production of Canola Oil Showing Radical Scavenging Activity Based on a High Canolol Concentration. J JPN SOC FOOD SCI 2008. [DOI: 10.3136/nskkk.55.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Pescosolido N, Imperatrice B, Karavitis P. Ocular Disorders Secondary to Systemic Disease and the Potential Role of Carnitines. Drugs R D 2008; 9 Suppl 1:15-22. [DOI: 10.2165/0126839-200809001-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
19
|
Kramer JH, Murthi SB, Wise RM, Mak IT, Weglicki WB. Antioxidant and lysosomotropic properties of acute D-propranolol underlies its cardioprotection of postischemic hearts from moderate iron-overloaded rats. Exp Biol Med (Maywood) 2006; 231:473-84. [PMID: 16565443 DOI: 10.1177/153537020623100413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The benefits of acute D-propranolol (D-Pro, non-beta-adrenergic receptor blocker) pretreatment against enhanced ischemia/reperfusion (I/R) injury of hearts from moderate iron-overloaded rats were examined. Perfused hearts from iron-dextran-treated rats (450 mg/kg/week for 3 weeks, intraperitoneal administration) exhibited normal control function, despite iron treatment that elevated plasma iron and conjugated diene levels by 8.1-and 2.5-fold, respectively. However, these hearts were more susceptible to 25 mins of global I/R stress compared with non-loaded hearts; the coronary flow rate, aortic output, cardiac work, left ventricular systolic pressure, positive differential left ventricular pressure (dP/dt), and left ventricular developed pressure displayed 38%, 60%, 55%, 13%, 41%, and 15% lower recoveries, respectively, and a 6.5-fold increase in left ventricular end-diastolic pressure. Postischemic hearts from iron-loaded rats also exhibited 5.6-, 3.48-, 2.43-, and 3.45-fold increases in total effluent iron content, conjugated diene levels, lactate dehydrogenase (LDH) activity, and lysosomal N-acetyl-beta-glucosaminidase (NAGA) activity, respectively, compared with similarly stressed non-loaded hearts. A comparison of detection time profiles during reperfusion suggests that most of the oxidative injury (conjugated diene) in hearts from iron-loaded rats occurred at later times of reperfusion (8.5-15 mins), and this corresponded with heightened tissue iron and NAGA release. D-Pro (2 microM infused for 30 mins) pretreatment before ischemia protected all parameters compared with the untreated iron-loaded group; pressure indices improved 1.2- to 1.6-fold, flow parameters improved 1.70- to 2.96-fold, cardiac work improved 2.87-fold, and end-diastolic pressure was reduced 56%. D-Pro lowered total release of tissue iron, conjugated diene content, LDH activity, and NAGA activity 4.59-, 2.55-, 3.04-, and 4.14-fold, respectively, in the effluent of I/R hearts from the iron-loaded group. These findings suggest that the enhanced postischemic dysfunction and tissue injury of hearts from iron-loaded rats was caused by excessive iron-catalyzed free radical stress, and that the membrane antioxidant properties of D-Pro and its stabilization of sequestered lysosomal iron by D-Pro may contribute to the cardioprotective actions of D-Pro.
Collapse
Affiliation(s)
- Jay H Kramer
- Department of Biochemistry, Division of Experimental Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
20
|
Lu G, Mak YT, Wai SM, Kwong WH, Fang M, James A, Randall D, Yew DT. Hypoxia-induced differential apoptosis in the central nervous system of the sturgeon (Acipenser shrenckii). Microsc Res Tech 2006; 68:258-63. [PMID: 16315235 DOI: 10.1002/jemt.20243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypoxia is a frequent challenge to aquatic vertebrates as compared with that for their terrestrial counterparts. All vertebrates respond to hypoxia in a similar, but not identical manner, indicating that these responses appeared early in the evolution of vertebrates. The aim of this study is to find out the effects of hypoxia on apoptosis in the central nervous system (CNS) of sturgeon, an archaic fish. With the regional specialization of the CNS, we hypothesize that if cell death does occur, the response will vary between regions, i.e., some CNS areas will be more susceptible to hypoxia than the others would. Sturgeons (Acipenser shrenckii) were subjected to hypoxia by exposure to either air or hypoxic water. After 6- or 30-h recovery they were sacrificed and the following regions of the CNS: retina, olfactory lobe, optic tectum, pituitary, cerebellum, pons/medulla, and spinal cord were examined by the terminal transferase mediated dUTP nick end labeling technique and for the cleaved fragment of activated caspase-3 by Western blotting. In hypoxia-treated sturgeons, the retina, optic tectum, pituitary, and spinal cord were found to have significantly more apoptotic cells than did untreated sturgeons at both 6 and 30 h after the hypoxic insults, indicating prolonged damage. Apoptosis was confirmed by Western blotting of the cleaved fragment of activated caspase-3. Olfactory lobe, cerebellum, and pons/medulla had relatively few apoptotic cells. The CNS of sturgeon showed a differential pattern of apoptosis in response to hypoxia.
Collapse
Affiliation(s)
- Gang Lu
- Department of Anatomy, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Choi BH, Ha KC, Park JA, Jung YJ, Kim JC, Lee GI, Choi HS, Kang YJ, Chae SW, Kwak YG. Regional differences of superoxide dismutase activity enhance the superoxide–induced electrical heterogeneity in rabbit hearts. Basic Res Cardiol 2005; 100:355-64. [PMID: 15870956 DOI: 10.1007/s00395-005-0531-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/14/2005] [Accepted: 04/05/2005] [Indexed: 11/28/2022]
Abstract
During myocardial ischemia and the subsequent reperfusion, free radicals are important intermediates of the cellular damage and rhythm disturbances. We examined the effects of superoxide radicals or hydrogen peroxide (H(2)O(2)) on the action potentials in isolated rabbit Purkinje fibers, atrial muscle and ventricular muscle. Reactive oxygen species (ROS) donors such as adriamycin, xanthine/xanthine oxidase and menadione induced prolongation of APD(90) in Purkinje fibers. Menadione (30 microM), the most specific superoxide radical donor, prolonged the action potential duration at 90% repolarization (APD(90)) by 17% in Purkinje fibers, whereas it shortened the APD by 57% in ventricular muscle, and it did not affect the atrial APD. All these menadione-induced effects were completely blocked by 2,2,6,6-tetramethyl- 1-peperadinyloxy, a superoxide radical scavenger. Superoxide dismutase (SOD) activity was lowest in Purkinje fibers, it was moderate in atrial muscle and highest in ventricular muscle. H(2)O(2) shortened the APDs of all three cardiac tissues in a concentration-dependent manner. These results suggest that the different electrical responses to O(2) ([Symbol: see text]-) in different cardiac regions may result from the regional differences in the SOD activity, thereby enhancing the regional electrical heterogeneity.
Collapse
Affiliation(s)
- B H Choi
- Department of Pharmacology, Institute of Cardiovascular Research, Chonbuk National University, Medical School, Chonju 560-182, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Davies LR, Martin SM, Coddington WJ, Miller FJ, Buettner GR, Kerber RE. The nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) increases free radical generation and degrades left ventricular function after myocardial ischemia–reperfusion. Resuscitation 2003; 59:345-52. [PMID: 14659604 PMCID: PMC4343200 DOI: 10.1016/s0300-9572(03)00240-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND During reperfusion of ischemic myocardium nitric oxide (NO) reacts with superoxide radicals to form cardiotoxic peroxynitrite, which causes lipid peroxidation. Our hypothesis was that infusion of a NO donor S-nitroso-N-acetylpenicillamine (SNAP) during ischemia-reperfusion would exacerbate the oxidative damage to the myocardium by increased formation of nitrogen radicals. METHODS AND RESULTS In 19 open-chest dogs, left anterior descending (LAD) coronary occlusion (15 min)-reperfusion (15 min) sequences were created. Using electron paramagnetic resonance (EPR), we monitored the coronary sinus concentration of ascorbate free radical (Ascz*-), a measure of free radical generation (total oxidative flux). Seven control dogs (Group 1) received intravenous saline infusion during occlusion-reperfusion, while 12 dogs received SNAP infusion (Group 2: 2.5 microg/min per kg SNAP, and Group 3: 5 microg/min per kg SNAP). Left ventricular fractional area shortening was determined by echocardiography. Dogs in Group 3 receiving a high dose of SNAP (5 microg/min per kg) demonstrated a higher Ascz*- concentration increase than the control group. Percent fractional area shortening in Group 1 declined from 77+/-4.0 (baseline) to 54+/-9.0% during ischemia (P<0.05), and then fully recovered to 74+/-3.7% with reperfusion. In the SNAP-treated dogs, the percent fractional area shortening during reperfusion was significantly lower than baseline in Group 2 (55+/-3.9 vs. baseline 74+/-4.4%, P<0.05) and in Group 3 (49+/-5.0 vs. baseline 71+/-4.5%, P<0.01). In five additional dogs, nitrotyrosine immunohistochemistry showed heavy staining of the ischemic-reperfused myocardium. CONCLUSIONS The NO donor SNAP increased free radical concentration and exacerbated myocardial oxidative damage after ischemia-reperfusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard E. Kerber
- Corresponding author. Tel.: +-319-356-2739; fax: +1-319-356-4552. (R.E. Kerber)
| |
Collapse
|
23
|
Gaitanaki C, Konstantina S, Chrysa S, Beis I. Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J Exp Biol 2003; 206:2759-69. [PMID: 12847121 DOI: 10.1242/jeb.00483] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the activation of three subfamilies of MAPKs (ERK, JNKs and p38-MAPK) by oxidative stress in the isolated perfused amphibian heart. Activation of p43-ERK by 100 micro mol l(-1) H(2)O(2) was maximally observed within 5 min, remained elevated for 30 min and was comparable with the effect of 1 micro mol l(-1) PMA. p43-ERK activation by H(2)O(2) was inhibited by PD98059 but not by SB203580. The p46 and p52 species of JNKs were maximally activated by 2.5- and 2.1-fold, respectively, by 100 micro mol l(-1) H(2)O(2) within 2 min. JNK activation was still detectable after 15 min, reaching control values at 30 min of treatment. p38-MAPK was maximally activated by 9.75-fold by 100 micro mol l(-1) H(2)O(2) after 2 min and this activation progressively declined thereafter, reaching control values within 45 min of treatment. The observed dose-dependent profile of p38-MAPK activation by H(2)O(2) revealed that 30 micro mol l(-1) H(2)O(2) induced maximal phosphorylation, whereas 100-300 micro mol l(-1) H(2)O(2) induced considerable activation of the kinase. Our studies also showed that the phosphorylation of MAPKAPK2 by H(2)O(2) followed a parallel time-dependent pattern and that SB203580 abolished this phosphorylation. Furthermore, our experiments clearly showed that 30 micro mol l(-1) H(2)O(2) induced a strong, specific phosphorylation of HSP27. Our immunohistochemical studies showed that immune complexes of phosphorylated forms of both p38-MAPK and HSP27 were strongly enhanced by 30 micro mol l(-1) H(2)O(2) in the perinuclear region as well as dispersedly in the cytoplasm of ventricular cells and that SB203580 abolished this phosphorylation. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in the amphibian heart. Stimulation of p38-MAPK and the consequent phosphorylation of HSP27 may be important in cardioprotection under such conditions.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis, Athens 157 84, Greece
| | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND The intense inflammatory reaction following reperfusion of ischemic myocardium has been implicated as a factor in the extension of myocardial injury. One of the therapeutic goals of modern cardiology is to design strategies to limit the infarct size following myocardial infarction. A sound understanding of the inflammatory cascade that involves the release of various proinflammatory mediators from cardiac cells is necessary before a specific intervention is pursued. OBSERVATION Summarized is the role of resident cardiac mast cells, which are noted to release inflammatory mediators, in ischemia-reperfusion-induced myocardial injury. Various pharmacologic interventions, such as disodium cromoglycate and ketotifen, that stabilize cardiac mast cells, or agents such as chlorpheniramine and cetirizine that prevent their degranulation during ischemia and reperfusion, may prove to be potential therapeutic agents to limit or salvage ischemia-reperfusion-induced injury. CONCLUSION On the basis of the effects of histamine H1 antagonists, adrenoceptor blockers, cellular calcium and nitric oxide modulators, as well as inhibitors of phosphodiesterase and mitogen-activated protein kinase on mast cells, cardiac resident mast cells may represent a novel target for the development of cardioprotective agents.
Collapse
Affiliation(s)
- Manjeet Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | | |
Collapse
|
25
|
Zhang Y, Davies LR, Martin SM, Bawaney IM, Buettner GR, Kerber RE. Magnesium reduces free radical concentration and preserves left ventricular function after direct current shocks. Resuscitation 2003; 56:199-206. [PMID: 12589995 DOI: 10.1016/s0300-9572(02)00353-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Our objective was to determine if magnesium reduces free radicals generated by direct current countershock and preserves left ventricular contractile function. BACKGROUND We have previously shown that magnesium reduces free radicals in a coronary occlusion-reperfusion model, and therefore also might reduce free radical generation by direct current shocks. METHODS In eight swine weighing 18-27 kg (mean: 22 kg), using electron paramagnetic resonance, we monitored continuously the coronary sinus concentration of ascorbate free radical, a measure of free radical generation (total oxidative flux). Epicardial shocks (30 J) using a truncated exponential biphasic waveform (5/5 ms) were administered. Each animal received two shocks, one without and one with magnesium, 80 mg/min IV, beginning 10 min before the shock and continuing to 15 min after the shock. Percent fractional area shortening of the left ventricular cavity was determined by 2-dimensional echocardiography. RESULTS Magnesium shocks resulted in a significantly lower increase in the ascorbate free radical concentration (0.6+/-4.6%) than no-magnesium shocks (16+/-3.3%, P<0.05) at 12 min after the shock. Total radical flux was reduced 72% (P<0.05), and left ventricular fractional area shortening was preserved: baseline: 69+/-2.6%, no-magnesium shocks: 41+/-2.8% (P<0.05, versus baseline) and magnesium shocks 61+/-3.7%. CONCLUSIONS Magnesium pre-treatment reduced oxygen free radicals generated by direct current shocks; post-shock left ventricular contractile function was not impaired. Magnesium may be cardioprotective during epicardial ('surgical') defibrillation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Internal Medicine, The Cardiovascular Center, College of Medicine, University of Iowa Hospital, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
26
|
Dickens BF, Weglicki WB, Boehme PA, Mak TI. Antioxidant and lysosomotropic properties of acridine-propranolol: protection against oxidative endothelial cell injury. J Mol Cell Cardiol 2002; 34:129-37. [PMID: 11851353 DOI: 10.1006/jmcc.2001.1495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antioxidant and lysosomotropic properties of a fluorescent analogue of propranolol, 9-amino-acridine-propranolol (9-AAP) were compared to those of propranolol. Using isolated microsomal membranes exposed to a superoxide and hydroxyl radical generating system, 9-AAP was found to be at least 10-fold more potent than propranolol (and about 50% as potent as vitamin E) in inhibiting lipid peroxidation. In cultured endothelial cells, 9-AAP afforded moderate protective effect against acute loss of glutathione but potent cytoprotective activity against free radical-mediated loss of viability/survival. Intracellular localization of 9-AAP was examined by fluorescent microscopy and compared with two known fluorescent lysosomal markers: acridine orange and Lysosensor. All three agents appeared to localize to similar peri-nuclear vesicles, presumably lysosomes or pre-lysosomes. Lysosensor fluorescence was not observable in the presence of 9-AAP, foreclosing the possibility of a direct dual labeling experiment. We employed the pH sensitivity of acridine orange to determine if it labels the same vesicles as 9-AAP. When the endothelial cells were preloaded with acridine orange, washed and resuspended in buffer containing 9-AAP, the dark orange-labeled vesicles observed with acridine orange alone became increasingly lighter with time. Since the fluorescence of acridine orange is altered by pH change, this spectral shift in fluorescence emission is consistent with the indication that added propranolol (or the analog) leads to lysosomal alkalization. In conclusion, 9-AAP is both a strong antioxidant and a lysosomotropic agent that is remarkably insensitive to photobleaching. These properties may contribute to the enhanced endothelial cytoprotective effects against free radical-induced injury.
Collapse
Affiliation(s)
- Benjamin F Dickens
- Department of Immunology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
27
|
Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI. Oxidative Modification and Inactivation of the Proteasome during Coronary Occlusion/Reperfusion. J Biol Chem 2001; 276:30057-63. [PMID: 11375979 DOI: 10.1074/jbc.m100142200] [Citation(s) in RCA: 301] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Restoration of blood flow to ischemic myocardial tissue results in an increase in the production of oxygen radicals. Highly reactive, free radical species have the potential to damage cellular components. Clearly, maintenance of cellular viability is dependent, in part, on the removal of altered protein. The proteasome is a major intracellular proteolytic system which degrades oxidized and ubiquitinated forms of protein. Utilizing an in vivo rat model, we demonstrate that coronary occlusion/reperfusion resulted in declines in chymotrypsin-like, peptidylglutamyl-peptide hydrolase, and trypsin-like activities of the proteasome as assayed in cytosolic extracts. Analysis of purified 20 S proteasome revealed that declines in peptidase activities were accompanied by oxidative modification of the protein. We provide conclusive evidence that, upon coronary occlusion/reperfusion, the lipid peroxidation product 4-hydroxy-2-nonenal selectively modifies 20 S proteasome alpha-like subunits iota, C3, and an isoform of XAPC7. Occlusion/reperfusion-induced declines in trypsin-like activity were largely preserved upon proteasome purification. In contrast, loss in chymotrypsin-like and peptidylglutamyl-peptide hydrolase activities observed in cytosolic extracts were not evident upon purification. Thus, decreases in proteasome activity are likely due to both direct oxidative modification of the enzyme and inhibition of fluorogenic peptide hydrolysis by endogenous cytosolic inhibitory protein(s) and/or substrate(s). Along with inhibition of the proteasome, increases in cytosolic levels of oxidized and ubiquitinated protein(s) were observed. Taken together, our findings provide insight into potential mechanisms of coronary occlusion/reperfusion-induced proteasome inactivation and cellular consequences of these events.
Collapse
Affiliation(s)
- A L Bulteau
- Departments of Biochemistry and Biology, Université Denis Diderot-Paris 7, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol 2001; 280:R100-7. [PMID: 11124139 DOI: 10.1152/ajpregu.2001.280.1.r100] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this work was to evaluate the response of the antioxidant system of goldfish Carassius auratus during anoxia and reoxygenation. The exposure of goldfish to 8 h of anoxia induced a 14% decrease in total glutathione levels in the kidney, although the liver, brain, and muscle were unaffected. Anoxia also resulted in increases in the activities of liver catalase, brain glucose-6-phosphate dehydrogenase, and brain glutathione peroxidase (by 38, 26, and 79%, respectively) and a decrease in kidney catalase activity (by 17.5%). After 14 h of reoxygenation, liver catalase and brain glutathione peroxidase activities remained higher than controls and several other tissue-specific changes occurred in enzyme activities. Superoxide dismutase activity was unaffected by anoxia and reoxygenation. The levels of conjugated dienes, as indicators of lipid peroxidation, increased by 114% in liver after 1 h of reoxygenation and by 75% in brain after 14 h of reoxygenation. Lipid peroxidation was unaffected in kidney and depressed during anoxia and reoxygenation (by 44-61%) in muscle. Regulation of the goldfish antioxidant system during anoxia may constitute a biochemical mechanism that minimizes oxidative stress following reoxygenation.
Collapse
Affiliation(s)
- V I Lushchak
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900 Brazil
| | | | | | | |
Collapse
|
29
|
Maulik N, Yoshida T. Oxidative stress developed during open heart surgery induces apoptosis: reduction of apoptotic cell death by ebselen, a glutathione peroxidase mimic. J Cardiovasc Pharmacol 2000; 36:601-8. [PMID: 11065220 DOI: 10.1097/00005344-200011000-00009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptosis, a genetically controlled programmed cell death, has been found to play a role in ischemic reperfusion injury in several animal species including rats and rabbits. To examine whether this also is true for other animals, a surgically relevant model was established using an isolated in situ swine heart. Hearts were subjected to 15 min of normothermic regional ischemia by left anterior descending artery (LAD) occlusion followed by 30 min of normothermic cardioplegic arrest and 3 h of reperfusion. Oxygen free radicals have been shown to be the inducers of apoptosis and because reperfusion of ischemic myocardium is associated with the generation of free radicals, an additional group of hearts was preperfused with three different doses (5, 10, and 25 nM) ebselen, a glutathione peroxidase mimic, for 15 min before 15 min of LAD occlusion. Hearts were then subjected to 30 min of normothermic cardioplegic arrest followed by 3 h of reperfusion at normothermia. Control experiments were performed by perfusing the hearts for 4 h at normothermia. Two other groups of hearts were subjected to either 30 or 60 min of LAD occlusion followed by 30 min of cardioplegic arrest without subjecting them to reperfusion. At the end of each experiment, hearts were processed for the evaluation of apoptosis and DNA laddering. The in situ end-labeling (ISEL) technique was used to detect apoptotic cardiomyocyte nuclei while DNA laddering was evaluated by subjecting the DNA obtained from the cardiomyocytes to 1.8% agarose gel electrophoresis followed by photographing under UV illumination. The apoptotic cells appeared only after 90 min of reperfusion, as demonstrated by the intense fluorescence of the immunostained genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation showing increased ladders of DNA bands in the same reperfused hearts. The presence of apoptotic cells and DNA fragmentation in the myocardium was abolished by preperfusing the hearts in the presence of 10 nM ebselen, which also moderated the oxidative stress developed in the heart. Apoptotic cells and DNA ladders were completely absent in the hearts subjected to either 30 or 60 min of LAD occlusion. The results demonstrate that reperfusion of the ischemic heart induces apoptosis, which can be reduced with ebselen by reducing the oxidative stress associated with ischemia/reperfusion.
Collapse
Affiliation(s)
- N Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington 06030-1110, USA
| | | |
Collapse
|
30
|
Evaluation of a sensitive HPLC method for the determination of Malondialdehyde, and application of the method to different biological materials. Chromatographia 2000. [DOI: 10.1007/bf02490453] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Maulik N, Yoshida T, Engelman RM, Bagchi D, Otani H, Das DK. Dietary coenzyme Q(10) supplement renders swine hearts resistant to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2000; 278:H1084-90. [PMID: 10749701 DOI: 10.1152/ajpheart.2000.278.4.h1084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine whether nutritional supplementation of coenzyme Q(10) (CoQ(10)) can reduce myocardial ischemia-reperfusion injury, a group of swine was fed a regular diet supplemented with CoQ(10) (5 mg x kg(-1) x day(-1)) for 30 days. Another group of pigs that were fed a regular diet supplemented with placebo served as a control. After 30 days, isolated in situ pig hearts were prepared and hearts were perfused with a cardiopulmonary pump system. Each heart was subjected to 15 min of regional ischemia by snaring of the left anterior descending coronary artery, followed by 60 min of hypothermic cardioplegic global ischemia and 120 min of reperfusion. After the experiments were completed, myocardial infarct size was measured by triphenyltrazolium chloride staining methods. Postischemic left ventricular contractile function was better recovered in the CoQ(10) group than in the control group of pigs. CoQ(10)-fed pigs revealed less myocardial infarction and less creatine kinase release from the coronary effluent compared with control pigs. The experimental group also demonstrated a smaller amount of malonaldehyde in the coronary effluent and a higher content of the endogenous antioxidants ascorbate and thiol. Significant induction of the expression of ubiquitin mRNA was also found in the hearts of the CoQ(10)-fed group. The results of this study demonstrate that nutritional supplementation of CoQ(10) renders the hearts resistant to ischemia-reperfusion injury, probably by reducing the oxidative stress.
Collapse
Affiliation(s)
- N Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1110, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Abstract
This review will focus on the free radical signaling mechanism of preconditioning. The results from our laboratory as well as studies from other laboratories suggest that reactive oxygen species function as second messenger during myocardial adaptation to ischemia. This review provides evidence for the first time that tyrosine kinase and MAP kinases are the targets for reactive oxygen species generated in the preconditioned myocardium. The finding that p38 MAP kinase might be upstream of NF kappa B further supports our previous reports that MAPKAP kinase 2 could be the most likely link between the preconditioning and adaptation mediated by gene expression. p38 activation appears to be an important step in the translocation and activation of the nuclear transcription factor NF kappa B, which in turn may be involved in the induction of the expression of a variety of stress-inducible genes.
Collapse
Affiliation(s)
- D K Das
- University of Connecticut School of Medicine, Farmington, USA
| | | | | |
Collapse
|
34
|
Lucas DT, Szweda LI. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc Natl Acad Sci U S A 1999; 96:6689-93. [PMID: 10359773 PMCID: PMC21976 DOI: 10.1073/pnas.96.12.6689] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that cardiac reperfusion results in declines in mitochondrial NADH-linked respiration. The degree of inactivation increased with age and was paralleled by modification of protein by the lipid peroxidation product 4-hydroxy-2-nonenal. To gain insight into potential sites of oxidative damage, the present study was undertaken to identify specific mitochondrial protein(s) inactivated during ischemia and reperfusion and to determine which of these losses in activity are responsible for observed declines in mitochondrial respiration. Using a Langendorff rat heart perfusion protocol, we observed age-dependent inactivation of complex I during ischemia and complex IV and alpha-ketoglutarate dehydrogenase during reperfusion. Although losses in complex I and IV activities were found not to be of sufficient magnitude to cause declines in mitochondrial respiration, an age-related decrease in complex I activity during ischemia may predispose old animals to more severe oxidative damage during reperfusion. It was determined that inactivation of alpha-ketoglutarate dehydrogenase is responsible, in large part, for observed reperfusion-induced declines in NADH-linked respiration. alpha-Ketoglutarate dehydrogenase is highly susceptible to 4-hydroxy-2-nonenal inactivation in vitro. Thus, our results suggest a plausible mechanism for age-dependent, reperfusion-induced declines in mitochondrial function and identify alpha-ketoglutarate dehydrogenase as a likely site of free radical-mediated damage.
Collapse
Affiliation(s)
- D T Lucas
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
35
|
Maulik N, Yoshida T, Das DK. Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 1999; 196:13-21. [PMID: 10448898 DOI: 10.1007/978-1-4615-5097-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis, a genetically controlled programmed cell death, has been found to play a role in ischemic reperfusion injury in several animal species including rats and rabbits. To examine whether this is also true for other animals, an isolated perfused mouse heart was subjected to 30 min of ischemia followed by 2 h of reperfusion. Experiments were terminated before ischemia (baseline), after ischemia, and at 30, 60, 90 and 120 min of reperfusion. At the end of each experiment, hearts were processed for the evaluation of apoptosis and DNA laddering. The in situ end labeling (ISEL) technique was used to detect apoptotic cardiomyocyte nuclei while DNA laddering was evaluated by subjecting the DNA obtained from the cardiomyocytes to 1.8% agarose gel electrophoresis followed by photographing under UV illumination. The results of our study revealed that apoptotic cells appear only after 60 min of reperfusion as demonstrated by the intense fluorescence of the immunostained genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation showing increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). Since our previous studies showed a role of glutathione peroxidase (GSHPx) in apoptotic cell death, we performed identical experiments using isolated hearts from GSHPx-1 knockout mice and transgenic mice overexpressing GSHPx-1. GSHPx-1 knockout mice showed evidence of apoptotic cell death even after 30 min of reperfusion. Significant number of apoptotic cells were found in the cardiomyocytes as compared to non-transgenic control animals. To the contrary, very few apoptotic cells were found in the hearts of the transgenic mice overexpressing GSHPx-1. Hearts of GSHPx-1 knockout mice were more susceptible to ischemia/reperfusion injury while transgenic mice overexpressing GSHPx-1 were less susceptible to ischemia reperfusion injury compared to non-transgenic control animals. The results of this study clearly demonstrate a role of GSHPx in ischemia/reperfusion-induced apoptosis in mouse heart.
Collapse
Affiliation(s)
- N Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington 06030-1110, USA
| | | | | |
Collapse
|
36
|
Grieb P, Ryba MS, Debicki GS, Gordon-Krajcer W, Januszewski S, Chrapusta SJ. Changes in oxidative stress in the rat brain during post-cardiac arrest reperfusion, and the effect of treatment with the free radical scavenger idebenone. Resuscitation 1998; 39:107-13. [PMID: 9918457 DOI: 10.1016/s0300-9572(98)00128-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study was designed to determine the effect of idebenone, an electron-trapping agent and free radical scavenger capable of crossing the blood-brain barrier, on cardiac arrest-induced oxidative brain stress. Stress indices used were the brain contents of thiobarbituric acid-reactive material (TBAR), conjugated dienes and protein and non-protein thiols. Twenty-four hours after receiving one oral dose of placebo or 100 mg kg(-1) idebenone, the rats were anaesthetized with diethyl ether and either decapitated immediately, or subjected to 7.5 min cardiac arrest induced by compression of the heart vessel bundle. The next groups of rats were sacrificed at the end of the cardiac arrest session, or resuscitated by external chest compression and artificial ventilation with air and sacrificed 15 min, 60 min, 24 h, and 72 h later while re-anesthetized with diethyl ether. Subsequent placebo or idebenone (100 mg kg(-1)) doses were given to the appropriate surviving rats once daily, beginning 8-10 min after the end of cardiac arrest session. Compared to pre-arrest values, TBAR and conjugated dienes' contents increased, respectively, by 339 and 286%, and protein and non-protein thiol contents decreased, respectively, by 69 and 85% within 60 min after the resuscitation in placebo-treated rats. Normalization of all oxidative stress indices in these rats was slow and incomplete even at 72 h. Idebenone treated rats showed no increase in TBAR contents, and a marked attenuation of changes in the other indices. These results show that oral idebenone greatly reduces oxidative brain stress following transient circulatory arrest in the rat. This effect could not be explained by simple stoichiometric scavenging of free radicals. Possible mechanisms of idebenone action are discussed.
Collapse
Affiliation(s)
- P Grieb
- Laboratory of Experimental Pharmacology, Polish Academy of Sciences Medical Research Centre, Warsaw.
| | | | | | | | | | | |
Collapse
|
37
|
Maulik D, Numagami Y, Ohnishi ST, Mishra OP, Delivoria-Papadopoulos M. Direct measurement of oxygen free radicals during in utero hypoxia in the fetal guinea pig brain. Brain Res 1998; 798:166-72. [PMID: 9666115 DOI: 10.1016/s0006-8993(98)00408-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study tested the hypothesis that maternal hypoxia induces oxygen free radical generation in the fetal guinea pig brain utilizing techniques of electron spin resonance spectroscopy and alpha-phenyl-tert-butyl nitrone (PBN) spin trapping. Pregnant guinea pigs of 60 days gestation were divided into normoxic and hypoxic groups and exposed to 21% or 7% oxygen for 60 min. Free radical generation was documented by measuring the signal of PBN spin adducts. Fluorescent compounds were determined as an index of lipid peroxidation and the activity of Na+,K+-ATPase was determined as an index of brain cell membrane function. Hypoxic fetal cerebral cortical tissue showed a significant increase in spin adducts (normoxic: 33.8+/-9.3 units/g tissue vs. hypoxic: 57.9+/-9.2 units/g tissue, p<0.01) and fluorescent compounds (normoxic: 0.639+/-0.054 microg quinine sulfate/g brain vs. 0.810+/-0.102 microg quinine sulfate/g brain, p<0.01) and a decrease in Na+,K+-ATPase activity (normoxic: 43.04+/-2.50 micromol Pi/mg protein/h vs. hypoxic: 33. 80+/-3.51 micromol Pi/mg protein/h, p<0.001). These results demonstrate an increased free radical generation during hypoxia in the fetal guinea pig brain. The spectral characteristics of the radicals were consistent with those of alkoxyl radicals. The increased level of fluorescent compounds and decreased activity of Na+,K+-ATPase indicated hypoxia induced brain cell membrane lipid peroxidation and dysfunction, respectively. These results directly demonstrate an increased oxygen free radical generation during hypoxia and suggest that hypoxia-induced increase in lipid peroxidation and decrease in membrane function, as indicated by a decrease in Na+,K+-ATPase activity, are consequences of increased free radicals. The nature of predominantly present alkoxyl radical indicates ongoing lipid peroxidation during hypoxia. The direct demonstration of oxygen free radical generation during hypoxia is the critical missing link in the mechanism of hypoxia-induced brain cell membrane dysfunction and damage.
Collapse
Affiliation(s)
- D Maulik
- Department of Obstetrics and Gynecology, Winthrop-University Hospital, 259 First Street, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
38
|
Lucas DT, Szweda LI. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 1998; 95:510-4. [PMID: 9435222 PMCID: PMC18450 DOI: 10.1073/pnas.95.2.510] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/1997] [Indexed: 02/05/2023] Open
Abstract
Cardiac reperfusion and aging are associated with increased rates of mitochondrial free radical production. Mitochondria are therefore a likely site of reperfusion-induced oxidative damage, the severity of which may increase with age. 4-Hydroxy-2-nonenal (HNE), a major product of lipid peroxidation, increases in concentration upon reperfusion of ischemic cardiac tissue, can react with and inactivate enzymes, and inhibits mitochondrial respiration in vitro. HNE modification of mitochondrial protein(s) might, therefore, be expected to occur during reperfusion and result in loss in mitochondrial function. In addition, this process may be more prevalent in aged animals. To begin to test this hypothesis, hearts from 8- and 24-month-old rats were perfused in Langendorff fashion and subjected to periods of ischemia and/or reperfusion. The rate of state 3 respiration of mitochondria isolated from hearts exposed to ischemia (25 min) was approximately 25% less than that of controls, independent of age. Reperfusion (40 min) caused a further decline in the rate of state 3 respiration in hearts isolated from 24- but not 8-month-old rats. Furthermore, HNE modification of mitochondrial protein (approximately 30 and 44 kDa) occurred only during reperfusion of hearts from 24-month-old rats. Thus, HNE-modified protein was present in only those mitochondria exhibiting reperfusion-induced declines in function. These studies therefore identify mitochondria as a subcellular target of reperfusion damage and a site of age-related increases in susceptibility to injury.
Collapse
Affiliation(s)
- D T Lucas
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
39
|
Blasig IE, Dickens BF, Weglicki WB, Kramer JH. Uncoupling of mitochondrial oxidative phosphorylation alters lipid peroxidation-derived free radical production but not recovery of postischemic rat hearts and post-hypoxic endothelial cells. Mol Cell Biochem 1996; 160-161:167-77. [PMID: 8901471 DOI: 10.1007/bf00240047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The contribution of mitochondrial free radical production towards the initiation of lipid peroxidation (LPO) and functional injury in the post-ischemic heart is unclear. Using the isolated rat heart model, the effects of the uncoupler of mitochondrial oxidative phosphorylation dinitrophenol (DNP, 50 microM final) on post-ischemic lipid peroxidation-derived free radical production and functional recovery were assessed. Hearts were subjected to 30 min total global ischemia followed by 15 min of reperfusion in the presence of DNP. As expected, DNP enhanced oxygen consumption before (11.3 +/- 0.9 mumol/min, p < 0.001) and during reperfusion (at 10 min: 7.9 +/- 0.7 mu umol/min), compared to the heart with control treatment (8.2 +/- 0.5 and 6.7 +/- 0.3, respectively). This effect was only associated with a higher incidence of ventricular tachycardia during reperfusion (80 vs. 50% for control treatment, p < 0.05). Electron spin resonance spectroscopy (ESR) and spin trapping with alpha-phenyl-tert-butylnitrone PBN-radical adducts (untreated: 6.4 +/- 1.0 nM, at 10 min) decreased in the presence of DNP (1.7 +/- 0.4 nM, p < 0.01). The radical concentration inversely correlated with myocardial oxygen consumption. Total liberation of free radical adducts during the initial 10 min of reperfusion was reduced by DNP (0.59 +/- 0.09 nmol, p < 0.01) compared to the respective control treatment (1.26 +/- 0.16 nmol). Similar effects, prevention of PBN adduct formation and unchanged viability in the presence of DNP, were obtained with endothelial cells during post-hypoxic reoxygenation. Since inhibition of mitochondrial phosphorylation can inhibit the formation of LPO-derived free radicals after an ischemic/hypoxic interval, mitochondria may represent an important source of free radicals capable of initiating lipid peroxidative injury during reperfusion/reoxygenation.
Collapse
Affiliation(s)
- I E Blasig
- Forschungsinstitut für Molekulare Pharmakologie, Forschungsverbund Berlin e.V., Germany
| | | | | | | |
Collapse
|
40
|
Collis CS, Rice-Evans C, Davies MJ. Novel monohydroxamate drugs attenuate myocardial reperfusion-induced arrhythmias. Int J Biochem Cell Biol 1996; 28:405-13. [PMID: 9026351 DOI: 10.1016/1357-2725(95)00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The novel monohydroxamates N-methyl hexanoylhydroxamic acid, N-methyl acetohydroxamic acid, and N-methyl butyrohydroxamic acid have antioxidant and iron chelating properties. They attenuated reperfusion-induced contractile dysfunction following long periods of ischaemia (50 min) in the isolated rat heart. Here we compare their effects and that of the trihydroxamate desferrioxamine on reperfusion-induced arrhythmias following short duration ischaemia (10 min). Isolated rat hearts were perfused by the Langendorff method, subjected to regional ischaemia and reperfusion. Arrhythmias induced during the first 5 min of reperfusion were quantified. Drugs (all at 150 microM) were introduced during the last 2 min of ischaemia and remained throughout reperfusion. Although the monohydroxamate- and desferrioxamine-treated hearts showed a reduction in the incidence of ventricular tachycardia and fibrillation, only the reduction in the incidence of sustained fibrillation ( > 3 min duration) in N-methyl acetohydroxamic acid--(27%), N-methyl hexanoylhydroxamic acid--(27%) and desferrioxamine-treated hearts (20%) was statistically significant (p < 0.05 vs control 73%; n = 15). There was a reduction in the severity of the arrhythmias, manifest as a significant increase in the duration of sinus rhythm in all the monohydroxamate-treated hearts, and a significant reduction (vs control 218 +/- 29 s; mean +/- SEM) in the duration of ventricular fibrillation in hearts treated with N-methyl acetohydroxamic acid (101 +/- 31 s) and desferrioxamine (112 +/- 30 s). This improvement was offset by an increase in the duration of ventricular tachycardia, in hearts treated with N-methyl acetohydroxamic acid, N-methyl butyrohydroxamic acid and desferrioxamine. These results suggest that these novel monohydroxamates, particularly N-methyl acetohydroxamic acid, attenuate reperfusion-induced arrhythmias in this model when introduced during the ischaemic period.
Collapse
Affiliation(s)
- C S Collis
- Division of Biochemistry and Molecular Biology, UMDS Guy's Hospital, London, UK
| | | | | |
Collapse
|
41
|
Kristal BS, Park BK, Yu BP. 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 1996; 271:6033-8. [PMID: 8626387 DOI: 10.1074/jbc.271.11.6033] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitochondria undergo at least two types of structural alteration in response to various physiological and pathophysiological stimuli. One type is nonreversible and is associated with mitochondrial lysis. The second is reversible and appears to be associated with calcium-mediated activation of a specific inner mitochondrial membrane channel. The mechanisms underlying the induction of this second alteration, termed a mitochondrial permeability transition (PT), have been the subject of a great deal of recent research. Using rat liver mitochondria, our data demonstrate that calcium-mediated PT induction can be affected by the lipid peroxidation byproducts 4-hydroxynonenal and 4-hydroxyhexenal (HHE). 4-Hydroxynonenal appears inactive at concentrations <1 micromole but displays both stimulatory and inhibitory effects as part of a biphasic dose response between approximately 1 and 200 micromole. In contrast, HHE consistently enhances calcium-mediated induction of the PT, even at femtomolar concentrations. The exquisite specificity and sensitivity of HHE led to further studies to examine the nature of this induction. Studies showing that HHE-mediated induction could be prevented by cyclosporin A confirmed PT involvement. Further studies showed that induction was dependent on both calcium and electron transport chain function. Pretreatment of the HHE with glutathione also prevented PT induction, but simultaneous addition of the thiol reagents dithiothreitol or glutathione, which often prevents PT induction, was ineffective, attesting to the effectiveness of HHE as an inducer. Together, these data provide a possible mechanistic explanation for the previously observed effects of lipid peroxidation on PT induction.
Collapse
Affiliation(s)
- B S Kristal
- Department of Physiology, University of Texas Health Science Center, San Antonio 78284-7756, USA
| | | | | |
Collapse
|
42
|
Kramer JH, Weglicki WB. A hydroxylated analog of the beta-adrenoceptor antagonist, carvedilol, affords exceptional antioxidant protection to postischemic rat hearts. Free Radic Biol Med 1996; 21:813-25. [PMID: 8902527 DOI: 10.1016/0891-5849(96)00184-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The antioxidant and cardioprotective effects of the beta-adrenoceptor antagonist, carvedilol, and its hydroxylated analog. BM-910228, were compared using the postischemic rat heart model. Hearts were infused with either agent (0.01, 0.10, or 10 nM final, or drug-free infusate) for 10 min prior to 30 min global ischemia, and also during the initial 15 min of reperfusion. Recovery of postischemic hemodynamic parameters (left ventricular systolic and developed pressures, mean diastolic pressure, cardiac output, coronary flow rate, and cardiac pressure-volume work), and the extent of postischemic tissue lactate dehydrogenase (LDH) loss, lipid hydroperoxide (LOOH) formation, and lipid peroxidation (LPO)-derived free radical production were assessed and compared among the treatment groups. The depressive pharmacological properties (beta- and alpha-blockade) of both agents masked the extent of postischemic hemodynamic recovery, except at the lowest dose (10 pM) of the analog, which provided significant improvements in systolic and developed pressures, and cardiac work. Treatment with both agents provided significant dose-dependent reductions in postischemic LOOH formation and lipid alkoxyl radical production, as determined by electron spin resonance spectroscopy and alpha-phenyl-tert-butylnitrone. (PBN) spin trapping (PBN/alkoxyl adduct hyperfine splitting alpha N = 13.63 G and alpha H = 1.93 G). Although both agents reduced oxidative injury, the hydroxylated analog was clearly the superior antioxidant (equipotent at doses two to three orders of magnitude lower) compared to the parent compound. This was also reflected with respect to three orders of magnitude lower) compared to the parent compound. This was also reflected with respect to drug-mediated improvement in myocardial preservation (reduced LDH release), which paralleled the antioxidant protective effects. Because neither agent displayed significant primary radical scavenging ability at doses (< or = 10 nM), which did provide substantial inhibition of postischemic LOOH and alkoxyl formation, our data suggest that the antioxidant properties of carvedilol and its analog are mediated primarily through a LPO chair-breaking mechanism. Moreover, the significant antioxidant protection afforded by the analog BM-910228 at subnanomolar levels places this agent into an exclusive category reserved for exceptionally potent antioxidants.
Collapse
Affiliation(s)
- J H Kramer
- Department of Medicine, George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | |
Collapse
|
43
|
Schreiber SJ, Megow D, Raupach A, Victorov IV, Dirnagl U. Age-related changes of oxygen free radical production in the rat brain slice after hypoxia: on-line measurement using enhanced chemiluminescence. Brain Res 1995; 703:227-30. [PMID: 8719638 DOI: 10.1016/0006-8993(95)01188-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Superoxide radical production in brain slices of 12-, 24- and 60-day-old rats was measured online during and after 15 min of hypoxia with lucigenin enhanced chemiluminescence. We found a typical radical burst after reoxygenation which developed with aging and is almost nonexistent in the youngest and most prominent in the oldest group. This cannot be explained by a decreasing tissue superoxide dismutase (SOD) concentration in the brain with aging, since the concentration of the enzyme, determined in the same age groups, increased with age.
Collapse
Affiliation(s)
- S J Schreiber
- Department of Neurology, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|