1
|
Smart N. Prospects for improving neovascularization of the ischemic heart: Lessons from development. Microcirculation 2017; 24. [DOI: 10.1111/micc.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Smart
- Department of Physiology, Anatomy & Genetics; University of Oxford; Oxford UK
| |
Collapse
|
2
|
Krejci E, Pesevski Z, Nanka O, Sedmera D. Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system. Physiol Res 2016; 65:425-35. [PMID: 27070743 DOI: 10.33549/physiolres.933216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretch-induced signaling to myocyte growth in vivo. Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart.
Collapse
Affiliation(s)
- E Krejci
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
3
|
Yin C, Li S, Zhao W, Guo Y, Zhang Y, Feng J. The role of fibroblast growth factor receptor 4 polymorphisms in the susceptibility and clinical features of ischemic stroke. J Clin Neurosci 2014; 21:246-9. [PMID: 24239227 DOI: 10.1016/j.jocn.2013.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Changhao Yin
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang 157011, China
| | - Siou Li
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang 157011, China
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang 157011, China
| | - Yanqin Guo
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang 157011, China
| | - Ying Zhang
- Department of Neurology, First Hospital, Ji Lin University, Chang Chun 130021, China
| | - Jiachun Feng
- Department of Neurology, First Hospital, Ji Lin University, Chang Chun 130021, China.
| |
Collapse
|
4
|
RETRACTED ARTICLE: Fibroblast growth factor receptor 4 polymorphisms and the prognosis of non-Hodgkin lymphoma. Mol Biol Rep 2014; 41:1165-70. [DOI: 10.1007/s11033-013-2963-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
|
5
|
Gao L, Feng Z, Li Q, Li L, Chen L, Xiao T. Fibroblast growth factor receptor 4 polymorphism is associated with increased risk and poor prognosis of non-Hodgkin's lymphoma. Tumour Biol 2013; 35:2997-3002. [PMID: 24248544 DOI: 10.1007/s13277-013-1386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is expressed in various cell types and plays important roles in regulating immune responses. Evidence has shown that FGFR4 rs351855 (Gly388Arg) polymorphism may act as a risk factor for many diseases. In the current study, we investigated the association between FGFR4 polymorphisms and the susceptibility to non-Hodgkin's lymphoma (NHL) in the Chinese population. Two polymorphisms in the FGFR4 gene (rs351855G/A and rs147603016G/A) were detected by polymerase chain reaction-restriction fragment length polymorphism in 421 NHL cases and 486 healthy controls. Results showed that prevalence of rs351855AA genotype was significantly increased in patients than in controls (odds ratio [OR] = 2.02, 95% confidence interval [CI] 1.91-3.23, P < 0.001). Similarly, rs351855A allele presented significantly higher numbers in cases compared to healthy donors (49.8 versus 40.1%, P < 0.001). Further study revealed that the frequency of the rs351855G/A polymorphism was clearly elevated in cases with B cell subtype than those with T cell subtypes. When analyzing the survival time of NHL patients with FGFR4 rs351855G/A polymorphism, cases with AA genotype had significantly shorter survival time compared to the patients with GG genotype (P < 0.001) or GA genotype (P < 0.001). These results suggest that FGFR4 rs351855G/A polymorphism is associated with increased susceptibility to NHL and could be used as a marker for predicting the prognosis of the malignancy.
Collapse
Affiliation(s)
- Lei Gao
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, Shandong Province, 252000, China
| | | | | | | | | | | |
Collapse
|
6
|
Samsa LA, Yang B, Liu J. Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:157-68. [PMID: 23720419 PMCID: PMC3723796 DOI: 10.1002/ajmg.c.31366] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Congenital heart diseases are some of the most common human birth defects. Though some congenital heart defects can be surgically corrected, treatment options for other congenital heart diseases are very limited. In many congenital heart diseases, genetic defects lead to impaired embryonic heart development or growth. One of the key development processes in cardiac development is chamber maturation, and alterations in this maturation process can manifest as a variety of congenital defects including non-compaction, systolic dysfunction, diastolic dysfunction, and arrhythmia. During development, to meet the increasing metabolic demands of the developing embryo, the myocardial wall undergoes extensive remodeling characterized by the formation of muscular luminal protrusions called cardiac trabeculae, increased cardiomyocyte mass, and development of the ventricular conduction system. Though the basic morphological and cytological changes involved in early heart development are clear, much remains unknown about the complex biomolecular mechanisms governing chamber maturation. In this review, we highlight evidence suggesting that a wide variety of basic signaling pathways and biomechanical forces are involved in cardiac wall maturation.
Collapse
Affiliation(s)
- Leigh Ann Samsa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Betsy Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Zhang HF, Zhao KJ, Yang PF, Fang YB, Zhang YH, Liu JM, Huang QH. Association between fibroblast growth factor receptor 4 Gly388Arg polymorphism and ischaemic stroke. J Int Med Res 2013. [PMID: 23206452 DOI: 10.1177/030006051204000509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) and their receptors (FGFRs) play important roles in the vascular system. The FGFR4 rs351855 (Gly388Arg) poly morphism has been shown to be a risk factor for many diseases. This case-control study investigated the association between the FGFR4 Gly388Arg polymorphism and susceptibility to ischaemic stroke in the Chinese population. METHODS The FGFR4 Gly388Arg polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism in patients with ischaemic stroke and healthy controls. RESULTS Frequencies of genotypes GA and AA, and prevalence of the A allele, were significantly lower in ischaemic stroke patients (n = 952) than in controls (n = 986). Genotype AA and allele A were significantly more frequent in stroke patients with, than in those without, diabetes. CONCLUSION These results suggested that the GA genotype, AA genotype and A allele of FGFR4 Gly388Arg polymorphism are all associated with decreased risk of ischaemic stroke in the Chinese population.
Collapse
Affiliation(s)
- H F Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Zhu Q, Liu T. Fibroblast growth factor receptor 4 polymorphisms and coronary artery disease: a case control study. Mol Biol Rep 2012; 39:8679-85. [PMID: 22696188 DOI: 10.1007/s11033-012-1723-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play important roles in vascular system. FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to coronary artery disease (CAD) in the Chinese population. We identified three polymorphisms in the FGFR4 gene, rs351855G/A (Gly388Arg), rs145302848C/G and rs147603016G/A, by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 658 CAD cases and 692 healthy controls. Results showed that frequencies of GA genotype, AA genotype and A allele in rs351855 (Gly388Arg) polymorphism were significantly lower in CAD patients than in controls [odds ratio (OR) = 0.79, 95 % confidence intervals (CI) 0.62-0.99, P = 0.042; OR = 0.58, 95 % CI 0.41-0.81, P = 0.002; and OR = 0.77, 95 % CI 0.66-0.90, P = 0.001, respectively]. The rs147603016GA genotype and A allele also showed lower numbers in CAD cases (OR = 0.58, 95 % CI 0.36-0.93, P = 0.025; and OR = 0.59, 95 % CI 0.40-0.95, P = 0.028). The rs145302848C/G polymorphism did not show any correlation with CAD. Haplotype analysis revealed that the prevalence of ACG haplotype (rs351855, rs145302848 and rs147603016) was significantly decreased in CAD patients (P = 0.002). Our data suggested that the FGFR4 rs351855G/A (Gly388Arg) and rs147603016G/A polymorphisms could act as protective factors against CAD in the Chinese population and indicated that a single gene polymorphism could have diverse functions in different diseases.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Cardiology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012 Shandong, China
| | | |
Collapse
|
10
|
Chen H, Tong J, Zou T, Shi H, Liu J, Du X, Yang J, Ma C. Fibroblast growth factor receptor 4 polymorphisms are associated with coronary artery disease. Genet Test Mol Biomarkers 2012; 16:952-6. [PMID: 22587598 DOI: 10.1089/gtmb.2012.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) plays crucial roles in vascular smooth muscle cell proliferation and atherosclerosis and, therefore, may potentially affect the development of coronary artery disease (CAD). The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to CAD in the Chinese population. Two polymorphisms, rs192201146G/A (Asp756Asn) and rs188755817C/G (Ser778Arg), were detected by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing in 722 CAD cases and 802 age-matched controls. Data were analyzed using the chi-square test. Results showed that frequencies of rs192201146GA genotype and rs188755817CG genotype were significantly higher in CAD patients than in controls (odds ratio [OR]=1.92, 95% confidence interval [CI] 1.11-3.28, p=0.016, and OR=1.87, 95% CI 1.06-3.30, p=0.027). Similarly, numbers of the rs192201146A allele and the rs188755817G allele were significantly increased in CAD cases (OR=1.89, 95% CI 1.11-3.22, p=0.017, and OR=1.85, 95% CI 1.06-3.24, p=0.029). Haplotype analysis revealed that GG and AC (rs192201146 rs188755817) haplotypes had higher frequencies in CAD patients (OR=2.75, p=0.002 and OR=2.69, p=0.001). Our data suggested that the FGFR4 rs192201146 (Asp756Asn) and rs188755817 (Ser778Arg) polymorphisms could act as risk factors for CAD in the Chinese population.
Collapse
Affiliation(s)
- Hao Chen
- Cardiac Pacing and Electrophysiology Lab, Cardiology Division, Beijing Hospital, Ministry of Health, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma L, Zhang H, Han C, Tong D, Zhang M, Yao Y, Luo Y, Liu X. Fibroblast growth factor receptor 4 polymorphisms and susceptibility to coronary artery disease. DNA Cell Biol 2012; 31:1064-9. [PMID: 22313031 DOI: 10.1089/dna.2011.1552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play crucial roles in vascular smooth muscle cell proliferation and atherosclerosis and, therefore, may potentially affect the development of coronary artery disease (CAD). FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to CAD in the Chinese population. Two polymorphisms, rs351855 (Gly388Arg) and rs641101, were detected by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing in 687 CAD cases and 732 age-matched controls. Data were analyzed using the chi-square test. Results showed that frequencies of GA genotype, AA genotype, and A allele in rs351855 (Gly388Arg) polymorphism were significantly lower in CAD patients than in controls (odds ratio (OR)=0.78, 95% confidence intervals (CIs): 0.62-0.98, p=0.034; OR=0.58, 95% CI: 0.42-0.80, p=0.001; and OR=0.77, 95% CI: 0.66-0.90, p=0.001, respectively). The rs641101 polymorphism did not show any correlation with CAD. Haplotype analysis revealed that rs351855 and rs641101 AG haplotype also had lower frequency in CAD patients (OR=0.79, 95% CI: 0.67-0.92, p=0.002). Our data suggested that the FGFR4 rs351855 (Gly388Arg) polymorphism and AG haplotype (rs351855 and rs641101) could act as protective factors against CAD in the Chinese population and indicated that a single gene polymorphism could have diverse functions in different diseases.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Abstract
The embryonic heart initially consists of only two cell layers, the endocardium and the myocardium. The epicardium, which forms an epithelial layer on the surface of the heart, is derived from a cluster of mesothelial cells developing at the base of the venous inflow tract of the early embryonic heart. This cell cluster is termed the proepicardium and gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells and fibroblasts, while the contribution to the vascular endothelial lineage is uncertain. In this review we will discuss the signaling molecules involved in recruiting mesodermal cells to undergo proepicardium formation and guide these cells to the myocardial surface. Marker genes which are suitable to follow these cells during proepicardium formation and cell migration will be introduced. We will address whether the proepicardium consists of a homogenous cell population or whether different cell lineages are present. Finally the role of the epicardium as a source for cardiac stem cells and its importance in cardiac regeneration, in particular in the zebrafish and mouse model systems is discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
13
|
Garriock RJ, Mikawa T. Early arterial differentiation and patterning in the avian embryo model. Semin Cell Dev Biol 2011; 22:985-92. [PMID: 22020129 DOI: 10.1016/j.semcdb.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 01/04/2023]
Abstract
Of the many models to study vascular biology the avian embryo remains an informative and powerful model system that has provided important insights into endothelial cell recruitment, assembly and remodeling during development of the circulatory system. This review highlights several discoveries in the avian system that show how arterial patterning is regulated using the model of dorsal aortae development along the embryo midline during gastrulation and neurulation. These discoveries were made possible through spatially and temporally controlled gain-of-function experiments that provided direct evidence that BMP signaling plays a pivotal role in vascular recruitment, patterning and remodeling and that Notch-signaling recruits vascular precursor cells to the dorsal aortae. Importantly, BMP ligands are broadly expressed throughout embryos but BMP signaling activation region is spatially defined by precisely regulated expression of BMP antagonists. These discoveries provide insight into how signaling, both positive and negative, regulate vascular patterning. This review also illustrates similarities of early arterial patterning along the embryonic midline in amniotes both avian and mammalians including human, evolutionarily specialized from non-amniotes such as fish and frog.
Collapse
|
14
|
Abstract
As the developing heart grows and the chamber walls thicken, passive diffusion of oxygen and nutrients is replaced by a vascular plexus which remodels and expands to form a mature coronary vascular system. The coronary arteries and veins ensure the continued development of the heart and facilitate cardiac output with progression towards birth. Many aspects of coronary vessel development are surprisingly not well understood and recently there has been much debate surrounding both the developmental origin and tissue contribution of cardiovascular cells alongside the specific signals that determine their fate and function. What is clear is that an understanding of the cellular and molecular cues to vascularize the heart of the embryo has significant implications for adult heart disease and regeneration, as we move towards targeted cell-based therapies for neovascularization and coronary bypass engraftment. This review will focus on the proposed cellular origins for the coronary endothelium with due consideration to the pro-epicardial organ/epicardium, sinus venosus and endocardium as potential sources, and we will explore the outstanding questions and technical limitations with respect to accurate labelling and lineage tracing of the developing coronaries. We will briefly document canonical vascular signalling that induces vessels in the heart alongside a focus on the potential for developmental reprogramming and putative mechanisms underpinning venous vs. arterial cell fate. Finally, we will extrapolate directly from development to address adult maintenance of the coronaries, vascular homeostasis and remodelling in response to pathology, aligned with the potential for revascularizing the injured adult heart.
Collapse
Affiliation(s)
- Paul R Riley
- Molecular Medicine Unit, UCL-Institute of Child Health, London WC1N 1EH, UK.
| | | |
Collapse
|
15
|
Ishii Y, Weinberg K, Oda-Ishii I, Coughlin L, Mikawa T. Morphogenesis and cytodifferentiation of the avian retinal pigmented epithelium require downregulation of Group B1 Sox genes. Development 2009; 136:2579-89. [PMID: 19570849 DOI: 10.1242/dev.031344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The optic vesicle is a multipotential primordium of the retina, which becomes subdivided into the neural retina and retinal pigmented epithelium domains. Although the roles of several paracrine factors in patterning the optic vesicle have been studied extensively, little is known about cell-autonomous mechanisms that regulate coordinated cell morphogenesis and cytodifferentiation of the retinal pigmented epithelium. Here we demonstrate that members of the SoxB1 gene family, Sox1, Sox2 and Sox3, are all downregulated in the presumptive retinal pigmented epithelium. Constitutive maintenance of SoxB1 expression in the presumptive retinal pigmented epithelium both in vivo and in vitro resulted in the absence of cuboidal morphology and pigmentation, and in concomitant induction of neural differentiation markers. We also demonstrate that exogenous Fgf4 inhibits downregulation all SoxB1 family members in the presumptive retinal pigment epithelium. These results suggest that retinal pigment epithelium morphogenesis and cytodifferentiation requires SoxB1 downregulation, which depends on the absence of exposure to an FGF-like signal.
Collapse
Affiliation(s)
- Yasuo Ishii
- University of California San Francisco, Cardiovascular Research Institute, Rock Hall Room 384D, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
16
|
Fibroblast Growth Factor-2 regulates proliferation of cardiac myocytes in normal and hypoplastic left ventricles in the developing chick. Cardiol Young 2009; 19:159-69. [PMID: 19195417 DOI: 10.1017/s1047951109003552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing heart increases its mass predominantly by increasing the number of contained cells through proliferation. We hypothesized that addition of fibroblast growth factor-2, a factor previously shown to stimulate division of the embryonic myocytes, to the left ventricular myocardium in an experimental model of left heart hypoplasia created in the chicken would attenuate phenotypic severity by increasing cellular proliferation. We have established an effective mode of delivery of fibroblast growth factor-2 to the chick embryonic left ventricular myocardium by using adenovirus vectors, which was more efficient and better tolerated than direct injection of recombinant fibroblast growth factor-2 protein. Injection of control adenovirus expressing green fluorescent protein did not result in significant alterations in myocytic proliferation or cell death compared with intact, uninjected, controls. Co-injection of adenoviruses expressing green fluorescent protein and fibroblast growth factor-2 was used for verification of positive injection, and induction of proliferation, respectively. Treatment of both normal and hypoplastic left ventricles with fibroblast growth factor-2 expressing adenovirus resulted in to 2 to 3-fold overexpression of fibroblast growth factor-2, as verified by immunostaining. An increase by 45% in myocytic proliferation was observed following injection of normal hearts, and an increase of 39% was observed in hypoplastic hearts. There was a significant increase in anti-myosin immunostaining in the hypoplastic, but not the normal hearts. We have shown, therefore, that expression of exogenous fibroblast growth factor-2 in the late embryonic heart can exert direct effects on cardiac myocytes, inducing both their proliferation and differentiation. These data suggest potential for a novel therapeutic option in selected cases of congenital cardiac disease, such as hypoplastic left heart syndrome.
Collapse
|
17
|
Montano MM, Doughman YQ, Deng H, Chaplin L, Yang J, Wang N, Zhou Q, Ward NL, Watanabe M. Mutation of the HEXIM1 gene results in defects during heart and vascular development partly through downregulation of vascular endothelial growth factor. Circ Res 2007; 102:415-22. [PMID: 18079413 DOI: 10.1161/circresaha.107.157859] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous studies and those of others indicated that the transcription factor Hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) is a tumor suppressor and cyclin-dependent kinase inhibitor, and that these HEXIM1 functions are mainly dependent on its C-terminal region. We provide evidence here that the HEXIM1 C-terminal region is critical for cardiovascular development. HEXIM1 protein was detected in the heart during critical time periods in cardiac growth and chamber maturation. We created mice carrying an insertional mutation in the HEXIM1 gene that disrupted its C-terminal region and found that this resulted in prenatal lethality. Heart defects in HEXIM1(1 to 312) mice included abnormal coronary patterning and thin ventricular walls. The thin myocardium can be partly attributed to increased apoptosis. Platelet endothelial cell adhesion molecular precursor-1 staining of HEXIM1(1 to 312) heart sections revealed decreased vascularization of the myocardium despite the presence of coronary vasculature in the epicardium. The expression of vascular endothelial growth factor (VEGF), known to affect angioblast invasion and myocardial proliferation and survival, was decreased in HEXIM1(1 to 312) mice compared with control littermates. We also observed decreased fibroblast growth factor 9 (FGF9) expression, suggesting that effects of HEXIM1 in the myocardium are partly mediated through epicardial FGF9 signaling. Together our results suggest that HEXIM1 plays critical roles in coronary vessel development and myocardial growth. The basis for this role of HEXIM1 is that VEGF is a direct transcriptional target of HEXIM1, and involves attenuation a repressive effects of C/EBPalpha on VEGF gene transcription.
Collapse
Affiliation(s)
- Monica M Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, H.G. Wood Bldg W307, 2109 Adelbert Rd, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Labitzke EM, Diani-Moore S, Rifkind AB. Mitochondrial P450-dependent arachidonic acid metabolism by TCDD-induced hepatic CYP1A5; conversion of EETs to DHETs by mitochondrial soluble epoxide hydrolase. Arch Biochem Biophys 2007; 468:70-81. [PMID: 17959137 PMCID: PMC2868376 DOI: 10.1016/j.abb.2007.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 01/18/2023]
Abstract
Several P450 enzymes localized in the endoplasmic reticulum and thought to be involved primarily in xenobiotic metabolism, including mouse and rat CYP1A1 and mouse CYP1A2, have also been found to translocate to mitochondria. We report here that the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces enzymatically active CYP1A4/1A5, the avian orthologs of mammalian CYP1A1/1A2, in chick embryo liver mitochondria as well as in microsomes. P450 proteins and activity levels (CYP1A4-dependent 7-ethoxyresorufin-O-deethylase and CYP1A5-dependent arachidonic acid epoxygenation) in mitochondria were 23-40% of those in microsomes. DHET formation by mitochondria was twice that of microsomes and was attributable to a mitochondrial soluble epoxide hydrolase as confirmed by Western blotting with antiEPHX2, conversion by mitochondria of pure 11,12 and 14,15-EET to the corresponding DHETs and inhibition of DHET formation by the soluble epoxide hydrolase inhibitor, 12(-3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). TCDD also suppressed formation of mitochondrial and microsomal 20-HETE. The findings newly identify mitochondria as a site of P450-dependent arachidonic acid metabolism and as a potential target for TCDD effects. They also demonstrate that mitochondria contain soluble epoxide hydrolase and underscore a role for CYP1A in endobiotic metabolism.
Collapse
Affiliation(s)
- Erin M Labitzke
- Weill Medical College of Cornell University, Department of Pharmacology, 1300 York Avenue, Room LC-401, New York, NY 10021, USA
| | | | | |
Collapse
|
19
|
Dias da Silva MR, Tiffin N, Mima T, Mikawa T, Hyer J. FGF-mediated induction of ciliary body tissue in the chick eye. Dev Biol 2007; 304:272-85. [PMID: 17275804 PMCID: PMC1863121 DOI: 10.1016/j.ydbio.2006.12.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.
Collapse
Affiliation(s)
- Magnus R Dias da Silva
- Department of Neurosurgery, Box 0520, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
20
|
Hatcher CJ, McDermott DA. Using the TBX5 transcription factor to grow and sculpt the heart. Am J Med Genet A 2006; 140:1414-8. [PMID: 16691575 DOI: 10.1002/ajmg.a.31256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
TBX5 mutations cause the cardiac and limb defects of the autosomal dominant Holt-Oram syndrome (HOS). We have explored the role of the TBX5 transcription factor during cardiogenesis and have elucidated some of its functions in regulating myocardial cell proliferation and proepicardial cell migration. Our identification of TBX5 mutations has enabled us to offer genetic testing for diagnosis of HOS in patients and also to perform preimplantation genetic diagnosis on blastocysts for couples desiring to have a child unaffected by HOS. We hope that our genetic testing approach will serve as a paradigm for mutation screening in other inherited syndromes.
Collapse
Affiliation(s)
- Cathy J Hatcher
- Molecular Cardiology Laboratory, Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, 525 E. 68th Street, New York, NY 10021, USA.
| | | |
Collapse
|
21
|
Tomanek RJ, Hansen HK, Dedkov EI. Vascular patterning of the quail coronary system during development. ACTA ACUST UNITED AC 2006; 288:989-99. [PMID: 16892426 DOI: 10.1002/ar.a.20365] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have provided insights into specific events that contribute to vasculogenesis and angiogenesis in the developing coronary vasculature. This study focused on the developmental progression of coronary vascularization beginning with tube formation and ending with the establishment of a coronary arterial tree. We used electron microscopy, histology of serial sections, and immunohistochemistry in order to provide a comprehensive view of coronary vessel formation during the embryonic and fetal periods of the quail heart, a species that has been used in a number of studies addressing myocardial vascularization. Our data reveal features of progenitor cells and blood islands, tubular formation, and the anatomical relationship of a transformed periarterial tubular network and sympathetic ganglia to the emergence and branching of the right and left coronary arteries. We have traced the pattern of coronary artery branching and documented its innervation. Finally, our data include the relationship of fibronectin, laminin, and apoptosis to coronary artery growth. Our findings bring together morphological events that occur over the embryonic and fetal periods and provide a baseline for studies into the mechanisms that regulate the various events that occur during these time periods.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology and Cardiovascular Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
22
|
Turner BA, Sparrow J, Cai B, Monroe J, Mikawa T, Hempstead BL. TrkB/BDNF signaling regulates photoreceptor progenitor cell fate decisions. Dev Biol 2006; 299:455-65. [PMID: 17005175 PMCID: PMC2623246 DOI: 10.1016/j.ydbio.2006.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 08/07/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
Neurotrophins, via activation of Trk receptor tyrosine kinases, serve as mitogens, survival factors and regulators of arborization during retinal development. Brain-derived neurotrophic factor (BDNF) and TrkB regulate neuronal arborization and survival in late retinal development. However, TrkB is expressed during early retinal development where its functions are unclear. To assess TrkB/BDNF actions in the early chick retina, replication-incompetent retroviruses were utilized to over-express a dominant negative truncated form of TrkB (trunc TrkB), or BDNF and effects were assessed at E15. Clones expressing trunc TrkB were smaller than controls, and proliferation and apoptosis assays suggest that decreased clone size correlated with increased cell death when BDNF/TrkB signaling was impaired. Analysis of clonal composition revealed that trunc TrkB over-expression decreased photoreceptor numbers (41%) and increased cell numbers in the middle third of the inner nuclear layer (INL) (23%). Conversely, BDNF over-expression increased photoreceptor numbers (25%) and decreased INL numbers (17%). Photoreceptors over-expressing trunc TrkB demonstrated no increase in apoptosis nor abnormalities in lamination suggesting that TrkB activation is not required for photoreceptor cell survival or migration. These studies suggest that TrkB signaling regulates commitment to and/or differentiation of photoreceptor cells from retinal progenitor cells, identifying a novel role for TrkB/BDNF in regulating cell fate decisions.
Collapse
Affiliation(s)
- Brian A. Turner
- Department of Medicine, Weill Medical College of Cornell University, New York, New York, 10021
| | - Janet Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, 10032
| | - Bolin Cai
- Department of Ophthalmology, Columbia University, New York, New York, 10032
| | - Julie Monroe
- Department of Medicine, Weill Medical College of Cornell University, New York, New York, 10021
| | - Takashi Mikawa
- Department of Cell Biology, Weill Medical College of Cornell University, New York, New York, 10021
| | - Barbara L. Hempstead
- Department of Medicine, Weill Medical College of Cornell University, New York, New York, 10021
- *Author to whom to address correspondence: Barbara L. Hempstead, Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, Room C606, New York, New York, 10021, phone: 212-746-6215, fax: 212-746-8647,
| |
Collapse
|
23
|
Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis 2005; 8:273-84. [PMID: 16308734 DOI: 10.1007/s10456-005-9014-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 12/01/2022]
Abstract
The formation of the coronary vasculature involves a series of carefully regulated temporal events that include vasculogenesis, angiogenesis, arteriogenesis and remodeling. This review explores these events, which begin with the migration of proepicardial cells to form the epicardium and end with postnatal growth and remodeling. Coronary endothelial, smooth muscle and fibroblast cells differentiate via epithelial-mesenchymal transformation; these cells delaminate from the epicardium. Following the formation of a tubular network by endothelial cells, an aortic ring of endothelial cells penetrates the aorta at the left and right aortic cusps to form the two ostia. Smooth muscle cell recruitment occurs rapidly and the coronary artery network begins forming as blood flow is established. Recent studies have identified a number of regulatory molecules that play key roles in epicardial formation and the transformation of its component cells into mesenchyme. Moreover, we are finally gaining some understanding regarding the interplay of angiogenic growth factors in the complex process of establishing the coronary vascular tree. Understanding coronary embryogenesis is important for interventions regarding adult cardiovascular diseases as well as those necessary to correct congenital defects.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, The University of Iowa, 1-402 BSB Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
24
|
Abstract
The chick embryo is a versatile model system, in which classical embryology can be combined with modern molecular approaches. In the last two decades, several efficient methods have been developed to introduce exogenous genes into the chick embryo. These techniques allow alteration of gene expression levels in a spatially and temporally restricted manner, thereby circumventing embryonic lethality and/or eliminating secondary effects in other tissues. Here, we present the current status of avian somatic transgenic techniques, focusing on electroporation and retrovirus-mediated gene transfer. Electroporation allows quick and efficient gain-of-function studies based on transient misexpression of genes. Retroviral vectors, which are capable of integrating exogenous genes into the host chromosome, permit analysis of long-term effects of gene misexpression. The variety of methods available for somatic transgenesis, along with the recent completion of the chicken genome, are transforming the chick embryo into one of the most attractive model systems to examine function of genes that are important for embryonic development.
Collapse
Affiliation(s)
- Yasuo Ishii
- Department of Cell and Developmental Biology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
25
|
Hyer J. Looking at an oft-overlooked part of the eye: a new perspective on ciliary body development in chick. Dev Neurosci 2005; 26:456-65. [PMID: 15855774 DOI: 10.1159/000082287] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
The ciliary body is an essential tissue for the development and homeostasis of the vertebrate eye. Embryonically, the epithelial portion of the ciliary body derives from the neuroepithelium of the optic cup, however, it differentiates into a secretory tissue and produces an aqueous humor that sustains the lens and cornea, and maintains the requisite pressure within the orb. The unique differentiation of this portion of the optic cup is little understood. This article reviews what is known about the development of the ciliary body and presents some preliminary findings that may lead to a new model for the formation of the ciliary body.
Collapse
Affiliation(s)
- Jeanette Hyer
- Department of Neurosurgical Research, Box 0520, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Pennisi DJ, Ballard VLT, Mikawa T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 2004; 228:161-72. [PMID: 14517988 DOI: 10.1002/dvdy.10360] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proper heart development requires patterning across the myocardial wall. Early myocardial patterning is characterized by a transmural subdivision of the myocardium into an outer, highly mitotic, compact zone and an inner, trabecular zone with lower mitotic activity. We have shown previously that fibroblast growth factor receptor (FGFR) -mediated signaling is central to myocyte proliferation in the developing heart. Consistent with this, FGFR-1 and FGF2 are more highly expressed in myocytes of the compact zone. However, the mechanism that regulates the transmural pattern of myocyte proliferation and expression of these mitogenic factors is unknown. The present study examined whether this transmural patterning occurs in a myocardium-autonomous manner or by signals from the epicardium. Microsurgical inhibition of epicardium formation in the embryonic chick gives rise to a decrease in myocyte proliferation, accounting for a thinner compact myocardium. We show that the transmural pattern of myocyte mitotic activity is maintained in these hearts. Consistent with this, the expression patterns of FGF1, FGF2, and FGFR-1 across the myocardium persist in the absence of the epicardium. However, FGF2 and FGFR-1 mRNA levels are reduced in proportion to the depletion of epicardium. The results suggest that epicardium-derived signals are essential for maintenance of the correct amount of myocyte proliferation in the compact myocardium, by means of levels of mitogen expression in the myocardium. However, initiation and maintenance of transmural patterning of the myocardium occurs largely independently of the epicardium.
Collapse
Affiliation(s)
- David J Pennisi
- Department of Cell and Developmental Biology, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Ishii Y, Reese DE, Mikawa T. Somatic transgenesis using retroviral vectors in the chicken embryo. Dev Dyn 2004; 229:630-42. [PMID: 14991718 DOI: 10.1002/dvdy.10484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The avian embryo is an excellent model system for experimental studies because of its accessibility and ease of microsurgical manipulations. While the complete chicken genome sequence will soon be determined, a comprehensive germ cell transmission-based genetic approach is not available for this animal model. Several techniques of somatic cell transgenesis have been developed in the past decade. Of these, the retroviral shuttle vector system provides both (1) stable integration of exogenous genes into the host cell genome, and (2) constant expression levels in a target cell population over the course of development. This review summarizes retroviral vectors available for the avian model and outlines the uses of retroviral-mediated gene transfer for cell lineage analysis as well as functional studies of genes and proteins in the chick embryo.
Collapse
Affiliation(s)
- Yasuo Ishii
- Department of Cell and Developmental Biology, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Mima T, Mikawa T. Folding of the tectal cortex by local remodeling of neural differentiation. Dev Dyn 2004; 229:475-9. [PMID: 14991703 DOI: 10.1002/dvdy.10459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The folding pattern of the brain cortex is a precisely regulated process, but the mechanism involved during development remains unclear. A proposed theory predicts that the initiation of cortical folding depends, at least partly, on nonuniform distribution of neuronal differentiation and neurite growth. We tested this theory experimentally, by remodeling the normal pattern of neuronal cell differentiation within the embryonic optic tectum. Multiple foci of activated fibroblast growth factor signaling were created in the tectal cortex to locally change the neural differentiation and axonal growth patterns. At these foci, tectal cells remained undifferentiated and their radial and tangential migration was suppressed. These local changes in the neuronal cell differentiation resulted in a conversion of the tectal cortex from smoothly extended into precociously folded. The results provide in vivo experimental evidence that microscopic changes in the neuronal cell differentiation pattern can induce or remodel the folding pattern of the brain cortex.
Collapse
Affiliation(s)
- Tatsuo Mima
- Department of Cell and Biology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
29
|
Sugi Y, Ito N, Szebenyi G, Myers K, Fallon JF, Mikawa T, Markwald RR. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. Dev Biol 2003; 258:252-63. [PMID: 12798286 DOI: 10.1016/s0012-1606(03)00099-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While much has been learned about how endothelial cells transform to mesenchyme during cardiac cushion formation, there remain fundamental questions about the developmental fate of cushions. In the present work, we focus on the growth and development of cushion mesenchyme. We hypothesize that proliferative expansion and distal elongation of cushion mesenchyme mediated by growth factors are the basis of early valve leaflet formation. As a first step to test this hypothesis, we have localized fibroblast growth factor (FGF)-4 protein in cushion mesenchymal cells at the onset of prevalve leaflet formation in chick embryos (Hamburger and Hamilton stage 20-25). Ligand distribution was correlated with FGF receptor (FGFR) expression. In situ hybridization data indicated that FGFR3 mRNA was confined to the endocardial rim of the atrioventricular (AV) cushion pads, whereas FGFR2 was expressed exclusively in cushion mesenchymal cells. FGFR1 expression was detected in both endocardium and cushion mesenchyme as well as in myocardium. To determine whether the FGF pathways play regulatory roles in cushion mesenchymal cell proliferation and elongation into prevalvular structure, FGF-4 protein was added to the cushion mesenchymal cells explanted from stage 24-25 chick embryos. A significant increase in proliferative ability was strongly suggested in FGF-4-treated mesenchymal cells as judged by the incorporation of 5'-bromodeoxyuridine (BrdU). To determine whether cushion cells responded similarly in vivo, a replication-defective retrovirus encoding FGF-4 with the reporter, bacterial beta-galactosidase was microinjected into stage 18 chick cardiac cushion mesenchyme along the inner curvature where AV and outflow cushions converge. As compared with vector controls, overexpression of FGF-4 clearly induced expansion of cushion mesenchyme toward the lumen. To further test the proliferative effect of FGF-4 in cardiac cushion expansion in vivo (ovo), FGF-4 protein was microinjected into stage 18 chick inner curvature. An assay for BrdU incorporation indicated a significant increase in proliferative ability in FGF-4 microinjected cardiac cushion mesenchyme as compared with BSA-microinjected controls. Together, these results suggest a role of FGF-4 for cardiac valve leaflet formation through proliferative expansion of cushion mesenchyme.
Collapse
MESH Headings
- Animals
- Bromodeoxyuridine/metabolism
- Cell Division/drug effects
- Cells, Cultured
- Chick Embryo
- Fibroblast Growth Factor 4
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/pharmacology
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation, Developmental
- Heart Valves/cytology
- Heart Valves/drug effects
- Heart Valves/embryology
- Immunohistochemistry
- In Situ Hybridization
- In Vitro Techniques
- Mesoderm/cytology
- Mesoderm/drug effects
- Microinjections
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/pharmacology
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/genetics
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
Collapse
Affiliation(s)
- Yukiko Sugi
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003; 83:59-115. [PMID: 12506127 DOI: 10.1152/physrev.00017.2002] [Citation(s) in RCA: 491] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental work during the past 15 years has demonstrated that endothelial cells in the heart play an obligatory role in regulating and maintaining cardiac function, in particular, at the endocardium and in the myocardial capillaries where endothelial cells directly interact with adjacent cardiomyocytes. The emerging field of targeted gene manipulation has led to the contention that cardiac endothelial-cardiomyocytal interaction is a prerequisite for normal cardiac development and growth. Some of the molecular mechanisms and cellular signals governing this interaction, such as neuregulin, vascular endothelial growth factor, and angiopoietin, continue to maintain phenotype and survival of cardiomyocytes in the adult heart. Cardiac endothelial cells, like vascular endothelial cells, also express and release a variety of auto- and paracrine agents, such as nitric oxide, endothelin, prostaglandin I(2), and angiotensin II, which directly influence cardiac metabolism, growth, contractile performance, and rhythmicity of the adult heart. The synthesis, secretion, and, most importantly, the activities of these endothelium-derived substances in the heart are closely linked, interrelated, and interactive. It may therefore be simplistic to try and define their properties independently from one another. Moreover, in relation specifically to the endocardial endothelium, an active transendothelial physicochemical gradient for various ions, or blood-heart barrier, has been demonstrated. Linkage of this blood-heart barrier to the various other endothelium-mediated signaling pathways or to the putative vascular endothelium-derived hyperpolarizing factors remains to be determined. At the early stages of cardiac failure, all major cardiovascular risk factors may cause cardiac endothelial activation as an adaptive response often followed by cardiac endothelial dysfunction. Because of the interdependency of all endothelial signaling pathways, activation or disturbance of any will necessarily affect the others leading to a disturbance of their normal balance, leading to further progression of cardiac failure.
Collapse
|
31
|
Ballard VLT, Mikawa T. Constitutive expression of preproendothelin in the cardiac neural crest selectively promotes expansion of the adventitia of the great vessels in vivo. Dev Biol 2002; 251:167-77. [PMID: 12413906 DOI: 10.1006/dbio.2002.0818] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac neural crest cells are essential for normal development of the great vessels and the heart, giving rise to a range of cell types, including both neuronal and non-neuronal adventitial cells and smooth muscle. Endothelin (ET) signaling plays an important role in the development of cardiac neural crest cell lineages, yet the underlying mechanisms that act to control their migration, differentiation, and proliferation remain largely unclear. We examined the expression patterns of the receptor, ET(A), and the ET-specific converting enzyme, ECE-1, in the pharyngeal arches and great vessels of the developing chick embryo. In situ hybridization analysis revealed that, while ET(A) is expressed in the pharyngeal arch mesenchyme, populated by cardiac neural crest cells, ECE-1 expression is localized to the outermost ectodermal cells of the arches and then to the innermost endothelial cells of the great vessels. This dynamic pattern of expression suggests that only a subpopulation of neural crest cells in these regions is responsive to ET signaling at particular developmental time points. To test this, retroviral gene delivery was used to constitutively express preproET-1, a precursor of mature ET-1 ligand, in the cardiac neural crest. This resulted in a selective expansion of the outermost, adventitial cell population in the great vessels. In contrast, neither differentiation nor proliferation of neural crest-derived smooth muscle cells was significantly affected. These results suggest that constitutive expression of exogenous preproET-1 in the cardiac neural crest results in expansion restricted to an adventitial cell population of the developing great vessels.
Collapse
Affiliation(s)
- Victoria L T Ballard
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Kanzawa N, Poma CP, Takebayashi-Suzuki K, Diaz KG, Layliev J, Mikawa T. Competency of embryonic cardiomyocytes to undergo Purkinje fiber differentiation is regulated by endothelin receptor expression. Development 2002; 129:3185-94. [PMID: 12070093 DOI: 10.1242/dev.129.13.3185] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purkinje fibers of the cardiac conduction system differentiate from heart muscle cells during embryogenesis. In the avian heart, Purkinje fiber differentiation takes place along the endocardium and coronary arteries. To date, only the vascular cytokine endothelin (ET) has been demonstrated to induce embryonic cardiomyocytes to differentiate into Purkinje fibers. This ET-induced Purkinje fiber differentiation is mediated by binding of ET to its transmembrane receptors that are expressed by myocytes. Expression of ET converting enzyme 1, which produces a biologically active ET ligand, begins in cardiac endothelia, both arterial and endocardial, at initiation of conduction cell differentiation and continues throughout heart development. Yet, the ability of cardiomyocytes to convert their phenotype in response to ET declines as embryos mature. Therefore, the loss of responsiveness to the inductive signal appears not to be associated with the level of ET ligand in the heart. This study examines the role of ET receptors in this age-dependent loss of inductive responsiveness and the expression profiles of three different types of ET receptors, ETA, ETB and ETB2, in the embryonic chick heart. Whole-mount in situ hybridization analyses revealed that ETA was ubiquitously expressed in both ventricular and atrial myocardium during heart development, while ETB was predominantly expressed in the atrium and the left ventricle. ETB2 expression was detected in valve leaflets but not in the myocardium. RNase protection assays showed that ventricular expression of ETA and ETB increased until Purkinje fiber differentiation began. Importantly, the levels of both receptor isotypes decreased after this time. Retrovirus-mediated overexpression of ETA in ventricular myocytes in which endogenous ET receptors had been downregulated, enhanced their responsiveness to ET, allowing them to differentiate into conduction cells. These results suggest that the developmentally regulated expression of ET receptors plays a crucial role in determining the competency of ventricular myocytes to respond to inductive ET signaling in the chick embryo.
Collapse
Affiliation(s)
- Nobuyuki Kanzawa
- Department of Cell Biology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
33
|
Takebayashi-Suzuki K, Pauliks LB, Eltsefon Y, Mikawa T. Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle. Dev Biol 2001; 234:390-401. [PMID: 11397008 DOI: 10.1006/dbio.2001.0270] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rhythmic heart beat is coordinated by conduction of pacemaking impulses through the cardiac conduction system. Cells of the conduction system, including Purkinje fibers, terminally differentiate from a subset of cardiac muscle cells that respond to signals from endocardial and coronary arterial cells. A vessel-associated paracrine factor, endothelin, can induce embryonic heart muscle cells to differentiate into Purkinje fibers both in vivo and in vitro. During this phenotypic conversion, the conduction cells down-regulate genes characteristic of cardiac muscle and up-regulate subsets of genes typical of both skeletal muscle and neuronal cells. In the present study, we examined the expression of myogenic transcription factors associated with the switch of the gene expression program during terminal differentiation of heart muscle cells into Purkinje fibers. In situ hybridization analyses and immunohistochemistry of embryonic and adult hearts revealed that Purkinje fibers up-regulate skeletal and atrial muscle myosin heavy chains, connexin-42, and neurofilament protein. Concurrently, a cardiac muscle-specific myofibrillar protein, myosin-binding protein-C (cMyBP-C), is down-regulated. During this change in transcription, however, Purkinje fibers continue to express cardiac muscle transcription factors, such as Nkx2.5, GATA4, and MEF2C. Importantly, significantly higher levels of Nkx2.5 and GATA4 mRNAs were detected in Purkinje fibers as compared to ordinary heart muscle cells. No detectable difference was observed in MEF2C expression. In culture, endothelin-induced Purkinje fibers from embryonic cardiac muscle cells dramatically down-regulated cMyBP-C transcription, whereas expression of Nkx2.5 and GATA4 persisted. In addition, myoD, a skeletal muscle transcription factor, was up-regulated in endothelin-induced Purkinje cells, while Myf5 and MRF4 transcripts were undetectable in these cells. These results show that during and after conversion from heart muscle cells, Purkinje fibers express a unique myogenic transcription factor program. The mechanism underlying down-regulation of cardiac muscle genes and up-regulation of skeletal muscle genes during conduction cell differentiation may be independent from the transcriptional control seen in ordinary cardiac and skeletal muscle cells.
Collapse
Affiliation(s)
- K Takebayashi-Suzuki
- Department of Cell Biology, Cornell University Medical College, 1300 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
34
|
Hatcher CJ, Kim MS, Mah CS, Goldstein MM, Wong B, Mikawa T, Basson CT. TBX5 transcription factor regulates cell proliferation during cardiogenesis. Dev Biol 2001; 230:177-88. [PMID: 11161571 DOI: 10.1006/dbio.2000.0134] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in human TBX5, a member of the T-box transcription factor gene family, cause congenital cardiac septation defects and isomerism in autosomal dominant Holt-Oram syndrome. To determine the cellular function of TBX5 in cardiogenesis, we overexpressed wild-type and mutant human TBX5 isoforms in vitro and in vivo. TBX5 inhibited cell proliferation of D17 canine osteosarcoma cells and MEQC quail cardiomyocyte-like cells in vitro. Mutagenesis of the 5' end of the T-box but not the 3' end of the T-box abolished this effect. Overexpression of TBX5 in embryonic chick hearts showed that TBX5 inhibits myocardial growth and trabeculation. TBX5 effects in vivo were abolished by Gly80Arg missense mutation of the 5' end of the T-box. PCNA analysis in transgenic chick hearts revealed that TBX5 overexpression does suppress embryonic cardiomyocyte proliferation in vivo. Inhibitory effects of TBX5 on cardiomyocyte proliferation include a noncell autonomous process in vitro and in vivo. TBX5 inhibited proliferation of both nontransgenic cells cocultured with transgenic cells in vitro and nontransgenic cardiomyocytes in transgenic chick hearts with mosaic expression of TBX5 in vivo. Immunohistochemical studies of human embryonic tissues, including hearts, also demonstrated that TBX5 expression is inversely related to cellular proliferation. We propose that TBX5 can act as a cellular arrest signal during vertebrate cardiogenesis and thereby participate in modulation of cardiac growth and development.
Collapse
Affiliation(s)
- C J Hatcher
- Molecular Cardiology Laboratory, Department of Medicine, Cardiology Division, Weill Medical College of Cornell University, 525 E. 68th Street, New York, New York, 10021, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Although neurotrophin actions in the survival of specific retinal cell types have been identified, the biological functions for neurotrophin-3 (NT-3) in early retinal development remain unclear. Having localized NT-3 and trk C expression at early developmental stages when retinal neuroepithelial progenitor cells predominate, we sought to modulate NT-3 signaling in these cells by overexpressing a truncated isoform of the NT-3 receptor, trk C. We have demonstrated that this non-catalytic receptor can inhibit NT-3 signaling when coexpressed with the full-length kinase-active trk C receptor. Using a replication-deficient retrovirus to ectopically express the truncated trk C receptor to limited numbers of progenitor cells in ovo, we examined the effects of disrupted trk C signaling on the proliferation or differentiation of retinal cells. Clones expressing truncated trk C exhibited a 70% reduction in clone size, compared with clones infected with a control virus, indicating that inhibition of trk C signaling decreased the clonal expansion of cells derived from a single retinal progenitor cell. Additionally, impaired NT-3 signaling resulted in a reduction of all retinal cell types, suggesting that NT-3 targets retinal precursor cells rather than differentiated cell types. BrdU labeling studies performed at E6 indicate that this reduction in cell number occurs through a decrease in cell proliferation. These studies suggest that NT-3 is an important mitogen early in retinal development and serves to establish the size of the progenitor pool from which all future differentiated cells arise.
Collapse
|
36
|
Vascularization of the Heart During Prenatal and Perinatal Growth. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2590(08)60165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Watanabe M, Choudhry A, Berlan M, Singal A, Siwik E, Mohr S, Fisher SA. Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death. Development 1998; 125:3809-20. [PMID: 9729489 DOI: 10.1242/dev.125.19.3809] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The embryonic outflow tract is a simple tubular structure that connects the single primitive ventricle with the aortic sac and aortic arch arteries. This structure undergoes a complex sequence of morphogenetic processes to become the portion of the heart that aligns the right and left ventricles with the pulmonary artery and aorta. Abnormalities of the outflow tract are involved in many clinically significant congenital cardiac defects; however, the cellular and molecular processes governing the development of this important structure are incompletely understood. Histologic and tissue-tagging studies indicate that the outflow tract tissues compact and are incorporated predominantly into a region of the right ventricle. The hypothesis tested in the current study was that cell death or apoptosis in the muscular portion of the outflow tract is an important cellular mechanism for outflow tract shortening. The tubular outflow tract myocardium was specifically marked by infecting myocytes of the chicken embryo heart with a recombinant replication-defective adenovirus expressing beta-galactosidase (beta-gal) under the control of the cytomegalovirus promoter. Histochemical detection of the beta -gal-labeled outflow tract myocytes revealed that the tubular structure shortened to become a compact ring at the level of the pulmonic infundibulum over several days of development (stages 25–32, embryonic days 4–8). The appearance of apoptotic cardiomyocytes was correlated with OFT shortening by two histologic assays, TUNEL labeling of DNA fragments and AnnexinV binding. The rise and fall in the number of apoptotic myocytes detected by histologic analyses paralleled the change in activity levels of Caspase-3, a protease in the apoptotic cascade, measured in outflow tract homogenates. These results suggest that the elimination of myocytes by programmed cell death is one mechanism by which the outflow tract myocardium remodels to form the proper connection between the ventricular chambers and the appropriate arterial trunks.
Collapse
Affiliation(s)
- M Watanabe
- Division of Pediatric Cardiology, Department of Pediatrics, Rainbow Babies and Childrens Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tomanek RJ, Lotun K, Clark EB, Suvarna PR, Hu N. VEGF and bFGF stimulate myocardial vascularization in embryonic chick. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H1620-6. [PMID: 9612372 DOI: 10.1152/ajpheart.1998.274.5.h1620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that early vascularization of the embryonic heart is enhanced after bolus injections of vascular, endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) into the vitelline vein before the onset of myocardial vasculogenesis (3.5 days, stage 21). Electron and light microscopy were utilized to obtain morphometric data. At stages 29 and 31, myocardial vessel volume or numerical density were higher in embryos injected with 50 ng bFGF than in the saline-injected controls. A VEGF injection increased vascular volume density at stage 29 and both volume and numerical, density at stage 31, bFGF, but not VEGF, was associated with an enhancement of the sinusoidal system (spongy layer of the ventricle) at stage 29. This effect disappeared by stage 31. In conclusion, 1) enhancement of bFGF or VEGF before myocardial vascularization increases vascular growth, but the initial effect of bFGF is greater; 2) the effects of these growth factors on vascular volume and numerical density are temporally dependent; and 3) bFGF, in addition to its effects on the coronary vasculature, influences ventricular modeling by apparently acting on myocytes as well as endothelial cells.
Collapse
Affiliation(s)
- R J Tomanek
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
39
|
Hyer J, Mima T, Mikawa T. FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 1998; 125:869-77. [PMID: 9449669 DOI: 10.1242/dev.125.5.869] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patterning of the bipotential retinal primordia (the optic vesicles) into neural retina and retinal pigmented epithelium depends on its interaction with overlaying surface ectoderm. The surface ectoderm expresses FGFs and the optic vesicles express FGF receptors. Previous FGF-expression data and in vitro analyses support the hypothesis that FGF signaling plays a significant role in patterning the optic vesicle. To test this hypothesis in vivo we removed surface ectoderm, a rich source of FGFs. This ablation generated retinas in which neural and pigmented cell phenotypes were co-mingled. Two in vivo protocols were used to replace FGF secretion by surface ectoderm: (1) implantation of FGF-secreting fibroblasts, and (2) injection of replication-incompetent FGF retroviral expression vectors. The retinas in such embryos exhibited segregated neural and pigmented epithelial domains. The neural retina domains were always close to a source of FGF secretion. These results indicate that, in the absense of surface ectoderm, cells of the optic vesicles display both neural and pigmented retinal phenotypes, and that positional cues provided by FGF organize the bipotential optic vesicle into specific neural retina and pigmented epithelium domains. We conclude that FGF can mimic one of the earliest functions of surface ectoderm during eye development, namely the demarcation of neural retina from pigmented epithelium.
Collapse
Affiliation(s)
- J Hyer
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Ong LL, Kim N, Mima T, Cohen-Gould L, Mikawa T. Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity. Dev Biol 1998; 193:1-9. [PMID: 9466883 DOI: 10.1006/dbio.1997.8775] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The myocardial wall of the vertebrate heart changes from a simple epithelium to a trabeculated structure during embryogenesis. This process occurs when epithelioid cardiomyocytes migrate toward the endocardium, which we show is coincident with up-regulation of the cell adhesion molecule, N-cadherin. To study the role of N-cadherin expressed at the trabeculation stage, a replication-defective retrovirus expressing a dominant negative mutant of N-cadherin (delta N-cadherin) was engineered. Control viruses were designed to express beta-galactosidase or a full-length N-cadherin. Viruses were introduced into epithelioid presumptive myocytes at the time they initiate the epithelial-mesenchymal transformation. Individual cells infected with control viruses generated daughter myocytes which migrated toward endocardium as a tight cluster, thereby generating a clone that forms a single or at most two trabeculae. In contrast, myocytes expressing delta N-cadherin were sparsely distributed within the myocardium and failed to form the ridge-shaped clone. Thus, in addition to its known roles in myocyte epithelialization and intercalated disc formation, N-cadherin appears to play a role in homotypic interactions between nonepithelial migratory myocytes during trabecular formation of the embryonic heart.
Collapse
Affiliation(s)
- L L Ong
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
41
|
|