1
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Cieślik P, Kalinowski L, Wierońska JM. Procognitive activity of nitric oxide inhibitors and donors in animal models. Nitric Oxide 2021; 119:29-40. [PMID: 34896554 DOI: 10.1016/j.niox.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Nitric oxide is a small gaseous molecule that plays important roles in the majority of biological functions. Impairments of NO-related pathways contribute to the majority of neurological disorders, such as Alzheimer's disease (AD), and mental disorders, such as schizophrenia. Cognitive decline is one of the most serious impairments accompanying both AD and schizophrenia. In the present study, the activities of NO donors, slow (spermine NONOate) or fast (DETANONOate) releasers, and selective inhibitor of neuronal nitric oxide synthase N(ω)-propyl-l-arginine (NPLA) were investigated in pharmacological models of schizophrenia and AD. Cognitive impairments were induced by administration of MK-801 or scopolamine and were measured in novel object recognition (NOR) and Y-maze tests. The compounds were investigated at doses of 0.05-0.5 mg/kg. The dose-dependent effectiveness of all the compounds was observed in the NOR test, while only the highest doses of spermine NONOate and NPLA were active in the Y-maze test. DETANONOate was not active in the Y-maze test. The impact of the investigated compounds on motor coordination was tested at doses of 0.5 and 1 mg/kg. Only NPLA at a dose of 1 mg/kg slightly disturbed motor coordination in animals.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Consortium Poland (BBMRI.pl), Poland; BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
4
|
Neurochemical changes underlying cognitive impairment in olfactory bulbectomized rats and the impact of the mGlu 5-positive allosteric modulator CDPPB. Brain Res 2021; 1768:147577. [PMID: 34217728 DOI: 10.1016/j.brainres.2021.147577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
The olfactory bulbectomized (OBX) rat model is a well-established model of depression in which antidepressant drugs reverse deficits in the passive avoidance test 14 days after administration. Recently, the olfactory bulbectomized rat model has been proposed to be a model of Alzheimer's disease (AD), and the available data indicate similarities between the changes that typically occur in AD and those observed in OBX animals. In the present study, the occurrence of neurochemical impairments related to AD were investigated 8 months after OB ablation. The expression of the nitric oxide synthases eNOS and nNOS, receptor for advanced glycation endproducts (RAGEs) and dimethylarginine dimethylaminohydrolase (DDAH1) in the prefrontal cortices (PFCs), hippocampi and striata of olfactory bulbectomized and sham-operated rats was evaluated. Subsequently, the impact of the administration of a positive allosteric modulator of the mGlu5 receptor, CDPPB (14 days, 2.5 or 5 mg/kg), on OBX-related changes was assessed. OB ablation induced typical deficits in passive avoidance. Significant aberrations in the expression of both isoforms of NOS were observed in the hippocampus and striatum, and the expression of DDAH1 was increased in the PFCs of OBX animals. CDPPB at a dose of 5 mg/kg ameliorated cognitive impairment in the passive avoidance test and partially reversed the changes in eNOS and nNOS expression induced by the lesion. The results of this study confirm that some of the neurochemical changes observed in OBX animals may resemble those associated with AD pathology and that activation of the mGlu5 receptor may partially counteract these pathological alterations.
Collapse
|
5
|
Chen X, Zhang Y, Wang Q, Qin Y, Yang X, Xing Z, Shen Y, Wu H, Qi Y. The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J 2021; 35:e21510. [PMID: 33710677 DOI: 10.1096/fj.202002702r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
6
|
Netto MB, de Oliveira Junior AN, Goldim M, Mathias K, Fileti ME, da Rosa N, Laurentino AO, de Farias BX, Costa AB, Rezin GT, Fortunato JJ, Giustina AD, Barichello T, Dal-Pizzol F, Petronilho F. Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun 2018; 73:661-669. [PMID: 30041011 DOI: 10.1016/j.bbi.2018.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is defined by cognitive impairment determined by neuropsychological tests from before to after surgery. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after surgery. We aimed at understanding the mechanisms underlying POCD elderly rats in an experimental tibial fracture model. Elderly male Wistar rats were subjected to tibial fracture (TF) model. Control (sham) and fracture (TF) groups were followed to determine nitrite/nitrate concentration; oxidative damage to lipids and proteins; the activity of antioxidant enzymes (superoxide dismutase-SOD and catalase-CAT), mitochondrial respiratory chain enzymes, and creatine kinase (CK); and BDNF levels in the hippocampus and prefrontal cortex (at 24 h and at seven days) and cognitive function through habituation to the open field task and novel object recognition task (only at seven days). TF group presented increased concentration of nitrite/nitrate, hippocampal lipid peroxidation at seven days, protein oxidative damage in the prefrontal cortex and hippocampus at 24 h, decreased antioxidant activity in both structures on the first postoperative day and compromised function of the mitochondrial respiratory chain complexes as well as the CK enzyme. In addition, the levels of BDNF were reduced and memory function was impaired in the TF group. In conclusion, elderly rats submitted to an experimental model of tibial fracture displayed memory impairment accompanied by an increase in oxidative stress, mitochondrial dysfunction and reduced neurotrophin level.
Collapse
Affiliation(s)
- Martins Back Netto
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Olivia Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Bianca Xavier de Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
7
|
Amelioration by nitric oxide (NO) mimetics on neurobehavioral and biochemical changes in experimental model of Alzheimer’s disease in rats. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Age-dependent changes in the glutamate-nitric oxide pathway in the hippocampus of the triple transgenic model of Alzheimer's disease: implications for neurometabolic regulation. Neurobiol Aging 2016; 46:84-95. [PMID: 27460153 DOI: 10.1016/j.neurobiolaging.2016.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Abstract
Age-dependent changes in nitric oxide ((•)NO) concentration dynamics may play a significant role in both decaying synaptic and metabolic functions in Alzheimer's disease (AD). This neuromodulator acts presynaptically to increase vesicle release and glutamatergic transmission and also regulates mitochondrial function. Under conditions of altered intracellular redox environment, (•)NO may react and produce reactive species such as peroxynitrite. Using the triple transgenic mouse model of AD (3xTgAD), we investigated age-dependent changes in the glutamate-(•)NO axis in the hippocampus. Direct measurement of (•)NO concentration dynamics revealed a significant increase in N-methyl-D-aspartate type receptor-evoked peak (•)NO in the 3xTgAD model at an early age. Aging produced a decrease in peak (•)NO accompanied by significant decrease in production and decay rates in the transgenic model. Evaluation of energy metabolism revealed age-dependent decrease in basal oxygen consumption rate, a general decrease in mitochondrial oxidative phosphorylation parameters, and loss in mitochondrial sparing capacity in both genotypes. Finally, we observed age-dependent increase in 3-nitrotyrosine residues in the hippocampus, consistent with a putative shift in (•)NO bioactivity toward oxidative chemistry associated with neurotoxicity.
Collapse
|
9
|
Huang TT, Leu D, Zou Y. Oxidative stress and redox regulation on hippocampal-dependent cognitive functions. Arch Biochem Biophys 2015; 576:2-7. [PMID: 25797440 DOI: 10.1016/j.abb.2015.03.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
Hippocampal-dependent cognitive functions rely on production of new neurons and maintenance of dendritic structures to provide the synaptic plasticity needed for learning and formation of new memories. Hippocampal formation is exquisitely sensitive to patho-physiological changes, and reduced antioxidant capacity and exposure to low dose irradiation can significantly impede hippocampal-dependent functions of learning and memory by reducing the production of new neurons and alter dendritic structures in the hippocampus. Although the mechanism leading to impaired cognitive functions is complex, persistent oxidative stress likely plays an important role in the SOD-deficient and radiation-exposed hippocampal environment. Aging is associated with increased production of pro-oxidants and accumulation of oxidative end products. Similar to the hippocampal defects observed in SOD-deficient mice and mice exposed to low dose irradiation, reduced capacity in learning and memory, diminishing hippocampal neurogenesis, and altered dendritic network are universal in the aging brains. Given the similarities in cellular and structural changes in the aged, SOD-deficient, and radiation-exposed hippocampal environment and the corresponding changes in cognitive decline, understanding the shared underlying mechanism will provide more flexible and efficient use of SOD deficiency or irradiation to model age-related changes in cognitive functions and identify potential therapeutic or intervention methods.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - David Leu
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yani Zou
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Pistell PJ, Spangler EL, Kelly-Bell B, Miller MG, de Cabo R, Ingram DK. Age-associated learning and memory deficits in two mouse versions of the Stone T-maze. Neurobiol Aging 2012; 33:2431-9. [PMID: 22217418 DOI: 10.1016/j.neurobiolaging.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/17/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022]
Abstract
We have previously reported that a modified Stone T-maze (STM), using escape from water as motivation, was effective in evaluating learning and memory ability in young C57/BL6 mice. Here we report on the effectiveness and sensitivity of the STM in the assessment of age-related learning and memory deficits in mice using either escape from foot shock or water as the motivational manipulations. C57BL/6Nia mice 7-, 12-, 20- and 24-months old received 15 massed trials in the escape from foot shock motivated STM while C57BL/6Nia mice 5-, 12-, and 25-months old were tested in the escape from water STM. Analysis of errors, the main performance variable, revealed similar results in both versions of the task with younger mice making fewer errors. Notably, mice of all ages in the water-motivated version moved quickly through the maze, while all ages of mice in the shock-motivated version tended to wait for shock to be initiated to move forward. Overall, both versions of the STM appear to be sensitive to age-related changes in learning and memory and provide an alternative to other testing paradigms such as the Morris water maze which are susceptible to performance confounds which can lead to uninterpretable results.
Collapse
Affiliation(s)
- Paul J Pistell
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice. Brain Res 2011; 1429:61-71. [PMID: 21875703 DOI: 10.1016/j.brainres.2011.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 11/23/2022]
Abstract
Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience.
Collapse
|
12
|
Javadi-Paydar M, Rayatnia F, Fakhraei N, Zakeri M, Mirazi N, Norouzi A, Dehpour AR. Atorvastatin improved scopolamine-induced impairment in memory acquisition in mice: involvement of nitric oxide. Brain Res 2011; 1386:89-99. [PMID: 21354117 DOI: 10.1016/j.brainres.2011.02.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/12/2011] [Accepted: 02/17/2011] [Indexed: 01/12/2023]
Abstract
UNLABELLED Atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, widely used in treatment of hypercholesterolemia, slows the progression of mild-to-moderate Alzheimer's disease. In this study, effects of atorvastatin on acquisition of spatial recognition memory and the involvement of nitric oxide (NO) have been determined in a two-trial recognition Y-maze test and passive avoidance. Atorvastatin (1, 5mg/kg, p.o.) was administered prior to acquisition phase, either in presence or in absence of a non-specific NO synthase inhibitor, L-NAME (3, 10mg/kg, i.p.); a specific inducible NO synthase inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750mg/kg). RESULTS Atorvastatin significantly improved memory performance in a dose-dependent manner in acquisition of recognition memory, in both Y-maze and passive avoidance tests. 1) Atorvastatin (5mg/kg) significantly increased both exploration time and number of arm entries in scopolamine-treated mice in Y-maze. 2) The beneficial effects of atorvastatin on memory acquisition were significantly reversed by L-NAME (3mg/kg) and aminoguanidine (100mg/kg). 3) The effects of sub-effective dose of atorvastatin (1mg/kg) on memory acquisition were not potentiated by l-arginine (750mg/kg); 4) Administration of atorvastatin (5mg/kg) significantly increased step-through latency in scopolamine-induced memory-impaired mice. 5) Beneficial effect of atorvastatin on passive avoidance was not reversed by L-NAME (up to 10mg/kg). 6) The effects of sub-effective dose of atorvastatin (1mg/kg) on passive avoidance were not potentiated by l-arginine (750mg/kg). The present study demonstrates that atorvastatin improved both short-spatial recognition memory and fear memory. As this effect is reversed by L-NAME and aminoguanidine in short-term memory acquisition, it is concluded that NO might be involved in spatial memory improvement by atorvastatin.
Collapse
Affiliation(s)
- Mehrak Javadi-Paydar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
13
|
Han S, Rudd JA, Hu ZY, Zhang L, Yew DT, Fang M. Analysis of neuronal nitric oxide synthase expression and increasing astrogliosis in the brain of senescence-accelerated-prone 8 mice. Int J Neurosci 2010; 120:602-8. [PMID: 20707635 DOI: 10.3109/00207454.2010.503911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The senescence-accelerated mouse (SAM) is an autogenic senile murine model characterized by early cognitive impairment and age-related deterioration of learning and memory. The present study investigated the alternations of neuronal nitric oxide synthase (nNOS) expression in frontal cortex and hippocampus in the aging process of SAM-prone 8 (SAMP8) and SAM-resistant 1 (SAMR1) mice. The results demonstrated that the expression of nNOS was upregulated in the frontal cortex, but downregulated in the hippocampus in SAMP8. Further, age-related increases of astrogliosis were seen in the cortex and hippocampi of aged SAMP8 and SAMR1, as revealed by the expression of the astrocyte specific marker, glial fibrillary acidic protein (GFAP). Indeed, astrogliosis in aged SAMP8 was significantly greater than that of aged SAMR1. Our results suggest the possibility of a correlation between the downregulation of nitric oxide (NO) in the hippocampus and reported learning and memory deficits in SAMP8. However, the toxic effects of NO and age-related increases of astrogliosis, may have contributed to abnormal alterations in metabolism and neurochemical mechanisms in aged SAMP8.
Collapse
Affiliation(s)
- Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, China
| | | | | | | | | | | |
Collapse
|
14
|
Serum Nitrosative Stress Levels Are Increased in Alzheimer Disease but Not in Vascular Dementia. Alzheimer Dis Assoc Disord 2010; 24:194-7. [PMID: 20505437 DOI: 10.1097/wad.0b013e3181c53d0d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease. Mol Neurobiol 2010; 41:129-37. [PMID: 20213343 DOI: 10.1007/s12035-010-8104-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca(2+)/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca(2+)/NO/cGMP pathway in aging and Alzheimer's disease.
Collapse
|
16
|
Pistell PJ, Nelson CM, Miller MG, Spangler EL, Ingram DK, Devan BD. Striatal lesions interfere with acquisition of a complex maze task in rats. Behav Brain Res 2008; 197:138-43. [PMID: 18789359 DOI: 10.1016/j.bbr.2008.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/07/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
The 14-unit T-maze has proven to be a valuable tool for investigating age-associated memory impairment (AAMI). While another task widely used to evaluate AAMI, the water maze, is primarily used to evaluate allocentric hippocampal-dependent spatial memory, the 14-unit T-maze can assess egocentric procedural memory. Although several brain structures, e.g. hippocampus, parietal cortex, have been implicated in acquisition and retention performance in the 14-unit T-maze, there has been no evaluation of the involvement of the striatum, a brain region implicated in procedural learning and memory. The current study revealed that excitotoxic lesions of the medial or lateral striatum significantly impaired acquisition, as measured by errors and latency, on this task without disruption of motor function. These results indicate that the 14-unit T-maze most likely is requires a large egocentric procedural learning component, and previously observed AAMI may involve age-related dysfunction of the striatum.
Collapse
Affiliation(s)
- Paul J Pistell
- Behavioral Neuroscience Section, Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Dr., Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
17
|
Combined administration of subthreshold doses of the nitric oxide inhibitor, nitro-L-arginine, and muscarinic receptor antagonist, scopolamine, impairs complex maze learning in rats. Behav Pharmacol 2008; 18:801-5. [PMID: 17989518 DOI: 10.1097/fbp.0b013e3282f18d2f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traditionally, research into the neurobiological mechanisms of age-related memory impairments has focused on single neurotransmitter systems. As normal and abnormal age-related declines in memory function probably involve alterations in more than one system, a more effective approach for elucidating underlying neurobiological changes and resulting impairments may be to evaluate the roles of multiple systems simultaneously. This study evaluated the interaction of the cholinergic and nitric oxide systems in rats on acquisition in the 14-unit T-maze. This task requires learning a series of turns to avoid foot shock, and most likely reflects procedural learning. Administration of scopolamine (0.1 mg/kg) or N-nitro-L-arginine methyl ester (30 mg/kg) alone did not impair acquisition, whereas administration of the same doses in combination increased both the latency to complete the maze and number of errors committed. These data suggest that manipulation of learning and memory processes with multiple compounds potentially offers a clinically relevant paradigm for investigating cognitive function in normal and abnormal aging.
Collapse
|
18
|
Devan BD, Pistell PJ, Daffin LW, Nelson CM, Duffy KB, Bowker JL, Bharati IS, Sierra-Mercado D, Spangler EL, Ingram DK. Sildenafil citrate attenuates a complex maze impairment induced by intracerebroventricular infusion of the NOS inhibitor Nomega-nitro-L-arginine methyl ester. Eur J Pharmacol 2007; 563:134-40. [PMID: 17362916 DOI: 10.1016/j.ejphar.2007.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 02/03/2007] [Accepted: 02/06/2007] [Indexed: 12/16/2022]
Abstract
In a previous study, our laboratory reported that sildenafil citrate, a cyclic nucleotide phosphodiesterase type 5 inhibitor, reversed a learning impairment in rats induced by systemic inhibition of nitric oxide synthase (60 mg/kg, i.p., Nomega-nitro-L-arginine methyl ester; L-NAME). To limit the peripheral effects of L-NAME and further localize the site of action of sildenafil, L-NAME (48 microg, i.c.v.) was infused bilaterally into the lateral cerebral ventricles 30 min prior to maze training. Saline or sildenafil citrate (1.5 or 3.0 mg/kg, i.p.) was administered systemically 15 min before training. Drug injections occurred 24 h after pretraining rats to avoid foot shock on a one-way active avoidance straight runway. Following drug treatment, the rats received 15 training trials on a 14-unit T-maze task that requires learning a complex sequence of turns to avoid mild foot shock. This complex maze paradigm is sensitive to aging and blockade of cholinergic, N-methyl-D-aspartate and nitric oxide signaling systems. Behavioral measures of performance included deviations from the correct pathway (errors), runtime from start to goal (latency), shock frequency and shock duration. Statistical analysis revealed that central infusion of L-NAME impaired maze performance and that sildenafil (3.0 mg/kg) significantly attenuated the impairment. These results suggest that sildenafil citrate may serve as a cognitive enhancer by modulating central nitric oxide/cGMP signal transduction following N-methyl-D-aspartate receptor activation. This pathway has been implicated in age-related cognitive decline and may be a useful target for pharmacological intervention of neurodegenerative disease.
Collapse
Affiliation(s)
- Bryan D Devan
- Behavioral Neuroscience Section, Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Dr., Baltimore MD 21204, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bashkatova V, Meunier J, Vanin A, Maurice T. Nitric Oxide and Oxidative Stress in the Brain of Rats Exposed In Utero to Cocaine. Ann N Y Acad Sci 2006; 1074:632-42. [PMID: 17105958 DOI: 10.1196/annals.1369.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of nitric oxide (NO) and lipid peroxidation (LPO) processes in the physiological deficits induced by in utero cocaine exposure was examined in rats. NO generation in the hippocampus and cortex was detected using the electron paramagnetic resonance and LPO products were measured as thiobarbituric acid reactive species (TBARS). Pregnant Sprague-Dawley rats received a daily intraperitoneal injection of 20 mg/kg cocaine (IUC) or saline solution for control dams (IUV) between E17-E20. NO level was lower in the brain of IUC rats at postnatal day 1 and 2, but not 4, as compared with IUV rats. TBARS content was increased at day 1-4. Animals were used for behavioral testing at 25 days of age. Both NO and TBARS were elevated in the hippocampus of IUC rats as compared with IUV rats. Juvenile IUC rats developed significant learning impairments in the water-maze, as revealed by probe test retrieval deficits. Behavioral sessions resulted in a significant increase of TBARS levels only in IUV animals. Therefore, IUC rats showed a significant oxidative stress in basal conditions that may be related to their impaired learning ability. We did not find direct correlation between the changes in NO generation and intensity of LPO processes. It may probably mean that changes in intensity of LPO processes observed during prenatal cocaine exposure are not directly linked to NO pathway activation.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Institute of Pharmacology, Russian Academy of Medical Sciences, 8 Baltiyskaya Street, 125315, Moscow, Russia.
| | | | | | | |
Collapse
|
20
|
Devan BD, Bowker JL, Duffy KB, Bharati IS, Jimenez M, Sierra-Mercado D, Nelson CM, Spangler EL, Ingram DK. Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition. Psychopharmacology (Berl) 2006; 183:439-45. [PMID: 16320087 DOI: 10.1007/s00213-005-0232-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 10/09/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signal transduction pathway has been implicated in some forms of learning and memory. Recent findings suggest that inhibition of phosphodiesterase (PDE) enzymes that degrade cGMP may have memory-enhancing effects. OBJECTIVES We examined whether treatment with sildenafil citrate, a PDE type 5 inhibitor, would attenuate a learning impairment induced by inhibition of NO synthase [60 mg/kg N(omega)-nitro-L-arginine methyl ester (L-NAME), i.p.]. METHODS Rats were pretrained in a one-way active avoidance of foot shock in a straight runway and, on the next day, received 15 training trials in a 14-unit T-maze, a task that has been shown to be sensitive to aging and impairment of central NO signaling systems. Combined treatments of L-NAME or saline and sildenafil (1.0, 1.5, 3.0, or 4.5 mg/kg, i.p.) or vehicle were given 30 and 15 min before training, respectively. Behavioral measures of performance included entries into incorrect maze sections (errors), run time from start to goal (latency), shock frequency, and shock duration. RESULTS Statistical analysis revealed that L-NAME impaired maze performance and that sildenafil (1.5 mg/kg) significantly attenuated this impairment. Control experiments revealed that administration of L-NAME alone did not significantly increase latencies in a one-way active avoidance test and that different doses of sildenafil alone did not significantly alter complex maze performance. CONCLUSIONS The results indicate that sildenafil may improve learning by modulating NO-cGMP signal transduction, a pathway implicated in age-related cognitive decline and neurodegenerative disease.
Collapse
Affiliation(s)
- Bryan D Devan
- Behavioral Neuroscience Section, Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bashkatova V, Meunier J, Maurice T, Vanin A. Memory impairments and oxidative stress in the hippocampus of in-utero cocaine-exposed rats. Neuroreport 2005; 16:1217-21. [PMID: 16012352 DOI: 10.1097/00001756-200508010-00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined whether significant oxidative stress is induced in the brain of juvenile rats exposed in utero to cocaine, and contributes to their mnesic difficulties. We measured nitric oxide generation, using electron paramagnetic resonance, and the thiobarbituric acid reactive species as specific indexes of lipid peroxidation. Both nitric oxide and lipid peroxidation were elevated in the hippocampus of in-utero cocaine-exposed rats as compared with control animals. In-utero cocaine-exposed rats developed significant learning impairments in the water-maze, shown by probe test retrieval deficits. In parallel, behavioural sessions resulted in increases of thiobarbituric acid reactive species levels only in control animals. Therefore, in-utero cocaine exposure resulted in a significant oxidative stress in basal conditions, which may be related to impaired learning ability.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Department of Neurochemical Pharmacology, Institute of Pharmacology, Russian Academy of Medical Sciences, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | | | | | | |
Collapse
|
22
|
Crespi F, Rossetti ZL. Pulse of Nitric Oxide Release in Response to Activation ofN-Methyl-d-aspartate Receptors in the Rat Striatum: Rapid Desensitization, Inhibition by Receptor Antagonists, and Potentiation by Glycine. J Pharmacol Exp Ther 2004; 309:462-8. [PMID: 14724219 DOI: 10.1124/jpet.103.061069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased activity of glutamate N-methyl-d-aspartate (NMDA) receptors is the dominant mechanism by which nitric oxide (NO.) is generated. By using a selective direct-current amperometry method, we characterized real time NO* release in vivo in response to chemical stimulation of NMDA receptors in the rat striatum. The application of NMDA caused the appearance of a sharp and transient oxidation signal. Concentration-response studies (10-500 microM) indicated an EC(50) of 48 microM. The NMDA-induced amperometric signal was suppressed by focal application of the nitric-oxide synthase inhibitor L-nitro-arginine methyl ester (L-NAME, 100 microM) or D-(-)-2-amino-5-phosphonopentanoic acid (AP-5, 100 microM) or by systemic injection of dizocilpine (1 mg/kg i.p.), drugs that, when given alone, had no effect on baseline oxidation current. Repeated injections of NMDA at short intervals (approximately 80 s) resulted in a progressive reduction of the amperometric signal with a decay half-life of 1.36 min. Sixty min after the last NMDA application the amperometric response was restored to initial levels. Finally, the coapplication of glycine (50 or 100 microM), which, when given alone had no effect, potentiated the NMDA-induced response. Thus, NMDA receptor-mediated activation of striatal NO* system shuts off quickly and undergoes rapid desensitization, suggesting a feedback inhibition of NMDA receptor function. To the extent of NO* release can represent a correlate of NMDA receptor activity, its amperometric detection could be useful to assess in vivo the state of excitatory transmission under physiological, pharmacological, or pathological conditions.
Collapse
Affiliation(s)
- Francesco Crespi
- CEDD Psychiatry, Department of Biology, GlaxoSmithKline, Verona, Italy
| | | |
Collapse
|
23
|
Audesirk T, Cabell L, Kern M, Audesirk G. Enhancement of dendritic branching in cultured hippocampal neurons by 17beta-estradiol is mediated by nitric oxide. Int J Dev Neurosci 2003; 21:225-33. [PMID: 12781790 DOI: 10.1016/s0736-5748(03)00032-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Both 17beta-estradiol (E2) and nitric oxide (NO) are important in neuronal development, learning and memory, and age-related memory changes. There is growing evidence that a number of estrogen receptor-mediated effects of estradiol utilize nitric oxide as an intermediary. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. Low levels of estradiol (10nM) significantly increase dendritic branching in cultured embryonic rat hippocampal neurons (158% of control). This study investigates the hypothesis that the estrogen-stimulated increase in dendritic branching is mediated by nitric oxide. We found that nitric oxide donors also produce significantly increased dendritic branching S-nitroso-N-acetylpenicillamine (SNAP: 119%; 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC-18): 128% of control). We then determined that the increases in dendritic branching stimulated by estradiol or by a nitric oxide donor were both blocked by an inhibitor of guanylyl cyclase. Dendritic branching was also stimulated by a cell permeable analog of cyclic guanosine monophosphate (dibutyryl-cGMP: 173% of control). Estradiol-stimulated dendritic branching was reversed by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (carboxy-PTIO). This study provides evidence that estradiol influences the development of embryonic hippocampal neurons in culture by increasing the production of nitric oxide or by increasing the sensitivity of the neurons to nitric oxide. Nitric oxide in turn stimulates dendritic branching via activation of guanylyl cyclase.
Collapse
Affiliation(s)
- T Audesirk
- Biology Department, University of Colorado at Denver, P.O. Box 173364, Denver 80217-3364, USA.
| | | | | | | |
Collapse
|
24
|
Necchi D, Virgili M, Monti B, Contestabile A, Scherini E. Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immunochemical study in the rat. Brain Res 2002; 933:31-41. [PMID: 11929633 DOI: 10.1016/s0006-8993(02)02302-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have used several approaches (immunohistochemistry and enzyme histochemistry, Western blotting, biochemical assay of Ca(2+)-dependent catalytic activity) in order to detect differences in neuronal nitric oxide synthase (nNOS) expression and activity in various brain regions of young-adult (4-month-old) and aged (28-month-old) rats. In most of the brain regions examined (striatum, neocortex, olfactory cortex and hippocampus) some significant decrease in the density per unit area of nNOS neurons, detected either through immunohistochemistry or enzyme histochemistry, was observed in aged rats. However, only in the striatum and olfactory cortex this was accompanied by a significant decrease of the catalytic activity of the constitutive, Ca(2+)-dependent NOS form. In these two regions, the relative level of expression of nNOS protein was also significantly decreased, as assessed by Western blotting of proteic extracts from young-adult and aged rats. Other observed differences were a paler stain of neurons in some brain areas of the aged rats and differences of cellular compartmentalization of the protein in the same rats, as assessed through confocal microscopy. The present observations demonstrate that the expression and activity of nNOS show regionally-specific alterations in the brain of aged healthy rats, with a trend towards decrease, rather than toward increase as suggested by some previous reports. Therefore, hypotheses implicating nitric oxide increase in brain aging should be reconsidered on the basis of a clear-cut distinction between the physiological and the pathological aspects of the aging process.
Collapse
Affiliation(s)
- Daniela Necchi
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
25
|
Law A, Doré S, Blackshaw S, Gauthier S, Quirion R. Alteration of expression levels of neuronal nitric oxide synthase and haem oxygenase-2 messenger RNA in the hippocampi and cortices of young adult and aged cognitively unimpaired and impaired Long-Evans rats. Neuroscience 2001; 100:769-75. [PMID: 11036210 DOI: 10.1016/s0306-4522(00)00316-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal nitric oxide synthase and haem oxygenase-2 are postulated to be important enzymes involved in neuronal transmission and modulation of free radical levels in neurons. Hippocampal and cortical neuronal nitric oxide synthase and haem oxygenase-2 expressions were compared in young adult (6 months) and aged (24-26 months) Long-Evans rats. Aged rats were assigned as either cognitively unimpaired or impaired based on their performances in the Morris water maze behavioural task. In situ hybridization revealed increased neuronal nitric oxide synthase messenger RNA levels in selected regions of the hippocampi and cortices of aged rats. Moreover, aged cognitively impaired animals showed significantly higher neuronal nitric oxide synthase messenger RNA expression than aged cognitively unimpaired animals in several brain regions. For haem oxygenase-2 mRNA expressions, both young and aged cognitively impaired rats showed increased expressions in hippocampi compared with aged cognitively unimpaired rats, while no difference was found in cortices between all three animal groups. The increase in neuronal nitric oxide synthase messenger RNA expression levels in the aged animals may be related to increased free radical production occurring in ageing. Alternatively, elevated neuronal nitric oxide synthase and haem oxygenase-2 messenger RNA expressions may represent compensatory responses to oxidative stress and age-related changes in neuronal functions. Regarding cognitive status, aged cognitively impaired rats showed significant spatial memory deficits relative to young and aged cognitively unimpaired rats. Our data suggest a correlation between age-related cognitive impairment and change in messenger RNA expressions for the neuronal nitric oxide synthase and haem oxygenase-2 systems in brain areas implicated in learning and memory processes.
Collapse
Affiliation(s)
- A Law
- Department of Neurology and Neurosurgery, McGill University, Quebec, H3A 2B4, Montreal, Canada
| | | | | | | | | |
Collapse
|
26
|
Maughan PH, Scholten KJ, Schmidt RH. Recovery of water maze performance in aged versus young rats after brain injury with the impact acceleration model. J Neurotrauma 2000; 17:1141-53. [PMID: 11186228 DOI: 10.1089/neu.2000.17.1141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Clinically, elderly patients have a higher cognitive morbidity from head trauma than young patients. We have modeled injury in aged rats in an effort to elucidate the pathophysiology of this enhanced sensitivity and, in particular, to determine if there are susceptibility differences in forebrain cholinergic innervation in young versus aged rats. Aged (20-23 months) and young (2-3 months) rats were subjected to injury under halothane anesthesia using the Marmarou impact acceleration model. Injury parameters required adjustment downward for the aged rats (323 g at 1.61 m versus 494 g at 2.06 m) to provide equivalent mortality (30% versus 20%) and loss of righting-reflex times (10-12 min average). At 1 week following injury, the aged animals were markedly more impaired in water maze performance than were young rats, and this difference persisted at least up to 5 weeks following injury. The extent of improvement in performance from 1 to 5 weeks was markedly worse for aged animals compared to young animals. Forebrain synaptosomal choline uptake was decreased in aged injured rats by 8-14% at 1, 3, and 5 weeks postinjury, but not decreased in young injured rats. No differences were noted in entorhinal cortex or hippocampal choline uptake. This model effectively demonstrates the markedly increased susceptibility of older animals to head injury and their decreased capacity for recovery. The neurophysiological basis for this difference is presently unknown, but the differences in cognitive dysfunction between young and aged rats appears to be much greater than would seem to be explained by the small differences in forebrain cholinergic innervation.
Collapse
Affiliation(s)
- P H Maughan
- Department of Neurosurgery, University of Utah, Salt Lake City 84132, USA
| | | | | |
Collapse
|
27
|
Yu W, Juang S, Lee J, Liu T, Cheng J. Decrease of neuronal nitric oxide synthase in the cerebellum of aged rats. Neurosci Lett 2000; 291:37-40. [PMID: 10962148 DOI: 10.1016/s0304-3940(00)01377-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) is produced as an important neurotransmitter in the central nervous system (CNS) to participate in some pathophysiological pathways. In the present study, change of neuronal nitric oxide synthase (nNOS) was examined in isolated cerebellum of Wistar rats aged from 2 to 24 months. Northern blot showed a lower mRNA level of nNOS in rats aged 6, 12 and 24 months than that in rats aged 2 months. Western blot analysis also indicated that the expression of nNOS protein was lower in rats aged 6, 12 and 24 months than that of 2 months rats. However, the activity of nNOS determined by conversion of [(3)H] L-arginine to [(3)H] L-citrulline was decreased significantly in rats aged 24 months only. These results indicate the decrease of NOS expression in cerebellum of aged rat that seems helpful to explain the causes of malfunction in CNS of aged mammalian.
Collapse
Affiliation(s)
- W Yu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan 70101, Republic of, Tainan City, China
| | | | | | | | | |
Collapse
|
28
|
Abstract
Both mild cognitive impairment and age-associated memory impairment are terms used to describe memory decline in otherwise healthy, intellectually intact individuals aged older than 50 years. It is estimated that up to 38% of the middle-aged and older population fulfill diagnostic criteria for this condition. Although the memory deficits observed in these individuals are fairly mild, they can interfere with day-to-day functioning. This article presents a review of the types of memory decline observed in older people, the diagnostic criteria used to define memory decline, the physiological and morphological brain changes that accompany aging, and the potential pharmacological treatment options, focusing on agents that have been evaluated in mildly cognitively impaired or normal older populations.
Collapse
Affiliation(s)
- B B Sherwin
- McGill University, Department of Psychology, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Podhorna J, Brown RE. Inhibition of nitric oxide synthase reduces ultrasonic vocalizations of rat pups. Eur J Pharmacol 1999; 382:143-50. [PMID: 10556664 DOI: 10.1016/s0014-2999(99)00595-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study investigated the effects of drugs acting on the brain nitric oxide pathway on ultrasonic vocalizations, body temperature and locomotion in 7-8-day-old rat pups. Both a selective neuronal nitric oxide synthase (NOS) inhibitor (7-nitroindazole) and a non-selective NOS inhibitor (nitro-L-arginine-methyl ester, L-NAME) decreased the number of ultrasonic vocalizations in a dose-dependent manner. The non-selective NOS inhibitor, L-NAME, suppressed not only ultrasonic vocalizations but also locomotion. The inactive isomer of the NOS inhibitor, nitro-D-arginine-methyl ester (D-NAME), and the biological precursor of nitric oxide, L-arginine, had no effect on ultrasonic vocalizations or locomotion. These data indicate that drugs suppressing nitric oxide synthesis produced an anxiolytic effect in rat pups. However, only the selective NOS inhibitor, 7-nitroindazole, was 'anxioselective', i.e., reduced ultrasonic vocalizations without causing sedation. Increased synthesis of nitric oxide in the brain had no apparent behavioral effect in this model.
Collapse
Affiliation(s)
- J Podhorna
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|