1
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Voronova IP. 5-HT Receptors and Temperature Homeostasis. Biomolecules 2021; 11:1914. [PMID: 34944557 PMCID: PMC8699715 DOI: 10.3390/biom11121914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
The present review summarizes the data concerning the influence of serotonin (5-HT) receptors on body temperature in warm-blooded animals and on processes associated with its maintenance. This review includes the most important part of investigations from the first studies to the latest ones. The established results on the pharmacological activation of 5-HT1A, 5-HT3, 5-HT7 and 5-HT2 receptor types are discussed. Such activation of the first 3 type of receptors causes a decrease in body temperature, whereas the 5-HT2 activation causes its increase. Physiological mechanisms leading to changes in body temperature as a result of 5-HT receptors' activation are discussed. In case of 5-HT1A receptor, they include an inhibition of shivering and non-shivering thermogenesis, as well simultaneous increase of peripheral blood flow, i.e., the processes of heat production and heat loss. The physiological processes mediated by 5-HT2 receptor are opposite to those of the 5-HT1A receptor. Mechanisms of 5-HT3 and 5-HT7 receptor participation in these processes are yet to be studied in more detail. Some facts indicating that in natural conditions, without pharmacological impact, these 5-HT receptors are important links in the system of temperature homeostasis, are also discussed.
Collapse
Affiliation(s)
- Irina P. Voronova
- Department of Thermophysiology, Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
3
|
Xie KY, Chien SJ, Tan BCM, Chen YW. RNA editing of 5-HT 2C R impairs insulin secretion of pancreatic beta cells via altered store-operated calcium entry. FASEB J 2021; 35:e21929. [PMID: 34553421 DOI: 10.1096/fj.202100265rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022]
Abstract
Recent studies emphasize the importance of 5-HT2C receptor (5-HT2C R) signaling in the regulation of energy homeostasis. The 5-HT2C R is the only G-protein-coupled receptor known to undergo post-transcriptional adenosine to inosine (A-to-I) editing by adenosine deaminase acting on RNA (ADAR). 5-HT2C R has emerged as an important role in the modulation of pancreatic β cell functions. This study investigated mechanisms behind the effects of palmitic acid (PA) on insulin secretion in different overexpressed 5-HT2C R edited isoforms in pancreatic MIN6 β cells. Results showed that the expressions of 5HT2C R and ADAR2 were upregulated in the pancreatic islets of mice fed with high-fat diet (HFD) compared to control mice. PA treatment significantly induced the expressions of 5-HT2C R and ADAR2 in pancreatic MIN6 β cells. PA treatment significantly induced the editing of 5-HT2C R in pancreatic MIN6 β cells. There was no significant difference in cell viability between naïve cells and three overexpressed 5-HT2C R edited isoforms in pancreatic MIN6 β cells. Overexpressed 5-HT2C R edited isoforms showed reduced glucose-stimulated insulin secretion (GSIS) compared with green fluorescent protein (GFP) expressed cells. Moreover, 5-HT2C R edited isoforms displayed reduced endoplasmic reticulum (ER) calcium release and store-operated calcium entry (SOCE) activation, probably through inhibition of stromal interaction molecule 1 trafficking under PA treatment. Altogether, our results show that PA-mediated editing of 5-HT2C R modulates GSIS through alteration of ER calcium release and SOCE activation in pancreatic MIN6 β cells.
Collapse
Affiliation(s)
- Ke-Yun Xie
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Ju Chien
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Linkou Medical Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Tai Tay DJ, Song Y, Peng B, Toh TB, Hooi L, Kaixin Toh DF, Hong H, Tang SJ, Han J, Gan WL, Man Chan TH, Krishna MS, Patil KM, Maraswami M, Loh TP, Dan YY, Zhou L, Bonney GK, Kah-Hoe Chow P, Chen G, Kai-Hua Chow E, Le MT, Chen L. Targeting RNA Editing of Antizyme Inhibitor 1: a Potential Oligonucleotide-Based Antisense Therapy for Cancer. Mol Ther 2021; 29:3258-3273. [PMID: 33974998 PMCID: PMC8571177 DOI: 10.1016/j.ymthe.2021.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3′ end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2′-O-methyl (2′-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.
Collapse
Affiliation(s)
- Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Lei Zhou
- Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery, National University Health System, Singapore 119228
| | - Pierce Kah-Hoe Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore 169610; Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608; Duke-NUS Medical School, Singapore 169857
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594.
| |
Collapse
|
5
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
6
|
Caputo DR, Robson SC, Werner I, Ford AT. Complete transcriptome assembly and annotation of a critically important amphipod species in freshwater ecotoxicological risk assessment: Gammarus fossarum. ENVIRONMENT INTERNATIONAL 2020; 137:105319. [PMID: 32028177 DOI: 10.1016/j.envint.2019.105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Because of their crucial role in ecotoxicological risk assessment, amphipods (Crustacea) are commonly employed as model species in a wide range of studies. However, despite their ecological importance, their genome has not yet been completely annotated and molecular mechanisms underlying key pathways, such as the serotonin pathway, in development of ecotoxicological biomarkers of exposure to neuroactive pharmaceuticals are still poorly understood. Furthermore, genetic similarities and discrepancies with other model arthropods (e.g., Drosophila melanogaster) have not been completely clarified. In this report, we present a new transcriptome assembly of Gammarus fossarum, an important amphipod species, widespread in Central Europe. RNA-Seq with Illumina HiSeq technology was used to analyse samples extracted from total internal tissues. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the molecular knowledge on this species. Because of the lack of publicly available molecular information on the serotonin pathway, we also highlighted sequence homologies and divergences of the genes encoding the serotonin pathway components of the well-annotated arthropod D. melanogaster, and Crustacea with the corresponding genes of our assembly. An inferior number of hits was found when running a BLAST analysis of both D. melanogaster and Crustacea mRNA sequences encoding serotonin receptors available in GenBank against the total assembly, compared to other serotonin pathway components. A lack of information on important components for serotonin biosynthesis and vesicle endocytosis (i.e., tryptophan hydroxylase and vesicular monoamine transporter) in Crustacea was also brought to light. Our results will provide an extensive transcriptional resource for this important species in ecotoxicological risk assessment and highlight the need for a more detailed categorization of neuronal pathways components in invertebrates.
Collapse
Affiliation(s)
- Domenico R Caputo
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK
| | - Samuel C Robson
- Centre for Enzyme Innovation, St. Michael's Building, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Eawag - EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK.
| |
Collapse
|
7
|
Effect of the 5-HT 2C Receptor Agonist WAY-163909 on Serotonin and Dopamine Metabolism across the Rat Brain: A Quantitative and Qualitative Neurochemical Study. Int J Mol Sci 2019; 20:ijms20122925. [PMID: 31208016 PMCID: PMC6627111 DOI: 10.3390/ijms20122925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
The effects triggered by serotonin2C (5-hydroxytryptamin2C, 5-HT2C) receptor agonists in the brain are often subtle, and methodologies highlighting their widespread actions to account for their multiple modulatory influences on behaviors are still lacking. We report an extended analysis of a neurochemical database on monoamines obtained after the intraperitoneal administration of the preferential 5-HT2C receptor agonist WAY-163909 (0.3 and 3 mg/kg) in 29 distinct rat brain regions. We focused on the metabolite of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), the metabolites of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the index of the turnovers 5-HIAA/5-HT and DOPAC/DA. WAY-163909 increased and decreased 5-HIAA tissue levels in the amygdala and dorsolateral orbitofrontal cortex, respectively, and decreased the 5-HT turnover in the infralimbic cortex. It enhanced HVA levels in the medial orbitofrontal cortex and DOPAC levels in the amygdala. WAY-163909 increased and decreased DA turnover in the medial orbitofrontal cortex and the anterior insular cortex, respectively. The correlative analysis of the turnovers between pairs of brain regions revealed low levels of correlations across the brain but presented a distinct pattern of correlations after WAY-163909 was compared to saline-treated rats. WAY-163909, notably at 0.3 mg/kg, favored cortico-cortical and cortico-subcortical correlations of both turnovers separately, and frontal DOPAC/DA ratio with cortical and subcortical 5-HIAA/5-HT ratios at 3 mg/kg. In conclusion, the qualitative, but not the quantitative analysis shows that WAY-163909 alters the pattern of correlations across the brain, which could account for its multiple behavioral influences.
Collapse
|
8
|
Shirahase T, Watanabe Y, Tsujimura A, Kwak S, Yamamoto T, Kanamura N, Tanaka M. Ethanol Preference and Drinking Behavior Are Controlled by RNA Editing in the Nucleus Accumbens. Front Behav Neurosci 2019; 12:331. [PMID: 30697154 PMCID: PMC6340988 DOI: 10.3389/fnbeh.2018.00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/17/2018] [Indexed: 01/26/2023] Open
Abstract
RNA editing plays critical roles in normal brain function, and alteration of its activity causes various disorders. We previously found that chronic consumption of ethanol was associated with increased levels of RNA editing of serotonin 2C receptor in the nucleus accumbens (NAc). However, it remains unknown whether RNA editing in the NAc modulates alcohol addiction through the brain reward system. To investigate the involvement of NAc RNA editing in alcohol addiction, we generated NAc-specific knockout mice of the double-stranded RNA-specific adenosine deaminase ADAR2 using AAV-GFP/Cre and conducted a battery of behavioral tests including anxiety- and depression-like behaviors. In addition, NAc-specific ADAR2 knockout mice were exposed to ethanol vapor for 20 days, followed by ethanol-drinking and conditioned place preference (CPP) tests. NAc-specific ADAR2 knockout mice showed a significant decrease in locomotor activity in the open field test although they did not develop anxiety- and depression-like behaviors. In addition, the enhancements of ethanol intake and ethanol preference that are usually observed after chronic ethanol vapor exposure were significantly reduced in these mice. These results suggest that ADAR2-mediated RNA editing in the NAc is involved in determination of alcohol preference after chronic alcohol consumption.
Collapse
Affiliation(s)
- Takahira Shirahase
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shin Kwak
- Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Zheng Y, Lorenzo C, Beal PA. DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res 2017; 45:3369-3377. [PMID: 28132026 PMCID: PMC5389660 DOI: 10.1093/nar/gkx050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/25/2017] [Indexed: 01/08/2023] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) carry out adenosine (A) to inosine (I) editing reactions with a known requirement for duplex RNA. Here, we show that ADARs also react with DNA/RNA hybrid duplexes. Hybrid substrates are deaminated efficiently by ADAR deaminase domains at dA-C mismatches and with E to Q mutations in the base flipping loop of the enzyme. For a long, perfectly matched hybrid, deamination is more efficient with full length ADAR2 than its isolated deaminase domain. Guide RNA strands for directed DNA editing by ADAR were used to target six different 2΄-deoxyadenosines in the M13 bacteriophage ssDNA genome. DNA editing efficiencies varied depending on the sequence context of the editing site consistent with known sequence preferences for ADARs. These observations suggest the reaction within DNA/RNA hybrids may be a natural function of human ADARs. In addition, this work sets the stage for development of a new class of genome editing tools based on directed deamination of 2΄-deoxyadenosines in DNA/RNA hybrids.
Collapse
Affiliation(s)
- Yuxuan Zheng
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Claire Lorenzo
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
10
|
Roth BL, Lopez E, Patel S, Kroeze WK. The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? Neuroscientist 2016. [DOI: 10.1177/107385840000600408] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A large number of 5-HT receptors (>15) have been identified by molecular cloning technology over the past 10 years. This review briefly summarizes available information regarding the functional and therapeutic implications of serotonin receptor diversity for neurology and psychiatry. 5-HT receptors are divided into seven main families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7. Several families (e.g., 5-HT1 family) have many members (e.g., 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F), each of which is encoded by a distinct gene product. In addition to the genomic diversity of 5-HT receptors, splice variants and editing isoforms exist for many of the 5-HT receptors, making the family even more diverse. Evidence that is summarized in this review suggests that 5-HT receptors represent novel therapeutic targets for a number of neurologic and psychiatric diseases including migraine headaches, chronic pain conditions, schizophrenia, anxiety, depression, eating disorders, obsessive compulsive disorder, pervasive developmental disorders, and obesity-related conditions (Type II diabetes, hypertension, obesity syndromes). It is possible that sub-type-selective serotonergic agents may revolutionize the treatment for a number of medical, psychiatric, and neurological disorders.
Collapse
Affiliation(s)
- Bryan L. Roth
- Department of Psychiatry, Department of Biochemistry, Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio,
| | - Estelle Lopez
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| | - Shamil Patel
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| | - Wesley K. Kroeze
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| |
Collapse
|
11
|
Aoki M, Watanabe Y, Yoshimoto K, Tsujimura A, Yamamoto T, Kanamura N, Tanaka M. Involvement of serotonin 2C receptor RNA editing in accumbal neuropeptide Y expression and behavioural despair. Eur J Neurosci 2016; 43:1219-28. [PMID: 26950265 DOI: 10.1111/ejn.13233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Serotonin 2C receptors (5-HT2 C Rs) are widely expressed in the central nervous system, and are associated with various neurological disorders. 5-HT2 C R mRNA undergoes adenosine-to-inosine RNA editing at five sites within its coding sequence, resulting in expression of 24 different isoforms. Several edited isoforms show reduced activity, suggesting that RNA editing modulates serotonergic systems in the brain with causative relevance to neuropsychiatric disorders. Transgenic mice solely expressing the non-edited 5-HT2 C R INI-isoform (INI) or the fully edited VGV-isoform exhibit various phenotypes including metabolic abnormalities, aggressive behaviour, anxiety-like behaviour, and depression-like behaviour. Here, we examined the behavioural phenotype and molecular changes of INI mice on a C57BL/6J background. INI mice showed an enhanced behavioural despair in the forced swimming test, elevated sensitivity to the tricyclic antidepressant desipramine, and significantly decreased serotonin in the nucleus accumbens (NAc), amygdala, and striatum. They also showed reduced expression of neuropeptide Y (NPY) mRNA in the NAc. In addition, by stereotactic injection of adeno-associated virus encoding NPY into the NAc, we demonstrated that accumbal NPY overexpression relieved behavioural despair. Our results suggest that accumbal NPY expression may be regulated by 5-HT2 C R RNA editing, and its impairment may be linked to mood disorders.
Collapse
Affiliation(s)
- Miku Aoki
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yoshimoto
- Department of Food Science and Biotechnology, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
12
|
Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M. 5-HT2C receptors in psychiatric disorders: A review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:120-135. [PMID: 26739950 DOI: 10.1016/j.pnpbp.2015.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 12/26/2022]
Abstract
5-HT2Rs have a different genomic organization from other 5-HT2Rs. 5HT2CR undergoes post-transcriptional pre-mRNA editing generating diversity among RNA transcripts. Selective post-transcriptional editing could be involved in the pathophysiology of psychiatric disorders through impairment in G-protein interactions. Moreover, it may influence the therapeutic response to agents such as atypical antipsychotic drugs. Additionally, 5-HT2CR exhibits alternative splicing. Central serotonergic and dopaminergic systems interact to modulate normal and abnormal behaviors. Thus, 5HT2CR plays a crucial role in psychiatric disorders. 5HT2CR could be a relevant pharmacological target in the treatment of neuropsychiatric disorders. The development of drugs that specifically target 5-HT2C receptors will allow for better understanding of their involvement in the pathophysiology of psychiatric disorders including schizophrenia, anxiety, and depression. Among therapeutic means currently available, most drugs used to treat highly morbid psychiatric diseases interact at least partly with 5-HT2CRs. Pharmacologically, 5HT2CRs, have the ability to generate differentially distinct response signal transduction pathways depending on the type of 5HT2CR agonist. Although this receptor property has been clearly demonstrated, in vitro, the eventual beneficial impact of this property opens new perspectives in the development of agonists that could activate signal transduction pathways leading to better therapeutic efficiency with fewer adverse effects.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, France; INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - M Bourin
- EA 3256 Neurobiology of Anxiety and Depression, Faculté de Médecine, BP 53508, 1 rue Gaston Veil, F44035 Nantes Cedex 01, France
| |
Collapse
|
13
|
Zaniewska M, Alenina N, Wydra K, Fröhler S, Kuśmider M, McCreary AC, Chen W, Bader M, Filip M. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats. J Neurochem 2015; 134:704-16. [PMID: 26031442 DOI: 10.1111/jnc.13192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5-HT, serotonin; 5-HT2A R, 5-HT2A receptor; 5-HT2C R, 5-HT2C receptor.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.,Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Sebastian Fröhler
- Laboratory for New Sequencing Technology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Maciej Kuśmider
- Laboratory of Biochemical Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Wei Chen
- Laboratory for New Sequencing Technology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
14
|
Nocjar C, Alex KD, Sonneborn A, Abbas AI, Roth BL, Pehek EA. Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience 2015; 297:22-37. [PMID: 25818050 PMCID: PMC4595040 DOI: 10.1016/j.neuroscience.2015.03.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin-2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems implicated in mental illness.
Collapse
Affiliation(s)
- C Nocjar
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - K D Alex
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - A Sonneborn
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - A I Abbas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - B L Roth
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, 120 Mason Farm Road, 4072 Genetic Medicine Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA.
| | - E A Pehek
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
16
|
Tohda M. Serotonin 2C receptor as a superhero: diversities and talents in the RNA universe for editing, variant, small RNA and other expected functional RNAs. J Pharmacol Sci 2014; 126:321-8. [PMID: 25427431 DOI: 10.1254/jphs.14r06cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The serotonin 2C receptor subtype (5-HT2C) has a unique profession and continues to provide exciting and critical new information. The 5-HT2C is modulated at the RNA level by several mechanisms, including editing, short variant generation, and small RNAs. Recently, these phenomena, which had been demonstrated individually, were shown to be associated with each other. At present, many reports provide information about the influence of RNA regulation on receptor protein activities and expression, which was thought to be the final functional product. However, complicated behavior at the RNA stage allows us to imagine that the RNA itself has functional roles in the RNA universe. The 5-HT2C RNA may play several roles. This review will outline previous 5-HT2C studies and prospects for future studies.
Collapse
Affiliation(s)
- Michihisa Tohda
- Division of Medicinal Pharmacology, Institute of Natural Medicine, and Wakanyaku Theory-Based Integrated Pharmacology, Graduate School of Innovative Life Science, University of Toyama, Japan
| |
Collapse
|
17
|
Hood JL, Morabito MV, Martinez CR, Gilbert JA, Ferrick EA, Ayers GD, Chappell JD, Dermody TS, Emeson RB. Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions. Mol Cell Neurosci 2014; 61:97-109. [PMID: 24906008 PMCID: PMC4134954 DOI: 10.1016/j.mcn.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022] Open
Abstract
Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo.
Collapse
Affiliation(s)
- Jennifer L Hood
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Michael V Morabito
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Charles R Martinez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - James A Gilbert
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Elizabeth A Ferrick
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James D Chappell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Terence S Dermody
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ronald B Emeson
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
18
|
Decher N, Netter MF, Streit AK. Putative Impact of RNA Editing on Drug Discovery. Chem Biol Drug Des 2012; 81:13-21. [DOI: 10.1111/cbdd.12045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Wu WH, Cooper RL. Serotonin and synaptic transmission at invertebrate neuromuscular junctions. Exp Neurobiol 2012; 21:101-12. [PMID: 23055788 PMCID: PMC3454807 DOI: 10.5607/en.2012.21.3.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
The serotonergic system in vertebrates and invertebrates has been a focus for over 50 years and will likely continue in the future. Recently, genomic analysis and discovery of alternative splicing and differential expression in tissues have increased the knowledge of serotonin (5-HT) receptor types. Comparative studies can provide useful insights to the wide variety of mechanistic actions of 5-HT responsible for behaviors regulated or modified by 5-HT. To determine cellular responses and influences on neural systems as well as the efferent control of behaviors by the motor units, preparations amenable to detailed studies of synapses are beneficial as working models. The invertebrate neuromuscular junctions (NMJs) offer some unique advantages for such investigations; action of 5-HT at crustacean NMJs has been widely studied, and leech and Aplysia continue to be key organisms. However, there are few studies in insects likely due to the focus in modulation within the CNS and lack of evidence of substantial action of 5-HT at the Drosophila NMJs. There are only a few reports in gastropods and annelids as well as other invertebrates. In this review we highlight some of the key findings of 5-HT actions and receptor types associated at NMJs in a variety of invertebrate preparations in hopes that future studies will build on this knowledge base.
Collapse
Affiliation(s)
- Wen-Hui Wu
- Department of Biology & Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
20
|
Graves SM, Rafeyan R, Watts J, Napier TC. Mirtazapine, and mirtazapine-like compounds as possible pharmacotherapy for substance abuse disorders: evidence from the bench and the bedside. Pharmacol Ther 2012; 136:343-53. [PMID: 22960395 DOI: 10.1016/j.pharmthera.2012.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Understanding substance use disorders (SUDs) and the problems associated with abstinence has grown in recent years. Nonetheless, highly efficacious treatment targeting relapse prevention has remained elusive, and there remains no FDA-approved pharmacotherapy for psychostimulant dependence. Preclinical and clinical investigations assessing the utility of classical antidepressants, which block monoamine reuptake, show mixed and often contradictory results. Mirtazapine (Remeron®) is a unique FDA-approved antidepressant, with negligible affinity for reuptake proteins, indirectly augments monoamine transmission presumably through antagonist activity at multiple receptors including the norepinephrine (NE)(α2), and serotonin (5-HT)(2A/C) receptors. Historically, mirtazapine was also considered to be a 5-HT(2C) antagonist, but recent evidence indicates that mirtazapine is an inverse agonist at this receptor subtype. Suggesting a promising role for mixed-action serotonergic drugs for addiction pharmacotherapy, mirtazapine attenuates psychostimulant-induced behaviors in several rodent models of substance abuse, and antagonizes methamphetamine-induced biochemical and electrophysiological alterations in rats. Preclinical findings are confirmed through published case studies documenting successful outcomes with mirtazapine therapy across a number of SUDs. To date, a large scale clinical trial assessing the utility of mirtazapine in substance abuse pharmacotherapy has yet to be conducted. However, as reviewed here, accumulating preclinical and clinical evidence argues that mirtazapine, or compounds that emulate aspects of its pharmacological profile, may prove useful in helping treat addictions.
Collapse
Affiliation(s)
- Steven M Graves
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | | | | | | |
Collapse
|
21
|
Tariq A, Jantsch MF. Transcript diversification in the nervous system: a to I RNA editing in CNS function and disease development. Front Neurosci 2012; 6:99. [PMID: 22787438 PMCID: PMC3391646 DOI: 10.3389/fnins.2012.00099] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/14/2012] [Indexed: 12/16/2022] Open
Abstract
RNA editing by adenosine deaminases that act on RNA converts adenosines to inosines in coding and non-coding regions of mRNAs. Inosines are interpreted as guanosines and hence, this type of editing can change codons, alter splice patterns, or influence the fate of an RNA. A to I editing is most abundant in the central nervous system (CNS). Here, targets for this type of nucleotide modification frequently encode receptors and channels. In many cases, the editing-induced amino acid exchanges alter the properties of the receptors and channels. Consistently, changes in editing patterns are frequently found associated with diseases of the CNS. In this review we describe the mechanisms of RNA editing and focus on target mRNAs of editing that are functionally relevant to normal and aberrant CNS activity.
Collapse
Affiliation(s)
- Aamira Tariq
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna Vienna, Austria
| | | |
Collapse
|
22
|
Graves SM, Napier TC. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats. BMC Neurosci 2012; 13:65. [PMID: 22697313 PMCID: PMC3441362 DOI: 10.1186/1471-2202-13-65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
Background Methamphetamine (meth) dependence presents a substantial socioeconomic burden. Despite the need, there is no FDA-approved pharmacotherapy for psychostimulant dependence. We consider 5-HT2C receptors as viable therapeutic targets. We recently revealed that the atypical antidepressant, mirtazapine, attenuates meth-seeking in a rodent model of human substance abuse. Mirtazapine historically has been considered to be an antagonist at 5-HT2C receptors, but more recently shown to exhibit inverse agonism at constitutively active 5-HT2C receptors. To help distinguish the roles for antagonism vs. inverse agonism, here we explored the ability of a more selective 5-HT2C inverse agonist, SB 206553 to attenuate meth-seeking behavior, and compared its effects to those obtained with 5-HT2C antagonists, SDZ Ser 082 and SB 242084. To do so, rats were trained to self-administer meth and tested for seeking-like behavior in cue reactivity sessions consisting of contingently presenting meth-associated cues without meth reinforcement. We also explored motor function to determine the influence of SB 206553 and SDZ Ser 082 on motor activity in the presence and absence of meth. Results Like mirtazapine, pretreatment with SB 206553 (1.0, 5.0, and 10.0 mg/kg), attenuated meth-seeking. In contrast, the antagonists, SDZ Ser 082 (0.1, 0.3, and 1.0 mg/kg) and SB 242084 (3.0 mg/kg) had no effect on cue reactivity (CR). SB 242084 (3.0 mg/kg) failed to attenuate the effects of 5.0 and 10 mg/kg SB 206553 on CR. Motor function was largely unaltered by the 5-HT2C ligands; however, SB 206553, at the highest dose tested (10.0 mg/kg), attenuated meth-induced rearing behavior. Conclusions The lack of effect by 5-HT2C antagonists suggests that meth-seeking and meth-evoked motor activity are independent of endogenous 5-HT acting at 5-HT2C receptors. While SB 206553 dramatically impacted meth-evoked behaviors it is unclear whether the observed effects were 5-HT2C receptor mediated. Thus, SB 206553 deserves further attention in the study of psychostimulant abuse disorders.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology Rush, University Medical Center, 1735 W Harrison Street, Cohn Research Building, Chicago, IL 60612, USA.
| | | |
Collapse
|
23
|
Wang Q. RNA editing catalyzed by ADAR1 and its function in mammalian cells. BIOCHEMISTRY (MOSCOW) 2012; 76:900-11. [PMID: 22022963 DOI: 10.1134/s0006297911080050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In mammalian cells two active enzymes, ADAR1 and ADAR2, carry out A-to-I RNA editing. These two editases share many common features in their protein structures, catalytic activities, and substrate requirements. However, the phenotypes of the knockout animals are remarkably different, which indicate the distinct functions they play. The most striking effect of ADAR1 knockout is cell death and interruption of embryonic development that are not observed in ADAR2 knockout. Evidences have shown that ADAR1 plays critical roles in the differentiating cells in embryo and adult tissues to support the cell's survival and permit their further differentiation and maturation. However, our knowledge in understanding of the mechanism by which ADAR1 exerts its unique effects is very limited. Many efforts had been made trying to understand why ADAR1 is so important that it is indispensible for animal survival, including studies that identify the RNA editing substrates and studies on non-editing mechanisms. The interest of this review is focused on the question why ADAR1 and not ADAR2 is required for cell survival. Therefore, only the data, published and unpublished, potentially connecting ADAR1 to its cell death effect is selectively cited and discussed here. The features of cell death caused by ADAR1 deletion are summarized. Potential involvement of interferon and protein kinase RNA-activated (PKR) pathways is proposed, but obviously more experimental evaluations are needed.
Collapse
Affiliation(s)
- Qingde Wang
- University of Pittsburgh, Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Cancer Institute, PA 15232, USA.
| |
Collapse
|
24
|
Streit AK, Decher N. A-to-I RNA editing modulates the pharmacology of neuronal ion channels and receptors. BIOCHEMISTRY (MOSCOW) 2012; 76:890-9. [PMID: 22022962 DOI: 10.1134/s0006297911080049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulation of neuronal excitability is complex, as ion channels and neurotransmitter receptors are underlying a large variety of modulating effects. Alterations in the expression patterns of receptors or channel subunits as well as differential splicing contribute to the regulation of neuronal excitability. RNA editing is another and more recently explored mechanism to increase protein diversity, as the genomic recoding leads to new gene products with novel functional and pharmacological properties. In humans A-to-I RNA editing targets several neuronal receptors and channels, including GluR2/5/6 subunits, the Kv1.1 channel, and the 5-HT(2C) receptor. Our review summarizes that RNA editing of these proteins does not only change protein function, but also the pharmacology and presumably the drug therapy in human diseases.
Collapse
Affiliation(s)
- A K Streit
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, 35037, Germany
| | | |
Collapse
|
25
|
Rosenzweig-Lipson S, Comery TA, Marquis KL, Gross J, Dunlop J. 5-HT(2C) agonists as therapeutics for the treatment of schizophrenia. Handb Exp Pharmacol 2012:147-165. [PMID: 23027415 DOI: 10.1007/978-3-642-25758-2_6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 5-HT(2C) receptor is a highly complex, highly regulated receptor which is widely distributed throughout the brain. The 5-HT(2C) receptor couples to multiple signal transduction pathways leading to engagement of a number of intracellular signaling molecules. Moreover, there are multiple allelic variants of the 5-HT(2C) receptor and the receptor is subject to RNA editing in the coding regions. The complexity of this receptor is further emphasized by the studies suggesting the utility of either agonists or antagonists in the treatment of schizophrenia. While several 5-HT(2C) agonists have demonstrated clinical efficacy in obesity (lorcaserin, PRX-000933), the focus of this review is on the therapeutic potential of 5-HT(2C) agonists in schizophrenia. To this end, the preclinical profile of 5-HT(2C) agonists from a neurochemical, electrophysiological, and a behavioral perspective is indicative of antipsychotic-like efficacy without extrapyramidal symptoms or weight gain. Recently, the selective 5-HT(2C) agonist vabicaserin demonstrated clinical efficacy in a Phase II trial in schizophrenia patients without weight gain and with low EPS liability. These data are highly encouraging and suggest that 5-HT(2C) agonists are potential therapeutics for the treatment of psychiatric disorders.
Collapse
|
26
|
Orlandi C, Barbon A, Barlati S. Activity Regulation of Adenosine Deaminases Acting on RNA (ADARs). Mol Neurobiol 2011; 45:61-75. [DOI: 10.1007/s12035-011-8220-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
|
27
|
O'Neil RT, Emeson RB. Quantitative analysis of 5HT(2C) receptor RNA editing patterns in psychiatric disorders. Neurobiol Dis 2011; 45:8-13. [PMID: 21914481 DOI: 10.1016/j.nbd.2011.08.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 02/06/2023] Open
Abstract
Initially identified as an RNA modification in the anticodon loop of tRNAs from animal, plant and eubacterial origin, the deamination of adenosine-to-inosine by RNA editing has become increasingly recognized as an important RNA processing event to generate diversity in both the transcriptome and proteome and is essential for modulating the activity of numerous proteins critical for nervous system function. Here, we focus on the editing of transcripts encoding the 2C-subtype of serotonin receptor (5HT(2C)) to generate multiple receptor isoforms that differ in G-protein coupling efficacy and constitutive activity. 5HT(2C) receptors have been implicated in the regulation of anxiety, components of the stress response, and are thought to play a role in compulsive behavioral disorders, depression and drug addiction. A number of studies have been conducted to assess whether 5HT(2C) editing is altered in individuals suffering from psychiatric disorders, yet the results from these studies have been inconsistent, and thus inconclusive. This review provides a discussion of the challenges involved with characterizing 5HT(2C) editing patterns in human postmortem tissue samples and how differences in quantitative methodology have contributed to the observed inconsistencies between multiple laboratories. Additionally, we discuss new high-throughput sequencing tools, which provide an opportunity to overcome previous methodological challenges, and permit reliable systematic analyses of RNA editing in control and pathologic disease states.
Collapse
Affiliation(s)
- Richard T O'Neil
- Center for Molecular Neuroscience, Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
28
|
Barraud P, Allain FHT. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 2011; 353:35-60. [PMID: 21728134 DOI: 10.1007/82_2011_145] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine deaminases acting on RNA (ADAR) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We review here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the dsRNA and Z-DNA binding domains.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | | |
Collapse
|
29
|
|
30
|
Bohn LM, Schmid CL. Serotonin receptor signaling and regulation via β-arrestins. Crit Rev Biochem Mol Biol 2010; 45:555-66. [PMID: 20925600 DOI: 10.3109/10409238.2010.516741] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serotonin receptors are the product of 15 distinct genes, 14 of which are G protein-coupled receptors. These receptors are expressed in a wide range of cell types, including distinct neuronal populations, and promote diverse functional responses in multiple organ systems. These receptors are important for mediating the in vivo effects of their cognate neurotransmitter, serotonin, as well as the endogenous tryptamines. In addition, the actions of many drugs are mediated, either directly or indirectly, through serotonin receptors, including antidepressants, antipsychotics, anxiolytics, sleep aids, migraine therapies, gastrointestinal therapeutics and hallucinogenic drugs. It is becoming increasingly evident that serotonin receptors can engage in differential signaling that is determined by the chemical nature of the ligand and that ligands that demonstrate a predilection for inducing a particular signaling cascade are considered to have "functional selectivity". The elucidation of the cellular signaling pathways that mediate the physiological responses to serotonin and other agonists is an active area of investigation and will be an onward-looking focal point for determining how to effectively and selectively promote beneficial serotonergic mimicry while avoiding unwanted clinical side effects. This review highlights the modulation of serotonin 2A, 2C, and four receptors by β-arrestins, which may represent a fulcrum for biasing receptor responsiveness in vivo.
Collapse
Affiliation(s)
- Laura M Bohn
- The Scripps Research Institute, Molecular Therapeutics & Neuroscience, Jupiter, FL, USA.
| | | |
Collapse
|
31
|
Anastasio NC, Lanfranco MF, Bubar MJ, Seitz PK, Stutz SJ, McGinnis AG, Watson CS, Cunningham KA. Serotonin 5-HT2C receptor protein expression is enriched in synaptosomal and post-synaptic compartments of rat cortex. J Neurochem 2010; 113:1504-15. [PMID: 20345755 PMCID: PMC2917206 DOI: 10.1111/j.1471-4159.2010.06694.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The action of serotonin (5-HT) at the 5-HT(2C) receptor (5-HT(2C)R) in cerebral cortex is emerging as a candidate modulator of neural processes that mediate core phenotypic facets of several psychiatric and neurological disorders. However, our understanding of the neurobiology of the cortical 5-HT(2C)R protein complex is currently limited. The goal of the present study was to explore the subcellular localization of the 5-HT(2C)R in synaptosomes and the post-synaptic density, an electron-dense thickening specialized for post-synaptic signaling and neuronal plasticity. Utilizing multiples tissues (brain, peripheral tissues), protein fractions (synaptosomal, post-synaptic density), and controls (peptide neutralization, 5-HT(2C)R stably-expressing cells), we established the selectivity of two commercially available 5-HT(2C)R antibodies and employed the antibodies in western blot and immunoprecipitation studies of prefrontal cortex (PFC) and motor cortex, two regions implicated in cognitive, emotional and motor dysfunction. For the first time, we demonstrated the expression of the 5-HT(2C)R in post-synaptic density-enriched fractions from both PFC and motor cortex. Co-immunoprecipitation studies revealed the presence of post-synaptic density-95 within the 5-HT(2C)R protein complex expressed in PFC and motor cortex. Taken together, these data support the hypothesis that the 5-HT(2C)R is localized within the post-synaptic thickening of synapses and is therefore positioned to directly modulate synaptic plasticity in cortical neurons.
Collapse
Affiliation(s)
- Noelle C. Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| | - Maria Fe Lanfranco
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| | - Marcy J. Bubar
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| | - Patricia K. Seitz
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| | - Sonja J. Stutz
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| | - Andrew G. McGinnis
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| | - Cheryl S. Watson
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX 77555
| | - Kathryn A. Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston TX 77555
| |
Collapse
|
32
|
Morabito MV, Ulbricht RJ, O'Neil RT, Airey DC, Lu P, Zhang B, Wang L, Emeson RB. High-throughput multiplexed transcript analysis yields enhanced resolution of 5-hydroxytryptamine 2C receptor mRNA editing profiles. Mol Pharmacol 2010; 77:895-902. [PMID: 20181818 PMCID: PMC2879922 DOI: 10.1124/mol.109.061903] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 02/24/2010] [Indexed: 02/03/2023] Open
Abstract
RNA editing is a post-transcriptional modification in which adenosine residues are converted to inosine (adenosine-to-inosine editing). Commonly used methodologies to quantify RNA editing levels involve either direct sequencing or pyrosequencing of individual cDNA clones. The limitations of these methods lead to a small number of clones characterized in comparison to the number of mRNA molecules in the original sample, thereby producing significant sampling errors and potentially erroneous conclusions. We have developed an improved method for quantifying RNA editing patterns that increases sequence analysis to an average of more than 800,000 individual cDNAs per sample, substantially increasing accuracy and sensitivity. Our method is based on the serotonin 2C receptor (5-hydroxytryptamine(2C); 5HT(2C)) transcript, an RNA editing substrate in which up to five adenosines are modified. Using a high-throughput multiplexed transcript analysis, we were able to quantify accurately the expression of twenty 5HT(2C) isoforms, each representing at least 0.25% of the total 5HT(2C) transcripts. Furthermore, this approach allowed the detection of previously unobserved changes in 5HT(2C) editing in RNA samples isolated from different inbred mouse strains and dissected brain regions, as well as editing differences in alternatively spliced 5HT(2C) variants. This approach provides a novel and efficient strategy for large-scale analyses of RNA editing and may prove to be a valuable tool for uncovering new information regarding editing patterns in specific disease states and in response to pharmacological and physiological perturbation, further elucidating the impact of 5HT(2C) RNA editing on central nervous system function.
Collapse
Affiliation(s)
- Michael V Morabito
- Department of Pharmacology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232-8548, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mengod G, Cortés R, Vilaró MT, Hoyer D. Distribution of 5-HT Receptors in the Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70074-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Lanfranco MF, Seitz PK, Morabito MV, Emeson RB, Sanders-Bush E, Cunningham KA. An innovative real-time PCR method to measure changes in RNA editing of the serotonin 2C receptor (5-HT(2C)R) in brain. J Neurosci Methods 2009; 179:247-57. [PMID: 19428534 PMCID: PMC3794365 DOI: 10.1016/j.jneumeth.2009.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 01/28/2023]
Abstract
The serotonin 2C receptor (5-HT(2C)R) plays a significant role in psychiatric disorders (e.g., depression) and is a target for pharmacotherapy. The 5-HT(2C)R is widely expressed in brain and spinal cord and is the only G-protein coupled receptor currently known to undergo mRNA editing, a post-transcriptional modification that results in translation of distinct, though closely related, protein isoforms. The 5-HT(2C)R RNA can be edited at five sites to alter up to three amino acids resulting in modulation of receptor:G-protein coupling and constitutive activity. To rapidly quantify changes ex vivo in individual 5-HT(2C)R isoform levels in response to treatment, we adapted quantitative (real-time) reverse transcription polymerase chain reaction (qRT-PCR) utilizing TaqMan probes modified with a minor groove binder (MGB). Probes were developed for four 5-HT(2C)R RNA isoforms and their sensitivity and specificity were validated systematically using standard templates. Relative expression of the four isoforms was measured in cDNAs from whole brain extracted from 129S6 and C57BL/6J mice. Rank order derived from this qRT-PCR analysis matched that derived from DNA sequencing. In mutant mice solely expressing either non-edited or fully edited 5-HT(2C)R transcripts, only expected transcripts were detected. These data suggest this qRT-PCR method is a precise and rapid means to detect closely related mRNA sequences ex vivo without the necessity of characterizing the entire 5-HT(2C)R profile. Implementation of this technique will expand and expedite studies of specific brain 5-HT(2C)R mRNA isoforms in response to pharmacological, behavioral and genetic manipulation, particularly in ex vivo studies which require rapid collection of data on large numbers of samples.
Collapse
Affiliation(s)
- Maria Fe Lanfranco
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Route 0616, Galveston, TX 77555-0616, United States
| | - Patricia K. Seitz
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Route 0616, Galveston, TX 77555-0616, United States
| | - Michael V. Morabito
- Center for Molecular Neuroscience, Vanderbilt University, 8140 Medical Research Building III, Nashville, TN 37232, United States
| | - Ronald B. Emeson
- Center for Molecular Neuroscience, Vanderbilt University, 8140 Medical Research Building III, Nashville, TN 37232, United States
- Department of Pharmacology, Vanderbilt University, 8140 Medical Research Building III, Nashville, TN 37232, United States
| | - Elaine Sanders-Bush
- Center for Molecular Neuroscience, Vanderbilt University, 8140 Medical Research Building III, Nashville, TN 37232, United States
- Department of Pharmacology, Vanderbilt University, 8140 Medical Research Building III, Nashville, TN 37232, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Route 0616, Galveston, TX 77555-0616, United States
| |
Collapse
|
35
|
Jacobs MM, Fogg RL, Emeson RB, Stanwood GD. ADAR1 and ADAR2 expression and editing activity during forebrain development. Dev Neurosci 2009; 31:223-37. [PMID: 19325227 DOI: 10.1159/000210185] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022] Open
Abstract
The conversion of adenosine to inosine within RNA transcripts is regulated by a family of double-stranded RNA-specific adenosine deaminases referred to as adenosine deaminases that act on RNA (ADARs). Little is known regarding the developmental expression of ADAR family members or the mechanisms responsible for the specific patterns of editing observed for ADAR substrates. We have examined the spatiotemporal expression patterns for ADAR1 and ADAR2 in mouse forebrain. ADAR1 and ADAR2 are broadly distributed in most regions of the mouse forebrain by P0, including the cerebral cortex, hippocampus, and diencephalon. High expression levels were maintained into adulthood. Colocalization studies demonstrated ADAR1 and ADAR2 expression in neurons but not astrocytes. Editing for specific ADAR mRNA targets precedes high expression of ADAR proteins, suggesting that region-specific differences in editing patterns may not be mediated solely by ADAR expression levels.
Collapse
|
36
|
Aloyo VJ, Berg KA, Spampinato U, Clarke WP, Harvey JA. Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors. Pharmacol Ther 2008; 121:160-73. [PMID: 19109993 DOI: 10.1016/j.pharmthera.2008.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 02/06/2023]
Abstract
Contemporary receptor theory was developed to account for the existence of constitutive activity, as defined by the presence of receptor signaling in the absence of any ligand. Thus, ligands acting at a constitutively active receptor, can act as agonists, antagonists, and inverse agonists. In vitro studies have also revealed the complexity of ligand/receptor interactions including agonist-directed stimulus trafficking, a finding that has led to multi-active state models of receptor function. Studies with a variety of cell types have established that the serotonin 5-HT(2A) and 5-HT(2C) receptors also demonstrate constitutive activity and inverse agonism. However, until recently, there has been no evidence to suggest that these receptors also demonstrate constitutive activity and hence reveal inverse agonist properties of ligands in vivo. This paper describes our current knowledge of constitutive activity in vitro and then examines the evidence for constitutive activity in vivo. Both the serotonin 5-HT(2A) and 5-HT(2C) receptors are involved in a number of physiological and behavioral functions and are the targets for treatment of schizophrenia, anxiety, weight control, Parkinsonism, and other disorders. The existence of constitutive activity at these receptors in vivo, along with the possibility of inverse agonism, provides new avenues for drug development.
Collapse
Affiliation(s)
- V J Aloyo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
37
|
Borg J. Molecular imaging of the 5-HT1A receptor in relation to human cognition. Behav Brain Res 2008; 195:103-11. [DOI: 10.1016/j.bbr.2008.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
38
|
Werry TD, Loiacono R, Sexton PM, Christopoulos A. RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther 2008; 119:7-23. [DOI: 10.1016/j.pharmthera.2008.03.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 01/05/2023]
|
39
|
Poyau A, Vincent L, Berthommé H, Paul C, Nicolas B, Pujol JF, Madjar JJ. Identification and relative quantification of adenosine to inosine editing in serotonin 2c receptor mRNA by CE. Electrophoresis 2007; 28:2843-52. [PMID: 17702068 DOI: 10.1002/elps.200600698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new method has been developed allowing the identification and relative quantification of different forms of mRNA after RNA editing. This method was applied to the serotonin 2c receptor mRNA that potentially exhibits 32 different forms after adenosine to inosine editing at five different sites located in a row of 13 nucleotides. CE was used to characterize fluorescently labeled ssDNA molecules on the basis of their conformational polymorphism. The relative amount of these 32 mRNA forms has been estimated by measuring the fluorescence intensity of each individual DNA strand. Accuracy of quantification was established by diluting one form into another or into a mixture of cDNA, showing linear and precise proportion of each form (0.06 <SD <0.39%). In mouse brain tissue samples, up to 23 different mRNA forms were characterized and quantified, even for forms representing less than 1% of the mixture.
Collapse
Affiliation(s)
- Alain Poyau
- Institut Fédératif de Recherche 41, Ecologie, Génétique, Evolution, Développement de Techniques et Analyse Moléculaire de la Biodiversité, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Sergeeva OA, Amberger BT, Haas HL. Editing of AMPA and serotonin 2C receptors in individual central neurons, controlling wakefulness. Cell Mol Neurobiol 2007; 27:669-80. [PMID: 17554622 DOI: 10.1007/s10571-007-9153-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 04/16/2007] [Indexed: 01/08/2023]
Abstract
(1) Pre-mRNA editing of serotonin 2C (5-HT2c) and glutamate (Glu) receptors (R) influences higher brain functions and pathological states such as epilepsy, amyotrophic lateral sclerosis, and depression. Adenosine deaminases acting on RNA (ADAR1-3) convert adenosine to inosine on synthetic RNAs, analogous to 5-HT2cR and GluR. The order of editing as well as mechanisms controlling editing in native neurons is unknown. (2) With single-cell RT-PCR we investigated the co-expression of ADAR genes with GluR and 5-HT2cR and determined the editing status at known sites in the hypothalamic tuberomamillary nucleus, a major center for wakefulness and arousal. (3) The most frequently expressed enzymes were ADAR1, followed by ADAR2. The Q/R site of GluR2 was always fully edited. Editing at the R/G site in the GluR2 (but not GluR4) subunit was co-ordinated with ADAR expression: maximal editing was found in neurons expressing both ADAR2 splice variants of the deaminase domain and lacking ADAR3. (4) Editing of the 5-HT2cR did not correlate with ADAR expression. The 5-HT2cR mRNA was always edited at A, in the majority of cells at B sites and variably edited at E, C and D sites. A negative correlation was found between editing of C and D sites. The GluR4 R/G site editing was homogeneous within individuals: it was fully edited in all neurons obtained from 12 rats and under-edited in six neurons obtained from three rats. (5) We conclude that GluR2 R/G editing is controlled at the level of ADAR2 and therefore this enzyme may be a target for pharmacotherapy. On the other hand, further factors/enzymes besides ADAR must control or influence 5-HT2cR and GluR pre-mRNA editing in native neurons; our data indicate that these factors vary between individuals and could be predictors of psychiatric disease.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Department of Neurophysiology, Heinrich-Heine-Universität, POB 101007, 40001 Dusseldorf, Germany.
| | | | | |
Collapse
|
41
|
Abstract
The conversion of adenosine to inosine (A-to-I) by RNA editing is a widespread RNA processing event by which genomically encoded sequences are altered through site-specific deamination of adenosine residue(s) in RNA transcripts through the actions of a family of double-stranded RNA-specific adenosine deaminases (ADARs). While significant advances have been made regarding the functional consequences of A-to-I editing using heterologous expression systems, the physiological relevance of such RNA modifications in mammals has been addressed effectively using gene-targeting strategies in mice via homologous recombination in embryonic stem (ES) cells. These gene-targeting approaches have allowed the generation of mutant mouse strains in which site-specific editing events can be fixed in the fully edited or nonedited state for individual ADAR targets, expression of ADAR proteins can be selectively ablated, or a combination of ADAR elimination and ADAR target modification can be used for a more in-depth understanding of the biological consequences of A-to-I editing dysregulation.
Collapse
Affiliation(s)
- Elizabeth Y Rula
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
42
|
Abstract
Alternative splicing is a major source of diversity in the human proteome. The regulation of alternative splicingmodulates the composition of this diversity to fulfill the physiological requirements of a cell. When control of alternative splicing is disrupted, the result can be a failure to meet cellular and tissue requirements resulting in dysfunction and disease. There are several well-characterized examples in which disruption of alternative splicing is a cause of disease. Investigations into how the mis-regulation of alternative splicing causes disease complements investigations of normal regulatory processes and enhances our understanding of regulatory mechanisms in general Ultimately, an understanding of how alternative splicing is altered in disease will facilitate strategies directed at reversing or circumventing mis-regulated splicing events.
Collapse
|
43
|
Fletcher PJ, Sinyard J, Higgins GA. The effects of the 5-HT(2C) receptor antagonist SB242084 on locomotor activity induced by selective, or mixed, indirect serotonergic and dopaminergic agonists. Psychopharmacology (Berl) 2006; 187:515-25. [PMID: 16832658 DOI: 10.1007/s00213-006-0453-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/20/2006] [Indexed: 11/26/2022]
Abstract
RATIONALE The 5-HT(2C) receptor modulates mesolimbic dopamine (DA) function and the expression of DA-dependent behaviors, including stimulant-induced hyperactivity. The 5-HT(2C) receptor may also be involved in drug-induced locomotion that is 5-HT-dependent. OBJECTIVES This study investigated the effects of the 5-HT(2C) receptor antagonist 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (SB242084) on hyperlocomotion induced by psychomotor stimulants with selective, or mixed, actions on serotonergic and/or dopaminergic systems. MATERIALS AND METHODS Male Sprague-Dawley rats were treated in the presence or absence of SB242084 with releasers/reuptake inhibitors of DA (amphetamine and methylphenidate), 5-HT (fenfluramine and citalopram), or both 5-HT and DA (MDMA and cocaine). In addition, the effects of SB242084 combined with nicotine, morphine, or the 5-HT(1A/1B) receptor agonist RU24969 were examined. Locomotor activity was recorded for 2 h. RESULTS SB242084 potentiated hyperactivity induced by MDMA (2.5-5 mg/kg), amphetamine (0.5 mg/kg), fenfluramine (5 mg/kg), cocaine (10 mg/kg), and methylphenidate (5 mg/kg). SB242084 modestly potentiated nicotine-induced (0.2-0.4 mg/kg) and morphine-induced (2.5 mg/kg) hyperactivity. SB242084 failed to influence hyperactivity induced by RU24969 (0.5-1 mg/kg) or citalopram (10-20mg/kg). CONCLUSION SB242084 potentiated the locomotor stimulant effects of both indirect DA and 5-HT agonists. This potentiation may reflect two distinct mechanisms. The first involves direct enhancement of DA activity as shown by potentiation of the effects of amphetamine and methylphenidate. The second mechanism reflects an unmasking of stimulatory 5-HT receptors activated by 5-HT releasers (possibly 5-HT(1B/2A)) through blockade of inhibitory 5-HT(2C) receptors. The failure of SB242084 to potentiate the effect of citalopram might reflect differences between changes in synaptic levels of 5-HT produced by release compared to reuptake inhibition.
Collapse
Affiliation(s)
- Paul J Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | |
Collapse
|
44
|
Li Q. Cellular and molecular alterations in mice with deficient and reduced serotonin transporters. Mol Neurobiol 2006; 34:51-66. [PMID: 17003521 DOI: 10.1385/mn:34:1:51] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 11/30/1999] [Accepted: 02/22/2006] [Indexed: 11/11/2022]
Abstract
The function of serotonin transporters (SERTs) is related to mood regulation. Mice with deficient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic-pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERT-related mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.
Collapse
Affiliation(s)
- Qian Li
- Department of Psychiatry and Behavioral Sciences, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
45
|
Davies MA, Chang CY, Roth BL. Polymorphic and Posttranscriptional Modifications of 5-HT Receptor Structure. THE SEROTONIN RECEPTORS 2006. [DOI: 10.1007/978-1-59745-080-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Marion S, Oakley RH, Kim KM, Caron MG, Barak LS. A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. J Biol Chem 2005; 281:2932-8. [PMID: 16319069 DOI: 10.1074/jbc.m508074200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.
Collapse
Affiliation(s)
- Sébastien Marion
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
47
|
Fentress HM, Grinde E, Mazurkiewicz JE, Backstrom JR, Herrick-Davis K, Sanders-Bush E. Pharmacological properties of the Cys23Ser single nucleotide polymorphism in human 5-HT2C receptor isoforms. THE PHARMACOGENOMICS JOURNAL 2005; 5:244-54. [PMID: 15912142 DOI: 10.1038/sj.tpj.6500315] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human serotonin 2C (5-HT2C) receptor undergoes extensive RNA editing, generating multiple isoforms; the most prominent isoform in the human brain is the extensively edited VSV isoform. In addition, a naturally occurring single nucleotide polymorphism (SNP) is found in the coding region of the 5-HT2C receptor gene, which converts cysteine to serine at the 23rd amino acid (C23S). To elucidate the functional consequences, pharmacological properties were evaluated in cells expressing C23 or S23 in the nonedited, INI, or edited, VSV, isoform. Confocal imaging of HEK293 cells expressing the C23 and S23 variants revealed no apparent difference in cellular localization, which was confirmed in NIH-3T3 fibroblasts by surface biotinylation. Competition binding experiments revealed comparable high-affinity agonist binding for the C23 and S23 receptors and no difference in ligand affinities in either the INI or VSV backbones. The dose-response functions for 5-HT and (+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI) to elicit phosphoinositide hydrolysis did not differ in either HEK293 or NIH-3T3 fibroblasts expressing the receptor variants. Constitutive activity, evaluated in COS-7 and HEK293 cells, also was not different. Lastly, fluorescence resonance energy transfer demonstrated homodimerization of C23 receptors, which was reproduced in cells expressing the S23 variant. We conclude that the C23S SNP in the 5-HT2C receptor has no functional consequences, even when evaluated in the most common, edited receptor backbone. Therefore, positive associations between this polymorphism and disease states may be a consequence of linkage disequilibrium with another SNP that is involved in the disease.
Collapse
Affiliation(s)
- H M Fentress
- Department of Pharmacology and Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | | | | | | | |
Collapse
|
48
|
Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:299-338. [PMID: 16096031 DOI: 10.1016/s0079-6603(04)79006-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Louis Valente
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
49
|
Sukma M, Tohda M, Watanabe H, Matsumoto K. The mRNA Expression Differences of RNA Editing Enzymes in Differentiated and Undifferentiated NG108-15 Cells. J Pharmacol Sci 2005; 98:467-70. [PMID: 16082172 DOI: 10.1254/jphs.sc0050074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The alteration of the editing pattern of serotonin 2C receptor (5-HT2CR) mRNA has been reported during cell differentiation. Since editing of 5-HT2CR mRNA is regulated by adenosine deaminases acting on RNA (ADARs), it is of interest to investigate if the expression of these enzymes changes during cell differentiation. The level of ADAR1 mRNA in NG108-15 cells was decreased by cell differentiation. These results suggest that the decrease of ADAR1 expression during cell differentiation may play an important role in the differentiation-induced alteration of the 5-HT2CR editing pattern in NG108-15.
Collapse
Affiliation(s)
- Monrudee Sukma
- Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
50
|
Hartwig D, Schoeneich L, Greeve J, Schütte C, Dorn I, Kirchner H, Hennig H. Interferon-alpha stimulation of liver cells enhances hepatitis delta virus RNA editing in early infection. J Hepatol 2004; 41:667-72. [PMID: 15464249 DOI: 10.1016/j.jhep.2004.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 05/25/2004] [Accepted: 06/30/2004] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS RNA editing controls the formation of hepatitis-delta-antigen-S and -L and therefore plays a central role in the hepatitis-delta-virus (HDV) life-cycle. Editing is catalyzed by the enzyme Adenosine-deaminase-acting-on-RNA1 (ADAR1) of which two different forms, ADAR1-L and ADAR1-S, exist. As ADAR1-L is induced by interferon (IFN)-alpha, we examined the influence of IFN-alpha-stimulation of host cells on HDV-RNA editing. METHODS Editing was studied in Huh-7-cells transfected with HDV-RNA on days 7, 14, 21 and 28 after transfection. ADAR1-L mRNA was measured by RT-PCR. RESULTS IFN-alpha-treatment led to a 5-fold higher expression of ADAR1-L and to an increase in editing from 14+/-2% (SD) in unstimulated controls to 27+/-4% (SD) on day 7 after transfection. Editing further increases over time to the same maximum level of 35% in IFN-alpha-treated as well as untreated cells. CONCLUSIONS By IFN-alpha-stimulation both ADAR1-L expression and editing are increased in Huh-7-cells at day 7, and the maximum level of edited antigenomes is reached earlier with IFN-alpha-treatment as compared to untreated cells. Thus, ADAR1-L appears to be able to increase editing, but the HDV genome apparently has an intrinsic negative feed-back regulation mechanism that limits editing to roughly a third of the genomes.
Collapse
Affiliation(s)
- Dirk Hartwig
- Institute of Immunology and Transfusion Medicine, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|