1
|
Zhuang Y, Yang W, Zhang L, Fan C, Qiu L, Zhao Y, Chen B, Chen Y, Shen H, Dai J. A novel leptin receptor binding peptide tethered-collagen scaffold promotes lung injury repair. Biomaterials 2022; 291:121884. [DOI: 10.1016/j.biomaterials.2022.121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
2
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
CC16 deficiency in the context of early life Mycoplasma pneumoniae infection results in augmented airway responses in adult mice. Infect Immun 2021; 90:e0054821. [PMID: 34780280 DOI: 10.1128/iai.00548-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies have shown that club cell secretory protein (CC16) plays important protective roles in the lungs, yet its complete biological functions are unclear. We devised a translational mouse model in order to investigate the impact of early life infections, in the context of CC16 deficiency, on lung function in adult mice. CC16 sufficient (WT) and deficient (CC16-/-) mice were infected with Mycoplasma pneumoniae (Mp) as weanlings and assessed as adults (early life infection model; ELIM) and compared to adult mice infected for only three days (adult infection model; AIM). CC16-/- Mp-infected mice had significantly increased airway hyperresponsiveness (AHR) in both models compared to WT mice. However, CC16-/- mice infected in early life (ELIM) displayed significantly increased AHR compared to CC16-/- mice infected in adulthood (AIM). In stark contrast, lung function in ELIM WT mice returned to levels similar to saline-treated controls. While WT mice cleared Mp infection in the ELIM, CC16-/- mice remained colonized with Mp throughout the model, which likely contributed to increased airway remodeling and persistence of Muc5ac expression. When CC16-/- mouse tracheal epithelial cells (MTECs) were infected with Mp, increased Mp colonization and collagen gene expression were also detected compared to WT cells, suggesting that CC16 plays a protective role during Mp infection, in part through epithelial-driven host defense mechanisms.
Collapse
|
4
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
5
|
De Luca D, Autilio C. Strategies to protect surfactant and enhance its activity. Biomed J 2021; 44:654-662. [PMID: 34365021 PMCID: PMC8847817 DOI: 10.1016/j.bj.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
The knowledge about surfactant biology is now deeper and recent research has allowed to clarify its role in several human lung disorders. The balance between surfactant production and consumption is better known and the same applies to their regulatory mechanisms. This has allowed to hypothesize and investigate several new and original strategies to protect surfactant and enhance its activity. These interventions are potentially useful for several disorders and particularly for acute respiratory distress syndrome. We here highlight the mechanisms regulating surfactant consumption, encompassing surfactant catabolism but also surfactant injury due to other mechanisms, in a physiopathology-driven fashion. We then analyze each corresponding strategy to protect surfactant and enhance its activity. Some of these strategies are more advanced in terms of research & development pathway, some others are still investigational, but all are promising and deserve a joint effort from clinical-academic researchers and the industry.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Paediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
| | - Chiara Autilio
- Dpt. of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| |
Collapse
|
6
|
De Luca D, Touqui L. The International Week of Surfactant Research: increasing knowledge about surfactant and unexploited opportunities. Biomed J 2021; 44:651-653. [PMID: 34314899 PMCID: PMC8847801 DOI: 10.1016/j.bj.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP Paris - France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University Paris - France.
| | - Lhoussaine Touqui
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris - France; Mucoviscidose and Bronchopathies Chroniques", Pasteur Institute Paris - France
| |
Collapse
|
7
|
Club Cell Protein, CC10, Attenuates Acute Respiratory Distress Syndrome Induced by Smoke Inhalation. Shock 2021; 53:317-326. [PMID: 31045988 DOI: 10.1097/shk.0000000000001365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the dose effects of Recombinant human Club cell 10-kDa protein (rhCC10) on lung function in a well-characterized ovine model of acute respiratory distress syndrome (ARDS) induced by smoke inhalation injury (SII); specifically, the potential of rhCC10 protein to control the inflammatory response and protect pulmonary tissue and function following SII. DESIGN Randomized, controlled, prospective, and large animal translational studies. SETTING University large animal intensive care unit. SUBJECTS Thirty-six adult female sheep were surgically prepared and allocated into five groups (Sham (no SII), n = 6; 1 mg/kg/d CC10, n = 8; 3 mg/kg/d CC10, n = 7; 10 mg/kg/d CC10, n = 8; Control SII, n = 7). INTERVENTIONS All groups except the sham group were subjected to SII with cooled cotton smoke. Then, the animals were placed on a ventilator, treated with 1, 3, and 10 mg/kg/d of intravenous rhCC10 or vehicle, divided evenly into two administrations per day every 12 h, fluid resuscitated, and monitored for 48 h in a conscious state. MEASUREMENTS AND MAIN RESULTS The group treated with 10 mg/kg/d rhCC10 attenuated changes in the following variables: PaO2/FiO2 ratio, oxygenation index, and peak inspiratory pressure; neutrophil content in the airway and myeloperoxidase levels; obstruction of the large and small airways; systemic leakage of fluid and proteins, and pulmonary edema. CONCLUSIONS In this study, high-dose rhCC10 significantly attenuated ARDS progression and lung dysfunction and significantly reduced systemic extravasation of fluid and proteins, normalizing fluid balance. Based on these results, rhCC10 may be considered a novel therapeutic option for the treatment of SII-induced ARDS.
Collapse
|
8
|
De Luca D, Cogo P, Kneyber MC, Biban P, Semple MG, Perez-Gil J, Conti G, Tissieres P, Rimensberger PC. Surfactant therapies for pediatric and neonatal ARDS: ESPNIC expert consensus opinion for future research steps. Crit Care 2021; 25:75. [PMID: 33618742 PMCID: PMC7898495 DOI: 10.1186/s13054-021-03489-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pediatric (PARDS) and neonatal (NARDS) acute respiratory distress syndrome have different age-specific characteristics and definitions. Trials on surfactant for ARDS in children and neonates have been performed well before the PARDS and NARDS definitions and yielded conflicting results. This is mainly due to heterogeneity in study design reflecting historic lack of pathobiology knowledge. We reviewed the available clinical and preclinical data to create an expert consensus aiming to inform future research steps and advance the knowledge in this area. Eight trials investigated the use of surfactant for ARDS in children and ten in neonates, respectively. There were improvements in oxygenation (7/8 trials in children, 7/10 in neonates) and mortality (3/8 trials in children, 1/10 in neonates) improved. Trials were heterogeneous for patients' characteristics, surfactant type and administration strategy. Key pathobiological concepts were missed in study design. Consensus with strong agreement was reached on four statements: 1. There are sufficient preclinical and clinical data to support targeted research on surfactant therapies for PARDS and NARDS. Studies should be performed according to the currently available definitions and considering recent pathobiology knowledge. 2. PARDS and NARDS should be considered as syndromes and should be pre-clinically studied according to key characteristics, such as direct or indirect (primary or secondary) nature, clinical severity, infectious or non-infectious origin or patients' age. 3. Explanatory should be preferred over pragmatic design for future trials on PARDS and NARDS. 4. Different clinical outcomes need to be chosen for PARDS and NARDS, according to the trial phase and design, trigger type, severity class and/or surfactant treatment policy. We advocate for further well-designed preclinical and clinical studies to investigate the use of surfactant for PARDS and NARDS following these principles.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, 157 Rue de la Porte de Trivaux, 92140, Clamart (Paris-IDF), France.
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
| | - Paola Cogo
- Department of Pediatrics, University of Udine, Udine, Italy
| | - Martin C Kneyber
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Beatrix Children's Hospital Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Critical Care, Anesthesiology, Peri-Operative and Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| | - Paolo Biban
- Department of Neonatal and Pediatric Critical Care, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Malcolm Grace Semple
- Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Giorgio Conti
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Rome, Italy
| | - Pierre Tissieres
- Division of Pediatric Critical Care and Neonatal Medicine, "Kremlin-Bicetre" Medical Center, Paris Saclay University Hospitals, APHP, Paris, France
- Integrative Cellular Biology Institute-UMR 9198, Host-Pathogen Interactions Team, Paris Saclay University, Paris, France
| | - Peter C Rimensberger
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
10
|
Knabe L, Petit A, Vernisse C, Charriot J, Pugnière M, Henriquet C, Sasorith S, Molinari N, Chanez P, Berthet JP, Suehs C, Vachier I, Ahmed E, Bourdin A. CCSP counterbalances airway epithelial-driven neutrophilic chemotaxis. Eur Respir J 2019; 54:13993003.02408-2018. [DOI: 10.1183/13993003.02408-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/08/2019] [Indexed: 11/05/2022]
Abstract
Club cell secretory protein (CCSP) knockout mice exhibit increased airway neutrophilia, as found in chronic obstructive pulmonary disease (COPD). We therefore investigated whether treating COPD airway epithelia with recombinant human CCSP (rhCCSP) could dampen exaggerated airway neutrophilia.Control, smoker and COPD air–liquid interface (ALI) cultures exposed to cigarette smoke extract (CSE) were treated with and without rhCCSP. The chemotactic properties of the supernatants were assessed using Dunn chambers. Neutrophil chemotaxis along recombinant human interleukin 8 (rhIL8) gradients (with and without rhCCSP) was also determined. rhCCSP–rhIL8 interactions were tested through co-immunoprecipitation, Biacore surface plasmon resonance (SPR) andin silicomodelling. The relationship between CCSP/IL8 concentration ratios in the supernatant of induced sputum from COPD patientsversusneutrophilic airway infiltration assessed in lung biopsies was assessed.Increased neutrophilic chemotactic activity of CSE-treated ALI cultures followed IL8 concentrations and returned to normal when supplemented with rhCCSP. rhIL8-induced chemotaxis of neutrophils was reduced by rhCCSP. rhCCSP and rhIL8 co-immunoprecipitated. SPR confirmed thisin vitrointeraction (equilibrium dissociation constant=8 µM).In silicomodelling indicated that this interaction was highly likely. CCSP/IL8 ratios in induced sputum correlated well with the level of small airway neutrophilic infiltration (r2=0.746, p<0.001).CCSP is a biologically relevant counter-balancer of neutrophil chemotactic activity. These different approaches used in this study suggest that, among the possible mechanisms involved, CCSP may directly neutralise IL8.
Collapse
|
11
|
Amigoni A, Pettenazzo A, Stritoni V, Circelli M. Surfactants in Acute Respiratory Distress Syndrome in Infants and Children: Past, Present and Future. Clin Drug Investig 2018; 37:729-736. [PMID: 28510235 PMCID: PMC5509808 DOI: 10.1007/s40261-017-0532-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a lack of definitive data on the effective management of acute respiratory distress syndrome (ARDS) in infants and children. The development and validation of the Berlin definition (BD) for ARDS and the Pediatric Acute Lung Injury Consensus Conference (PALICC) recommendations in children represented a major advance in optimizing research and treatment, mainly due to the introduction of a severe ARDS category. Proposed reasons for the lack of consistent results with surfactants in children and infants compared with neonates include different causes, type of lung damage (direct or indirect), timing and mode of administration as well as the type of surfactant used. Secretory phospholipase A2 plays an important role in inflammation and possible dysfunction of surfactants in ARDS. Bronchoalveolar lavage (BAL) with normal saline and surfactant allows the removal of inhaled material, the recruitment of non-ventilating areas and the maintenance of the surfactant pool size. BAL with diluted surfactant allows rapid absorption of the surfactant at the air/liquid interface, which blocks the progression of pathological lung disease and in turn disrupts the inflammatory cycle. Importantly, it is now recognized that the type of surfactant, the time of administration and the method of administration could all play an important role in the management of ARDS, and there is evidence that surfactant is effective and well tolerated in children and infants with ARDS.
Collapse
Affiliation(s)
- Angela Amigoni
- Paediatric Intensive Care Unit, Department of Women's and Child's Health, University Hospital of Padua, Via Giustiniani 3, 35128, Padua, Italy.
| | - Andrea Pettenazzo
- Paediatric Intensive Care Unit, Department of Women's and Child's Health, University Hospital of Padua, Via Giustiniani 3, 35128, Padua, Italy
| | - Valentina Stritoni
- Paediatric Intensive Care Unit, Department of Women's and Child's Health, University Hospital of Padua, Via Giustiniani 3, 35128, Padua, Italy
| | | |
Collapse
|
12
|
The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2016; 13:26-30. [PMID: 27212975 PMCID: PMC4860431 DOI: 10.5114/kitp.2016.58961] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/20/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions.
Collapse
|
13
|
Laucho-Contreras ME, Polverino F, Tesfaigzi Y, Pilon A, Celli BR, Owen CA. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets 2016; 20:869-83. [PMID: 26781659 DOI: 10.1517/14728222.2016.1139084] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Club cell protein 16 (CC16) is the most abundant protein in bronchoalveolar lavage fluid. CC16 has anti-inflammatory properties in smoke-exposed lungs, and chronic obstructive pulmonary disease (COPD) is associated with CC16 deficiency. Herein, we explored whether CC16 is a therapeutic target for COPD. AREAS COVERED We reviewed the literature on the factors that regulate airway CC16 expression, its biologic functions and its protective activities in smoke-exposed lungs using PUBMED searches. We generated hypotheses on the mechanisms by which CC16 limits COPD development, and discuss its potential as a new therapeutic approach for COPD. EXPERT OPINION CC16 plasma and lung levels are reduced in smokers without airflow obstruction and COPD patients. In COPD patients, airway CC16 expression is inversely correlated with severity of airflow obstruction. CC16 deficiency increases smoke-induced lung pathologies in mice by its effects on epithelial cells, leukocytes, and fibroblasts. Experimental augmentation of CC16 levels using recombinant CC16 in cell culture systems, plasmid and adenoviral-mediated over-expression of CC16 in epithelial cells or smoke-exposed murine airways reduces inflammation and cellular injury. Additional studies are necessary to assess the efficacy of therapies aimed at restoring airway CC16 levels as a new disease-modifying therapy for COPD patients.
Collapse
Affiliation(s)
- Maria E Laucho-Contreras
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA
| | - Francesca Polverino
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA.,c Department of Medicine , University of Parma , Parma , Italy
| | - Yohannes Tesfaigzi
- b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Aprile Pilon
- d Therabron Therapeutics Inc. , Rockville , MD , USA
| | - Bartolome R Celli
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Caroline A Owen
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
14
|
Gamez AS, Gras D, Petit A, Knabe L, Molinari N, Vachier I, Chanez P, Bourdin A. Supplementing Defect in Club Cell Secretory Protein Attenuates Airway Inflammation in COPD. Chest 2015; 147:1467-1476. [DOI: 10.1378/chest.14-1174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
15
|
Zhu L, Di PYP, Wu R, Pinkerton KE, Chen Y. Repression of CC16 by cigarette smoke (CS) exposure. PLoS One 2015; 10:e0116159. [PMID: 25635997 PMCID: PMC4312097 DOI: 10.1371/journal.pone.0116159] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023] Open
Abstract
Club (Clara) Cell Secretory Protein (CCSP, or CC16) is produced mainly by non-ciliated airway epithelial cells including bronchiolar club cells and the change of its expression has been shown to associate with the progress and severity of Chronic Obstructive Pulmonary Disease (COPD). In an animal model, the lack of CC16 renders the animal susceptible to the tumorigenic effect of a major CS carcinogen. A recent population-based Tucson Epidemiological Study of Airway Obstructive Diseases (TESAOD) has indicated that the low serum CC16 concentration is closely linked with the smoke-related mortality, particularly that driven by the lung cancer. However, the study of CC16 expression in well-defined smoke exposure models has been lacking, and there is no experimental support for the potential causal link between CC16 and CS-induced pathophysiological changes in the lung. In the present study, we have found that airway CC16 expression was significantly repressed in COPD patients, in monkey CS exposure model, and in CS-induced mouse model of COPD. Additionally, the lack of CC16 exacerbated airway inflammation and alveolar loss in the mouse model. Therefore, CC16 may play an important protective role in CS-related diseases.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, United States of America
| | - Peter Y. P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, United States of America
| | - Reen Wu
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, 95616, United States of America
| | - Kent E. Pinkerton
- Department of Pediatrics, University of California Davis, Davis, CA, 95616, United States of America
| | - Yin Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, United States of America
| |
Collapse
|
16
|
Côté O, Clark ME, Viel L, Labbé G, Seah SYK, Khan MA, Douda DN, Palaniyar N, Bienzle D. Secretoglobin 1A1 and 1A1A differentially regulate neutrophil reactive oxygen species production, phagocytosis and extracellular trap formation. PLoS One 2014; 9:e96217. [PMID: 24777050 PMCID: PMC4002474 DOI: 10.1371/journal.pone.0096217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022] Open
Abstract
Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases.
Collapse
Affiliation(s)
- Olivier Côté
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Laurent Viel
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Geneviève Labbé
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Meraj A. Khan
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David N. Douda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nades Palaniyar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Uteroglobin, a possible ligand of the lipoxin receptor inhibits serum amyloid A-driven inflammation. Mediators Inflamm 2014; 2014:876395. [PMID: 24782597 PMCID: PMC3981015 DOI: 10.1155/2014/876395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
Serum amyloid A (SAA) production is increased by inflamed arthritic synovial tissue, where it acts as a cytokine/chemoattractant for inflammatory and immune cells and as an inducer of matrix degrading enzymes. SAA has been shown to bind lipoxin A4 receptor, a member of the formyl-peptide related 2 G-protein coupled receptor family (ALX) and elicit proinflammatory activities in human primary fibroblast-like synoviocytes (FLS). We report on the identification of uteroglobin, a small globular protein with potent anti-inflammatory activities, as a possible ligand of ALX. Uteroglobin-specific association with ALX was demonstrated by an enzyme immunoassay experiment employing a cell line engineered to express the human ALX receptor. Uteroglobin's interaction with ALX resulted in the inhibition of SAA responses, such as attenuation of phospholipase A2 activation and cellular chemotaxis. In FLS, uteroglobin showed an antagonism against SAA-induced interleukin-8 release and decreased cell migration. These novel roles described for uteroglobin via ALX may help elucidate genetic and clinical observations indicating that a polymorphism in the uteroglobin promoter is linked to disease outcome, specifically prediction of bone erosion in patients with rheumatoid arthritis or severity of IgA glomerulonephritis and sarcoidosis.
Collapse
|
18
|
Côté O, Viel L, Bienzle D. Phylogenetic relationships among Perissodactyla: secretoglobin 1A1 gene duplication and triplication in the Equidae family. Mol Phylogenet Evol 2013; 69:430-6. [PMID: 23988306 DOI: 10.1016/j.ympev.2013.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/08/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Secretoglobin family 1A member 1 (SCGB 1A1) is a small anti-inflammatory and immunomodulatory protein that is abundantly secreted in airway surface fluids. We recently reported the existence of three distinct SCGB1A1 genes in the domestic horse genome as opposed to the single gene copy consensus present in other mammals. The origin of SCGB1A1 gene triplication and the evolutionary relationship of the three genes amongst Equidae family members are unknown. For this study, SCGB1A1 genomic data were collected from various Equus individuals including E. caballus, E. przewalskii, E. asinus, E. grevyi, and E. quagga. Three SCGB1A1 genes in E. przewalskii, two SCGB1A1 genes in E. asinus, and a single SCGB1A1 gene in E. grevyi and E. quagga were identified. Sequence analysis revealed that the non-synonymous nucleotide substitutions between the different equid genes coded for 17 amino acid changes. Most of these changes localized to the SCGB 1A1 central cavity that binds hydrophobic ligands, suggesting that this area of SCGB 1A1 evolved to accommodate diverse molecular interactions. Three-dimensional modeling of the proteins revealed that the size of the SCGB 1A1 central cavity is larger than that of SCGB 1A1A. Altogether, these findings suggest that evolution of the SCGB1A1 gene may parallel the separation of caballine and non-caballine species amongst Equidae, and may indicate an expansion of function for SCGB1A1 gene products.
Collapse
Affiliation(s)
- Olivier Côté
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
19
|
Donor Clara Cell Secretory Protein Polymorphism is a Risk Factor for Bronchiolitis Obliterans Syndrome After Lung Transplantation. Transplantation 2012; 94:652-8. [DOI: 10.1097/tp.0b013e31825ffca6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Jackson BC, Thompson DC, Wright MW, McAndrews M, Bernard A, Nebert DW, Vasiliou V. Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 2012; 5:691-702. [PMID: 22155607 PMCID: PMC3251818 DOI: 10.1186/1479-7364-5-6-691] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The secretoglobins (SCGBs) comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids of the lung, lacrimal gland, salivary gland, prostate and uterus. Whereas the biological activities of most individual SCGBs have not been fully characterised, what already has been discovered suggests that this family has an important role in the modulation of inflammation, tissue repair and tumorigenesis. In mice, the large Scgb1b and Scgb2b gene families encode the androgen-binding proteins, which have been shown to play a role in mate selection. Although much has been learned about SCGBs in recent years, clearly more research remains to be done to allow a better understanding of the roles of these proteins in human health and disease. Such information is predicted to reveal valuable novel drug targets for the treatment of inflammation, as well as designing biomarkers that might identify tissue damage or cancer.
Collapse
Affiliation(s)
- Brian C Jackson
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
De Luca D, Minucci A, Tripodi D, Piastra M, Pietrini D, Zuppi C, Conti G, Carnielli VP, Capoluongo E. Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates. Intensive Care Med 2011; 37:1158-65. [DOI: 10.1007/s00134-011-2243-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/06/2011] [Indexed: 11/24/2022]
|
22
|
Wong AP, Keating A, Waddell TK. Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy 2010; 11:676-87. [PMID: 19878054 DOI: 10.3109/14653240903313974] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clara cell secretory protein (CCSP) is one of the most abundant proteins in the airway surface fluid, and has many putative functions. Recent advances in the field of stem cells and lung regeneration have identified potentially new roles of CCSP and CCSP-expressing cell populations in airway maintenance, repair and regeneration. This review focuses on the airway regenerative potential of CCSP and the cells that express this protein. The use of this protein or CCSP-expressing cells as an indication of biologic processes that contribute to lung injury or repair is highlighted.
Collapse
Affiliation(s)
- Amy P Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, and the McEwen Centre for Regenerative Medicine, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Ventura E, Sassi F, Fossati S, Parodi A, Blalock W, Balza E, Castellani P, Borsi L, Carnemolla B, Zardi L. Use of uteroglobin for the engineering of polyvalent, polyspecific fusion proteins. J Biol Chem 2009; 284:26646-54. [PMID: 19632988 DOI: 10.1074/jbc.m109.025924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a novel strategy to engineer and express stable and soluble human recombinant polyvalent/polyspecific fusion proteins. The procedure is based on the use of a central skeleton of uteroglobin, a small and very soluble covalently linked homodimeric protein that is very resistant to proteolytic enzymes and to pH variations. Using a human recombinant antibody (scFv) specific for the angiogenesis marker domain B of fibronectin, interleukin 2, and an scFv able to neutralize tumor necrosis factor-alpha, we expressed various biologically active uteroglobin fusion proteins. The results demonstrate the possibility to generate monospecific divalent and tetravalent antibodies, immunocytokines, and dual specificity tetravalent antibodies. Furthermore, compared with similar fusion proteins in which uteroglobin was not used, the use of uteroglobin improved properties of solubility and stability. Indeed, in the reported cases it was possible to vacuum dry and reconstitute the proteins without any aggregation or loss in protein and biological activity.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Recombinant Therapeutic Proteins, Advanced Biotechnology Centre, Istituto G Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endocr Rev 2007; 28:707-25. [PMID: 17916741 DOI: 10.1210/er.2007-0018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, secreted protein that has been extensively studied from the standpoint of its structure and molecular biology. However, the physiological function(s) of UG still remains elusive. Isolated from the uterus of rabbits during early pregnancy, UG is the founding member of a growing superfamily of proteins called Secretoglobin (Scgb). Numerous studies demonstrated that UG is a multifunctional protein with antiinflammatory/ immunomodulatory properties. It inhibits soluble phospholipase A(2) activity and binds and perhaps sequesters hydrophobic ligands such as progesterone, retinols, polychlorinated biphenyls, phospholipids, and prostaglandins. In addition to its antiinflammatory activities, UG manifests antichemotactic, antiallergic, antitumorigenic, and embryonic growth-stimulatory activities. The tissue-specific expression of the UG gene is regulated by several steroid hormones, although a nonsteroid hormone, prolactin, further augments its expression in the uterus. The mucosal epithelia of virtually all organs that communicate with the external environment express UG, and it is present in the blood, urine, and other body fluids. Although the physiological functions of this protein are still under investigation, a single nucleotide polymorphism in the UG gene appears to be associated with several inflammatory/autoimmune diseases. Investigations with UG-knockout mice revealed that the absence of this protein leads to phenotypes that suggest its critical homeostatic role(s) against oxidative damage, inflammation, autoimmunity, and cancer. Recent studies on UG-binding proteins (receptors) provide further insight into the multifunctional nature of this protein. Based on its antiinflammatory and antiallergic properties, UG is a potential drug target.
Collapse
Affiliation(s)
- Anil B Mukherjee
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institute of Health, Building 10, Bethesda, Maryland 20892-1830, USA.
| | | | | |
Collapse
|
25
|
Angert RM, Pilon AL, Chester D, Davis JM. CC10 reduces inflammation in meconium aspiration syndrome in newborn piglets. Pediatr Res 2007; 62:684-8. [PMID: 17957145 DOI: 10.1203/pdr.0b013e31815a5632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complications from meconium aspiration syndrome (MAS) remain significant despite a variety of therapeutic interventions. Clara cell protein (CC10) is a novel anti-inflammatory agent that can also inhibit phospholipase A2 (PLA2) (an important component of meconium). The present study examined whether administration of recombinant human CC10 (rhCC10) would reduce inflammation and improve lung function in a piglet model of MAS. Following meconium instillation, piglets exhibited significant physiologic dysfunction that improved significantly after surfactant administration. Analysis of tracheal aspirates revealed significant increases in both tumor necrosis factor (TNF) alpha and interleukin (IL)-8 after meconium instillation. rhCC10-treated animals had significantly lower TNF-alpha levels at 24 h (561 +/- 321 versus 1357 +/- 675 pg/mL, p < 0.05) compared with saline controls. There were no differences between rhCC10-treated and untreated groups with respect to other measured physiologic variables or inflammatory markers, including secretory PLA2 activity. Histologic analyses revealed marked inflammatory infiltrates and thickened alveolar walls, but no significant differences among rhCC10 and control animals. Newborn piglets with MAS have significant physiologic dysfunction, marked inflammatory changes and histologic abnormalities, which was partially counteracted by a single dose of exogenous surfactant and rhCC10.
Collapse
Affiliation(s)
- Robert M Angert
- Department of Pediatrics, The CardioPulmonary Research Institute, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Mineola, New York 11501, USA.
| | | | | | | |
Collapse
|
26
|
Kaiser L, Velickovic TC, Badia-Martinez D, Adedoyin J, Thunberg S, Hallén D, Berndt K, Grönlund H, Gafvelin G, van Hage M, Achour A. Structural characterization of the tetrameric form of the major cat allergen Fel d 1. J Mol Biol 2007; 370:714-27. [PMID: 17543334 DOI: 10.1016/j.jmb.2007.04.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/25/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Felis domesticus allergen 1(Fel d 1) is a 35 kDa tetrameric glycoprotein formed by two heterodimers which elicits IgE responses in 95% of patients with allergy to cat. We have previously established in vitro conditions for the appropriate folding of recombinant Fel d 1 using a direct linkage of chain 1 to chain 2 (construct Fel d 1 (1+2)) and chain 2 to chain 1 (construct Fel d 1 (2+1)). Although the crystal structure of Fel d 1 (2+1) revealed a striking structural similarity to that of uteroglobin, a steroid-inducible cytokine-like molecule with anti-inflammatory and immunomodulatory properties, no functional tetrameric form of Fel d 1 could be identified. Here we present the crystal structure of the Fel d 1 (1+2) tetramer at 1.6 A resolution. Interestingly, the crystal structure of tetrameric Fel d 1 reveals two different calcium-binding sites. Symmetrically positioned on each side of the Fel d 1 tetramer, the external Ca(2+)-binding sites correspond to a putative Ca(2+)-binding site previously suggested for uteroglobin. The second Ca(2+)-binding site lies within the dimerization interface, stabilizing the formation of the Fel d 1 tetramer, and inducing important local conformational changes that directly govern the shape of two water-filled cavities. The crystal structure suggests a potential portal for an unknown ligand. Alternatively, the two cavities could be used by the allergen as a conditional inner space allowing for the spatial rearrangement of centrally localized side-chains, such as Asp130, without altering the overall fold of the molecule. The striking structural similarity of the major cat allergen to uteroglobin, coupled to the identification in the present study of a common Ca(2+)-binding site, let us speculate that Fel d 1 could provoke an allergic response through the modulation of phospholipase A2, by sequestering Ca ions in a similar manner as previously suggested for uteroglobin.
Collapse
Affiliation(s)
- Liselotte Kaiser
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miller TL, Shashikant BN, Pilon AL, Pierce RA, Shaffer TH, Wolfson MR. Effects of recombinant Clara cell secretory protein (rhCC10) on inflammatory-related matrix metalloproteinase activity in a preterm lamb model of neonatal respiratory distress. Pediatr Crit Care Med 2007; 8:40-6. [PMID: 17149150 DOI: 10.1097/01.pcc.0000253022.10607.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the hypothesis that recombinant Clara cell secretory protein (rhCC10) instillation would foster improved lung function, acute structural preservation, and attenuation of matrix metalloproteinase (MMP) activity in a surfactant-deficient, mechanically ventilated lung. DESIGN Interventional laboratory study. SETTING An academic medical research facility in the northeastern United States. SUBJECTS Sedated, ventilated premature lambs. INTERVENTIONS Preterm lambs (n = 18; 126 +/- 3 days gestation) were instrumented, ventilated, and treated with 100 mg/kg exogenous surfactant. Lambs were randomized to receive 0, 0.5, or 5.0 mg/kg rhCC10 (n = 6 per group) and were ventilated for 4 hrs. MEASUREMENTS AND MAIN RESULTS Posttreatment, lung function and cardiopulmonary stability were monitored for the ventilation period and then animals were killed for in vitro surfactant function analysis, lung histomorphometry, and analysis of MMP-2, -7, and -9 as well as their tissue inhibitors (TIMP)-1 and -2. Ventilation efficiency and pulmonary compliance were improved in the 5.0-mg/kg rhCC10 group by 4 hrs. Lung expansion was variable in the apical regions only. MMP-2 quantity was greater in the apical than the base lung regions of rhCC10-treated groups, and rhCC10 decreased MMP-7 in the base of the lung. CONCLUSIONS These data suggest that improved lung function in the surfactant-treated preterm lamb following intratracheal rhCC10 may be related to the reduction of proteolytic activity of MMP-7.
Collapse
Affiliation(s)
- Thomas L Miller
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Merigo F, Benati D, Di Chio M, Osculati F, Sbarbati A. Secretory cells of the airway express molecules of the chemoreceptive cascade. Cell Tissue Res 2006; 327:231-47. [PMID: 17024421 DOI: 10.1007/s00441-006-0280-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 06/09/2006] [Indexed: 02/03/2023]
Abstract
Airway secretion is maintained by specialized non-ciliated epithelial cells whose phenotype varies with their topographical location. In addition, specialized epithelial cells located in the airway contain the molecular machinery of chemoreceptive elements. Our aim has been to evaluate whether the secretory cells themselves possess a chemoreceptive capability, which requires the simultaneous presence of chemosensory and secretory mechanisms. We performed immunohistochemical analysis with antibodies against the Clara-cell-specific secretory proteins, CC10 and CC26, as secretory markers. As chemoreceptive markers, we employed antibodies against alpha-gustducin and phospholipase C beta 2 (PLCbeta2), two components of the taste transduction pathway. We also attempted to characterize further the secretory cell type by using a marker of chloride secretion, cystic fibrosis transmembrane regulator (CFTR). We found alpha-gustducin localized in non-ciliated cells of the epithelium lining the trachea and bronchioles of adult rats, where it was also co-expressed with CC10 and CC26. Ultrastructural immunohistochemistry revealed alpha-gustducin in the apical cytoplasm of secretory cells, concentrated around and inside the granules. CFTR was also observed in a subpopulation of non-ciliated epithelial cells, co-localized with some alpha-gustducin- and PLCbeta2-immunoreactive cells, at all levels of the airway epithelium. We conclude that non-ciliated epithelial cells of the rat airway express components of distinct signaling mechanisms and suggest that secretory events are driven by a molecular mechanism activated by the binding of luminal substances to G-protein-coupled receptors.
Collapse
Affiliation(s)
- Flavia Merigo
- Morphological-Biomedical Sciences Department, Human Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | | | | | | |
Collapse
|
29
|
Loughran-Fowlds A, Oei J, Wang H, Xu H, Wimalasundera N, Egan C, Henry R, Lui K. The influence of gestation and mechanical ventilation on serum clara cell secretory protein (CC10) concentrations in ventilated and nonventilated newborn infants. Pediatr Res 2006; 60:103-8. [PMID: 16690962 DOI: 10.1203/01.pdr.0000219388.56608.77] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clara cell secretory protein (CC10) is an important anti-inflammatory mediator in the adult lung, but its role in newborn pulmonary protection is uncertain. We examined the early postnatal behavior of CC10 in newborn serum and tracheal fluid and hypothesized that CC10 production is positively influenced by gestation. Blood from 165 infants from the first, third/fourth, and seventh days of life (gestational ages: 23-29 wk, 30-36 wk, >36 wk) and tracheal fluid (TF) from the first day of life from 32 ventilated infants were analyzed for CC10. Surfactant proteins A (SPA) and B (SPB) were also analyzed from the blood of a subgroup of infants. Serum CC10 on day 1 was highest in term infants (69.4 ng/mL), followed by moderately preterm (55.8 ng/mL), and then extremely preterm infants (median 42.1 ng/mL). Term infants also had higher tracheal fluid CC10 than preterm infants. (20.152 ng/mL versus 882 ng/mL). Mechanical ventilation increased serum CC10 only in moderately preterm infants, and only on d 1 [68.4 ng/mL versus 42.1 ng/mL (nonventilated moderately preterm infants)]. Serum CC10 decreased progressively by the end of the first week in all infants, in contrast to SPA and SPB, which increased. Our results show that CC10 is detectable in the blood of newborn infants and that a production surge occurs at birth. This surge is more pronounced in term infants and may confer them with superior extrauterine pulmonary protection compared with preterm infants.
Collapse
|
30
|
Makker A, Singh MM. Endometrial receptivity: Clinical assessment in relation to fertility, infertility, and antifertility. Med Res Rev 2006; 26:699-746. [PMID: 16710862 DOI: 10.1002/med.20061] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fertility in humans and other mammalian species depends absolutely on synchronous events that render the developing blastocyst and the receiving uterus competent for implantation. Endometrial receptivity is defined as the period during which the endometrial epithelium acquires functional, but transient, ovarian steroid-dependent status supportive to blastocyst acceptance and implantation. Once inside the uterus, the blastocyst is surrounded by an intact luminal epithelium, which is considered to act as barrier to its attachment, except for this short period of high endometrial receptivity to blastocyst signal(s). Its transport and permeability properties, in conjunction with cellular action of the endometrium and the embryo, have been suggested to influence creation and maintenance of informational and nutritional status of uterine luminal milieu. This period, also termed as the 'window of implantation,' is limited to days 20-24 of menstrual cycle in humans. However, establishment of endometrial receptivity is still a biological mystery that remains unsolved despite marked advances in our understanding of endometrial physiology following extensive research associated with its development and function. This review deals with various structural, biochemical, and molecular events in the endometrium coordinated within the implantation window that constitute essential elements in the repertoire that signifies endometrial receptivity and is aimed to achieve a better understanding of its relationship to fertility, infertility, and for the development of targeted antifertility agents for human use and welfare.
Collapse
Affiliation(s)
- Annu Makker
- Endocrinology Division, Central Drug Research Institute, Lucknow-226 001, India
| | | |
Collapse
|
31
|
Shashikant BN, Miller TL, Welch RW, Pilon AL, Shaffer TH, Wolfson MR. Dose response to rhCC10-augmented surfactant therapy in a lamb model of infant respiratory distress syndrome: physiological, inflammatory, and kinetic profiles. J Appl Physiol (1985) 2005; 99:2204-11. [PMID: 16081627 DOI: 10.1152/japplphysiol.00246.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While surfactant (SF) therapy alone improves respiratory distress syndrome (RDS)-associated gas exchange and lung stability, absence of anti-inflammatory proteins limits efficacy with respect to inflammation. Clara cell secretory protein (CC10), deficient in preterm infants, prevents SF degradation and has anti-inflammatory properties. In this study, intratracheal recombinant human (rh) CC10 (Claragen)-augmented SF (Survanta, Ross) therapy was examined in a premature lamb model of RDS with respect to inflammation and kinetic dose-response profiles. Preterm lambs (n = 24; gestational age: 126 +/- 3 days) were delivered via cesarean section, sedated, ventilated, and randomized into groups: 100 mg/kg SF, 100 mg/kg SF followed by 0.5 mg/kg rhCC10, 100 mg/kg SF followed by 1.5 mg/kg rhCC10, and 100 mg/kg SF followed by 5.0 mg/kg rhCC10. Arterial blood chemistry and lung mechanics were monitored; lungs were lavaged and snap-frozen after 4 h. TNF-alpha, IL-8 in plasma; TNF-alpha, IL-6, IL-8, myeloperoxidase in lung; and rhCC10 in plasma, urine, bronchoalveolar lavage, and lung were analyzed. Improvement in compliance, peak inspiratory pressure, and ventilatory efficiency index were greatest (P < 0.05) with SF + 5.0 mg/kg rhCC10. Plasma, urine, bronchoalveolar lavage, and lung [rhCC10] (where brackets denote concentration) increased (P < 0.01) with dose. Plasma [IL-8] was lower (P < 0.05) with rhCC10 than SF alone. Treatment with at least 1.5 mg/kg rhCC10 resulted in lower (P < 0.05) lung [TNF-alpha], [IL-8], and [myeloperoxidase]; SF + 1.5 mg/kg rhCC10 group had lower (P < 0.05) lung [IL-6], compared with all other groups. Compared with SF alone, SF augmented with at least 1.5 mg/kg rhCC10 decreased RDS-induced lung and systemic inflammation. Given that inflammation may lead to functional compromise, these data suggest that early intervention with rhCC10 may enhance SF therapy and warrant longer duration studies to determine its role to decrease long-term complications of ventilator management.
Collapse
Affiliation(s)
- Beth N Shashikant
- Dept. of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
32
|
Miller TL, Shashikant BN, Pilon AL, Pierce RA, Shaffer TH, Wolfson MR. Effects of an intratracheally delivered anti-inflammatory protein (rhCC10) on physiological and lung structural indices in a juvenile model of acute lung injury. Neonatology 2005; 89:159-70. [PMID: 16210850 DOI: 10.1159/000088843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/25/2005] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mechanical ventilation results in acute lung trauma that can stimulate processes that alter lung development. Activation of matrix metalloproteinases (MMPs) and their tissue-produced inhibitors (TIMPs) is initiated by the inflammatory response to mechanical ventilation and are involved in breakdown of the basement membrane and parenchymal modeling. OBJECTIVES The aim of this study was to test the hypothesis that rhCC10, a lung anti-inflammatory mediator, would foster improved lung function, structural preservation, and a reduction in net MMP activity in a juvenile model of acute lung injury. METHODS Twenty-four juvenile rabbits were saline-lavage-injured and treated with 100 or 25 mg/kg surfactant (Survanta, Ross Labs) with or without rhCC10 (Claragen, Inc.; n=6 per group). Animals were ventilated for 4 h, then euthanized for in vitro surfactant function analysis, lung histomorphometry, and analysis of MMP-2, MMP-7, and MMP-9 and TIMPs 1 and 2 in the lung. RESULTS Apical lung expansion, reduced with the lower dose of surfactant, was partially restored with the addition of rhCC10. Alveolar septal wall thickness was reduced (p<0.05) with low-dose surfactant plus rhCC10 compared to high-dose surfactant alone. Increased within-group variance in MMP-2 and MMP-9 proteolytic activity was found with the low-dose surfactant and was abolished with rhCC10. MMP-7 was reduced (p<0.05) with rhCC10 administration, independent of surfactant dose. CONCLUSIONS Intratracheal administration of the anti-inflammatory rhCC10 resulted in preserved lung structure and MMP/TIMP profile after 4 h of mechanical ventilation, in a surfactant dose-dependent manner.
Collapse
Affiliation(s)
- Thomas L Miller
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, and Nemours Research Lung Center, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | | | | | | | | |
Collapse
|
33
|
Babu PBR, Chidekel A, Shaffer TH. Protein composition of apical surface fluid from the human airway cell line Calu-3: effect of ion transport mediators. Clin Chim Acta 2004; 347:81-8. [PMID: 15313144 DOI: 10.1016/j.cccn.2004.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/03/2004] [Accepted: 04/03/2004] [Indexed: 11/16/2022]
Abstract
BACKGROUND Analysis of the protein components of airway secretions is a potential means of detecting and characterizing biochemical alterations associated with airway diseases. METHODS We evaluated airway protein secretions using the airway epithelial cell line Calu-3 grown at an air-liquid interface. To observe changes in apically secreted proteins, we analyzed the protein content of apical surface fluid (ASF) washings of Calu-3 monolayers treated with ion transport mediators. RESULTS Immunoassay screening for antibacterial and inflammatory proteins indicated the presence of measurable levels of lysozyme and IL-8 in Calu-3 ASF. RT-PCR and immunoassay studies indicated that Calu-3 cells do not produce clara cell 10 kDa protein (CC10). The total protein secretion of Calu-3 was not altered by bradykinin, but amiloride and adenosine significantly increased Calu-3 protein secretion. Lysozyme secretion was not altered by bradykinin, but amiloride and adenosine significantly reduced lysozyme secretion. IL-8 secretion was not altered by bradykinin or adenosine, but amiloride significantly decreased IL-8 secretion. CONCLUSION Our results demonstrate the presence of antibacterial protein lysozyme and the pro-inflammatory cytokine IL-8 in Calu-3 ASF and that ion transport mediators such as bradykinin, amiloride and adenosine influence the secretion of Calu-3 ASF proteins.
Collapse
Affiliation(s)
- Polani B Ramesh Babu
- Nemours Research Lung Center, Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | | | | |
Collapse
|
34
|
Herrler A, von Rango U, Beier HM. Embryo-maternal signalling: how the embryo starts talking to its mother to accomplish implantation. Reprod Biomed Online 2003; 6:244-56. [PMID: 12676010 DOI: 10.1016/s1472-6483(10)61717-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of implantation and trophoblast invasion is currently considered as the most limiting factor for the establishment of pregnancy. Molecular interactions at the embryo-maternal interface during the time of adhesion and subsequent invasion are crucial to the process of embryonic implantation. Both partners, the mother as well as the embryo, play equal roles in the embryo-maternal dialogue, the embryonic part being the main topic in this study. Investigations of the proteins in the extra-embryonic matrices (i.e. zona pellucida) indicate that the embryo participates intensively in this early embryo-maternal signalling. One unique feature during implantation process of primate embryos is the release of chorionic gonadotrophin, which seems to influence endometrial activity by two different mechanisms: (i) luteotrophic activity with increasing progesterone release and (ii) a direct action on the endometrium. Furthermore, embryonic interleukin-1beta may be involved in embryo-maternal signalling. Other significant signals in this interaction are most likely leukaemia inhibitory factor (LIF) and colony-stimulating factor (CSF), which stimulate matrix metalloproteinase (MMP)/insulin-like growth factor binding protein-1 (IGFBP-1) activity and the insulin-like growth factor (IGF) system, which is modulated by embryonic IGFBP-3. Similar significances are discussed for uteroglobin and haptoglobin. Finally, the phenomenon of maternal immunological tolerance, triggered by the presence of the early embryo, is fundamental to the understanding of implantation and trophoblast invasion. A tightly regulated balance between activated and inactivated T cells at the implantation site may control the beginning of adequate trophoblast invasion and also limit this invasion to a tolerable extent for the maternal system, consequently ensuring a biologically healthy haemo-chorial placenta.
Collapse
Affiliation(s)
- Andreas Herrler
- Department of Anatomy and Reproductive Biology, Medical School, RWTH University of Aachen, 52074 Aachen, Germany.
| | | | | |
Collapse
|
35
|
Reynolds SD, Reynolds PR, Pryhuber GS, Finder JD, Stripp BR. Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways. Am J Respir Crit Care Med 2002; 166:1498-509. [PMID: 12406855 DOI: 10.1164/rccm.200204-285oc] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clara cell secretory protein (CCSP) is expressed abundantly within the conducting airway epithelium and is thought to have immunoregulatory functions. Differences in the localization of CCSP between mouse and human airways led us to hypothesize that functional homologues of CCSP may compensate for the lack of CCSP expression in proximal airway locations. We previously identified an expressed sequence tag (W82219) whose expression is induced within Clara cells of CCSP knockout mice. Expressed sequence tag W82219 is distantly related to CCSP and represents a member of a new subfamily of secretoglobins (MmSCGB3A2). Another member of the mouse SCGB3 family (MmSCGB3A1) as well as human orthologues (HsSCGB3A1 and HsSCGB3A2) that possess structural homology to CCSP were identified, suggesting they may share common functional properties. SCGB3A1 messenger RNA localizes to a subset of SCGB3A2-expressing cells within bronchi of both mouse and neonatal human lungs. CCSP, SCGB3A1, and SCGB3A2 were decreased in airways of neonates with bronchopulmonary dysplasia and in mice after airway injury. We conclude that secretory cells of the conducting airway epithelium express distinct members of the secretoglobin family in a partially overlapping fashion. Altered expression of secretoglobins in airway disease may contribute to immunoregulatory perturbations commonly seen in chronic airway disease.
Collapse
Affiliation(s)
- Susan D Reynolds
- Departments of Environmental and Occupational Health, and Pediatrics, University of Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | |
Collapse
|
36
|
Coppo R, Chiesa M, Cirina P, Peruzzi L, Amore A. In human IgA nephropathy uteroglobin does not play the role inferred from transgenic mice. Am J Kidney Dis 2002; 40:495-503. [PMID: 12200800 DOI: 10.1053/ajkd.2002.34890] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Uteroglobin (UG)-knockout and UG-antisense transgenic mice develop clinical and pathological features of immunoglobulin A (IgA) nephropathy with heavy proteinuria. These models suggested that UG, an anti-inflammatory protein with high affinity for fibronectin (Fn), prevents the formation of IgA-Fn complexes and mesangial deposits in mice. We aim to elucidate whether similar mechanisms underlie the development and severity of human IgA nephropathy. METHODS Specific enzyme-linked immunosorbent assays were devised to detect serum levels of UG binding to Fn or incorporated into IgA-Fn complexes and IgA binding to Fn or collagen IV. Sera from 75 patients with IgA nephropathy with normal renal function and various degrees of proteinuria (0.2 to 5 g/d of protein) stable over the previous 3 months without therapy were investigated and compared with healthy controls. RESULTS Levels of UG binding to Fn were similar in patients with IgA nephropathy and healthy controls. UG incorporated into circulating IgA-Fn complexes, as well as levels of IgA-Fn complexes and IgA binding Fn and collagen IV, were significantly greater in patients than healthy controls. Greater amounts of UG incorporated into IgA-Fn complexes reduced the risk for proteinuria with protein greater than 1 g/d (odds ratio = 0.67; P < 0.001). Logistic regression analysis assigned a predictive value for proteinuria persistently greater than 1 g/d of protein to lower amounts of UG incorporated into IgA-Fn complexes (R = -0.267; P = 0.008) and increased binding of IgA to collagen IV (R = 0.214; P = 0.0003). CONCLUSION This first report of human IgA nephropathy after the publication of the mouse model shows that UG is not reduced in circulation and is even increased in IgA-Fn complexes. Because aberrant IgA1 glycosylation is the event initiating IgA nephropathy in humans, we speculate that the enhanced incorporation of UG into IgA-Fn complexes might represent feedback to reduce the formation of macromolecular aggregates.
Collapse
Affiliation(s)
- Rosanna Coppo
- Department of Nephrology, Dialysis, and Transplantation, Regina Margherita University Hospital, Turin, Italy.
| | | | | | | | | |
Collapse
|
37
|
Chowdhury B, Mantile-Selvaggi G, Miele L, Cordella-Miele E, Zhang Z, Mukherjee AB. Lys 43 and Asp 46 in alpha-helix 3 of uteroglobin are essential for its phospholipase A2 inhibitory activity. Biochem Biophys Res Commun 2002; 295:877-83. [PMID: 12127976 DOI: 10.1016/s0006-291x(02)00767-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uteroglobin (UG) is an anti-inflammatory, secreted protein with soluble phospholipase A2 (sPLA2)-inhibitory activity. However, the mechanism by which UG inhibits sPLA2 activity is unknown. UG is a homodimer in which each of the 70-amino acid subunits forms four alpha-helices. We previously reported that sPLA2-inhibitory activity of UG may reside in a segment of alpha-helix 3 that is exposed to the solvent. In addition, it has been suggested that UG may inhibit sPLA2 activity by binding and sequestering Ca++, essential for sPLA2 activation. By site-specific mutation, we demonstrate here that Lys 43 Glu, Asp 46 Lys or a combination of the two mutations in the full-length, recombinant human UG (rhUG) abrogates its sPLA2-inhibitory activity. We demonstrate further that recombinant UG does not bind Ca++ although when it is expressed with histidine-tag (H-tag) it is capable of binding Ca++. Taken together our results show that: (i) Lys 43 and Asp 46 in rhUG are critical residues for the sPLA2-inhibitory activity of UG and (ii) Ca++-sequestration by rhUG is not likely to be one of the mechanisms responsible for its sPLA2-inhibitory activity.
Collapse
Affiliation(s)
- Bhabadeb Chowdhury
- Section on Developmental Genetics, Heritable Disorders Branch, NICHD, Bethesda, MD 20892-1830, USA
| | | | | | | | | | | |
Collapse
|
38
|
Narita I, Saito N, Goto S, Jin S, Omori K, Sakatsume M, Gejyo F. Role of uteroglobin G38A polymorphism in the progression of IgA nephropathy in Japanese patients. Kidney Int 2002; 61:1853-8. [PMID: 11967037 DOI: 10.1046/j.1523-1755.2002.00336.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Uteroglobin is a multifunctional protein and both its gene knockout and antisense transgenic mouse models develop the pathological and clinical features of IgA nephropathy. A genetic polymorphism in uteroglobin has been reported to be associated with progression of IgA nephropathy in a Caucasian population, but the findings remain controversial. METHODS Genomic DNA was isolated from 595 individuals including 239 patients with IgAN, 160 patients with glomerulonephritis distinct from IgAN, and 196 healthy controls. The uteroglobin G38A genotype was determined by PCR-RFLP with Sau96I. To examine the possible association of uteroglobin gene polymorphism in the patients with and without IgAN, the uteroglobin genotype and allele frequency were compared between the two groups. In addition, associations between the polymorphism and blood pressure, proteinuria and prognosis of renal function were analyzed in the patients with IgAN to investigate the role of this gene polymorphism in the risk of progressive renal dysfunction in IgAN patients. RESULTS The Cox proportional hazard regression model revealed that hypertension and proteinuria at the time of renal biopsy were independent risk factors for poor renal survival. Uteroglobin genotype was not significantly associated with the renal survival rate. However, in the patients with heavy proteinuria (more than 2 g/day) or in those with hypertension at the time of renal biopsy, the renal survival of patients with the GG genotype was significantly worse than the other genotypes. CONCLUSION Uteroglobin GG genotype may be a genetic marker for rapid disease progression to end-stage renal failure, especially in the IgAN patients with heavy proteinuria or high blood pressure.
Collapse
Affiliation(s)
- Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences 1-757, Asahimachi-dori, Niigata, 951-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|