1
|
Dobson DA, Fish RJ, de Vries PS, Morrison AC, Neerman-Arbez M, Wolberg AS. Regulation of fibrinogen synthesis. Thromb Res 2024; 242:109134. [PMID: 39216273 PMCID: PMC11381137 DOI: 10.1016/j.thromres.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The plasma protein fibrinogen is encoded by 3 structural genes (FGA, FGB, and FGG) that are transcribed to mRNA, spliced, and translated to 3 polypeptide chains (Aα, Bβ, and γ, respectively). These chains are targeted for secretion, decorated with post-translational modifications, and assembled into a hexameric "dimer of trimers" (AαBβγ)2. Fully assembled fibrinogen is secreted into the blood as a 340 kDa glycoprotein. Fibrinogen is one of the most prevalent coagulation proteins in blood, and its expression is induced by inflammatory cytokines, wherein circulating fibrinogen levels may increase up to 3-fold during acute inflammatory events. Abnormal levels of circulating fibrinogen are associated with bleeding and thrombotic disorders, as well as several inflammatory diseases. Notably, therapeutic strategies to modulate fibrinogen levels have shown promise in experimental models of disease. Herein, we review pathways mediating fibrinogen synthesis, from gene expression to secretion. Knowledge of these mechanisms may lead to the identification of biomarkers and new therapeutic targets to modulate fibrinogen in health and disease.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, NC, USA
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Hota S, Kumar M. ErpY-like Protein Interaction with Host Thrombin and Fibrinogen Intervenes the Plasma Coagulation through Extrinsic and Intrinsic Pathways. ACS Infect Dis 2024; 10:3256-3272. [PMID: 39231002 DOI: 10.1021/acsinfecdis.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The survival and proliferation of pathogenic Leptospira within a host are complex phenomena that require careful consideration. The ErpY-like lipoprotein, found on the outer membrane surface of Leptospira, plays a crucial role in enhancing the bacterium's pathogenicity. The rErpY-like protein, in its recombinant form, contributes significantly to spirochete virulence by interacting with various host factors, including host complement regulators. This interaction facilitates the bacterium's evasion of the host complement system, thereby augmenting its overall pathogenicity. The rErpY-like protein exhibits a robust binding affinity to soluble fibrinogen, a vital component of the host coagulation system. In this study, we demonstrate that the rErpY-like protein intervenes in the clotting process of the platelet-poor citrated plasma of bovines and humans in a concentration-dependent manner. It significantly reduces clot density, alters the viscoelastic properties of the clot, and diminishes the average clotting rate in plasma. Furthermore, the ErpY-like protein inhibits thrombin-catalyzed fibrin formation in a dose-dependent manner and exhibits saturable binding to thrombin, suggesting its significant role in leptospiral infection. These findings provide compelling evidence for the anticoagulant effect of the ErpY-like lipoprotein and its significant role in leptospiral infection.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Yan J, Liao L, Deng D, Zhou W, Cheng P, Xiang L, Luo M, Lin F. Guideline for diagnosis and management of congenital dysfibrinogenemia. Clin Chim Acta 2024; 561:119680. [PMID: 38642629 DOI: 10.1016/j.cca.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Congenital dysfibrinogenemia (CD) is characterized by dysfunction induced by an abnormal fibrinogen molecule structure that results in blood coagulation dysfunction. The clinical manifestations of CD patients are asymptomatic, bleeding and thrombosis. The majority of patient are asymptomatic. However, the single fibrinogen detection method is easy to cause missed diagnosis or misdiagnosis of CD patients. The treatment strategies of CD patients with different clinical manifestations are also different. METHODS Combing the existing experimental diagnosis technology, literature and our research results, a simple and practical CD diagnostic criteria was proposed. And based on the relevant literature and existing treatment guidelines, more comprehensive treatment recommendations are summarized. RESULTS In this new criteria, combination Clauss method and PT derived method was proposed to detect fibrinogen and its ratio was used to diagnose for CD. Diagnosis also needs to be combined the clinical manifestations, family investigation and genetic testing. According to different clinical manifestation (bleeding, thrombosis or asymptomatic), treatment methods and strategies are different. The treatment of CD patients should consider the patient's personal and family history of bleeding or thrombosis. Treatment of thrombosis and pregnancy may be more challenging. The risk of bleeding and thrombosis should be evaluated and balanced at all times during clinical treatment. These detailed treatment recommendations can provide reference for patients with different clinical manifestations of CD. CONCLUSIONS The new CD diagnosis criteria and comprehensive treatment recommendations can effectively improve the diagnosis and treatment of CD.
Collapse
Affiliation(s)
- Jie Yan
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China
| | - Lin Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China; Guangxi Medical Doctor Association-Laboratory Medicine, China
| | - Donghong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijie Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China; Guangxi Medical Doctor Association-Laboratory Medicine, China; Clinical Laboratory, Baise People's Hospital, Baise, China
| | - Peng Cheng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liqun Xiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China
| | - Meiling Luo
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China; Guangxi Medical Doctor Association-Laboratory Medicine, China.
| |
Collapse
|
4
|
Wu X, Yu X, Chen C, Chen C, Wang Y, Su D, Zhu L. Fibrinogen and tumors. Front Oncol 2024; 14:1393599. [PMID: 38779081 PMCID: PMC11109443 DOI: 10.3389/fonc.2024.1393599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable prognosis in various tumor patient cohorts. Within the tumor microenvironment, aberrant deposition and expression of Fg have been consistently observed, interacting with multiple cellular receptors and thereby accentuating its role as a regulator of inflammatory processes. Specifically, Fg serves to stimulate and recruit immune cells and pro-inflammatory cytokines, thereby contributing to the promotion of tumor progression. Additionally, Fg and its fragments exhibit dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor migration through both platelet-dependent and platelet-independent mechanisms. Recent studies have illuminated several tumor-related signaling pathways influenced by Fg. This review provides a comprehensive summary of the intricate involvement of Fg in tumor biology, elucidating its multifaceted role and the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyuan Wu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenlu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongyan Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqing Zhu
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
5
|
Güven B, Can M. Fibrinogen: Structure, abnormalities and laboratory assays. Adv Clin Chem 2024; 120:117-143. [PMID: 38762239 DOI: 10.1016/bs.acc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Fibrinogen is the primary precursor protein for the fibrin clot, which is the final target of blood clotting. It is also an acute phase reactant that can vary under physiologic and inflammatory conditions. Disorders in fibrinogen concentration and/or function have been variably linked to the risk of bleeding and/or thrombosis. Fibrinogen assays are commonly used in the management of bleeding as well as the treatment of thrombosis. This chapter examines the structure of fibrinogen, its role in hemostasis as well as in bleeding abnormalities and measurement thereof with respect to clinical management.
Collapse
Affiliation(s)
- Berrak Güven
- Department of Clinical Biochemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Murat Can
- Department of Clinical Biochemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
6
|
Sulimai N, Brown J, Lominadze D. The Effect of Reduced Fibrinogen on Cerebrovascular Permeability during Traumatic Brain Injury in Fibrinogen Gene Heterozygous Knockout Mice. Biomolecules 2024; 14:385. [PMID: 38672403 PMCID: PMC11048347 DOI: 10.3390/biom14040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular contribution to cognitive impairment and dementia (VCID) is a term referring to all types of cerebrovascular and cardiovascular disease-related cognitive decline, spanning many neuroinflammatory diseases including traumatic brain injury (TBI). This becomes particularly important during mild-to-moderate TBI (m-mTBI), which is characterized by short-term memory (STM) decline. Enhanced cerebrovascular permeability for proteins is typically observed during m-mTBI. We have previously shown that an increase in the blood content of fibrinogen (Fg) during m-mTBI results in enhanced cerebrovascular permeability. Primarily extravasated via a transcellular pathway, Fg can deposit into the parenchyma and exacerbate inflammatory reactions that can lead to neurodegeneration, resulting in cognitive impairment. In the current study, we investigated the effect of a chronic reduction in Fg concentration in blood on cerebrovascular permeability and the interactions of extravasated Fg with astrocytes and neurons. Cortical contusion injury (CCI) was used to generate m-mTBI in transgenic mice with a deleted Fg γ chain (Fg γ+/-), resulting in a low blood content of Fg, and in control C57BL/6J wild-type (WT) mice. Cerebrovascular permeability was tested in vivo. Interactions of Fg with astrocytes and neurons and the expression of neuronal nuclear factor-кB (NF-кB) were assessed via immunohistochemistry. The results showed that 14 days after CCI, there was less cerebrovascular permeability, lower extravascular deposition of Fg, less activation of astrocytes, less colocalization of Fg with neurons, and lower expression of neuronal pro-inflammatory NF-кB in Fg γ+/- mice compared to that found in WT mice. Combined, our data provide strong evidence that increased Fg extravasation, and its resultant extravascular deposition, triggers astrocyte activation and leads to potential interactions of Fg with neurons, resulting in the overexpression of neuronal NF-кB. These effects suggest that reduced blood levels of Fg can be beneficial in mitigating the STM reduction seen in m-mTBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Rafaqat S, Gluscevic S, Patoulias D, Sharif S, Klisic A. The Association between Coagulation and Atrial Fibrillation. Biomedicines 2024; 12:274. [PMID: 38397876 PMCID: PMC10887311 DOI: 10.3390/biomedicines12020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The existing literature highlights the presence of numerous coagulation factors and markers. Elevated levels of coagulation factors are associated with both existing and newly diagnosed cases of atrial fibrillation (AF). However, this article summarizes the role of coagulation in the pathogenesis of AF, which includes fibrinogen and fibrin, prothrombin, thrombomodulin, soluble urokinase plasminogen activator receptor, von Willebrand factor, P-selectin, D-dimer, plasminogen activator inhibitor-1, and platelet activation. Coagulation irregularities play a significant role in the pathogenesis of AF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore 54600, Punjab, Pakistan
| | - Sanja Gluscevic
- Department of Neurology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| | - Saima Sharif
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore 54600, Punjab, Pakistan
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| |
Collapse
|
8
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:biom13040648. [PMID: 37189395 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Dobson DA, Holle LA, Lin FC, Huffman JE, Luyendyk JP, Flick MJ, Smith NL, de Vries PS, Morrison AC, Wolberg AS. Novel genetic regulators of fibrinogen synthesis identified by an in vitro experimental platform. J Thromb Haemost 2023; 21:522-533. [PMID: 36696182 PMCID: PMC10111212 DOI: 10.1016/j.jtha.2022.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, NC, USA
| | | | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle WA, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle WA, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alanna C Morrison
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Jiang C, Li Y, Li Y, Liu L, Wang XA, Wu W, Bao R, Weng H, Li M, Geng Y, Shu Y, Liu Y. Fibrinogen promotes gallbladder cancer cell metastasis and extravasation by inducing ICAM1 expression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:10. [PMID: 36352295 DOI: 10.1007/s12032-022-01874-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Fibrinogen plays an important role in tumor progression. Here, we explored the role of fibrinogen in gallbladder cancer (GBC) metastasis. The plasma fibrinogen level in M1 GBC patients was higher than in M0 GBC patients, indicating that fibrinogen may participate in GBC metastasis. Treatment of GBC cell lines with fibrinogen promoted metastasis and induced the expression of intercellular adhesion molecule 1 (ICAM1). ICAM1 overexpression promoted metastasis and knockdown inhibited it. The cell adhesion and transendothelial migration of GBC cells were enhanced by fibrinogen treatment and ICAM1 overexpression. In addition, the medium of fibrinogen-treated and overexpression-ICAM1 NOZ cells exhibited enhanced macrophages recruitment. This may work in concert to promote angiogenesis. Immunohistochemistry results on clinical specimens showed that higher fibrinogen levels, higher ICAM1 expression, higher blood vessel density, and higher macrophage levels were present simultaneously. Collectively, this study indicates fibrinogen promotes metastasis and extravasation by inducing ICAM1 expression to enhance tumor cell migration, cell adhesion, transendothelial migration and promote angiogenesis and increase vascular endothelial permeability.
Collapse
Affiliation(s)
- Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Xu-An Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Runfa Bao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Weng
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Yijun Shu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China. .,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| |
Collapse
|
11
|
Pediatric patient with fibrinogen Villeurbanne II presenting with an unprovoked portal vein thrombosis. Blood Adv 2022; 6:4297-4300. [PMID: 35877135 PMCID: PMC9327530 DOI: 10.1182/bloodadvances.2022006992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
|
12
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Couzens A, Lebreton A, Masclaux F, Guipponi M, Pebrel-Richard C, Laffargue F, Gembara P, Casini A, Neerman-Arbez M. Hemizygous FGG p.Ala108Gly in a hypofibrinogenemic patient with a heterozygous 14.8 Mb deletion encompassing the entire fibrinogen gene cluster. Haemophilia 2022; 28:e132-e135. [PMID: 35809055 DOI: 10.1111/hae.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander Couzens
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélien Lebreton
- CHU Clermont-Ferrand, Service d'hématologie biologique, Clermont-Ferrand, France
| | - Frédéric Masclaux
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Medical Genetics Service, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,CHU Clermont-Ferrand, Service d'hématologie biologique, Clermont-Ferrand, France.,Medical Genetics Service, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Fanny Laffargue
- CHU Clermont-Ferrand, Service de génétique médicale, Clermont-Ferrand, France
| | - Piotr Gembara
- CHU Clermont-Ferrand, Service de pédiatrie, Clermont-Ferrand, France
| | - Alessandro Casini
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Couto MTTD, Silva AVD, Sobral RVDS, Rodrigues CH, Cunha MNCD, Leite ACL, Figueiredo MDVB, de Paula Oliveira J, Costa RMPB, Conniff AES, Porto ALF, Nascimento TP. Production, extraction and characterization of a serine protease with fibrinolytic, fibrinogenolytic and thrombolytic activity obtained by Paenibacillus graminis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Yang Q, Liang D, Yu Y, Lv F. The Prognostic Significance of the Fibrinogen-to-Albumin Ratio in Patients With Triple-Negative Breast Cancer: A Retrospective Study. Front Surg 2022; 9:916298. [PMID: 35774393 PMCID: PMC9237393 DOI: 10.3389/fsurg.2022.916298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This study aims to investigate the potential prognostic value of fibrinogen-to-albumin ratio (FAR) in patients with triple-negative breast cancer (TNBC). Methods This study used a retrospective design and enrolled 224 patients with TNBC treated between January 2009 and December 2014 at the Henan Provincial People’s Hospital. The receiver operating characteristic curve (ROC) was used to determine the optimal cut-off value for FAR. The associations between TNBC and clinicopathologic categorical variables by FAR were analyzed using the Chi-square test or Fisher’s exact test. The survival time and survival curve were determined by Kaplan-Meier survival analysis and compared using the Log-rank method. The potential prognostic factors were determined using univariate and multivariate Cox proportional hazard regression models. Prognostic nomogram was established on the basis of the multivariate analyses. The calibration curves were used to assess the predictive performance. Results The optimal cut-off value for FAR based on the overall survival (OS) was 0.066, as evaluated by the ROC. The 224 included patients were divided into low FAR group (<0.066) and high FAR group (≥0.066). Univariate and multivariate models shown that FAR was an potential prognostic factor for disease-free survival (DFS) and OS in patients with TNBC. The median DFS and OS of the low FAR group were longer than those of the high FAR group (χ2 = 15.080, P = 0.0001; χ2 = 13.140, P = 0.0003), including for pre-menopausal patients, and those with pathological stages I + II, and lymph vessel invasion. A nomogram based on the potential prognostic factors was efficient in predicting 3-, and 5-year DFS and OS survival probabilities. Conclusions The FAR, which is tested routinely and is characterized by its simplicity, objectivity, and inexpensiveness, is a potential prognostic factor of TNBC, and is potentially applicable in clinical practice.
Collapse
|
16
|
Padilla-Godínez FJ, Ramos-Acevedo R, Martínez-Becerril HA, Bernal-Conde LD, Garrido-Figueroa JF, Hiriart M, Hernández-López A, Argüero-Sánchez R, Callea F, Guerra-Crespo M. Protein Misfolding and Aggregation: The Relatedness between Parkinson's Disease and Hepatic Endoplasmic Reticulum Storage Disorders. Int J Mol Sci 2021; 22:ijms222212467. [PMID: 34830348 PMCID: PMC8619695 DOI: 10.3390/ijms222212467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson’s disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rodrigo Ramos-Acevedo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Hilda Angélica Martínez-Becerril
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Luis D. Bernal-Conde
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Jerónimo F. Garrido-Figueroa
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Marcia Hiriart
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
| | - Adriana Hernández-López
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rubén Argüero-Sánchez
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza 1464, Tanzania;
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
- Correspondence:
| |
Collapse
|
17
|
Arai S, Kamijo T, Kaido T, Yoda M, Shinohara S, Suzuki T, Arai N, Sugano M, Uehara T, Okumura N. Automated screening procedure for the phenotypes of congenital fibrinogen disorders using novel parameters, |min1|c and Ac/|min1|c, obtained from clot waveform analysis using the Clauss method. Clin Chim Acta 2021; 521:170-176. [PMID: 34273336 DOI: 10.1016/j.cca.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Fibrinogen activity (Ac) is widely measured, but fibrinogen antigen (Ag) is measured only in specialized laboratories, so it is difficult to discriminate congenital fibrinogen disorders (CFDs) from acquired hypofibrinogenemia (aHypo). In this study, to screen for CFD phenotypes we adopted novel parameters, |min1|c and Ac/ |min1|c, and compared these with validated Ac, Ag, and Ac/Ag, and previously proposed Ac/dH and Ac/|min1|. MATERIALS AND METHODS We calibrated |min1| using a CN-6000 instrument and investigated the correlation between Ag and |min1|c for aHypo (n = 131) and CFD [18 dysfibrinogenemia (Dys), two hypodysfibrinogenemia (Hypodys) and four hypofibrinpogenemia (Hypo)]. Furthermore, we proposed a schema for screening CFD phenotypes using |min1|c and Ac/|min1|c. RESULTS The |min1|c correlated well with Ag in aHypo, and Ac/|min1|c was a better parameter for screening Dys and Hypodys than Ac/dH and Ac/|min1|. With the combination of |min1|c and Ac/|min1|c parameters, 15 Dys, 2 Hypodys and four Hypo were categorized in agreement with the phenotype determined using Ag and Ac/Ag; conversely three Dys were classified as one Hypodys (AαR16C) and two Hypo (BβG15C). CONCLUSION We demonstrated that |min1|c and Ac/|min1|c are valuable parameters for screening CFD patients and phenotypes in laboratories that do not measure Ag or perform genetic analysis.
Collapse
Affiliation(s)
- Shinpei Arai
- Department of Clinical Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan.
| | - Tomu Kamijo
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan; Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Japan
| | - Takahiro Kaido
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan; Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Japan
| | - Masahiro Yoda
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | | | | | | | - Mitsutoshi Sugano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Nobuo Okumura
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, Matsumoto, Japan; Laboratory of Clinical Chemistry and Immunology, Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
18
|
Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges. Int J Mol Sci 2021; 22:ijms22136916. [PMID: 34203139 PMCID: PMC8268464 DOI: 10.3390/ijms22136916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis and bleeding risk, while maintaining the fine balance between clot formation and lysis.
Collapse
|
19
|
Callea F, Tomà P, Bellacchio E. The Recruitment-Secretory Block ("R-SB") Phenomenon and Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22136807. [PMID: 34202771 PMCID: PMC8269287 DOI: 10.3390/ijms22136807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/28/2023] Open
Abstract
In this article, we review the biological and clinical implication of the Recruitment-Secretory Block (“R-SB”) phenomenon. The phenomenon refers to the reaction of the liver with regard to protein secretion in conditions of clinical stimulation. Our basic knowledge of the process is due to the experimental work in animal models. Under basal conditions, the protein synthesis is mainly carried out by periportal (zone 1) hepatocytes that are considered the “professional” synthesizing protein cells. Under stimulation, midlobular and centrolobular (zones 2 and 3) hepatocytes, are progressively recruited according to lobular gradients and contribute to the increase of synthesis and secretion. The block of secretion, operated by exogenous agents, causes intracellular retention of all secretory proteins. The Pi MZ phenotype of Alpha-1-antitrypsin deficiency (AATD) has turned out to be the key for in vivo studies of the reaction of the liver, as synthesis and block of secretion are concomitant. Indeed, the M fraction of AAT is stimulated for synthesis and regularly exported while the Z fraction is mostly retained within the cell. For that reason, the phenomenon has been designated “Recruitment-Secretory Block” (“R-SB”). The “R-SB” phenomenon explains why: (a) the MZ individuals can correct the serum deficiency; (b) the resulting immonohistochemical and electron microscopic (EM) patterns are very peculiar and specific for the diagnosis of the Z mutation in tissue sections in the absence of genotyping; (c) the term carrier is no longer applicable for the heterozygous condition as all Pi MZ individuals undergo storage and the storage predisposes to liver damage. The storage represents the true elementary lesion and consequently reflects the phenotype-genotype correlation; (d) the site and function of the extrahepatic AAT and the relationship between intra and extracellular AAT; (e) last but not least, the concept of Endoplasmic Reticulum Storage Disease (ERSD) and of a new disease, hereditary hypofibrinogenemia with hepatic storage (HHHS). In the light of the emerging phenomenon, described in vitro, namely that M and Z AAT can form heteropolymers within hepatocytes as well as in circulation, we have reviewed the whole clinical and experimental material collected during forty years, in order to evaluate to what extent the polymerization phenomenon occurs in vivo. The paper summarizes similarities and differences between AAT and Fibrinogen as well as between the related diseases, AATD and HHHS. Indeed, fibrinogen gamma chain mutations undergo an aggregation process within the RER of hepatocytes similar to AATD. In addition, this work has clarified the intriguing phenomenon underlying a new syndrome, hereditary hypofibrinogenemia and hypo-APO-B-lipoproteinemia with hepatic storage of fibrinogen and APO-B lipoproteins. It is hoped that these studies could contribute to future research and select strategies aimed to simultaneously correct the hepatocytic storage, thus preventing the liver damage and the plasma deficiency of the two proteins.
Collapse
Affiliation(s)
- Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (E.B.); Tel.: +255-7543343938 (F.C.); +39-0668594291 (E.B.)
| | - Paolo Tomà
- Dipartimento Diagnostica Immagini, Bambino Gesù Childrens’ Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Roma, Italy;
| | - Emanuele Bellacchio
- Area di Ricerca Genetica e Malattie Rare Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Roma, Italy
- Correspondence: (F.C.); (E.B.); Tel.: +255-7543343938 (F.C.); +39-0668594291 (E.B.)
| |
Collapse
|
20
|
Yoda M, Kaido T, Kamijo T, Taira C, Higuchi Y, Arai S, Okumura N. Novel variant fibrinogen γp.C352R produced hypodysfibrinogenemia leading to a bleeding episode and failure of infertility treatment. Int J Hematol 2021; 114:325-333. [PMID: 34117991 DOI: 10.1007/s12185-021-03174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION We identified a patient with a novel heterozygous variant fibrinogen, γp.C352R (Niigata II; N-II), who had a bleeding episode and failed infertility treatment and was suspected to have hypodysfibrinogenemia based on low and discordant fibrinogen levels (functional assay 0.33 g/L, immunological assay 0.91 g/L). We analyzed the mechanism of this rare phenotype of a congenital fibrinogen disorder. MATERIALS AND METHODS Patient plasma fibrinogen was purified and protein characterization and thrombin-catalyzed fibrin polymerization performed. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cells were established and the assembly and secretion of variant fibrinogen analyzed by ELISA and western blotting. RESULTS Purified N-II plasma fibrinogen had a small lower molecular weight band below the normal γ-chain and slightly reduced fibrin polymerization. A limited proportion of p.C352R fibrinogen was secreted into the culture medium of established CHO cell lines, but the γ-chain of p.C352R was synthesized and variant fibrinogen was assembled inside the cells. CONCLUSION We demonstrated that fibrinogen N-II, γp.C352R was associated with markedly reduced secretion of variant fibrinogen from CHO cells, that fibrin polymerization of purified plasma fibrinogen was only slightly affected, and that fibrinogen N-II produces hypodysfibrinogenemia in plasma.
Collapse
Affiliation(s)
- Masahiro Yoda
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takahiro Kaido
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tomu Kamijo
- Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Japan
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Chiaki Taira
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yumiko Higuchi
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shinpei Arai
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Nobuo Okumura
- Department of Clinical Laboratory Investigation, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Clinical Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
21
|
Callea F, Francalanci P, Giovannoni I. Hepatic and Extrahepatic Sources and Manifestations in Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22115778. [PMID: 34071368 PMCID: PMC8198767 DOI: 10.3390/ijms22115778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) and fibrinogen are secretory acute phase reactant proteins. Circulating AAT and fibrinogen are synthesized exclusively in the liver. Mutations in the encoding genes result in conformational abnormalities of the two molecules that aggregate within the rough endoplasmic reticulum (RER) instead of being regularly exported. That results in AAT-deficiency (AATD) and in hereditary hypofibrinogenemia with hepatic storage (HHHS). The association of plasma deficiency and liver storage identifies a new group of pathologies: endoplasmic reticulum storage disease (ERSD).
Collapse
Affiliation(s)
- Francesco Callea
- Bugando Medical Centre, Department of Molecular Histopathology, Catholic University Health Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Paola Francalanci
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Isabella Giovannoni
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
| |
Collapse
|
22
|
Li S, Wang M, Li X, Xu Q, Liu S, Luo S, Chen Y. Analysis of an Inherited Dysfibrinogenemia Pedigree Associated with a Heterozygous Mutation in the FGA Gene. Hamostaseologie 2020; 40:642-648. [PMID: 33374030 DOI: 10.1055/a-1261-3884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE This article aims to analyze the phenotype and genotype of an inherited dysfibrinogenemia pedigree associated with a heterozygous mutation in the FGA gene, and to investigate the pathogenesis of this disease. CLINICAL PRESENTATION The proband of interest is a 29-year-old woman. She was in her 37 weeks of gestation. Routine coagulation tests showed low fibrinogen activity (0.91 g/L; normal range: 2.0-4.0 g/L) and normal fibrinogen antigen (FIB:Ag) level (2.09 g/L; normal range: 2.0-4.0 g/L). TECHNIQUES The prothrombin time, activated partial thromboplastin time, thrombin time, and activity of plasma fibrinogen (FIB:C) were detected by the one-stage clotting method. The FIB:Ag, D-dimer, and fibrinogen degradation products were tested by the immunoturbidimetry method. To identify the novel missense mutation, fibrinogen gene sequencing and molecular modeling were performed. We used ClustalX-2.1-win and online bioinformatic software to analyze the conservation and possible effect of the amino acid substitution on fibrinogen. RESULTS Phenotypic analysis revealed that the FIB:C of the proband was significantly reduced while the FIB:Ag was normal. Sequencing analysis detected a heterozygous C.2185G > A point mutation in the FGA gene (AαGlu710Lys). Bioinformatic and modeling analyses indicated that the mutation probably caused harmful effects on fibrinogen. CONCLUSION The heterozygous mutation of Glu710Lys in the FGA gene was identified that could cause the reduction of the FIB structure stability and result in the dysfibrinogenemia.
Collapse
Affiliation(s)
- Shaoxi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingshan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siqi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shasha Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Casini A, Neerman-Arbez M, de Moerloose P. Heterogeneity of congenital afibrinogenemia, from epidemiology to clinical consequences and management. Blood Rev 2020; 48:100793. [PMID: 33419567 DOI: 10.1016/j.blre.2020.100793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Fibrinogen is a complex protein playing a major role in coagulation. Congenital afibrinogenemia, characterized by the complete absence of fibrinogen, is associated with major hemostatic defects. Even though the clinical course is unpredictable and can be completely different among patients, severe bleeding is the prominent symptom. Patients are also at increased risk of thrombosis and sometimes suffer from spontaneous spleen rupture, bone cysts and defective wound healing. Due to the relative rarity of afibrinogenemia, there are no evidence-based strategies for helping physicians in care of these patients. Fibrinogen supplementation is the keystone to prevent or treat bleeding events. In addition, fibrinogen, a pleiotropic protein with numerous physiological roles in immunity, angiogenesis and tissue repair, is involved in many diseases. Indeed, depletion of fibrinogen in animal models of infections, tumors and neurological diseases has an effect on the clinical course. The consequences for patients with afibrinogenemia still need to be investigated.
Collapse
Affiliation(s)
- Alessandro Casini
- Division of Angiology and Hemostasis, University Hospitals of Geneva, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland.
| | - Philippe de Moerloose
- Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
24
|
Sun Y, Han W, Song Y, Gao P, Yang Y, Yu D, Wang Y, Wang Z. Prognostic Value of Preoperative Fibrinogen for Predicting Clinical Outcome in Patients with Nonmetastatic Colorectal Cancer. Cancer Manag Res 2020; 12:13301-13309. [PMID: 33380836 PMCID: PMC7767646 DOI: 10.2147/cmar.s275498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023] Open
Abstract
Background The prognostic role of preoperative fibrinogen in colorectal cancer (CRC) patients remains controversial. Therefore, we assessed the predictive value of preoperative fibrinogen and developed a tool for predicting the survival of CRC patients. Methods This retrospective study evaluated 1869 patients who underwent curative resection for CRC. Univariate and multivariate survival analyses were conducted to identify the factors correlated with overall survival (OS) and cancer-specific survival (CSS). Nomograms were developed as a graphical representation of the Cox proportional hazards regression models. The performance of the nomograms was assessed by Harrell’s concordance index (c-index) and calibration plots. Results The preoperative fibrinogen levels were correlated with age, tumor differentiation, tumor location, pT category, and TNM stage. In the multivariate analysis, elevated fibrinogen level was independently correlated with worse OS and CSS (OS: hazard ratio [HR] = 0.777, 95% confidence interval [95% CI] = 0.630–0.958, P = 0.018; CSS: HR = 0.757, 95% CI = 0.605–0.947, P = 0.015). The nomograms could predict outcomes with a c-index for OS and CSS of 0.79 and 0.81, respectively. The nomograms also had a good calibration. Conclusion Preoperative fibrinogen level was an independent marker of poor prognosis in patients with nonmetastatic CRC, and there was a threshold level for the use of fibrinogen as a prognostic factor. Furthermore, nomograms may help predict the individual risk of OS and CSS in patients treated for CRC.
Collapse
Affiliation(s)
- Yu Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Weiying Han
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Yuchong Yang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Dehao Yu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Yu Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Hospital of China Medical University, Shenyang City 110001, People's Republic of China
| |
Collapse
|
25
|
Asselta R, Paraboschi EM, Duga S. Hereditary Hypofibrinogenemia with Hepatic Storage. Int J Mol Sci 2020; 21:ijms21217830. [PMID: 33105716 PMCID: PMC7659954 DOI: 10.3390/ijms21217830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a 340-kDa plasma glycoprotein constituted by two sets of symmetrical trimers, each formed by the Aα, Bβ, and γ chains (respectively coded by the FGA, FGB, and FGG genes). Quantitative fibrinogen deficiencies (hypofibrinogenemia, afibrinogenemia) are rare congenital disorders characterized by low or unmeasurable plasma fibrinogen antigen levels. Their genetic basis is represented by mutations within the fibrinogen genes. To date, only eight mutations, all affecting a small region of the fibrinogen γ chain, have been reported to cause hereditary hypofibrinogenemia with hepatic storage (HHHS), a disorder characterized by protein aggregation in the endoplasmic reticulum, hypofibrinogenemia, and liver disease of variable severity. Here, we will briefly review the clinic characteristics of HHHS patients and the histological feature of their hepatic inclusions, and we will focus on the molecular genetic basis of this peculiar type of coagulopathy.
Collapse
Affiliation(s)
- Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-02-8224-5215
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
26
|
Congenital fibrinogen disorder with a compound heterozygote possessing two novel FGB mutations, one qualitative and the other quantitative. Thromb Res 2020; 196:152-158. [PMID: 32871307 DOI: 10.1016/j.thromres.2020.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Congenital fibrinogen disorders result from genetic mutations in FGA, FGB, or FGG resulting in quantitative fibrinogen deficiencies (afibrinogenemia or hypofibrinogenemia) or qualitative fibrinogen deficiencies (dysfibrinogenemia). Hypodysfibrinogenemia sharing features with hypo- and dysfibrinogenemia is rare. We performed genetic and functional analyses of a 31-year-old woman with suspected hypodysfibrinogenemia. MATERIALS AND METHODS Functional and antigenic fibrinogen values of patient were 1.05 and 1.24 g/L, respectively. DNA sequence and western blotting analyses for plasma fibrinogen were performed. A minigene incorporating the mutational region was transfected into a Chinese hamster ovary cell line (CHO), and reverse transcription products were analyzed. Assembly and secretion were examined using the recombinant variant fibrinogen. We purified the patient's plasma fibrinogen and analyzed thrombin-catalyzed fibrin polymerization (TCFP). RESULTS AND CONCLUSIONS DNA sequencing revealed compound heterozygous nucleotide mutations with FGB 35 bp c.1245-17_1262 or -16_1263 del and FGB c.510T>A (resulting in Bβp.N170K substitution) on different alleles. We did not detect shortened Bβ-chain peptides in the plasma using western blotting analysis. A minigene incorporating the deletion DNA showed two aberrant mRNA products. The secretion of Bβp.N170K-fibrinogen-CHO was almost same as normal Bβ-fibrinogen-CHO. TCFP of plasma Bβp.N170K fibrinogen was slightly lower than that of normal plasma fibrinogen. Aberrant splicing products derived from the 35 bp deletion caused hypofibrinogenemia due to nonsense-mediated mRNA decay and suggested the presence of only Bβp.N170K fibrinogen in patient's plasma. Bβp.N170K caused dysfibrinogenemia due to a delay in lateral aggregation. These findings demonstrated that these mutations respectively affected the fibrinogen quality and quantity, resulting in hypodysfibrinogenemia.
Collapse
|
27
|
Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp Cell Res 2020; 394:112153. [PMID: 32589888 DOI: 10.1016/j.yexcr.2020.112153] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/25/2023]
Abstract
Wide peritoneal metastasis is the cause of the highest lethality of ovarian cancer in gynecologic malignancies. Ascites play a key role in ovarian cancer metastasis, but involved mechanism is uncertain. Here, we performed a quantitative proteomics of ascites, and found that collagen type I alpha 1 (COL1A1) was notably elevated in ascites from epithelial ovarian cancer patients compared to normal peritoneal fluids, and verified that elevated COL1A1 was mainly originated from fibroblasts. COL1A1 promoted migration and invasion of ovarian cancer cells, but such effects were partially eliminated by COL1A1 antibodies. Intraperitoneally injected COL1A1 accelerated intraperitoneal metastasis of ovarian cancer xenograft in NOD/SCID mice. Further, COL1A1 activated downstream AKT phosphorylation by binding to membrane surface receptor integrin β1 (ITGB1). Knockdown or blockage of ITGB1 reversed COL1A1 enhanced migration and invasion in ovarian cancer cells. Conversely, ovarian cancer ascites and fibrinogen promoted fibroblasts to secrete COL1A1. Elevated fibrinogen in ascites might be associated with increased vascular permeability induced by ovarian cancer. Our findings suggest that microenvironment remodeled by tumor cells and stromal cells promotes fibroblasts to secrete COL1A1 and facilitates the metastasis of ovarian cancer, which may provide a new approach for ovarian cancer therapeutics.
Collapse
|
28
|
Eramanis LM, Woodward A, Courtman N, Hughes D, Padula A, Winkel KD, Boller M. Coagulation factor activity patterns of venom-induced consumption coagulopathy in naturally occurring tiger snake (Notechis scutatus) envenomed dogs treated with antivenom. Toxicon 2020; 181:36-44. [PMID: 32330462 DOI: 10.1016/j.toxicon.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Venom-induced consumption coagulopathy (VICC) from tiger snake (Notechis scutatus) envenomation results in a dose-dependent coagulopathy that is detectable on coagulometry. However, individual coagulation factor activities in dogs with tiger snake envenomation have not been determined. This study aimed to characterise VICC and the time course of recovery in tiger snake envenomed dogs and to investigate an association between tiger snake venom (TSV) concentrations and factor activity. METHODS This was a prospective, observational, cohort study. The study cohort was 11 dogs of any age, breed, sex, body weight >10 kg, confirmed serum TSV on ELISA and treated with antivenom. Blood was collected at enrolment before antivenom administration, then at 3, 12 and 24 h after antivenom administration. Tiger snake venom concentrations were detected with a sandwich ELISA. Fibrinogen was measured using a modified Clauss method, and coagulation factors (F) II, V, VII, VIII and X were measured with factor-deficient human plasma using a modified prothrombin (PT) and activated partial thromboplastin (aPTT) method. Linear mixed models, with multiple imputations of censored observations, were used to determine the effect of time and TSV concentration on the coagulation times and factor activity. This cohort was compared to 20 healthy controls. RESULTS At enrolment, there were severe deficiencies in fibrinogen, FV and FVIII, with predicted recovery by 10.86, 11.75 and 13.14 h after antivenom, respectively. There were modest deficiencies in FX and FII, with predicted recovery by 20.57 and 32.49 h after antivenom, respectively. No changes were detected in FVII. Prothrombin time and aPTT were markedly prolonged with predicted recovery of aPTT by 12.58 h. Higher serum TSV concentrations were associated with greater deficiencies in FII, FV and FVIII, and greater prolongations in coagulation times. The median (range) serum TSV concentration was 57 (6-2295) ng/mL. CONCLUSIONS In tiger snake envenomed dogs, we detected a profound, TSV-concentration-related consumption of select coagulation factors, that rapidly recovered toward normal. These findings allowed further insight into tiger snake VICC in dogs.
Collapse
Affiliation(s)
- Louis Mark Eramanis
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| | - Andrew Woodward
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia
| | - Natalie Courtman
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia
| | - Dez Hughes
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia
| | - Andrew Padula
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Kenneth D Winkel
- Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, VIC, 3010, Australia.
| | - Manuel Boller
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia; Translational Research and Animal Clinical Trial Study Group (TRACTS), Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| |
Collapse
|
29
|
Nanizawa E, Tamaki Y, Sono R, Miyashita R, Hayashi Y, Kanbe A, Ito H, Ishikawa T. Short-term high-fat diet intake leads to exacerbation of concanavalin A-induced liver injury through the induction of procoagulation state. Biochem Biophys Rep 2020; 22:100736. [PMID: 32083190 PMCID: PMC7021552 DOI: 10.1016/j.bbrep.2020.100736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and high-fat diet (HFD) are known to cause proinflammatory and procoagulation states and suggested to become a risk of developing thromboembolic diseases. Non-alcoholic fatty liver disease (NAFLD) is usually associated with obesity and HFD, and a part of NAFLD is known to progress to nonalcoholic steatohepatitis (NASH), the pathogenesis of which has not been fully elucidated. In the current study, we examined the influence of short-term HFD on hepatic expression of the molecules related to inflammation, coagulation, metabolism, and cellular stresses from the perspective that HFD itself can be a risk for the development to NASH. In the analysis in short-term (4 days to 14 days) HFD-fed mice, we found out that HFD increased hepatic expression of IFN-γ, TNF-α, IL-10, monocyte chemotactic protein-1 (MCP-1), tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) mRNAs, and fibrin/fibrinogen deposition in the liver tissues. And it was suggested that metabolic alterations and endoplasmic reticulum (ER) stresses induced by the HFD intake were associated with this proinflammatory and procoagulation states. When we administered concanavalin A (Con A) to these HFD-fed mice, the extent of liver injury was dramatically exacerbated in HFD-fed mice. Heparin treatment to Con A-administered, HFD-fed mice (for 4 days) profoundly ameliorated the extent of liver injury. These suggest that even short-term of HFD intake induces proinflammatory and procoagulation states in the liver and thereby increases the susceptibility of the liver to circulating inflammatory stimuli. We think that it may explain a part of NASH pathogenesis.
Collapse
Affiliation(s)
- Eri Nanizawa
- Department of Radiological & Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Yuki Tamaki
- Department of Radiological & Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Reika Sono
- Department of Radiological & Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Rintaro Miyashita
- Department of Radiological & Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Yumi Hayashi
- Department of Radiological & Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Ayumu Kanbe
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City, 501-1194, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City, 501-1194, Japan
| | - Tetsuya Ishikawa
- Department of Radiological & Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikominami, Higashi-ku, Nagoya, 461-8673, Japan
| |
Collapse
|
30
|
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 37:e13-e21. [PMID: 28228446 DOI: 10.1161/atvbaha.117.308564] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sravya Kattula
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James R Byrnes
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Alisa S Wolberg
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
31
|
Golanov EV, Sharpe MA, Regnier-Golanov AS, Del Zoppo GJ, Baskin DS, Britz GW. Fibrinogen Chains Intrinsic to the Brain. Front Neurosci 2019; 13:541. [PMID: 31191233 PMCID: PMC6549596 DOI: 10.3389/fnins.2019.00541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bβ, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bβ, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 μM), TNF-α (100 nM), ATP-γ-S (100 μM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bβ increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes.
Collapse
Affiliation(s)
- Eugene V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Martyn A Sharpe
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | | | - Gregory J Del Zoppo
- Division of Hematology, University of Washington School of Medicine, Seattle, WA, United States
| | - David S Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
32
|
Clinicopathological and prognostic significance of preoperative plasma fibrinogen level in patients with upper urinary tract urothelial carcinoma: A retrospective tumor marker prognostic study. Int J Surg 2019; 65:88-93. [PMID: 30951871 DOI: 10.1016/j.ijsu.2019.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Accepted: 03/24/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE To retrospectively evaluate the prognostic value of preoperative plasma fibrinogen to predict oncological outcome and intravesical recurrence in upper urinary tract urothelial carcinoma. METHODS This retrospective study comprised 130 patients with non-metastatic upper urinary tract urothelial carcinoma who underwent surgery between June 2009 and June 2017 at a single center. Patients were categorized base on an optimal value of preoperative plasma fibrinogen. Progression-free and cancer-specific survival were assessed using Kaplan-Meier method. The associations between plasma fibrinogen and clinical outcomes were assessed with univariate and Multivariate analysis. RESULTS Elevated plasma fibrinogen was associated with advance tumor stage, high tumor grade and tumor size. No significant association was found between plasma fibrinogen and intravesical recurrence. Multivariate analysis revealed that plasma fibrinogen ≥3.602 g/L was an independent prognostic indicator for progression-free survival (HR = 2.18; 95% CI: 1.17-4.06; p = 0.01) and cancer-specific survival (HR = 2.2; 95% CI: 1.13-4.28; p = 0.02), as well as pathological T stage and tumor grade. CONCLUSIONS Elevated preoperative plasma fibrinogen is an independent unfavorable prognostic factor for oncological outcomes in patients with upper urinary tract urothelial carcinoma. However, there is no association between preoperative plasma fibrinogen and intravesical recurrence. As an effective and easily accessible biomarker, this parameter can be applied in pre-intervention risk stratification of upper urinary tract urothelial carcinoma.
Collapse
|
33
|
Pieters M, Wolberg AS. Fibrinogen and fibrin: An illustrated review. Res Pract Thromb Haemost 2019; 3:161-172. [PMID: 31011700 PMCID: PMC6462751 DOI: 10.1002/rth2.12191] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Since its discovery over 350 years ago, studies of fibrinogen have revealed remarkable characteristics. Its complex structure as a large (340 kDa) hexameric homodimer supports complex roles in hemostasis and homeostasis. Fibrinogen synthesis is regulated at the transcriptional and translational levels, undergoing both constitutive (basal) secretion from liver, and inducible upregulation in response to inflammatory events. In addition, alternative splicing yields fibrinogen variants with unique properties and contributions to coagulation biochemistry. During coagulation, fibrinogen conversion to fibrin occurs via thrombin‐mediated proteolytic cleavage that produces intermediate protofibrils and then mature fibers that provide remarkable biochemical and mechanical stability to clots. Fibrin formation, structure, and stability are regulated by various genetic, biochemical, and environmental factors, allowing for dynamic kinetics of fibrin formation and structure. Interactions between fibrinogen and/or fibrin and plasma proteins and receptors on platelets, leukocytes, endothelial cells, and other cells enable complex functions in hemostasis, thrombosis, pregnancy, inflammation, infection, cancer, and other pathologies. Disorders in fibrinogen concentration and/or function increase risk of bleeding, thrombosis, and infection. This illustrated review covers fundamental aspects of fibrinogen and fibrin biology, biochemistry, biophysics, epidemiology, and clinical applications. Continued efforts to enhance our understanding of fibrinogen and fibrin in these processes are likely to advance treatment and prevention of many human diseases.
Collapse
Affiliation(s)
- Marlien Pieters
- Center of Excellence for Nutrition North-West University Potchefstroom South Africa
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
34
|
Wei Q, Zhao L, Jiang L, Bi J, Yu Z, Zhao L, Song X, Sun M, Chen Y, Wei M. Prognostic relevance of miR-137 and its liver microenvironment regulatory target gene AFM in hepatocellular carcinoma. J Cell Physiol 2018; 234:11888-11899. [PMID: 30523640 DOI: 10.1002/jcp.27855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
MiR-137 has been identified as potential hepatocellular carcinoma (HCC) prognostic biomarkers. Highly relevant HCC prognostic biomarkers may be derived from combinations of miR-137 with its target genes involved in the regulation of liver microenvironment. This study aimed at the discovery of such a combination with improved HCC prognosis performance than miR-137 or its target gene alone in a significantly higher number of HCC patients than previous studies. Analysis of the differentially expressed micro RNAs (miRNAs) between cancer and noncancer tissues reconfirmed miR-137 to be among the most relevant prognostic miRNAs and the data of 375 HCC patients and 50 normal cases were from the Cancer Genome Atlas (TCGA) data sets. Target genes were identified by the established search methods and Kaplan-Meier survival analysis of HCC patients was used to evaluate the overall survival (OS) and recurrence-free survival (RFS). Cox proportional hazards regression indicated that the miR-137 and its target gene AFM combination is an independent prognostic factor for the OS and RFS in HCC. In vitro experiments validated that miR-137 could bind to 3'-untranslated region of the AFM and promote the invasion and metastasis of HCC cell lines. The expressions of miR-137 and its liver microenvironment regulatory target gene AFM in combination significantly correlated with HCC progression in a higher number of patients than in previous studies, which suggested their potential as prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
35
|
Lin Y, Liu Z, Qiu Y, Zhang J, Wu H, Liang R, Chen G, Qin G, Li Y, Zou D. Clinical significance of plasma D-dimer and fibrinogen in digestive cancer: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 44:1494-1503. [DOI: 10.1016/j.ejso.2018.07.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
|
36
|
Egnot NS, Barinas-Mitchell E, Criqui MH, Allison MA, Ix JH, Jenny NS, Wassel CL. An exploratory factor analysis of inflammatory and coagulation markers associated with femoral artery atherosclerosis in the San Diego Population Study. Thromb Res 2018; 164:9-14. [PMID: 29459247 PMCID: PMC5899938 DOI: 10.1016/j.thromres.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Several biomarkers of inflammation and coagulation have been implicated in lower extremity atherosclerosis. We utilized an exploratory factor analysis (EFA) to identify distinct factors derived from circulating inflammatory and coagulation biomarkers then examined the associations of these factors with measures of lower extremity subclinical atherosclerosis, including the ankle-brachial index (ABI), common and superficial femoral intima-media thickness (IMT), and atherosclerotic plaque presence, burden, and characteristics. METHODS The San Diego Population Study (SDPS) is a prospective, community-living, multi-ethnic cohort of 1103 men and women averaged age 70. Regression analysis was used to assess cross-sectional associations between the identified groupings of biomarkers (factors) and the ABI and femoral artery atherosclerosis measurements. RESULTS Two biomarker factors emerged from the factor analysis. Factor 1 consisting of C-reactive protein (CRP), interleukin (IL)-6, and fibrinogen was significantly associated with higher odds (OR = 1.99, p < 0.01) of a borderline ABI value (0.91-0.99), while Factor 2 containing D-dimer and pentraxin (PTX)-3 was significantly associated with higher common femoral artery (CFA) IMT (β = 0.23, p < 0.01) and lower ABI (β = -0.03, p < 0.01). CONCLUSIONS Two groupings of biomarkers were identified via EFA of seven circulating biomarkers of inflammation and coagulation. These distinct groups are differentially associated with markers of lower extremity subclinical atherosclerosis. Our findings suggest that high inflammatory and coagulation burden were better markers of more severe lower-extremity disease as indicated by low ABI rather than early atherosclerotic lesion development in the femoral artery.
Collapse
Affiliation(s)
- Natalie Suder Egnot
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Emma Barinas-Mitchell
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael H Criqui
- Division of Preventive Medicine, Department of Family Medicine and Public Health, School of Medicine, University of California-San Diego, La Jolla, CA, United States
| | - Matthew A Allison
- Division of Preventive Medicine, Department of Family Medicine and Public Health, School of Medicine, University of California-San Diego, La Jolla, CA, United States
| | - Joachim H Ix
- Division of Preventive Medicine, Department of Family Medicine and Public Health, School of Medicine, University of California-San Diego, La Jolla, CA, United States; Division of Nephrology, Department of Medicine, School of Medicine, University of California-San Diego, La Jolla, CA, United States
| | - Nancy S Jenny
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Christina L Wassel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
37
|
Callea F, Giovannoni I, Sari S, Guldal E, Dalgic B, Akyol G, Sogo T, Al-Hussaini A, Maggiore G, Bartuli A, Boldrini R, Francalanci P, Bellacchio E. Fibrinogen Gamma Chain Mutations Provoke Fibrinogen and Apolipoprotein B Plasma Deficiency and Liver Storage. Int J Mol Sci 2017; 18:ijms18122717. [PMID: 29244742 PMCID: PMC5751318 DOI: 10.3390/ijms18122717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
p.R375W (Fibrinogen Aguadilla) is one out of seven identified mutations (Brescia, Aguadilla, Angers, Al du Pont, Pisa, Beograd, and Ankara) causing hepatic storage of the mutant fibrinogen γ. The Aguadilla mutation has been reported in children from the Caribbean, Europe, Japan, Saudi Arabia, Turkey, and China. All reported children presented with a variable degree of histologically proven chronic liver disease and low plasma fibrinogen levels. In addition, one Japanese and one Turkish child had concomitant hypo-APOB-lipoproteinemia of unknown origin. We report here on an additional child from Turkey with hypofibrinogenemia due to the Aguadilla mutation, massive hepatic storage of the mutant protein, and severe hypo-APOB-lipoproteinemia. The liver biopsy of the patient was studied by light microscopy, electron microscopy (EM), and immunohistochemistry. The investigation included the DNA sequencing of the three fibrinogen and APOB-lipoprotein regulatory genes and the analysis of the encoded protein structures. Six additional Fibrinogen Storage Disease (FSD) patients with either the Aguadilla, Ankara, or Brescia mutations were investigated with the same methodology. A molecular analysis revealed the fibrinogen gamma p.R375W mutation (Aguadilla) but no changes in the APOB and MTTP genes. APOB and MTTP genes showed no abnormalities in the other study cases. Light microscopy and EM studies of liver tissue samples from the child led to the demonstration of the simultaneous accumulation of both fibrinogen and APOB in the same inclusions. Interestingly enough, APOB-containing lipid droplets were entrapped within the fibrinogen inclusions in the hepatocytic Endoplasmic Reticulum (ER). Similar histological, immunohistochemical, EM, and molecular genetics findings were found in the other six FSD cases associated with the Aguadilla, as well as with the Ankara and Brescia mutations. The simultaneous retention of fibrinogen and APOB-lipoproteins in FSD can be detected in routinely stained histological sections. The analysis of protein structures unraveled the pathomorphogenesis of this unexpected phenomenon. Fibrinogen gamma chain mutations provoke conformational changes in the region of the globular domain involved in the "end-to-end" interaction, thus impairing the D-dimer formation. Each monomeric fibrinogen gamma chain is left with an abnormal exposure of hydrophobic patches that become available for interactions with APOB and lipids, causing their intracellular retention and impairment of export as a secondary unavoidable phenomenon.
Collapse
Affiliation(s)
- Francesco Callea
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Isabella Giovannoni
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Sinan Sari
- Department Pediatric Gastroenterology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Esendagli Guldal
- Department Pathology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Buket Dalgic
- Department Pediatric Gastroenterology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Gulen Akyol
- Department Pathology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Tsuyoshi Sogo
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital 3-6-1, Shimosueyoshi, Tsurumi Ward, Yokohama City, Kanagawa, Japan.
| | - Abdulrahman Al-Hussaini
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University Riyadh 11525, Saudi Arabia.
| | - Giuseppe Maggiore
- Section of Pediatrics, Department of Medical Sciences, University of Ferrara, University Hospital Arcispedale Sant'Anna, 44100 Ferrara, Italy.
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Renata Boldrini
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Paola Francalanci
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Emanuele Bellacchio
- Genetics and Rare Diseases, Research Division, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| |
Collapse
|
38
|
Shiu YL, Chiu KH, Huynh TG, Liu PC, Liu CH. Plasma immune protein analysis in the orange-spotted grouper Epinephelus coioides: Evidence for altered expressions of immune factors associated with a choline-supplemented diet. FISH & SHELLFISH IMMUNOLOGY 2017; 65:235-243. [PMID: 28454818 DOI: 10.1016/j.fsi.2017.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to unravel the regulatory roles of choline in activating immune responses and disease resistance of the orange-spotted grouper Epinephelus coioides. Fish were fed a choline-supplemented diet at 1 g kg-1 of feed for 30 days. Fish fed a fish meal basal diet without choline-supplement served as controls. At the end of the feeding trial, fish were challenged with Vibrio alginolyticus. Meanwhile, plasma proteomics of fish in each group were also evaluated by two-dimensional gel electrophoresis (2-DE), and differentially expressed proteins were identified by tandem mass spectrophotometry (MS/MS), then a Western blot analysis or real-time polymerase chain reaction was used to confirm differential expressions of immune-enhancing proteins. Results showed that choline significantly increased survival of E. coioides 48 days after being injected with V. alginolyticus. From maps of plasma proteins, a comparative analysis between the control and choline groups revealed that 111 spots matched, with 26 altered expression spots in the choline group. Of these 26 spots, 16 were upregulated and 10 downregulated. After protein identification by reverse-phase nano-high-performance liquid chromatography-electrospray ionization MS/MS analysis, eight of 26 proteins were found to be immune-related proteins, all of which were upregulated, including complement 3 (C3), alpha-2-macroglobulin-P-like isoform (A2M), fibrinogen beta chain precursor (FBG), and immunoglobulin heavy constant mu (Ighm) proteins. Expression of the A2M protein and A2M enzyme activity in plasma of fish fed choline significantly increased compared to the control group. Additionally, A2M messenger (m)RNA transcripts were also upregulated in the liver and kidneys. Significantly higher C3 expressions at both the mRNA and protein levels were detected in the liver of fish in the choline group. Moreover, FBG gene expressions in the liver and kidneys significantly increased, while Ighm increased in the kidneys and spleen of fish in the choline group. Our results suggest that dietary administration of choline can protect grouper against bacterial infections through activating the complement system, thereby inducing antiprotease activity and natural antibodies that play important roles in the innate immune system of fish.
Collapse
Affiliation(s)
- Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Kuo-Hsun Chiu
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Truong-Giang Huynh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan; College of Aquaculture and Fisheries, CanTho University, CanTho, Vietnam
| | - Ping-Chung Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
39
|
Zhou N, Xu P, Zhou M, Xu Y, Li P, Chen B, Ouyang J, Zhou R. A novel fibrinogen variant: dysfibrinogenemia associated with γAsp185Asn substitution. J Thromb Thrombolysis 2017; 44:139-144. [PMID: 28425010 DOI: 10.1007/s11239-017-1496-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To identify the pathogenesis of a Chinese woman diagnosed with dysfibrinogenemia. A patient from Nanjing presented with a low plasma concentration of fibrinogen and a normal level of antigen of fibrinogen. This abnormality was also detected in her son. To detect whether the genetic mutation was responsible for the dysfibrinogenemia, genomic DNA was extracted and amplified by polymerase chain reaction, and DNA sequencing was performed on the purified PCR products. Restriction fragment length polymorphism (RFLP), molecular modeling and homologous sequences alignment were performed. Two heterozygous missense variants, AαArg16His and γAsp185Asn, were discovered in the proband. Only the former was detected in her son. AαArg16His had been reported by other teams, and γAsp185Asn was identified first in our study as a novel variant. RFLP was performed and indicated that the novel failed to be found in normal subjects. Furthermore, it was suggested to be responsible for dysfibrinogenemia depending on the molecular modeling and homologous sequence alignment. The heterozygous AαArg16His and γAsp185Asn identified in the study probably underlie the dysfibrinogenemia in this pedigree, with the latter being identified for the first time.
Collapse
Affiliation(s)
- Na Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Min Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Yong Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Ping Li
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Bin Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Rongfu Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
40
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
41
|
Amri Y, Kallel C, Becheur M, Dabboubi R, Elloumi M, Belaaj H, Kammoun S, Messaoud T, de Moerloose P, Toumi NEH. Hypodysfibrinogenemia: A novel abnormal fibrinogen associated with bleeding and thrombotic complications. Clin Chim Acta 2016; 460:55-62. [DOI: 10.1016/j.cca.2016.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
42
|
Fibrinogen and the Severity of Coronary Atherosclerosis among Adults with and without Statin Treatment: Lipid as a mediator. Heart Lung Circ 2016; 25:558-67. [PMID: 26839166 DOI: 10.1016/j.hlc.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/24/2015] [Accepted: 01/02/2016] [Indexed: 12/30/2022]
|
43
|
Kagami K, Yamazaki R, Minami T, Okumura N, Morishita E, Fujiwara H. Familial discrepancy of clinical outcomes associated with fibrinogen Dorfen: A case of huge genital hematoma after episiotomy. J Obstet Gynaecol Res 2016; 42:722-725. [DOI: 10.1111/jog.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/10/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kyosuke Kagami
- Departments of Obstetrics and Gynecology; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| | - Rena Yamazaki
- Departments of Obstetrics and Gynecology; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| | - Tetsuya Minami
- Department of Radiology; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| | - Nobuo Okumura
- Department of Clinical Laboratory Investigation; Graduate School of Medicine, Shinshu University; Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Sciences; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| | - Hiroshi Fujiwara
- Departments of Obstetrics and Gynecology; Kanazawa University Graduate School of Medical Science; Kanazawa Japan
| |
Collapse
|
44
|
Sari S, Yilmaz G, Gonul II, Dalgic B, Akyol G, Giovannoni I, Francalanci P, Callea F. Fibrinogen storage disease and cirrhosis associated with hypobetalipoproteinemia owing to fibrinogen Aguadilla in a Turkish child. Liver Int 2015; 35:2501-5. [PMID: 26176881 DOI: 10.1111/liv.12914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/29/2015] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Fibrinogen gene mutations can rarely result in hepatic fibrinogen storage disease (HFSD). Herein, we report on the first Turkish family carrying the mutation p.Arg375Trp (fibrinogen Aguadilla) in the γ-chain of the fibrinogen (FGG) gene. METHODS Clinical, laboratory and histopathological findings of the patient were documented. Molecular study of fibrinogen gene was performed in the patient and her family members. RESULTS The proband was 5 years old girl presenting with advanced liver fibrosis of unknown origin. The child had very low plasma levels of fibrinogen and hypobetalipoproteinemia. Immunomorphologic and electron microscopic studies showed selective and exclusive accumulation of fibrinogen within the endoplasmic reticulum in liver biopsy of the patient. Patient, mother, two sisters and one brother carried p.Arg375Trp mutation (fibrinogen Aguadilla) in FGG gene. The patient was treated with ursodeoxycholic acid and carbamazepine. After 3 months, carbamazepine was suspended upon family decision and unresponsiveness of carbamazepine. CONCLUSIONS HFSD is characterized by hypofibrinogenemia and accumulation of abnormal fibrinogen within hepatocytes. In addition, hypofibrinogenemia is associated with hypobetalipoproteinemia in Aguadilla mutation.
Collapse
Affiliation(s)
- Sinan Sari
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Guldal Yilmaz
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ipek I Gonul
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gulen Akyol
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Isabella Giovannoni
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Callea
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
45
|
Dysfibrinogenaemia associated with a novel heterozygous mutation in FGB (c.680delG) and a mild clinical history of bleeding. Blood Coagul Fibrinolysis 2015; 26:231-2. [PMID: 25629419 DOI: 10.1097/mbc.0000000000000196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Asselta R, Robusto M, Braidotti P, Peyvandi F, Nastasio S, D'Antiga L, Perisic VN, Maggiore G, Caccia S, Duga S. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen γ-module. J Thromb Haemost 2015; 13:1459-67. [PMID: 26039544 DOI: 10.1111/jth.13021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/13/2015] [Indexed: 08/31/2023]
Abstract
BACKGROUND Quantitative fibrinogen deficiencies (hypofibrinogenemia and afibrinogenemia) are rare congenital disorders characterized by low/unmeasurable plasma fibrinogen antigen levels. Their genetic basis is invariably represented by mutations within the fibrinogen genes (FGA, FGB and FGG coding for the Aα, Bβ and γ chains). Currently, only four mutations (p.Gly284Arg, p.Arg375Trp, delGVYYQ 346-350, p.Thr314Pro), all affecting the fibrinogen γ chain, have been reported to cause fibrinogen storage disease (FSD), a disorder characterized by protein aggregation, endoplasmic reticulum retention and hypofibrinogenemia. OBJECTIVES To investigate the genetic basis of FSD in two hypofibrinogenemic patients. METHODS The mutational screening of the fibrinogen genes was performed by direct DNA sequencing. The impact of identified mutations on fibrinogen structure was investigated by in-silico molecular modeling. Liver histology was evaluated by light microscopy, electron microscopy and immunocytochemistry. RESULTS Here, we describe two hypofibrinogenemic children with persistent abnormal liver function parameters. Direct sequencing of the coding portion of fibrinogen genes disclosed two novel FGG missense variants (p.Asp316Asn, fibrinogen Pisa; p.Gly366Ser, fibrinogen Beograd), both present in the heterozygous state and affecting residues located in the fibrinogen C-terminal γ-module. Liver sections derived from biopsies of the two patients were examined by immunocytochemical analyses, revealing hepatocyte cytoplasmic inclusions immunoreactive to anti-fibrinogen antibodies. CONCLUSIONS Our work strongly confirms the clustering of mutations causing FSD in the fibrinogen γ chain between residues 284 and 375. Based on an in-depth structural analysis of all FSD-causing mutations and on their resemblance to mutations leading to serpinopathies, we also comment on a possible mechanism explaining fibrinogen polymerization within hepatocytes.
Collapse
Affiliation(s)
- R Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - M Robusto
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - P Braidotti
- Pathology Department, S. Paolo Hospital, Milan, Italy
| | - F Peyvandi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Luigi Villa Foundation, Milan, Italy
| | - S Nastasio
- Department of Clinical and Experimental Medicine, University of Pisa, Pediatric Gastroenterology, University Hospital Santa Chiara, Pisa, Italy
| | - L D'Antiga
- Paediatric Liver, GI and Transplantation, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - V N Perisic
- Department of Gastroenterology and Hepatology, University Children's Hospital, Belgrade, Serbia
| | - G Maggiore
- Department of Clinical and Experimental Medicine, University of Pisa, Pediatric Gastroenterology, University Hospital Santa Chiara, Pisa, Italy
| | - S Caccia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Milan, Italy
| | - S Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
47
|
Rangel-Zúñiga OA, Camargo A, Marin C, Peña-Orihuela P, Pérez-Martínez P, Delgado-Lista J, González-Guardia L, Yubero-Serrano EM, Tinahones FJ, Malagón MM, Pérez-Jiménez F, Roche HM, López-Miranda J. Proteome from patients with metabolic syndrome is regulated by quantity and quality of dietary lipids. BMC Genomics 2015; 16:509. [PMID: 26152126 PMCID: PMC4493955 DOI: 10.1186/s12864-015-1725-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/26/2015] [Indexed: 01/22/2023] Open
Abstract
Background Metabolic syndrome is a multi-component disorder associated to a high risk of cardiovascular disease. Its etiology is the result of a complex interaction between genetic and environmental factors, including dietary habits. We aimed to identify the target proteins modulated by the long-term consumption of four diets differing in the quality and quantity of lipids in the whole proteome of peripheral blood mononuclear cells (PBMC). Results A randomized, controlled trial conducted within the LIPGENE study assigned 24 MetS patients for 12 weeks each to 1 of 4 diets: a) high-saturated fatty acid (HSFA), b) high-monounsaturated fatty acid (HMUFA), c) low-fat, high-complex carbohydrate diets supplemented with placebo (LFHCC) and d) low-fat, high-complex carbohydrate diets supplemented with long chain (LC) n-3 polyunsaturated fatty acids (PUFA) (LFHCC n-3). We analyzed the changes induced in the proteome of both nuclear and cytoplasmic fractions of PBMC using 2-D proteomic analysis. Sixty-seven proteins were differentially expressed after the long-term consumption of the four diets. The HSFA diet induced the expression of proteins responding to oxidative stress, degradation of ubiquitinated proteins and DNA repair. However, HMUFA, LFHCC and LFHCC n-3 diets down-regulated pro-inflammatory and oxidative stress-related proteins and DNA repairing proteins. Conclusion The long-term consumption of HSFA, compared to HMUFA, LFHCC and LFHCC n-3, seems to increase the cardiovascular disease (CVD) risk factors associated with metabolic syndrome, such as inflammation and oxidative stress, and seem lead to DNA damage as a consequence of high oxidative stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1725-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oriol Alberto Rangel-Zúñiga
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Camargo
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carmen Marin
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Patricia Peña-Orihuela
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Lorena González-Guardia
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena M Yubero-Serrano
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. .,Endocrinology and Nutrition Service, Hospital Virgen de la Victoria, Málaga, Spain.
| | - María M Malagón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. .,Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Cordoba, Spain.
| | - Francisco Pérez-Jiménez
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Helen M Roche
- UCD Institute of Food & Health/UCD Conway Institute, School of Public Health and Population Sciences, University College Dublin, Dublin, Ireland.
| | - José López-Miranda
- Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n. 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
48
|
Hollis AR, Wilkins PA, Tennent-Brown B, Palmer JE, Boston RC. The effect of intravenous fresh frozen plasma administration on fibrinogen and albumin concentrations in sick neonatal foals. EQUINE VET EDUC 2015. [DOI: 10.1111/eve.12386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A. R. Hollis
- Department of Clinical Studies; New Bolton Center; University of Pennsylvania School of Veterinary Medicine; Kennett Square USA
| | - P. A. Wilkins
- Department of Clinical Studies; New Bolton Center; University of Pennsylvania School of Veterinary Medicine; Kennett Square USA
| | - B. Tennent-Brown
- Department of Clinical Studies; New Bolton Center; University of Pennsylvania School of Veterinary Medicine; Kennett Square USA
| | - J. E. Palmer
- Department of Clinical Studies; New Bolton Center; University of Pennsylvania School of Veterinary Medicine; Kennett Square USA
| | - R. C. Boston
- Department of Clinical Studies; New Bolton Center; University of Pennsylvania School of Veterinary Medicine; Kennett Square USA
| |
Collapse
|
49
|
Casini A, Sokollik C, Lukowski SW, Lurz E, Rieubland C, de Moerloose P, Neerman-Arbez M. Hypofibrinogenemia and liver disease: a new case of Aguadilla fibrinogen and review of the literature. Haemophilia 2015; 21:820-7. [PMID: 25990487 DOI: 10.1111/hae.12719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Fibrinogen storage disease (FSD) is characterized by hypofibrinogenemia and hepatic inclusions due to impaired release of mutant fibrinogen which accumulates and aggregates in the hepatocellular endoplasmic reticulum. Liver disease is variable. AIM We studied a new Swiss family with fibrinogen Aguadilla. In order to understand the molecular peculiarity of FSD mutations, fibrinogen Aguadilla and the three other causative mutations, all located in the γD domain, were modelled. METHOD The proband is a Swiss girl aged 4 investigated because of fatigue and elevated liver enzymes. Protein structure models were prepared using the Swiss-PdbViewer and POV-Ray software. RESULTS The proband was found to be heterozygous for fibrinogen Aguadilla: FGG Arg375Trp. Familial screening revealed that her mother and maternal grandmother were also affected and, in addition, respectively heterozygous and homozygous for the hereditary haemochromatosis mutation HFE C282Y. Models of backbone and side-chain interactions for fibrinogen Aguadilla in a 10-angstrom region revealed the loss of five H-bonds and the gain of one H-bond between structurally important amino acids. The structure predicted for fibrinogen Angers showed a novel helical structure in place of hole 'a' on the outer edge of γD likely to have a negative impact on fibrinogen assembly and secretion. CONCLUSION The mechanism by which FSD mutations generate hepatic intracellular inclusions is still not clearly established although the promotion of aberrant intermolecular strand insertions is emerging as a likely cause. Reporting new cases is essential in the light of novel opportunities of treatment offered by increasing knowledge of the degradation pathway and autophagy.
Collapse
Affiliation(s)
- A Casini
- Angiology and Haemostasis, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - C Sokollik
- Paediatric Gastroenterology, Hepatology and Nutrition, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - S W Lukowski
- Department of Genetic Medicine and Development, University Medical School of Geneva, Geneva, Switzerland
| | - E Lurz
- Paediatric Gastroenterology, Hepatology and Nutrition, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - C Rieubland
- Division of Human Genetics, Department of Paediatrics, Inselspital, Bern, Switzerland
| | - P de Moerloose
- Angiology and Haemostasis, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - M Neerman-Arbez
- Angiology and Haemostasis, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, University Medical School of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Asselta R, Robusto M, Platé M, Santoro C, Peyvandi F, Duga S. Molecular characterization of 7 patients affected by dys- or hypo-dysfibrinogenemia: Identification of a novel mutation in the fibrinogen Bbeta chain causing a gain of glycosylation. Thromb Res 2015; 136:168-74. [PMID: 26006300 DOI: 10.1016/j.thromres.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/09/2015] [Accepted: 05/10/2015] [Indexed: 12/17/2022]
Abstract
Fibrinogen is a hexameric glycoprotein consisting of two sets of three polypeptides (the Aα, Bβ, and γ chains, encoded by the three genes FGA, FGB, and FGG). It is involved in the final phase of the coagulation process, being the precursor of the fibrin monomers necessary for the formation of the hemostatic plug. Rare inherited fibrinogen disorders can manifest as quantitative deficiencies, qualitative defects, or both. In particular, dysfibrinogenemia and hypo-dysfibrinogenemia are characterized by reduced functional activity associated with normal or reduced antigen levels, and are usually determined by heterozygous mutations affecting any of the three fibrinogen genes. In this study, we investigated the genetic basis of dys- and hypo-dysfibrinogenemia in seven unrelated patients. Mutational screening disclosed six different variants, two of which novel (FGB-p.Asp185Asn and FGG-p.Asn230Lys). The molecular characterization of the FGG-p.Asn230Lys mutation, performed by transient expression experiments of the recombinant mutant protein, demonstrated that it induces an almost complete impairment in fibrinogen secretion, according to a molecular mechanism often associated with quantitative fibrinogen disorders. Conversely, the FGB-p.Asp185Asn variant was demonstrated to be a gain-of-glycosylation mutation leading to a hyperglycosylation of the Bβ chain, not affecting fibrinogen assembly and secretion. To our knowledge, this is the second gain-of-glycosylation mutation involving the FGB gene.
Collapse
Affiliation(s)
- Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano Mi, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano Mi, Italy.
| | - Michela Robusto
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano Mi, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano Mi, Italy
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Cristina Santoro
- Hematology, Department of Cellular Biotechnology and Hematology, Sapienza University of Rome
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy; Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and Luigi Villa Foundation, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano Mi, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano Mi, Italy
| |
Collapse
|