1
|
Gurevitch G, Lubianiker N, Markovits T, Or-Borichev A, Sharon H, Fine NB, Fruchtman-Steinbok T, Keynan JN, Shahar M, Friedman A, Singer N, Hendler T. Amygdala self-neuromodulation capacity as a window for process-related network recruitment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240186. [PMID: 39428877 PMCID: PMC11491848 DOI: 10.1098/rstb.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities. This underscores the importance of understanding the mechanisms behind successful neuromodulation (i.e. capacity). This study aimed to investigate the establishment and neural correlates of neuromodulation capacity using data from repeated sessions of amygdala electrical fingerprint (Amyg-EFP)-NF and post-training functional magnetic resonance imaging (fMRI)-NF sessions. Results from 97 participants (healthy controls and post-traumatic stress disorder and fibromyalgia patients) revealed increased Amyg-EFP neuromodulation capacity over training, associated with post-training amygdala-fMRI modulation capacity and improvements in alexithymia. Individual differenaces in this capacity were associated with pre-training amygdala reactivity and initial neuromodulation success. Additionally, amygdala downregulation during fMRI-NF co-modulated with other regions such as the posterior insula and parahippocampal gyrus. This combined modulation better explained EFP-modulation capacity and improvement in alexithymia than the amygdala modulation alone, suggesting the relevance of this broader network to gained capacity. These findings support a network-based approach for NF and highlight the need to consider individual differences in brain function and modulation capacity to optimize NF interventions. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Guy Gurevitch
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Psychology Department, Yale University, New Haven, CT, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Taly Markovits
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ayelet Or-Borichev
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Haggai Sharon
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- Department of Anesthesia and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Naomi B. Fine
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Jacob N. Keynan
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Moni Shahar
- The Center for AI and Data Science, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Alon Friedman
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Neomi Singer
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
2
|
Ren L, Fan Y, Wu W, Qian Y, He M, Li X, Wang Y, Yang Y, Wen X, Zhang R, Li C, Chen X, Hu J. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur J Pharmacol 2024; 983:176994. [PMID: 39271040 DOI: 10.1016/j.ejphar.2024.176994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Anxiety disorders are one of the most prevalent mental health conditions worldwide, imposing a significant burden on individuals affected by them and society in general. Current research endeavors aim to enhance the effectiveness of existing anxiolytic drugs and reduce their side effects through optimization or the development of new treatments. Several anxiolytic novel drugs have been produced as a result of discovery-focused research. However, many drug candidates that show promise in preclinical rodent model studies fail to offer any substantive clinical benefits to patients. This review provides an overview of the diagnosis and classification of anxiety disorders together with a systematic review of anxiolytic drugs with a focus on their targets, therapeutic applications, and side effects. It also provides a concise overview of the constraints and disadvantages associated with frequently administered anxiolytic drugs. Additionally, the study comprehensively reviews animal models used in anxiety studies and their associated molecular mechanisms, while also summarizing the brain circuitry related to anxiety. In conclusion, this article provides a valuable foundation for future anxiolytic drug discovery efforts.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China.
| | - Yue Fan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Wenjian Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yuanxin Qian
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Miao He
- College of Life Sciences and Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xinlong Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yizhu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yu Yang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xuetong Wen
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Ruijia Zhang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Chenhang Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Jingqing Hu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Mahajan A, Stoub T, Gonzalez DA, Stebbins G, Gray G, Warner‐Rosen T, Sugar D, Pylypyuk C, Yu M, Comella C. Understanding Anxiety in Cervical Dystonia: An Imaging Study. Mov Disord Clin Pract 2024; 11:1008-1012. [PMID: 38747154 PMCID: PMC11329561 DOI: 10.1002/mdc3.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND Anxiety may precede motor symptoms in cervical dystonia (CD) and is associated with an earlier onset of dystonia. Our understanding of anxiety in CD is inadequate. OBJECTIVE To investigate brain networks associated with anxiety in CD. METHODS Twenty-six subjects with idiopathic CD underwent MRI Brain without contrast. Correlational tractography was derived using Diffusion MRI connectometry. Quantitative Anisotropy (QA) was used in deterministic diffusion fiber tracking. Correlational tractography was then used to correlate QA with State-Trait Anxiety Inventory (STAI) state (STAI-S) and trait (STAI-T) subscales. RESULTS Connectometry analysis showed direct correlation between state anxiety and QA in tracts from amygdala to thalamus/ pulvinar bilaterally, and trait anxiety and QA in tracts from amygdala to motor cortex, sensorimotor cortex and parietal association area bilaterally (FDR ≤0.05). CONCLUSION Our efforts to map anxiety to brain networks in CD highlight the role of the amygdala in the pathophysiology of anxiety in CD.
Collapse
Affiliation(s)
- Abhimanyu Mahajan
- Gardner Family Center For Parkinson's Disease and Movement DisordersUniversity of CincinnatiCincinnatiOhioUSA
| | - Travis Stoub
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - David A. Gonzalez
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Glenn Stebbins
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Gabrielle Gray
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Tila Warner‐Rosen
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Dana Sugar
- Division of Movement disorders, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Caroline Pylypyuk
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Mandy Yu
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Cynthia Comella
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
4
|
Kéri S, Kancsev A, Kelemen O. Algorithm-Based Modular Psychotherapy Alleviates Brain Inflammation in Generalized Anxiety Disorder. Life (Basel) 2024; 14:887. [PMID: 39063640 PMCID: PMC11278507 DOI: 10.3390/life14070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Generalized anxiety disorder (GAD) is marked by prolonged and excessive worry, physical signs of anxiety, and associated neuroinflammation. Traditional treatments, like pharmacotherapy and cognitive-behavioral therapy (CBT), often leave residual symptoms and have high relapse rates. This study aimed to explore the efficacy of algorithm-based modular psychotherapy (MoBa), a combination of CBT and mindfulness meditation as validated by the research domain criteria (RDoC), in reducing anxiety and neuroinflammation in GAD. A longitudinal design was used, with 50 patients with GAD undergoing a 12-week MoBa treatment. The patients were investigated pre- and post-treatment using MRI to measure neuroinflammatory markers (DBSI-RF, diffusion-basis spectral imaging-based restricted fraction) in the hippocampus, amygdala, and neocortex. Clinical symptoms were assessed using the Hamilton Anxiety Rating Scale (HAM-A) and the Generalized Anxiety Disorder 7-item scale (GAD-7). Results indicated significant reductions in both anxiety symptoms and MRI RF values in the amygdala, suggesting decreased neuroinflammation. A reduction in anxiety was associated with the amelioration of neuroinflammation in the amygdala. These results suggest that MoBa is effective in alleviating both the psychological and neuroinflammatory aspects of GAD, offering a promising personalized treatment approach. Future research should focus on long-term effects and the mechanisms through which MoBa impacts neuroinflammation and anxiety.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Sztárai Institute, University of Tokaj, 3944 Sárospatak, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Alexander Kancsev
- Department of Psychiatry and Psychotherapy, András Jósa Hospital, 4400 Nyíregyháza, Hungary;
| | - Oguz Kelemen
- Department of Behavioral Sciences, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Department of Psychiatry and Psychotherapy, Bács-Kiskun County Hospital, 6000 Kecskemét, Hungary
| |
Collapse
|
5
|
Tye KM, Miller EK, Taschbach FH, Benna MK, Rigotti M, Fusi S. Mixed selectivity: Cellular computations for complexity. Neuron 2024; 112:2289-2303. [PMID: 38729151 PMCID: PMC11257803 DOI: 10.1016/j.neuron.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.
Collapse
Affiliation(s)
- Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, La Jolla, CA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, San Diego, CA, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Felix H Taschbach
- Salk Institute for Biological Studies, La Jolla, CA, USA; Biological Science Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Marcus K Benna
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Benedetti V, Giganti F, Cotugno M, Noferini C, Gavazzi G, Gronchi G, Righi S, Meneguzzo F, Becheri FR, Li Q, Viggiano MP. Interplay among Anxiety, Digital Environmental Exposure, and Cognitive Control: Implications of Natural Settings. Behav Sci (Basel) 2024; 14:323. [PMID: 38667119 PMCID: PMC11047410 DOI: 10.3390/bs14040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Inhibitory control performance may differ greatly as a function of individual differences such as anxiety. Nonetheless, how cognitive control proficiency might be influenced by exposure to various environments and how anxiety traits might impact these effects remain unexplored. A cohort of thirty healthy volunteers participated in the study. Participants performed a Go/No-Go task before exposure to a 'forest' and 'urban' virtual environment, in a counterbalanced design, before repeating the GNG task. The State-Trait Anxiety Inventory (STAI) was finally filled-in. Our findings unveiled an initial negative correlation between anxiety trait levels and GNG task performance, consistent with the established literature attributing difficulties in inhibitory functionality to anxiety. Additionally, different environmental exposures reported opposite trends. Exposure to the 'forest' environment distinctly improved the GNG performance in relation to anxiety traits, while the 'urban' setting demonstrated adverse effects on task performance. These results underscore the intricate relationship among cognitive control, environmental exposure, and trait anxiety. In particular, our findings highlight the potential of natural settings, such as forests, to mitigate the impact of anxiety on inhibition. This might have implications for interventions aimed at improving cognitive control.
Collapse
Affiliation(s)
- Viola Benedetti
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| | - Maria Cotugno
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| | - Chiara Noferini
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Gioele Gavazzi
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| | - Giorgio Gronchi
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| | - Stefania Righi
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| | - Francesco Meneguzzo
- Institute of Bioeconomy, National Research Council, 10 Via Madonna del Piano, Sesto Fiorentino, 50019 Florence, Italy;
- Central Scientific Committee, Italian Alpine Club, 19 Via E. Petrella, 20124 Milano, Italy
| | | | - Qing Li
- Department of Rehabilitation and Physical Medicine, Graduate School of Medicine—Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan;
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), University of Florence, 50135 Florence, Italy; (V.B.); (F.G.); (M.C.); (C.N.); (G.G.); (G.G.); (S.R.)
| |
Collapse
|
7
|
Jiang M, Ding R, Zhao Y, Xu J, Hao L, Chen M, Tian T, Tan S, Gao JH, He Y, Tao S, Dong Q, Qin S. Development of the triadic neural systems involved in risky decision-making during childhood. Dev Cogn Neurosci 2024; 66:101346. [PMID: 38290421 PMCID: PMC10844040 DOI: 10.1016/j.dcn.2024.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Risk-taking often occurs in childhood as a compex outcome influenced by individual, family, and social factors. The ability to govern risky decision-making in a balanced manner is a hallmark of the integrity of cognitive and affective development from childhood to adulthood. The Triadic Neural Systems Model posits that the nuanced coordination of motivational approach, avoidance and prefrontal control systems is crucial to regulate adaptive risk-taking and related behaviors. Although widely studied in adolescence and adulthood, how these systems develop in childhood remains elusive. Here, we show heterogenous age-related differences in the triadic neural systems involved in risky decision-making in 218 school-age children relative to 80 young adults. Children were generally less reward-seeking and less risk-taking than adults, and exhibited gradual increases in risk-taking behaviors from 6 to 12 years-old, which are associated with age-related differences in brain activation patterns underlying reward and risk processing. In comparison to adults, children exhibited weaker activation in control-related prefrontal systems, but stronger activation in reward-related striatal systems. Network analyses revealed that children showed greater reward-related functional connectivity within and between the triadic systems. Our findings support an immature and unbalanced developmental view of the core neurocognitive systems involved in risky decision-making and related behaviors in middle to late childhood.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Rui Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanli Zhao
- Beijing HuiLongGuan Hospital, Peking University, Beijing 100096, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing 400715, China; Qiongtai Normal University Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Haikou 571127, China
| | - Menglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ting Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 100069, China.
| |
Collapse
|
8
|
Beckmann FE, Gruber H, Seidenbecher S, Schirmer ST, Metzger CD, Tozzi L, Frodl T. Specific alterations of resting-state functional connectivity in the triple network related to comorbid anxiety in major depressive disorder. Eur J Neurosci 2024; 59:1819-1832. [PMID: 38217400 DOI: 10.1111/ejn.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
The brain's default mode network (DMN) and the executive control network (ECN) switch engagement are influenced by the ventral attention network (VAN). Alterations in resting-state functional connectivity (RSFC) within this so-called triple network have been demonstrated in patients with major depressive disorder (MDD) or anxiety disorders (ADs). This study investigated alterations in the RSFC in patients with comorbid MDD and ADs to better understand the pathophysiology of this prevalent group of patients. Sixty-eight participants (52.9% male, mean age 35.3 years), consisting of 25 patients with comorbid MDD and ADs (MDD + AD), 20 patients with MDD only (MDD) and 23 healthy controls (HCs) were investigated clinically and with 3T resting-state fMRI. RSFC utilizing a seed-based approach within the three networks belonging to the triple network was compared between the groups. Compared with HC, MDD + AD showed significantly reduced RSFC between the ECN and the VAN, the DMN and the VAN and within the ECN. No differences could be found for the MDD group compared with both other groups. Furthermore, symptom severity and medication status did not affect RSFC values. The results of this study show a distinct set of alterations of RSFC for patients with comorbid MDD and AD compared with HCs. This set of dysfunctions might be related to less adequate switching between the DMN and the ECN as well as poorer functioning of the ECN. This might contribute to additional difficulties in engaging and utilizing consciously controlled emotional regulation strategies.
Collapse
Affiliation(s)
- Fienne-Elisa Beckmann
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hanna Gruber
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Thérèse Schirmer
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
9
|
Burrows CA, Lasch C, Gross J, Girault JB, Rutsohn J, Wolff JJ, Swanson MR, Lee CM, Dager SR, Cornea E, Stephens R, Styner M, John TS, Pandey J, Deva M, Botteron KN, Estes AM, Hazlett HC, Pruett JR, Schultz RT, Zwaigenbaum L, Gilmore JH, Shen MD, Piven J, Elison JT. Associations between early trajectories of amygdala development and later school-age anxiety in two longitudinal samples. Dev Cogn Neurosci 2024; 65:101333. [PMID: 38154378 PMCID: PMC10792190 DOI: 10.1016/j.dcn.2023.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.
Collapse
Affiliation(s)
| | - Carolyn Lasch
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Julia Gross
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jessica B Girault
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joshua Rutsohn
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Meghan R Swanson
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Chimei M Lee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen R Dager
- Deptartment of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Emil Cornea
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca Stephens
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tanya St John
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Meera Deva
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annette M Estes
- University of Washington Autism Center, University of Washington, Seattle, WA, USA; Deptartment of Speech and Hearing Science, University of Washington, Seattle, WA, USA
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jed T Elison
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
11
|
Raeder R, Clayton NS, Boeckle M. Narrative-based autobiographical memory interventions for PTSD: a meta-analysis of randomized controlled trials. Front Psychol 2023; 14:1215225. [PMID: 37829075 PMCID: PMC10565228 DOI: 10.3389/fpsyg.2023.1215225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction The aim of this systematic review and meta-analysis is to evaluate the efficacy of narrative-based interventions (NBIs) for individuals with post-traumatic stress disorder (PTSD). Investigating the efficacy of NBIs should yield insight on autobiographical memory (AM) phenomena implicated in PTSD onset and recovery, leading to improved intervention protocols. Furthermore, by analyzing how NBIs influence maladaptive AM distortions, we hope to shed light on the theorized narrative architecture of AM more generally. Methods A systematic literature search was conducted according to PRISMA and Cochrane guidelines in MEDLINE, EMBASE, PsychINFO, and PubMed. Additional studies were then also identified from the reference lists of other relevant literature and considered for inclusion. Studies were then evaluated for adherence to the inclusion/exclusion criteria and assessed for risk of bias. Various meta-analyses were performed on included studies to understand how NBIs may or may not influence the overall effect size of treatment. Results The results of the meta-analysis of 35 studies, involving 2,596 participants, suggest that NBIs are a viable and effective treatment option for PTSD, yielding a statistically significant within-group effect size and decrease in PTSD symptomatology at both post-treatment [g = 1.73, 95% CI (1.23-2.22)] and 3-9 month follow-up assessments [g = 2.33, 95% CI (1.41-3.26)]. Furthermore, the difference in effect sizes between NBIs compared to active and waitlist controls was statistically significant, suggesting that NBIs are superior. Sub-analyses showed that NET provided a stronger effect size than FORNET, which may be due to the nature of the traumatic event itself and not the treatment protocol. While evidence of small study and publication bias was present, a weight-function model and trim-and-fill method suggested it was not influencing the overall results. Discussion This meta-analysis presents strong evidence supporting the use of NBIs in the treatment of PTSD. Clear similarities can be identified between NBIs included in this analysis that make them distinct from non-NBI interventions, which are reviewed in the discussion. Controlled comparisons between NBIs and non-NBIs would help to further understand AM mechanisms of action implicated in recovery and how various interventions facilitate them. Future research should also aim to elucidate the full range of AM impairment in individuals with PTSD to gain insight on how other memory capabilities, such as the ability to mentally simulate the future, are implicated in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Robert Raeder
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola S. Clayton
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Markus Boeckle
- Scientific Working Group, Karl Landsteiner University of Health Sciences, Krems, Austria
- Department of Transitory Psychiatry, University Hospital Tulln, Tulln, Austria
| |
Collapse
|
12
|
McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res 2023; 101:1409-1432. [PMID: 37166098 PMCID: PMC10524224 DOI: 10.1002/jnr.25201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review discusses neuroanatomical aspects of the three main monoaminergic systems innervating the basolateral nuclear complex (BNC) of the amygdala (serotonergic, noradrenergic, and dopaminergic systems). It mainly focuses on immunohistochemical (IHC) and in situ hybridization (ISH) studies that have analyzed the relationship of specific monoaminergic inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of the monoaminergic modulation of BNC circuitry. First, light and electron microscopic IHC investigations identifying the main BNC neuronal subpopulations and characterizing their local circuitry, including connections with discrete PN compartments and other INs, are reviewed. Then, the relationships of each of the three monoaminergic systems to distinct PN and IN cell types, are examined in detail. For each system, the neuronal targets and their receptor expression are discussed. In addition, pertinent electrophysiological investigations are discussed. The last section of the review compares and contrasts various aspects of each of the three monoaminergic systems. It is concluded that the large number of different receptors, each with a distinct mode of action, expressed by distinct cell types with different connections and functions, should offer innumerable ways to subtlety regulate the activity of the BNC by therapeutic drugs in psychiatric diseases in which there are alterations of BNC monoaminergic modulatory systems, such as in anxiety disorders, depression, and drug addiction. It is suggested that an important area for future studies is to investigate how the three systems interact in concert at the neuronal and neuronal network levels.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
13
|
Kirstein CF, Güntürkün O, Ocklenburg S. Ultra-high field imaging of the amygdala - A narrative review. Neurosci Biobehav Rev 2023; 152:105245. [PMID: 37230235 DOI: 10.1016/j.neubiorev.2023.105245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The amygdala is an evolutionarily conserved core structure in emotion processing and one of the key regions of interest in affective neuroscience. Results of neuroimaging studies focusing on the amygdala are, however, often heterogeneous since it is composed of functionally and neuroanatomically distinct subnuclei. Fortunately, ultra-high-field imaging offers several advances for amygdala research, most importantly more accurate representation of functional and structural properties of subnuclei and their connectivity. Most clinical studies using ultra-high-field imaging focused on major depression, suggesting either overall rightward amygdala atrophy or distinct bilateral patterns of subnuclear atrophy and hypertrophy. Other pathologies are only sparsely covered. Connectivity analyses identified widespread networks for learning and memory, stimulus processing, cognition, and social processes. They provide evidence for distinct roles of the central, basal, and basolateral nucleus, and the extended amygdala in fear and emotion processing. Amid largely sparse and ambiguous evidence, we propose theoretical and methodological considerations that will guide ultra-high-field imaging in comprehensive investigations to help disentangle the ambiguity of the amygdala's function, structure, connectivity, and clinical relevance.
Collapse
Affiliation(s)
- Cedric Fabian Kirstein
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Department of Psychology, MSH Medical School Hamburg, Germany; Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Germany
| |
Collapse
|
14
|
Abraham M, Schmerder K, Hedtstück M, Bösing K, Mundorf A, Freund N. Maternal separation and its developmental consequences on anxiety and parvalbumin interneurons in the amygdala. J Neural Transm (Vienna) 2023; 130:1167-1175. [PMID: 37294327 PMCID: PMC10460741 DOI: 10.1007/s00702-023-02657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
The early postnatal period represents an exceptionally vulnerable phase for the development of neurobiological alterations, aberrant behavior, and psychiatric disorders. Altered GABAergic activity in the hippocampus and the amygdala have been identified in humans diagnosed with depression or anxiety disorders, as well as in respective animal models. Changes in GABAergic activity can be visualized by immunohistochemical staining of parvalbumin (PV) protein. Therewith, alterations in PV intensity as well as in the integrity of the perineural net surrounding PV positive (PV+) interneurons have been reported as consequences of early stress. In the current study, maternal separation (MS) was used to induce early life stress. Female and male Sprague-Dawley rats were subjected to MS over 4 h from postnatal days 2-20. Then, anxiety behavior and PV+ interneurons in the amygdala were analyzed using immunohistochemistry in adolescence or adulthood. MS induced increased anxiety behavior in the marble-burying test in adolescence as well as in the elevated plus maze in adulthood. No effect of sex was found. Concerning alterations of parvalbumin expression in the amygdala, a trend towards a lower number of parvalbumin-positive inhibitory interneurons was shown in the amygdala after MS in adolescence, with no differences in the total number of cells. The current study offers a developmental perspective, suggesting that the kind of anxiety behavior expressed by rats following MS changes over time from active to passive avoidance, indicating that effects of MS are highly dependent on developmental state. Moreover, a cell-type-specific effect of MS on the cellular composition of the amygdala is discussed. The presented study demonstrates the long-lasting consequences of early stress on behavior, offers a possible neurobiological correlate, and discusses possible mediators in the development of these alterations.
Collapse
Affiliation(s)
- Mate Abraham
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kirsten Schmerder
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Malin Hedtstück
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kimberly Bösing
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
15
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
16
|
Stack SK, Wheate NJ, Moloney NC, Abelev SV, Barlow JW, Schubert EA. The Effectiveness and Adverse Events of Cannabidiol and Tetrahydrocannabinol Used in the Treatment of Anxiety Disorders in a PTSD Subpopulation: An Interim Analysis of an Observational Study. J Pharm Technol 2023; 39:172-182. [PMID: 37529155 PMCID: PMC10387818 DOI: 10.1177/87551225231180796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: Anxiety is a condition for which current treatments are often limited by adverse events (AEs). Components of medicinal cannabis, cannabidiol (CBD) and tetrahydrocannabinol (THC), have been proposed as potential treatments for anxiety disorders, specifically posttraumatic stress disorder (PTSD). Objective: To evaluate quality-of-life outcomes after treatment with various cannabis formulations to determine the effectiveness and associated AEs. Methods: An interim analysis of data collected between September 2018 and June 2021 from the CA Clinics Observational Study. Patient-Reported Outcomes Measurement Information System-29 survey scores of 198 participants with an anxiety disorder were compared at baseline and after treatment with medicinal cannabis. The data of 568 anxiety participants were also analyzed to examine the AEs they experienced by the Medical Dictionary for Regulatory Activities organ system class. Results: The median doses taken were 50.0 mg/day for CBD and 4.4 mg/day for THC. The total participant sample reported significantly improved anxiety, depression, fatigue, and ability to take part in social roles and activities. Those who were diagnosed with PTSD (n = 57) reported significantly improved anxiety, depression, fatigue, and social abilities. The most common AEs reported across the whole participant cohort were dry mouth (32.6%), somnolence (31.3%), and fatigue (18.5%), but incidence varied with different cannabis formulations. The inclusion of THC in a formulation was significantly associated with experiencing gastrointestinal AEs; specifically dry mouth and nausea. Conclusions: Formulations of cannabis significantly improved anxiety, depression, fatigue, and the ability to participate in social activities in participants with anxiety disorders. The AEs experienced by participants are consistent with those in other studies.
Collapse
Affiliation(s)
- Sophie K. Stack
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nial J. Wheate
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Elise A. Schubert
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Grilli M, Zaed I. Editorial: Neuroplasticity in cognitive and psychological mechanisms of anxiety. Front Mol Neurosci 2023; 16:1241279. [PMID: 37465365 PMCID: PMC10351982 DOI: 10.3389/fnmol.2023.1241279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Affiliation(s)
- Massimo Grilli
- Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Ismail Zaed
- Department of Neurosurgery, Neurocenter of South Switzerland, EOC, Lugano, Switzerland
| |
Collapse
|
18
|
El Matine R, Kreutzmann JC, Fendt M. Chronic unilateral inhibition of GABA synthesis in the amygdala increases specificity of conditioned fear in a discriminative fear conditioning paradigm in rats. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110732. [PMID: 36792003 DOI: 10.1016/j.pnpbp.2023.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Neural activity in the amygdala is critical for fear learning. In anxiety disorder patients, bilateral hyperactivity of the amygdala can be observed. This hyperactivation is often associated with the facilitation of fear learning and/or over-generalization of conditioned fear. In contrast, hypoactivity of the amygdala, e.g. by pharmacological interventions, attenuates or blocks fear learning. To date, little is known about how neural excitability of the amygdala affects specificity or generalization of fear. Therefore, the present study utilized chronic inhibition of GABA synthesis in the amygdala to increase excitability and investigated the effect on the specificity of fear learning. In rats, unilateral cannulas aiming at the amygdala were implanted. The cannulas were connected to subcutaneously implanted osmotic mini pumps that delivered either the GABA synthesis inhibitor L-allylglycine or its inactive enantiomer D-allylglycine. Following one week of chronic GABA synthesis manipulation, the rats were submitted to a discriminative fear conditioning protocol. In addition, anxiety-like behavior in the light-dark box was measured. Our data show that chronic unilateral L-AG infusions into the amygdala improve the specificity of learned fear, support safety learning, and reduce fear generalization and anxiety. This data demonstrates that moderately increased amygdala excitability can be beneficial for the specificity of fear learning and highlights the potential application for therapeutic interventions.
Collapse
Affiliation(s)
- Rami El Matine
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Judith C Kreutzmann
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
19
|
Liou KT, McConnell KM, Currier MB, Baser RE, MacLeod J, Walker D, Casaw C, Wong G, Piulson L, Popkin K, Lopez AM, Panageas K, Bradt J, Mao JJ. Telehealth-Based Music Therapy Versus Cognitive Behavioral Therapy for Anxiety in Cancer Survivors: Rationale and Protocol for a Comparative Effectiveness Trial. JMIR Res Protoc 2023; 12:e46281. [PMID: 37103999 PMCID: PMC10176150 DOI: 10.2196/46281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Cancer survivors represent one of the fastest growing populations in the United States. Unfortunately, nearly 1 in 3 survivors experience anxiety symptoms as a long-term consequence of cancer and its treatment. Characterized by restlessness, muscle tension, and worry, anxiety worsens the quality of life; impairs daily functioning; and is associated with poor sleep, depressed mood, and fatigue. Although pharmacological treatment options are available, polypharmacy has become a growing concern for cancer survivors. Music therapy (MT) and cognitive behavioral therapy (CBT) are evidence-based, nonpharmacological treatments that have demonstrated effectiveness in treating anxiety symptoms in cancer populations and can be adapted for remote delivery to increase access to mental health treatments. However, the comparative effectiveness of these 2 interventions delivered via telehealth is unknown. OBJECTIVE The aims of the Music Therapy Versus Cognitive Behavioral Therapy for Cancer-related Anxiety (MELODY) study are to determine the comparative effectiveness of telehealth-based MT versus telehealth-based CBT for anxiety and comorbid symptoms in cancer survivors and to identify patient-level factors associated with greater anxiety symptom reduction for MT and CBT. METHODS The MELODY study is a 2-arm, parallel-group randomized clinical trial that aims to compare the effectiveness of MT versus CBT for anxiety and comorbid symptoms. The trial will enroll 300 English- or Spanish-speaking survivors of any cancer type or stage who have experienced anxiety symptoms for at least 1 month. Participants will receive 7 weekly sessions of MT or CBT delivered remotely via Zoom (Zoom Video Communications, Inc) over 7 weeks. Validated instruments to assess anxiety (primary outcome), comorbid symptoms (fatigue, depression, insomnia, pain, and cognitive dysfunction), and health-related quality of life will be administered at baseline and at weeks 4, 8 (end of treatment), 16, and 26. Semistructured interviews will be conducted at week 8 with a subsample of 60 participants (30 per treatment arm) to understand individual experiences with the treatment sessions and their impact. RESULTS The first study participant was enrolled in February 2022. As of January 2023, 151 participants have been enrolled. The trial is expected to be completed by September 2024. CONCLUSIONS This study is the first and largest randomized clinical trial to compare the short- and long-term effectiveness of remotely delivered MT and CBT for anxiety in cancer survivors. Limitations include the lack of usual care or placebo control groups and the lack of formal diagnostic assessments for psychiatric disorders among trial participants. The study findings will help guide treatment decisions for 2 evidence-based, scalable, and accessible interventions to promote mental well-being during cancer survivorship. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46281.
Collapse
Affiliation(s)
- Kevin T Liou
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | | - Raymond E Baser
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jodi MacLeod
- Society for Integrative Oncology, Washington, DC, United States
| | | | - Camila Casaw
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Greta Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lauren Piulson
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Karen Popkin
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana Maria Lopez
- Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Joke Bradt
- Drexel University, Philadelphia, PA, United States
| | - Jun J Mao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
20
|
Toledo F, Carson F. Neurocircuitry of Personality Traits and Intent in Decision-Making. Behav Sci (Basel) 2023; 13:351. [PMID: 37232586 PMCID: PMC10215416 DOI: 10.3390/bs13050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Even though most personality features are moderately stable throughout life, changes can be observed, which influence one's behavioral patterns. A variety of subjective assessments can be performed to track these changes; however, the subjective characteristic of these assessments may lead to questions about intentions and values. The use of neuroimaging techniques may aid the investigation of personality traits through a more objective lens, overcoming the barriers imposed by confounders. Here, neurocircuits associated with changes in personality domains were investigated to address this issue. Cortical systems involved in traits such as extraversion and neuroticism were found to share multiple components, as did traits of agreeableness and conscientiousness, with these four features revolving around the activation and structural integrity of the medial prefrontal cortex (mPFC). The attribute of openness appears scattered throughout cortical and subcortical regions, being discussed here as a possible reflection of intent, at the same time modulating and being governed by other traits. Insights on how systems operate on personality may increase comprehension on factors acting on the evolution, development, and consolidation of personality traits through life, as in neurocognitive disorders.
Collapse
Affiliation(s)
- Felippe Toledo
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, L-4671 Differdange, Luxembourg;
- Luxembourg Health and Sport Sciences Research Institute A.S.B.L., L-4671 Differdange, Luxembourg
| | - Fraser Carson
- Luxembourg Health and Sport Sciences Research Institute A.S.B.L., L-4671 Differdange, Luxembourg
- Department of Sport and Exercise Science, LUNEX International University of Health, Exercise and Sports, L-4671 Differdange, Luxembourg
| |
Collapse
|
21
|
Cai CY, Tao Y, Zhou Y, Yang D, Qin C, Bian XL, Xian JY, Cao B, Chang L, Wu HY, Luo CX, Zhu DY. Nos1 + and Nos1 - excitatory neurons in the BLA regulate anxiety- and depression-related behaviors oppositely. J Affect Disord 2023; 333:181-192. [PMID: 37080493 DOI: 10.1016/j.jad.2023.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) neurons are primarily glutamatergic and have been associated with emotion regulation. However, little is known about the roles of BLA neurons expressing neuronal nitric oxide synthase (nNOS, Nos1) in the regulation of emotional behaviors. METHODS Using Nos1-cre mice and chemogenetic and optogenetic manipulations, we specifically silenced or activated Nos1+ or Nos1- neurons in the BLA, or silenced their projections to the anterdorsal bed nucleus of the stria terminalis (adBNST) and ventral hippocampus (vHPC). We measured anxiety behaviors in elevated plus maze (EPM) and open-field test (OFT), and measured depression behaviors in forced swimming test (FST) and tail suspension test (TST). RESULTS BLA Nos1+ neurons were predominantly glutamatergic, and glutamatergic but not GABAergic Nos1+ neurons were involved in controlling anxiety- and depression-related behaviors. Interestingly, by selectively manipulating the activities of BLA Nos1+ and Nos1- excitatory neurons, we found that they had opposing effects on anxiety- and depression-related behaviors. BLA Nos1+ excitatory neurons projected to the adBNST, this BLA-adBNST circuit controlled the expression of anxiety- and depression-related behaviors, while BLA Nos1- excitatory neurons projected to vHPC, this BLA-vHPC circuit contributed to the expression of anxiety- and depression-related behaviors. Moreover, excitatory vHPC-adBNST circuit antagonized the role of BLA-adBNST circuit in regulating anxiety- and depression-related behaviors. CONCLUSIONS BLA Nos1+ and Nos1- excitatory neuron subpopulations exert different effects on anxiety- and depression-related behaviors through distinct projection circuits, providing a new insight of BLA excitatory neurons in emotional regulation. LIMITATIONS We did not perform retrograde labeling from adBNST and vHPC regions.
Collapse
Affiliation(s)
- Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Tao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Qin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin-Lan Bian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Yun Xian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 211166, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
22
|
Hou J, Liu S, van Wingen G. Increased subcortical brain activity in anxious but not depressed individuals. J Psychiatr Res 2023; 160:38-46. [PMID: 36773346 DOI: 10.1016/j.jpsychires.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Anxiety and depressive symptoms usually co-occur. Neuroimaging abnormalities in patients with depression and anxiety disorders are therefore related to a combination of symptoms. Here, we used a large population study to select individuals with anxiety, depressive, or both anxiety and depressive symptoms to identify whether neuroimaging differences are unique or shared between anxiety and depressive symptoms. METHODS We selected four groups of 200 individuals (anxiety, depression, anxiety and depression, controls) from the UK Biobank, matched for age, sex, intelligence, and educational attainment (total N = 800). We extracted the amplitude of low frequency fluctuations (ALFF) from resting-state functional magnetic resonance imaging data, which indexes spontaneous neuronal activity. Group differences were assessed using permutation testing to correct for multiple comparisons, with age, sex, IQ, and head motion as covariates. RESULTS Compared to controls, anxious individuals had higher ALFF values in many subcortical brain regions including the striatum, thalamus, medial temporal lobe, midbrain, pons, as well as the cerebellum. Anxious individuals also showed higher ALFF in the hippocampus, parahippocampal gyrus, cerebellum, and pons compared to individuals with depressive symptoms. No significant differences were found for the depression and combined anxiety/depression groups. Post-hoc tests with largest possible samples showed comparable results in the anxiety group and in the combined group, but still no significant differences for the depression group. CONCLUSIONS Anxiety but not depressive symptoms were associated with increased subcortical activity during rest. This suggest that anxiety symptoms may have the largest contribution to the neuroimaging differences in individuals with depression and anxiety disorders.
Collapse
Affiliation(s)
- Jiangyun Hou
- Amsterdam UMC Location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Shu Liu
- Amsterdam UMC Location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Guido van Wingen
- Amsterdam UMC Location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Bauer EA, Wilson KA, Phan KL, Shankman SA, MacNamara A. A Neurobiological Profile Underlying Comorbidity Load and Prospective Increases in Dysphoria in a Focal Fear Sample. Biol Psychiatry 2023; 93:352-361. [PMID: 36280453 PMCID: PMC10866641 DOI: 10.1016/j.biopsych.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Knowledge of the neural mechanisms underlying increased disease burden in anxiety disorders that is unaccounted for by individual categorical diagnoses could lead to improved clinical care. Here, we tested the utility of a joint functional magnetic resonance imaging-electroencephalography neurobiological profile characterized by overvaluation of negative stimuli (amygdala) in combination with blunted elaborated processing of these same stimuli (the late positive potential [LPP], an event-related potential) in predicting increased psychopathology across a 2-year period in people with anxiety disorders. METHODS One hundred ten participants (64 female, 45 male, 1 other) including 78 participants with phobias who varied in the extent of their internalizing comorbidity and 32 participants who were free from psychopathology viewed negative and neutral pictures during separate functional magnetic resonance imaging blood oxygen level-dependent and electroencephalogram recordings. Dysphoria was assessed at baseline and 2 years later. RESULTS Participants with both heightened amygdala activation and blunted LPPs to negative pictures showed the greatest increases in dysphoria 2 years later. Cross-sectionally, participants with higher comorbidity load (≥2 additional diagnoses, n = 34) showed increased amygdala activation to negative pictures compared with participants with lower comorbidity load (≤1 additional diagnosis, n = 44) and compared with participants free from psychopathology. In addition, high comorbid participants showed reduced LPPs to negative pictures compared with low comorbid participants. CONCLUSIONS Heightened amygdala in response to negative stimuli in combination with blunted LPPs could indicate overvaluation of threatening stimuli in the absence of elaborated processing that might otherwise help regulate threat responding. This brain profile could underlie the worsening and maintenance of internalizing psychopathology over time.
Collapse
Affiliation(s)
- Elizabeth A Bauer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas.
| | - Kayla A Wilson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, Ohio
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, Illinois
| | - Annmarie MacNamara
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
24
|
Huggins AA, McTeague LM, Davis MM, Bustos N, Crum KI, Polcyn R, Adams ZW, Carpenter LA, Hajcak G, Halliday CA, Joseph JE, Danielson CK. Neighborhood Disadvantage Associated With Blunted Amygdala Reactivity to Predictable and Unpredictable Threat in a Community Sample of Youth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:242-252. [PMID: 35928141 PMCID: PMC9348572 DOI: 10.1016/j.bpsgos.2022.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Childhood socioeconomic disadvantage is a form of adversity associated with alterations in critical frontolimbic circuits involved in the pathophysiology of psychiatric disorders. Most work has focused on individual-level socioeconomic position, yet individuals living in deprived communities typically encounter additional environmental stressors that have unique effects on the brain and health outcomes. Notably, chronic and unpredictable stressors experienced in the everyday lives of youth living in disadvantaged neighborhoods may impact neural responsivity to uncertain threat. METHODS A community sample of children (N = 254) ages 8 to 15 years (mean = 12.15) completed a picture anticipation task during a functional magnetic resonance imaging scan, during which neutral and negatively valenced photos were presented in a temporally predictable or unpredictable manner. Area Deprivation Index (ADI) scores were derived from participants' home addresses as an index of relative neighborhood disadvantage. Voxelwise analyses examined interactions of ADI, valence, and predictability on neural response to picture presentation. RESULTS There was a significant ADI × valence interaction in the middle temporal gyrus, anterior cingulate cortex, hippocampus, and amygdala. Higher ADI was associated with less amygdala activation to negatively valenced images. ADI also interacted with predictability. Higher ADI was associated with greater activation of lingual and calcarine gyri for unpredictably presented stimuli. There was no three-way interaction of ADI, valence, and predictability. CONCLUSIONS Neighborhood disadvantage may impact how the brain perceives and responds to potential threats. Future longitudinal work is critical for delineating how such effects may persist across the life span and how health outcomes may be modifiable with community-based interventions and policies.
Collapse
Affiliation(s)
- Ashley A. Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Megan M. Davis
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Bustos
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Kathleen I. Crum
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachel Polcyn
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary W. Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura A. Carpenter
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Greg Hajcak
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Colleen A. Halliday
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Carla Kmett Danielson
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Vantrease JE, Avonts B, Padival M, DeJoseph MR, Urban JH, Rosenkranz JA. Sex Differences in the Activity of Basolateral Amygdalar Neurons That Project to the Bed Nucleus of the Stria Terminalis and Their Role in Anticipatory Anxiety. J Neurosci 2022; 42:4488-4504. [PMID: 35477901 PMCID: PMC9172066 DOI: 10.1523/jneurosci.1499-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal fear and anxiety can manifest as psychiatric disorders. The bed nucleus of the stria terminalis (BNST) is implicated in sustained responding to, or anticipation of, an aversive event which can be expressed as anticipatory anxiety. The BLA is also active during anticipatory anxiety and sends projections to the BNST. However, little is known about the role for BLA neurons that project to BNST (BLA-BNST) in anticipatory anxiety in rodents. To address this, we tested whether chemogenetic inactivation of the BLA-BNST pathway attenuates sustained conditioned responses produced by anticipation of an aversive stimulus. For comparison, we also assessed BLA-BNST inactivation during social interaction, which is sensitive to unlearned anxiety. We found that BLA-BNST inactivation reduced conditioned sustained freezing and increased social behaviors, but surprisingly, only in males. To determine whether sex differences in BLA-BNST neuronal activity contribute to the differences in behavior, we used in vivo and ex vivo electrophysiological approaches. In males, BLA-BNST projection neurons were more active and excitable, which coincided with a smaller after-hyperpolarization current (I AHP) compared with other BLA neurons; whereas in females, BLA-BNST neurons were less excitable and had larger I AHP compared with other BLA neurons. These findings demonstrate that activity of BLA-BNST neurons mediates conditioned anticipatory anxiety-like behavior in males. The lack of a role of BLA-BNST in females in this behavior, possibly because of low excitability of these neurons, also highlights the need for caution when generalizing the role of specific neurocircuits in fear and anxiety.SIGNIFICANCE STATEMENT Anxiety disorders disproportionately affect women. This hints toward sex differences within anxiety neurocircuitry, yet most of our understanding is derived from male rodents. Furthermore, debilitating anticipation of adverse events is among the most severe anxiety symptoms, but little is known about anticipatory anxiety neurocircuitry. Here we demonstrated that BLA-BNST activity is required for anticipatory anxiety to a prolonged aversive cue, but only in males. Moreover, BLA-BNST neurons are hypoactive and less excitable in females. These results uncover BLA-BNST as a key component of anticipatory anxiety circuitry, and cellular differences may explain the sex-dependent role of this circuit. Uncovering this disparity provides evidence that the assumed basic circuitry of an anxiety behavior might not readily transpose from males to females.
Collapse
Affiliation(s)
- Jaime E Vantrease
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Brittany Avonts
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - M Regina DeJoseph
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Janice H Urban
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
26
|
Green DGJ, Westwood DJ, Kim J, Best LM, Kish SJ, Tyndale RF, McCluskey T, Lobaugh NJ, Boileau I. Fatty acid amide hydrolase levels in brain linked with threat-related amygdala activation. NEUROIMAGE. REPORTS 2022; 2:100094. [PMID: 37235067 PMCID: PMC10206405 DOI: 10.1016/j.ynirp.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 05/28/2023]
Abstract
Background Preclinical evidence suggests that increasing levels of the major endocannabinoid anandamide decreases anxiety and fear responses potentially through its effects in the amygdala. Here we used neuroimaging to test the hypothesis that lower fatty acid amide hydrolase (FAAH), the main catabolic enzyme for anandamide, is associated with a blunted amygdala response to threat. Methods Twenty-eight healthy participants completed a positron emission tomography (PET) scan with the radiotracer for FAAH, [11C]CURB, as well as a block-design functional magnetic resonance imaging session during which angry and fearful faces meant to activate the amygdala were presented. Results [11C]CURB binding in the amygdala as well as in the medial prefrontal cortex, cingulate and hippocampus correlated positively with blood-oxygen-level-dependent (BOLD) signal during processing of angry and fearful faces (pFWE < 0.05). Conclusion Our finding that lower levels of FAAH in amygdala, medial prefrontal cortex, cingulate and hippocampus was associated with a dampened amygdala response to a threatening social cue aligns with preclinical and neuroimaging studies in humans and suggests the involvement of FAAH in modulating stress and anxiety in humans. The current neuroimaging study also lends support for the potential use of FAAH inhibitors to control amygdala hyperactivity, which is known to be involved in the pathophysiology of anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Duncan GJ. Green
- Addiction Imaging Research Group, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Jinhee Kim
- Departments of Psychiatry, Canada
- Department of Psychology, Korea University, Republic of Korea
| | - Laura M. Best
- Addiction Imaging Research Group, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Stephen J. Kish
- Human Brain Lab, Canada
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Departments of Psychiatry, Canada
- Pharmacology & Toxicology, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Canada
- Departments of Psychiatry, Canada
- Pharmacology & Toxicology, Canada
| | - Tina McCluskey
- Human Brain Lab, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Nancy J. Lobaugh
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Canada
- Campbell Family Mental Health Research Institute, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
- Departments of Psychiatry, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Uzun N, Akça ÖF, Kılınç İ, Balcı T. Oxytocin and Vasopressin Levels and Related Factors in Adolescents with Social Phobia and Other Anxiety Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:330-342. [PMID: 35466104 PMCID: PMC9048017 DOI: 10.9758/cpn.2022.20.2.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/01/2022]
Abstract
Objective This study aimed to determine whether a difference exists in plasma oxytocin and vasopressin levels among social anxiety disorder, other anxiety disorders, and healthy control groups in adolescents. The relationship between several psychiatric variables (i.e., state and trait anxiety, social anxiety, childhood trauma, and behavioral inhibition) and oxytocin or vasopressin levels were also investigated in adolescents with anxiety disorders. Methods The study included three groups of adolescents: social anxiety disorder (n = 29), those with other anxiety disorders (n = 27), and the control group (n = 28). The participants filled out self-report scales to determine various psychological variables. Oxytocin and vasopressin levels were determined from the blood samples of the participants. Results The oxytocin levels did not show a significant difference between the social anxiety disorder group and the other anxiety disorders group. However, the oxytocin levels were significantly higher in the social anxiety disorder and other anxiety disorders groups than in the control group. The vasopressin levels did not show a significant difference among the groups. According to the hierarchical regression analysis, the state and trait anxiety levels predicted oxytocin in opposite directions. Oxytocin showed positive and negative relationship with trait and state anxiety respectively. No predictive factors were found for the vasopressin levels. Conclusion We found that the oxytocin levels of adolescents with social anxiety disorder were not different from those of adolescents with other anxiety disorders. Further studies can improve our knowledge of the relationship among anxiety disorders and oxytocin or vasopressin.
Collapse
Affiliation(s)
- Necati Uzun
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Tevfik Balcı
- Department of Biochemistry, Niğde Ömer Halisdemir University Training and Research Hospital, Niğde, Turkey
| |
Collapse
|
28
|
Di Rosa E, Mapelli D, Ronconi L, Macchia E, Gentili C, Bisiacchi P, Edelstyn N. Anxiety predicts impulsive-compulsive behaviours in Parkinson's disease: Clinical relevance and theoretical implications. J Psychiatr Res 2022; 148:220-229. [PMID: 35134729 DOI: 10.1016/j.jpsychires.2022.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Patients with Parkinson's disease (PD) often present symptoms of anxiety, depression and apathy. These negative affect manifestations have been recently associated with the presence of impulsive compulsive behaviours (ICBs). However, their relation with the use of dopamine replacement therapy (DRT), a renewed risk factor for ICBs, is still not fully understood. Elucidating the role of these different ICBs predictors in PD could inform both prevention/intervention recommendations as well as theoretical models. In the present study, we have analysed data collected in 417 PD patients, 50 patients with Parkinsonian symptoms but with scan without evidence of dopaminergic deficit (SWEDD), and 185 healthy controls (HC). We examined each patient's clinical profile over a two-year time window, investigating the role of both negative affect and DRT on ICBs. Results confirmed the presence of higher levels of anxiety in both the clinical groups, and of higher level of ICBs in SWEDD patients, respect to both PD and HC. Mixed model analyses revealed a statistically significant association between anxiety and ICBs in the SWEDD patients who did not take any DRT. Findings suggest the independence between anxiety and DRT in ICBs development, and provide new evidence for the motivational opponency theoretical framework.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of General Psychology, University of Padua, Padua, Italy; School of Psychology, Keele University, Staffordshire, UK.
| | - Daniela Mapelli
- Department of General Psychology, University of Padua, Padua, Italy
| | - Lucia Ronconi
- Department of General Psychology, University of Padua, Padua, Italy
| | - Eleonora Macchia
- Department of General Psychology, University of Padua, Padua, Italy
| | - Claudio Gentili
- Department of General Psychology, University of Padua, Padua, Italy; Padua Neuroscience Centre, University of Padua, Padua, Italy; Centro di Ateneo dei Servizi Clinici Universitari Psicologici, University of Padua, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padua, Padua, Italy; Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Nicky Edelstyn
- School of Psychology, Keele University, Staffordshire, UK
| |
Collapse
|
29
|
A neural and behavioral trade-off between value and uncertainty underlies exploratory decisions in normative anxiety. Mol Psychiatry 2022; 27:1573-1587. [PMID: 34725456 DOI: 10.1038/s41380-021-01363-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
Exploration reduces uncertainty about the environment and improves the quality of future decisions, but at the cost of provisional uncertain and suboptimal outcomes. Although anxiety promotes intolerance to uncertainty, it remains unclear whether and by which mechanisms anxiety relates to exploratory decision-making. We use a dynamic three-armed-bandit task and find that higher trait-anxiety is associated with increased exploration, which in turn harms overall performance. We identify two distinct behavioral sources: first, decisions made by anxious individuals are guided toward reduction of uncertainty; and second, decisions are less guided by immediate value gains. These findings are similar in both loss and gain domains, and further demonstrate that an affective trait relates to exploration and results in an inverse-U-shaped relationship between anxiety and overall performance. Additional imaging data (fMRI) suggests that normative anxiety correlates negatively with the representation of expected-value in the dorsal-anterior-cingulate-cortex, and in contrast, positively with the representation of uncertainty in the anterior-insula. We conclude that a trade-off between value-gains and uncertainty-reduction entails maladaptive decision-making in individuals with higher normal-range anxiety.
Collapse
|
30
|
Skirzewski M, Molotchnikoff S, Hernandez LF, Maya-Vetencourt JF. Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions? Front Mol Neurosci 2022; 14:806376. [PMID: 35110996 PMCID: PMC8801884 DOI: 10.3389/fnmol.2021.806376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the mammalian brain, information processing in sensory modalities and global mechanisms of multisensory integration facilitate perception. Emerging experimental evidence suggests that the contribution of multisensory integration to sensory perception is far more complex than previously expected. Here we revise how associative areas such as the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities, can affect information processing in unisensory systems via processes of down-stream signaling. We focus our attention on the influence of the medial prefrontal cortex on the processing of information in the visual system and whether this phenomenon can be clinically used to treat higher-order visual dysfunctions. We propose that non-invasive and multisensory stimulation strategies such as environmental enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral visual impairment.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Génie Electrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis F. Hernandez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: José Fernando Maya-Vetencourt
| |
Collapse
|
31
|
Gaskins DL, Burke AR, Sajdyk TJ, Truitt WA, Dietrich AD, Shekhar A. Role of Basolateral Amygdalar Somatostatin 2 Receptors in a Rat Model of Chronic Anxiety. Neuroscience 2021; 477:40-49. [PMID: 34487822 PMCID: PMC9744088 DOI: 10.1016/j.neuroscience.2021.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Repeated exposure to stress has been implicated in inducing chronic anxiety states. Stress related increases in anxiety responses are likely mediated by activation of corticotropin-releasing factor receptors (CRFR) in the amygdala, particularly the basolateral amygdala (BLA). Within the BLA, acute injections of the CRFR agonist urocortin 1 (Ucn1) leads to acute anxiety, whereas repeated daily injections of subthreshold-doses of Ucn1 produces a long-lasting, persistent anxiety-like phenotype, a phenomenon referred to as Ucn1-priming. Relative gene expressions from the BLA of vehicle and Ucn1-primed rats were analyzed with quantitative RT-PCR using a predesigned panel of 82 neuroscience-related genes. Compared to vehicle-primed rats, only expression of the somatostatin receptor 2 gene (Sstr2) was significantly reduced in the BLA of Ucn1-primed rats. The contribution of Sstr2 on an anxiety phenotype was tested by injecting a Sstr2 antagonist into the BLA in un-primed rats. The Sstr2 antagonist increased anxiety-like behavior. Notably, pretreatment with Sstr2 agonist injected into the BLA blocked anxiety-inducing effects of acute Ucn1 BLA-injections and delayed anxiety expression during Ucn1-priming. However, concomitant Sstr2 agonist pretreatment during Ucn-1 priming did not prevent either the development of a chronic anxiety state or a reduction of BLA Sstr2 expression induced by priming. The data demonstrate that the persistent anxiety-like phenotype observed with Ucn1-priming in the BLA is associated with a selective reduction of Sstr2 gene expression. Although Sstr2 activation in the BLA blocks acute anxiogenic effects of stress and down-regulation of BLA Sstr2, it does not suppress the long-term consequences of prolonged exposure to stress-related challenges.
Collapse
Affiliation(s)
- Denise L Gaskins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Graduate Program in Medical Neuroscience, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Andrew R Burke
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Tammy J Sajdyk
- Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th Street, Indianapolis, IN 46202, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, 410 W 10th St Suite 1000, Indianapolis, IN 46202, USA; Department of Pediatrics, Division of Hematology/Oncology, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - William A Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | - Amy D Dietrich
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Anatomy Cellular Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA; Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th Street, Indianapolis, IN 46202, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, 410 W 10th St Suite 1000, Indianapolis, IN 46202, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, 3550 Terrace Street, Suite 401, Pittsburgh, PA 15261, USA
| |
Collapse
|
32
|
Gala D, Gurusamy V, Patel K, Damodar S, Swaminath G, Ullal G. Stem Cell Therapy for Post-Traumatic Stress Disorder: A Novel Therapeutic Approach. Diseases 2021; 9:diseases9040077. [PMID: 34842629 PMCID: PMC8628773 DOI: 10.3390/diseases9040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Stem cell therapy is a rapidly evolving field of regenerative medicine being employed for the management of various central nervous system disorders. The ability to self-renew, differentiate into specialized cells, and integrate into neuronal networks has positioned stem cells as an ideal mechanism for the treatment of epilepsy. Epilepsy is characterized by repetitive seizures caused by imbalance in the GABA and glutamate neurotransmission following neuronal damage. Stem cells provide benefit by reducing the glutamate excitotoxicity and strengthening the GABAergic inter-neuron connections. Similar to the abnormal neuroanatomic location in epilepsy, post-traumatic stress disorder (PTSD) is caused by hyperarousal in the amygdala and decreased activity of the hippocampus and medial prefrontal cortex. Thus, stem cells could be used to modulate neuronal interconnectivity. In this review, we provide a rationale for the use of stem cell therapy in the treatment of PTSD.
Collapse
|
33
|
Lguensat A, Boudjafad Z, Giorla E, Bennis M, Baunez C, Garcia R, Ba-M'hamed S. Repeated ethanol exposure following avoidance conditioning impairs avoidance extinction and modifies conditioning-associated prefrontal dendritic changes in a mouse model of post-traumatic stress disorder. Eur J Neurosci 2021; 54:7710-7732. [PMID: 34670326 DOI: 10.1111/ejn.15499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Treatment of post-traumatic stress disorder is complicated by the presence of alcohol use disorder comorbidity. Little is known about the underlying brain mechanisms. We have recently shown, in mice, that the post-traumatic stress disorder-like phenotype is characterised by the increase and decrease in total dendritic number and length in the prelimbic and infralimbic areas of the medial prefrontal cortex, respectively. Here, we examined whether repeated ethanol exposure would exacerbate these changes and whether this would be associated with difficulty to extinguish passive avoidance behaviour, as an indicator of treatment resistance. We also analysed whether other known trauma-associated changes, like increased or decreased corticosterone and decreased brain-derived neurotrophic factor levels, would also be exacerbated. Male mice underwent trauma exposure (1.5-mA footshock), followed, 8 days later, by a conditioned place preference training with ethanol. Tests for fear sensitization, passive avoidance, anxiety-like behaviour, extinction acquisition and relapse susceptibility were used to assess behaviour changes. Plasma corticosterone and brain-derived neurotrophic factor levels and prefrontal dendritic changes were subsequently measured. Trauma-susceptible mice exposed to ethanol acquired a strong place preference and behaved differently from those not exposed to ethanol, with delayed avoidance extinction and higher avoidance relapse vulnerability. Ethanol potentiated trauma-associated dendritic changes in the prelimbic area and suppressed trauma-associated dendritic changes in the infralimbic area. However, ethanol had no effect on trauma-induced increased corticosterone and decreased brain-derived neurotrophic factor levels. These data suggest that the modification of prefrontal trauma-related changes, due to alcohol use, can characterise, and probably support, treatment-resistant post-traumatic stress disorder.
Collapse
Affiliation(s)
- Asmae Lguensat
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco.,Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France
| | - Zineb Boudjafad
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco
| | - Elodie Giorla
- Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France
| | - Mohamed Bennis
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco
| | - Christelle Baunez
- Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France
| | - René Garcia
- Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France.,Graduate School of Life and Health Sciences, Université Côte d'Azur, Nice, France
| | - Saadia Ba-M'hamed
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
34
|
Jahed S, Daneshvari NO, Liang AL, Richey LN, Bryant BR, Krieg A, Bray MJC, Pradeep T, Luna LP, Trapp NT, Jones MB, Stevens DA, Roper C, Goldwaser EL, Berich-Anastasio E, Pletnikova A, Lobner K, Lee DJ, Lauterbach M, Sair HI, Peters ME. Neuroimaging Correlates of Syndromal Anxiety Following Traumatic Brain Injury: A Systematic Review of the Literature. J Acad Consult Liaison Psychiatry 2021; 63:119-132. [PMID: 34534701 DOI: 10.1016/j.jaclp.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) can precipitate new-onset psychiatric symptoms or worsen existing psychiatric conditions. To elucidate specific mechanisms for this interaction, neuroimaging is often used to study both psychiatric conditions and TBI. This systematic review aims to synthesize the existing literature of neuroimaging findings among patients with anxiety after TBI. METHODS We conducted a Preferred Reporting Items for Systematic Review and Meta-Analyses-compliant literature search via PubMed (MEDLINE), PsychINFO, EMBASE, and Scopus databases before May, 2019. We included studies that clearly defined TBI, measured syndromic anxiety as a primary outcome, and statistically analyzed the relationship between neuroimaging findings and anxiety symptoms. RESULTS A total of 5982 articles were retrieved from the systematic search, of which 65 studied anxiety and 13 met eligibility criteria. These studies were published between 2004 and 2017, collectively analyzing 764 participants comprised of 470 patients with TBI and 294 non-TBI controls. Imaging modalities used included magnetic resonance imaging, functional magnetic resonance imaging, diffusion tensor imaging, electroencephalogram, magnetic resonance spectrometry, and magnetoencephalography. Eight of 13 studies presented at least one significant finding and together reflect a complex set of changes that lead to anxiety in the setting of TBI. The left cingulate gyrus in particular was found to be significant in 2 studies using different imaging modalities. Two studies also revealed perturbances in functional connectivity within the default mode network. CONCLUSIONS This is the first systemic review of neuroimaging changes associated with anxiety after TBI, which implicated multiple brain structures and circuits, such as the default mode network. Future research with consistent, rigorous measurements of TBI and syndromic anxiety, as well as attention to control groups, previous TBIs, and time interval between TBI and neuroimaging, are warranted. By understanding neuroimaging correlates of psychiatric symptoms, this work could inform future post-TBI screening and surveillance, preventative efforts, and early interventions to improve neuropsychiatric outcomes.
Collapse
Affiliation(s)
- Sahar Jahed
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas O Daneshvari
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angela L Liang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lisa N Richey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barry R Bryant
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael J C Bray
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tejus Pradeep
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Licia P Luna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Melissa B Jones
- Menninger Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey VA Medical Center & Baylor College of Medicine, Houston, TX
| | - Daniel A Stevens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Eric L Goldwaser
- Sheppard Pratt, Baltimore, MD; University of Maryland School of Medicine, Baltimore, MD
| | | | - Alexandra Pletnikova
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katie Lobner
- Welch Medical Library, Johns Hopkins University, Baltimore, MD
| | - Daniel J Lee
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease & Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Margo Lauterbach
- Sheppard Pratt, Baltimore, MD; University of Maryland School of Medicine, Baltimore, MD
| | - Haris I Sair
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
35
|
Guadagno A, Belliveau C, Mechawar N, Walker CD. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Front Hum Neurosci 2021; 15:669120. [PMID: 34512291 PMCID: PMC8426628 DOI: 10.3389/fnhum.2021.669120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The links between early life stress (ELS) and the emergence of psychopathology such as increased anxiety and depression are now well established, although the specific neurobiological and developmental mechanisms that translate ELS into poor health outcomes are still unclear. The consequences of ELS are complex because they depend on the form and severity of early stress, duration, and age of exposure as well as co-occurrence with other forms of physical or psychological trauma. The long term effects of ELS on the corticolimbic circuit underlying emotional and social behavior are particularly salient because ELS occurs during critical developmental periods in the establishment of this circuit, its local balance of inhibition:excitation and its connections with other neuronal pathways. Using examples drawn from the human and rodent literature, we review some of the consequences of ELS on the development of the corticolimbic circuit and how it might impact fear regulation in a sex- and hemispheric-dependent manner in both humans and rodents. We explore the effects of ELS on local inhibitory neurons and the formation of perineuronal nets (PNNs) that terminate critical periods of plasticity and promote the formation of stable local networks. Overall, the bulk of ELS studies report transient and/or long lasting alterations in both glutamatergic circuits and local inhibitory interneurons (INs) and their associated PNNs. Since the activity of INs plays a key role in the maturation of cortical regions and the formation of local field potentials, alterations in these INs triggered by ELS might critically participate in the development of psychiatric disorders in adulthood, including impaired fear extinction and anxiety behavior.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Sawalha J, Yousefnezhad M, Selvitella AM, Cao B, Greenshaw AJ, Greiner R. Predicting pediatric anxiety from the temporal pole using neural responses to emotional faces. Sci Rep 2021; 11:16723. [PMID: 34408203 PMCID: PMC8373898 DOI: 10.1038/s41598-021-95987-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
A prominent cognitive aspect of anxiety is dysregulation of emotional interpretation of facial expressions, associated with neural activity from the amygdala and prefrontal cortex. We report machine learning analysis of fMRI results supporting a key role for a third area, the temporal pole (TP) for childhood anxiety in this context. This finding is based on differential fMRI responses to emotional faces (angry versus fearful faces) in children with one or more of generalized anxiety, separation anxiety, and social phobia (n = 22) compared with matched controls (n = 23). In our machine learning (Adaptive Boosting) model, the right TP distinguished anxious from control children (accuracy = 81%). Involvement of the TP as significant for neurocognitive aspects of pediatric anxiety is a novel finding worthy of further investigation.
Collapse
Affiliation(s)
- Jeffrey Sawalha
- Department of Psychiatry, University of Alberta, Alberta, Canada.,Department of Computing Science, University of Alberta, Alberta, Canada.,Alberta Machine Intelligence Institute (Amii), Alberta, Canada
| | - Muhammad Yousefnezhad
- Department of Psychiatry, University of Alberta, Alberta, Canada.,Department of Computing Science, University of Alberta, Alberta, Canada.,Alberta Machine Intelligence Institute (Amii), Alberta, Canada
| | - Alessandro M Selvitella
- Department of Mathematical Sciences, Purdue University, Fort Wayne, United States.,eScience Institute, University of Washington, Seattle, WA, USA
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Alberta, Canada
| | | | - Russell Greiner
- Department of Psychiatry, University of Alberta, Alberta, Canada. .,Department of Computing Science, University of Alberta, Alberta, Canada. .,Alberta Machine Intelligence Institute (Amii), Alberta, Canada.
| |
Collapse
|
37
|
Ma JC, Zhang HL, Huang HP, Ma ZL, Chen SF, Qiu ZK, Chen JS. Antidepressant-like effects of Z-ligustilide on chronic unpredictable mild stress-induced depression in rats. Exp Ther Med 2021; 22:677. [PMID: 33986842 PMCID: PMC8112151 DOI: 10.3892/etm.2021.10109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Depression is a significant public health issue and its neuropathogenesis is associated with the dysfunction of progesterone and allopregnanolone biosynthesis. Z-ligustilide (LIG), one of the main components of the herb Angelica sinensis (Oliv.) Diels (AS), is reported to have antidepressant activities. The present study aimed to evaluate the antidepressant-like effects of LIG via behavioral tests and to measure the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. The results demonstrated that LIG (20 and 40 mg/kg) exerted antidepressant-like effects, confirmed by increased mobility, locomotion, rearing frequency and preference to sucrose. Furthermore, the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus were markedly increased following treatment with LIG (20 and 40 mg/kg), indicating that both neurosteroids could serve a significant role in the antidepressant-like effects of LIG.
Collapse
Affiliation(s)
- Jian-Chun Ma
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hao-Liang Zhang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui-Ping Huang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Zao-Liang Ma
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Su-Fang Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Ji-Sheng Chen, Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, 19 Nonlinxia Road, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
38
|
Collet S, Bhaduri S, Kiyar M, T’Sjoen G, Mueller S, Guillamon A. Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People. J Clin Med 2021; 10:2623. [PMID: 34198690 PMCID: PMC8232168 DOI: 10.3390/jcm10122623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
Much research has been conducted on sexual differences of the human brain to determine whether and to what extent a brain gender exists. Consequently, a variety of studies using different neuroimaging techniques attempted to identify the existence of a brain phenotype in people with gender dysphoria (GD). However, to date, brain sexual differences at the metabolite level using magnetic resonance spectroscopy (1H-MRS) have not been explored in transgender people. In this study, 28 cisgender men (CM) and 34 cisgender women (CW) and 29 transgender men with GD (TMGD) underwent 1H-MRS at 3 Tesla MRI to characterize common brain metabolites. Specifically, levels of N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), glutamate and glutamine (Glx), and myo-inositol + glycine (mI + Gly) were assessed in two brain regions, the amygdala-anterior hippocampus and the lateral parietal cortex. The results indicated a sex-assigned at birth pattern for Cho/Cr in the amygdala of TMGD. In the parietal cortex, a sex-assigned at birth and an intermediate pattern were found. Though assessed post-hoc, exploration of the age of onset of GD in TMGD demonstrated within-group differences in absolute NAA and relative Cho/Cr levels, suggestive for a possible developmental trend. While brain metabolite levels in TMGD resembled those of CW, some interesting findings, such as modulation of metabolite concentrations by age of onset of GD, warrant future inquiry.
Collapse
Affiliation(s)
- Sarah Collet
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sourav Bhaduri
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
| | - Guy T’Sjoen
- Department of Endocrinology, Center for Sexology and Gender, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sven Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
- Department of Personality, Psychological Assessment and Treatment, University of Deusto, 48007 Bilbao, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| |
Collapse
|
39
|
Echiverri-Cohen A, Spierer L, Perez M, Kulon M, Ellis MD, Craske M. Randomized-controlled trial of response inhibition training for individuals with PTSD and impaired response inhibition. Behav Res Ther 2021; 143:103885. [PMID: 34089923 DOI: 10.1016/j.brat.2021.103885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/04/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Deficits in response inhibition, defined as an inability to stop a behavior that is no longer relevant, are characteristic of posttraumatic stress disorder (PTSD). Given that impaired response inhibition is associated with worse symptom recovery and accumulating evidence pointing to the effectiveness of cognitive control trainings in reducing PTSD symptoms, individuals with moderate to severe PTSD total severity (Posttraumatic Diagnostic Scale total score ≥ 21) and pre-training response inhibition deficits (M ≤ 75% successful inhibition on the Go/No-go) completed a 3-h, adaptive Go/No-go training designed to improve ability to withhold prepotent motor responses. Then forty-nine participants were randomized to an adaptive response inhibition training (n = 24, M = 19.27 years, SD = 0.70) or a waitlist condition (n = 25, M = 18.31 years, SD = 4.80). Behavioral response inhibition and self-reported trauma-related symptoms were assessed at pre- and post-training. Response inhibition training was associated with improved response inhibition on an untrained transfer Stop-Signal task and symptom reduction in PTSD compared to a waitlist group, at post-training. There was, however, reduced inhibition on a modified Go/No-go task from pre-to post-training. Overall, response inhibition deficits and PTSD symptoms are amenable to top-down remediation using response inhibition training. Our study provides preliminary evidence for the feasibility of response inhibition training in a PTSD sample characterized by response inhibition deficits.
Collapse
Affiliation(s)
| | - Lucas Spierer
- Neurology Unit, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Marcelina Perez
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Melissa Kulon
- Department of Psychology, University of California, Los Angeles, CA, USA
| | | | - Michelle Craske
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
41
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? Feedback Inhibition and Other Modulating Factors of Glucocorticoid Signaling Dynamics. Int J Mol Sci 2021; 22:ijms22116050. [PMID: 34205191 PMCID: PMC8200046 DOI: 10.3390/ijms22116050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Previously, we found that basal corticosterone pulsatility significantly impacts the vulnerability for developing post-traumatic stress disorder (PTSD). Rats that exhibited PTSD-phenotype were characterized by blunted basal corticosterone pulsatility amplitude and a blunted corticosterone response to a stressor. This study sought to identify the mechanisms underlining both the loss of pulsatility and differences in downstream responses. Serial blood samples were collected manually via jugular vein cannula at 10-min intervals to evaluate suppression of corticosterone following methylprednisolone administration. The rats were exposed to predator scent stress (PSS) after 24 h, and behavioral responses were assessed 7 days post-exposure for retrospective classification into behavioral response groups. Brains were harvested for measurements of the glucocorticoid receptor, mineralocorticoid receptor, FK506-binding protein-51 and arginine vasopressin in specific brain regions to assess changes in hypothalamus–pituitary–adrenal axis (HPA) regulating factors. Methylprednisolone produced greater suppression of corticosterone in the PTSD-phenotype group. During the suppression, the PTSD-phenotype rats showed a significantly more pronounced pulsatile activity. In addition, the PTSD-phenotype group showed distinct changes in the ventral and dorsal CA1, dentate gyrus as well as in the paraventricular nucleus and supra-optic nucleus. These results demonstrate a pre-trauma vulnerability state that is characterized by an over-reactivity of the HPA and changes in its regulating factors.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
- Correspondence: ; Tel.: +972-544-369106
| |
Collapse
|
42
|
Bystritsky A, Spivak NM, Dang BH, Becerra SA, Distler MG, Jordan SE, Kuhn TP. Brain circuitry underlying the ABC model of anxiety. J Psychiatr Res 2021; 138:3-14. [PMID: 33798786 DOI: 10.1016/j.jpsychires.2021.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Anxiety Disorders are prevalent and often chronic, recurrent conditions that reduce quality of life. The first-line treatments, such as serotonin reuptake inhibitors and cognitive behavioral therapy, leave a significant proportion of patients symptomatic. As psychiatry moves toward targeted circuit-based treatments, there is a need for a theory that unites the phenomenology of anxiety with its underlying neural circuits. The Alarm, Belief, Coping (ABC) theory of anxiety describes how the neural circuits associated with anxiety interact with each other and domains of the anxiety symptoms, both temporally and spatially. The latest advancements in neuroimaging techniques offer the ability to assess these circuits in vivo. Using Neurosynth, a large open-access meta-analytic imaging database, the association between terms related to specific neural circuits was explored within the ABC theory framework. Alarm-related terms were associated with the amygdala, anterior cingulum, insula, and bed nucleus of stria terminalis. Belief-related terms were associated with medial prefrontal cortex, precuneus, bilateral temporal poles, and hippocampus. Coping-related terms were associated with the ventrolateral and dorsolateral prefrontal cortices, basal ganglia, and anterior cingulate. Neural connections underlying the functional neuroanatomy of the ABC model were observed. Additionally, there was considerable interaction and overlap between circuits associated with the symptom domains. Further neuroimaging research is needed to explore the dynamic interaction between the functional domains of the ABC theory. This will pave the way for probing the neuroanatomical underpinnings of anxiety disorders and provide an evidence-based foundation for the development of targeted treatments, such as neuromodulation.
Collapse
Affiliation(s)
- Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA; BrainSonix Corporation, Sherman Oaks, CA, USA.
| | - Norman M Spivak
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA; Department of Neurosurgery, UCLA, Los Angeles, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Bianca H Dang
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Sergio A Becerra
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Margaret G Distler
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Sheldon E Jordan
- Neurology Management Associates - Los Angeles, Santa Monica, CA, USA
| | - Taylor P Kuhn
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
43
|
Diel RJ, Mehra D, Kardon R, Buse DC, Moulton E, Galor A. Photophobia: shared pathophysiology underlying dry eye disease, migraine and traumatic brain injury leading to central neuroplasticity of the trigeminothalamic pathway. Br J Ophthalmol 2021; 105:751-760. [PMID: 32703784 PMCID: PMC8022288 DOI: 10.1136/bjophthalmol-2020-316417] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/26/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Photophobia is a potentially debilitating symptom often found in dry eye disease (DE), migraine and traumatic brain injury (TBI). METHODS We conducted a review of the literature via a PubMed search of English language articles with a focus on how photophobia may relate to a shared pathophysiology across DE, migraine and TBI. RESULTS DE, migraine and TBI are common conditions in the general population, are often comorbid, and share photophobia as a symptom. Across the three conditions, neural dysregulation of peripheral and central nervous system components is implicated in photophobia in various animal models and in humans. Enhanced activity of the neuropeptide calcitonin gene-related peptide (CGRP) is closely linked to photophobia. Current therapies for photophobia include glasses which shield the eyes from specific wavelengths, botulinum toxin, and inhibition of CGRP and its receptor. Many individuals have persistent photophobia despite the use of these therapies, and thus, development of new therapies is needed. CONCLUSIONS The presence of photophobia in DE, migraine and TBI suggests shared trigeminothalamic pathophysiologic mechanisms, as explained by central neuroplasticity and hypersensitivity mediated by neuropeptide CGRP. Treatment strategies which target neural pathways (ie, oral neuromodulators, transcutaneous nerve stimulation) should be considered in patients with persistent photophobia, specifically in individuals with DE whose symptoms are not controlled with traditional therapies.
Collapse
Affiliation(s)
- Ryan J Diel
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - Divy Mehra
- Ophthalmology, VA Medical Center Miami, Miami, Florida, USA
- Ophthalmology, University of Miami Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Randy Kardon
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Dawn C Buse
- Albert Einstein College of Medicine Department of Neurology, Bronx, New York, USA
| | - Eric Moulton
- Department of Anesthesiology, Center for Pain and the Brain; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anat Galor
- Ophthalmology, VA Medical Center Miami, Miami, Florida, USA
- Ophthalmology, University of Miami Bascom Palmer Eye Institute, Miami, Florida, USA
| |
Collapse
|
44
|
Kaneko A, Asaoka Y, Lee YA, Goto Y. Cognitive and Affective Processes Associated with Social Biases. Int J Neuropsychopharmacol 2021; 24:645-655. [PMID: 33929492 PMCID: PMC8378077 DOI: 10.1093/ijnp/pyab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Our social activities are quite often erroneous and irrational, based on biased judgements and decision-making, known as social biases. However, the cognitive and affective processes that produce such biases remain largely unknown. In this study, we investigated associations between social schemas, such as social judgment and conformity, entailing social biases and psychological measurements relevant to cognitive and affective functions. METHOD This study recruited 42 healthy adult subjects. A psychological test and a questionnaire were administered to assess biased social judgements by superficial attributes and social conformity by adherence to social norms, respectively, along with additional questionnaires and psychological tests for cognitive and affective measurements, including negative affects, autistic traits, and Theory of Mind (ToM). Associations of social judgment and conformity with cognitive and affective functions were examined using a multiple regression analysis and structural equation modeling. RESULTS Anxiety and the cognitive realm of ToM were mutually associated with both social judgments and conformity, although social judgements and conformity were still independent processes. Social judgements were also associated with autistic traits and the affective realm of ToM, whereas social conformity was associated with negative affects other than anxiety and an intuitive decision-making style. CONCLUSIONS These results suggest that ToM and negative affects may play important roles in social judgements and conformity, and the social biases connoted in these social schemas.
Collapse
Affiliation(s)
- Asuka Kaneko
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yui Asaoka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan,South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan,Correspondence: Yukiori Goto, PhD, Kyoto University Primate Research Institute, 41–2 Kanrin, Inuyama, Aichi 484–8506, Japan ()
| |
Collapse
|
45
|
Guo X, Yang F, Fan L, Gu Y, Ma J, Zhang J, Liao M, Zhai T, Zhang Y, Li L, Su L, Dai Z. Disruption of functional and structural networks in first-episode, drug-naïve adolescents with generalized anxiety disorder. J Affect Disord 2021; 284:229-237. [PMID: 33618206 DOI: 10.1016/j.jad.2021.01.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Individuals with generalized anxiety disorder (GAD) tend to worry exaggeratedly and uncontrollably about various daily routines. Previous studies have demonstrated that the GAD patients exhibited widespread alternations in both functional networks (FN) and structural networks (SN). However, the simultaneous alternations of the topological organization of FN, SN, as well as their couplings in GAD still remain unknown. METHODS Using multimodal approach, we constructed FN from resting-state functional magnetic imaging (R-fMRI) data and SN from diffusion magnetic resonance imaging (dMRI) data of 32 adolescent GAD patients and 25 healthy controls (HC). Graph theory analysis was employed to investigate the topological properties of FN, SN, and FN-SN coupling. RESULTS Compared to HC, the GAD patients showed disruptions in global (i.e., decreased clustering coefficient, global, and local efficiency) and subnetwork (i.e., reduced intermodular connections, rich club, and feeder connections) levels in FN. Abnormal global level properties (i.e., increased characteristic path length and reduced global efficiency) were also observed in SN. Altered FN-SN couplings in normalized characteristic path length and feeder connections were identified in the GAD patients. The identified network measures were correlated with anxiety severity in the GAD patients. LIMITATIONS The sample size of the current study is small and the cross-sectional nature can not infer causal relationship. CONCLUSIONS Our findings identified GAD-related topological alternations in both FN and SN, together with the couplings between FN and SN, providing us with a novel perspective for understanding the pathophysiological mechanisms of GAD.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Fan Yang
- Guangdong mental health center, Guangdong general hospital & Guangdong academy of medical sciences, Guangzhou, China
| | - Linlin Fan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Yue Gu
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Junji Ma
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Jinbo Zhang
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Mei Liao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China..
| | - Tianyi Zhai
- Department of Psychiatry, Guangzhou Huiai Hospital, Guangzhou, China
| | - Yan Zhang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjiang Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Linyan Su
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
Lopes FL, Faria CGF, Dias GP, Mallmann MB, Mendes V, Horato N, de-Melo-Neto VL, Veras AB, Magalhães FV, Malaspina D, Nardi AE. Neural correlates of negative and disease-specific emotional stimuli in panic disorder: a functional magnetic resonance imaging study. ACTA ACUST UNITED AC 2021; 43:605-612. [PMID: 33787758 PMCID: PMC8639013 DOI: 10.1590/1516-4446-2020-1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Decades of research have highlighted the involvement of the prefrontal cortex, anterior cingulated cortex, and limbic areas (amygdala) in panic disorder (PD). However, little attention has been given specifically to the inferior frontal gyrus. The current study aimed to investigate the neural substrates, including the inferior frontal gyrus, of both panic-related and negative conditions among individuals with PD and healthy controls. METHODS We examined 13 medication-free PD patients and 14 healthy controls with functional magnetic resonance imaging (fMRI) during exposure to negative and neutral pictures and a set of specific panic-related pictures. RESULTS Subtraction between the conditions indicated activation of the left amygdala region and the right inferior frontal gyrus in PD patients during the specific panic-related condition, whereas the left amygdalar region and left inferior frontal gyrus were activated during the negative condition in controls. CONCLUSION These results suggest that in patients with PD, a prominent bottom-up process is involved in specific panic-related conditions, which might be associated with weak modulation of the left frontal area. These data add to our current understanding of the neural correlates of PD and can contribute to future clinical interventions targeting the functional reestablishment of these regions.
Collapse
Affiliation(s)
- Fabiana L Lopes
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Intramural Program, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Clara G F Faria
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gisele P Dias
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mariana B Mallmann
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victoria Mendes
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natia Horato
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Valfrido L de-Melo-Neto
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre B Veras
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Antonio E Nardi
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
47
|
Schmitz-Koep B, Zimmermann J, Menegaux A, Nuttall R, Bäuml JG, Schneider SC, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Hedderich DM, Sorg C. Decreased amygdala volume in adults after premature birth. Sci Rep 2021; 11:5403. [PMID: 33686187 PMCID: PMC7970879 DOI: 10.1038/s41598-021-84906-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Premature-born infants have impaired amygdala structure, presumably due to increased stress levels of premature birth mediated by the amygdala. However, accounting for lifelong plasticity of amygdala, it is unclear whether such structural changes persist into adulthood. To address this problem, we stated the following questions: first, are whole amygdala volumes reduced in premature-born adults? And second, as adult anxiety traits are often increased after prematurity and linked with amygdala structure, are alterations in amygdala associated with adults' anxiety traits after premature birth? We addressed these questions by automated amygdala segmentation of MRI volumes in 101 very premature-born adults (< 32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls at 26 years of age of a prospectively and longitudinally collected cohort. We found significantly lower whole amygdala volumes in premature-born adults. While premature-born adults had significantly higher T score for avoidant personality reflecting increased social anxiety trait, this trait was not correlated with amygdala volume alterations. Results demonstrate reduced amygdala volumes in premature born adults. Data suggest lasting effects of prematurity on amygdala structure.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian C Schneider
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
48
|
Hiser J, Schneider B, Koenigs M. Uncertainty Potentiates Neural and Cardiac Responses to Visual Stimuli in Anxiety Disorders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:725-734. [PMID: 33592312 DOI: 10.1016/j.bpsc.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Intolerance of uncertainty and worry about future events are cardinal features of anxiety. However, the neurobiological and physiological mechanisms underlying these characteristics of anxiety remain to be fully elucidated. METHODS Individuals with diagnosed anxiety disorders (n = 29, 22 female) and age-matched comparison subjects (n = 28, 17 female) completed a task in which pictures (aversive or neutral content) were preceded by cues indicating certainty or uncertainty about the emotional valence of the subsequent pictures. We assessed functional magnetic resonance imaging and heart rate activity with respect to the 1) cue period, 2) emotional valence of the pictures, and 3) modulatory effect of uncertainty on responses to subsequent pictures. RESULTS Individuals with anxiety disorders and comparison subjects exhibited similar functional magnetic resonance imaging and cardiac activity during the cue period and for the aversive versus neutral picture contrast. However, individuals with anxiety disorders exhibited greater modulatory effects of uncertainty on their responses to subsequent pictures. Specifically, they displayed greater functional magnetic resonance imaging activity in a number of cortical regions (visual cortex, anterior cingulate cortex, superior temporal gyrus, and anterior insula), as well as significantly reduced cardiac deceleration to pictures preceded by the uncertainty cue. CONCLUSIONS These findings suggest that heightened neural and autonomic reactivity to stimuli during conditions of uncertainty may be a key psychobiological mechanism of anxiety.
Collapse
Affiliation(s)
- Jaryd Hiser
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Brett Schneider
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael Koenigs
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
49
|
West HV, Burgess GC, Dust J, Kandala S, Barch DM. Amygdala Activation in Cognitive Task fMRI Varies with Individual Differences in Cognitive Traits. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:254-264. [PMID: 33683660 PMCID: PMC8480985 DOI: 10.3758/s13415-021-00863-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
The amygdala has been implicated in processing threat and learning fear. However, the amygdala also responds to motivationally relevant stimuli even in the absence of explicit emotional content. We investigated the relationship among amygdala activation, cognitive and emotional factors, and fMRI task data in participants from the Young Adult Human Connectome Project. We expected to see variation in amygdala activation that corresponded with variation in traits that could affect the salience of task related stimuli (i.e., internalizing symptoms and fearful faces). We found no relationship between amygdala activation during face viewing and emotion related traits. However, amygdala activation under working memory load was negatively correlated with fluid intelligence and reading level. There also was a negative relationship between task performance and activation in the amygdala. The observed relationship suggests that the role of amygdala is not limited to the processing of emotional content of incoming information but is instead related to salience, which can be influenced by individual differences.
Collapse
Affiliation(s)
- Haley V West
- Department of Psychiatry, Washington University, 4525 Scott Avenue, St. Louis, MO, 63110, USA.
| | - Gregory C Burgess
- Department of Psychiatry, Washington University, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Joseph Dust
- Department of Psychiatry, Washington University, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University, 4525 Scott Avenue, St. Louis, MO, 63110, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
50
|
Tejeda HA, Wang H, Flores RJ, Yarur HE. Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handb Exp Pharmacol 2021; 271:223-253. [PMID: 33580392 DOI: 10.1007/164_2021_440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cortical circuits control a plethora of behaviors, from sensation to cognition. The cortex is enriched with neuropeptides and receptors that play a role in information processing, including opioid peptides and their cognate receptors. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in the processing of sensory and motivationally-charged emotional information and is highly expressed in cortical circuits. This is important as dysregulation of DYN/KOR signaling in limbic and cortical circuits has been implicated in promoting negative affect and cognitive deficits in various neuropsychiatric disorders. However, research investigating the role of this system in controlling cortical circuits and computations therein is limited. Here, we review the (1) basic anatomy of cortical circuits, (2) anatomical architecture of the cortical DYN/KOR system, (3) functional regulation of cortical synaptic transmission and microcircuit function by the DYN/KOR system, (4) regulation of behavior by the cortical DYN/KOR system, (5) implications for the DYN/KOR system for human health and disease, and (6) future directions and unanswered questions for the field. Further work elucidating the role of the DYN/KOR system in controlling cortical information processing and associated behaviors will be of importance to increasing our understanding of principles underlying neuropeptide modulation of cortical circuits, mechanisms underlying sensation and perception, motivated and emotional behavior, and cognition. Increased emphasis in this area of study will also aid in the identification of novel ways to target the DYN/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|