1
|
Boente-Juncal A, Raposo-García S, Vale C, Louzao MC, Otero P, Botana LM. In Vivo Evaluation of the Chronic Oral Toxicity of the Marine Toxin Palytoxin. Toxins (Basel) 2020; 12:toxins12080489. [PMID: 32751719 PMCID: PMC7472043 DOI: 10.3390/toxins12080489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
Palytoxin (PLTX) is one of the most poisonous substances known to date and considered as an emergent toxin in Europe. Palytoxin binds to the Na+-K+ ATPase, converting the enzyme in a permeant cation channel. This toxin is known for causing human fatal intoxications associated with the consumption of contaminated fish and crustaceans such as crabs, groupers, mackerel, and parrotfish. Human intoxications by PLTX after consumption of contaminated fishery products are a serious health issue and can be fatal. Different reports have previously explored the acute oral toxicity of PLTX in mice. Although the presence of palytoxin in marine products is currently not regulated in Europe, the European Food Safety Authority expressed its opinion on PLTX and demanded assessment for chronic toxicity studies of this potent marine toxin. In this study, the chronic toxicity of palytoxin was evaluated after oral administration to mice by gavage during a 28-day period. After chronic exposure of mice to the toxin, a lethal dose 50 (LD50) of 0.44 µg/kg of PLTX and a No-Observed-Adverse-Effect Level (NOAEL) of 0.03 µg/kg for repeated daily oral administration of PLTX were determined. These results indicate a much higher chronic toxicity of PLTX and a lower NOAEL than that previously described in shorter treatment periods, pointing out the need to further reevaluate the levels of this compound in marine products.
Collapse
Affiliation(s)
| | | | - Carmen Vale
- Correspondence: (C.V.); (L.M.B.); Tel./Fax: +34-982822233 (L.M.B.)
| | | | | | - Luis M. Botana
- Correspondence: (C.V.); (L.M.B.); Tel./Fax: +34-982822233 (L.M.B.)
| |
Collapse
|
2
|
Lazarov E, Hillebrand M, Schröder S, Ternka K, Hofhuis J, Ohlenbusch A, Barrantes-Freer A, Pardo LA, Fruergaard MU, Nissen P, Brockmann K, Gärtner J, Rosewich H. Comparative analysis of alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism ATP1A3 mutations reveals functional deficits, which do not correlate with disease severity. Neurobiol Dis 2020; 143:105012. [PMID: 32653672 DOI: 10.1016/j.nbd.2020.105012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in the ATP1A3 gene, coding for an alpha subunit isoform (α3) of Na+/K+-ATPase, are the primary genetic cause for rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Recently, cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss (CAPOS), early infantile epileptic encephalopathy (EIEE), childhood rapid onset ataxia (CROA) and relapsing encephalopathy with rapid onset ataxia (RECA) extend the clinical spectrum of ATP1A3 related disorders. AHC and RDP demonstrate distinct clinical features, with AHC symptoms being generally more severe compared to RDP. Currently, it is largely unknown what determines the disease severity, and whether severity is linked to the degree of functional impairment of the α3 subunit. Here we compared the effect of twelve different RDP and AHC specific mutations on the expression and function of the α3 Na+/K+-ATPase in transfected HEK cells and oocytes. All studied mutations led to functional impairment of the pump, as reflected by lower survival rate and reduced pump current. No difference in the extent of impairment, nor in the expression level, was found between the two phenotypes, suggesting that these measures of pump dysfunction do not exclusively determine the disease severity.
Collapse
Affiliation(s)
- Elinor Lazarov
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Merle Hillebrand
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Simone Schröder
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Katharina Ternka
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Julia Hofhuis
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Andreas Ohlenbusch
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | | | - Luis A Pardo
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Marlene U Fruergaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Dept. Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Dept. Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
| | - Knut Brockmann
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Jutta Gärtner
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| | - Hendrik Rosewich
- University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Germany.
| |
Collapse
|
3
|
Vleeskens E, Clarke RJ. Kinetic contribution to extracellular Na +/K + selectivity in the Na +/K + pump. FEBS Open Bio 2018; 8:854-859. [PMID: 29744299 PMCID: PMC5929939 DOI: 10.1002/2211-5463.12418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
The sodium potassium pump (Na+,K+‐ATPase) shows a high selectivity for K+ over Na+ binding from the extracellular medium. To understand the K+ selectivity in the presence of a high concentration of competing Na+ ions requires consideration of more than just ion binding affinities. Here, equilibrium‐based calculations of the extracellular occupation of the Na+,K+‐ATPase transport sites by Na+ and K+ are compared to fluxes through Na+ and K+ transport pathways. The results show that, under physiological conditions, there is a 332‐fold selectivity for pumping of K+ from the extracellular medium into the cytoplasm relative to Na+, whereas equilibrium calculations alone predict only a 7.5‐fold selectivity for K+. Thus, kinetic effects make a major contribution to the determination of extracellular K+ selectivity.
Collapse
Affiliation(s)
| | - Ronald J Clarke
- School of Chemistry University of Sydney Australia.,The University of Sydney Nano Institute Australia
| |
Collapse
|
4
|
Brissard C, Herrenknecht C, Séchet V, Hervé F, Pisapia F, Harcouet J, Lémée R, Chomérat N, Hess P, Amzil Z. Complex toxin profile of French Mediterranean Ostreopsis cf. ovata strains, seafood accumulation and ovatoxins prepurification. Mar Drugs 2014; 12:2851-76. [PMID: 24828292 PMCID: PMC4052321 DOI: 10.3390/md12052851] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022] Open
Abstract
Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg-1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg-1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell-1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises.
Collapse
Affiliation(s)
- Charline Brissard
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| | - Christine Herrenknecht
- Université Nantes Angers Le Mans (LUNAM), University of Nantes, MMS EA2160, Pharmacy Faculty, 9 rue Bias, Nantes F-44035, France.
| | - Véronique Séchet
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| | - Fabienne Hervé
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| | - Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| | - Jocelyn Harcouet
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| | - Rodolphe Lémée
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, Villefranche/mer F-06230, France.
| | - Nicolas Chomérat
- Ifremer, Laboratoire Environnement Ressource de Bretagne Occitentale (LER-BO), Marine Biological Station, BP 40537, Concarneau F-29185, France.
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| | - Zouher Amzil
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, Nantes F-44311, France.
| |
Collapse
|
5
|
In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: structural and functional impairment. Toxicol Lett 2013; 225:285-93. [PMID: 24378260 DOI: 10.1016/j.toxlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
Palytoxins (PLTXs) are known seafood contaminants and their entrance into the food chain raises concern about possible effects on human health. The increasing number of analogs being identified in edible marine organisms complicates the estimation of the real hazard associated with the presence of PLTX-like compounds. So far, 42-OH-PLTX is one of the few congeners available, and the study of its toxicity represents an important step toward a better comprehension of the mechanism of action of this family of compounds. From this perspective, the aim of this work was to investigate the in vivo and in vitro effect of 42-OH-PLTX on skeletal muscle, one of the most sensitive targets for PLTXs. Our results demonstrate that 42-OH-PLTX causes damage at the skeletal muscle level with a cytotoxic potency similar to that of PLTX. 42-OH-PLTX induces cytotoxicity and cell swelling in a Na(+)-dependent manner similar to the parent compound. However, the limited Ca(2+)-dependence of the toxic insult induced by 42-OH-PLTX suggests a specific mechanism of action for this analog. Our results also suggest an impaired response to the physiological agonist acetylcholine and altered cell elasticity.
Collapse
|
6
|
Braz FAF, Cruz JS, Faria-Campos AC, Campos SVA. Probabilistic model checking analysis of palytoxin effects on cell energy reactions of the Na+/K+-ATPase. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:1530-1541. [PMID: 24407310 DOI: 10.1109/tcbb.2013.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Probabilistic model checking (PMC) is a technique used for the specification and analysis of complex systems. It can be applied directly to biological systems which present these characteristics, including cell transport systems. These systems are structures responsible for exchanging ions through the plasma membrane. Their correct behavior is essential for animal cells, since changes on those are responsible for diseases. In this work, PMC is used to model and analyze the effects of the palytoxin toxin (PTX) interactions with one of these systems. Our model suggests that ATP could inhibit PTX action. Therefore, individuals with ATP deficiencies, such as in brain disorders, may be more susceptible to the toxin. We have also used heat maps to enhance the kinetic model, which is used to describe the system reactions. The map reveals unexpected situations, such as a frequent reaction between unlikely pump states, and hot spots such as likely states and reactions. This type of analysis provides a better understanding on how transmembrane ionic transport systems behave and may lead to the discovery and development of new drugs to treat diseases associated to their incorrect behavior.
Collapse
Affiliation(s)
| | - Jader S Cruz
- Universidade Federal de Minas Gerais, Belo Horizonte
| | | | | |
Collapse
|
7
|
Del Favero G, Beltramo D, Sciancalepore M, Lorenzon P, Coslovich T, Poli M, Testai E, Sosa S, Tubaro A. Toxicity of palytoxin after repeated oral exposure in mice and in vitro effects on cardiomyocytes. Toxicon 2013; 75:3-15. [PMID: 23770425 DOI: 10.1016/j.toxicon.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022]
Abstract
Palytoxin (PLTX) is a highly toxic hydrophilic polyether detected in several edible marine organisms from intra-tropical areas, where seafood poisoning were reported. Symptoms usually start with gastro-intestinal malaise, often accompanied by myalgia, muscular cramps, dyspnea and, sometimes, arrhythmias. Monitoring programs in the Mediterranean Sea have detected PLTX-like molecules in edible mollusks and echinoderms. Despite the potential exposure of the human population and its high toxic potential, the toxicological profile of the molecule is still an issue. Thus, the effects of repeated oral administration of PLTX in mice were investigated. Seven days of PLTX administration caused lethality and toxic effects at doses ≥ 30 μg/kg/day. A NOAEL was estimated equal to 3 μg/kg/day, indicating a quite steep dose-response curve. This value, due to the limited number of animal tested, is provisional, although represents a sound basis for further testing. Macroscopic alterations at gastrointestinal level (gastric ulcers and intestinal fluid accumulation) were observed in mice dead during the treatment period. Histological analysis highlighted severe inflammation, locally associated with necrosis, at pulmonary level, as well as hyper-eosinophilia and fiber separation in myocardium. A cardiac damage was supported by the in vitro effect of the toxin on cardiomyocytes, indicating a severe and irreversible impairment of their electrical properties: electrophysiological recordings detected a progressive cell depolarization, arrest of action potentials and beating.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Görögh T, Bèress L, Quabius ES, Ambrosch P, Hoffmann M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol Cancer 2013; 12:12. [PMID: 23409748 PMCID: PMC3585753 DOI: 10.1186/1476-4598-12-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
Objectives Palytoxin (PTX), a marine toxin isolated from the Cnidaria (zooanthid) Palythoa caribaeorum is one of the most potent non-protein substances known. It is a very complex molecule that presents both lipophilic and hydrophilic areas. The effect of PTX was investigated in a series of experiments conducted in head and neck squamous cell carcinoma (HNSCC) cell lines and xenografts. Materials and methods Cell viability, and gene expression of the sodium/potassium-transporting ATPase subumit alpha1 (ATP1AL1) and GAPDH were analyzed in HNSCC cells and normal epithelial cells after treatment with PTX using cytotoxicity-, clonogenic-, and enzyme inhibitor assays as well as RT-PCR and Northern Blotting. For xenograft experiments severe combined immunodeficient (SCID) mice were used to analyze tumor regression. The data were statistically analyzed using One-Way Annova (SPSS vs20). Results Significant toxic effects were observed in tumor cells treated with PTX (LD50 of 1.5 to 3.5 ng/ml) in contrast to normal cells. In tumor cells PTX affected both the release of LDH and the expression of the sodium/potassium-transporting ATPase subunit alpha1 gene suggesting loss of cellular integrity, primarily of the plasma membrane. Furthermore, strong repression of the c-Jun N-terminal kinase 3 (JNK3) mRNA expression was found in carcinoma cells which correlated with enhanced toxicity of PTX suggesting an essential role of the mitogen activated protein kinase (MAPK)/JNK signalling cascades pathway in the mechanisms of HNSCC cell resistance to PTX. In mice inoculated with carcinoma cells, injections of PTX into the xenografted tumors resulted within 24 days in extensive tumor destruction in 75% of the treated animals (LD50 of 68 ng/kg to 83 ng/kg) while no tumor regression occurred in control animals. Conclusions These results clearly provide evidence that PTX possesses preferential toxicity for head and neck carcinoma cells and therefore it is worth further studying its impact which may extend our knowledge of the biology of head and neck cancer.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology- Head and Neck Surgery, Section of Experimental Oncology, University of Kiel Schleswig-Holstein, Kiel, 24105, Germany.
| | | | | | | | | |
Collapse
|
9
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
10
|
The cytolytic and cytotoxic activities of palytoxin. Toxicon 2011; 57:449-59. [DOI: 10.1016/j.toxicon.2010.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
|
11
|
Sinkins WG, Estacion M, Prasad V, Goel M, Shull GE, Kunze DL, Schilling WP. Maitotoxin converts the plasmalemmal Ca(2+) pump into a Ca(2+)-permeable nonselective cation channel. Am J Physiol Cell Physiol 2009; 297:C1533-43. [PMID: 19794142 DOI: 10.1152/ajpcell.00252.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Maitotoxin (MTX) activates Ca(2+)-permeable nonselective cation channels and causes a dramatic increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in every cell examined to date, but the molecular identity of the channels involved remains unknown. A clue came from studies of a structurally related marine toxin called palytoxin (PTX). PTX binds to the plasmalemmal Na(+)-K(+)-ATPase (NKA) and converts the Na(+) pump into a nonselective cation channel. Given the high permeability of the MTX channel for Ca(2+), we considered the possibility that MTX may bind to the plasmalemmal Ca(2+)-ATPase (PMCA) pump, and like PTX, convert the pump into a channel. To test this hypothesis, the PMCA was overexpressed in Spodoptera frugiperda (Sf9) insect cells and in human embryonic kidneys (HEK) 293 cells. In both cell types, enhanced expression of the PMCA was associated with a significant increase in MTX-induced whole cell membrane currents. The effect of MTX on whole cell currents in both wild-type and PMCA overexpressing HEK cells was sensitive to pump ligands including Ca(2+) and ATP. MTX-induced currents were significantly reduced by knockdown of PMCA1 in HEK cells using small interfering RNA or in mouse embryonic fibroblasts from genetically modified mice with the PMCA1(+/-) PMCA4(-/-) genotype. Finally, PMCA catalytic activity (i.e., Ca(2+)-ATPase) in isolated membranes, or in purified PMCA preparations, was inhibited by MTX. Together, these results suggest that MTX binds to and converts the PMCA pump into a Ca(2+)-permeable nonselective cation channel.
Collapse
Affiliation(s)
- William G Sinkins
- Department of Physiology, Rammelkamp Center for Education and Research, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Rodrigues AM, Infantosi AFC, de Almeida ACG. Palytoxin and the sodium/potassium pump—phosphorylation and potassium interaction. Phys Biol 2009; 6:036010. [DOI: 10.1088/1478-3975/6/3/036010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Investigating the potassium interactions with the palytoxin induced channels in Na+/K+ pump. Comput Biol Chem 2009; 33:14-21. [DOI: 10.1016/j.compbiolchem.2008.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 07/03/2008] [Accepted: 07/06/2008] [Indexed: 11/18/2022]
|
14
|
Franchini A, Casarini L, Ottaviani E. Toxicological effects of marine palytoxin evaluated by FETAX assay. CHEMOSPHERE 2008; 73:267-271. [PMID: 18672264 DOI: 10.1016/j.chemosphere.2008.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 06/15/2008] [Indexed: 05/26/2023]
Abstract
The FETAX (frog embryo teratogenesis assay Xenopus) is considered a useful bioassay to detect health hazard substances. In the study of the marine toxin palytoxin (PTX), FETAX has revealed evident impacts on embryo mortality, teratogenesis and growth at the two highest (370 and 37nM) concentrations used. Significant mortality rates, peaks in the number of malformed embryos and delays in growth were found, while the total sample number fell by about 80% at the end of the assay with the concentrated dose. The histological analysis to evaluate the morpho-functional induced modifications demonstrated damage to the nervous and muscle tissue, a general reduction in the size of the main inner visceral organs and severe injury to the heart structure in some specimens. No inflammatory response was observed.
Collapse
Affiliation(s)
- Antonella Franchini
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | | | |
Collapse
|
15
|
Rodrigues AM, Almeida ACG, Infantosi AFC. Effect of palytoxin on the sodium–potassium pump: model and simulation. Phys Biol 2008; 5:036005. [DOI: 10.1088/1478-3975/5/3/036005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Rodrigues AM, Almeida ACG, Infantosi AFC, Teixeira HZ, Duarte MA. Model and simulation of Na+/K+ pump phosphorylation in the presence of palytoxin. Comput Biol Chem 2008; 32:5-16. [PMID: 17897885 DOI: 10.1016/j.compbiolchem.2007.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
The ATP hydrolysis reactions responsible for the Na(+)/K(+)-ATPase phosphorylation, according to recent experimental evidences, also occur for the PTX-Na(+)/K(+) pump complex. Moreover, it has been demonstrated that PTX interferes with the enzymes phosphorylation status. However, the reactions involved in the PTX-Na(+)/K(+) pump complex phosphorylation are not very well established yet. This work aims at proposing a reaction model for PTX-Na(+)/K(+) pump complex, with similar structure to the Albers-Post model, to contribute to elucidate the PTX effect over Na(+)/K(+)-ATPase phosphorylation and dephosphorylation. Computational simulations with the proposed model support several hypotheses and also suggest: (i) phosphorylation promotes an increase of the open probability of induced channels; (ii) PTX reduces the Na(+)/K(+) pump phosphorylation rate; (iii) PTX may cause conformational changes to substates where the Na(+)/K(+)-ATPase may not be phosphorylated; (iv) PTX can bind to substates of the two principal states E1 and E2, with highest affinity to phosphorylated enzymes and with ATP bound to its low-affinity sites. The proposed model also allows previewing the behavior of the PTX-pump complex substates for different levels of intracellular ATP concentrations.
Collapse
Affiliation(s)
- Antônio M Rodrigues
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
17
|
Rakowski RF, Artigas P, Palma F, Holmgren M, De Weer P, Gadsby DC. Sodium flux ratio in Na/K pump-channels opened by palytoxin. ACTA ACUST UNITED AC 2007; 130:41-54. [PMID: 17562821 PMCID: PMC2085370 DOI: 10.1085/jgp.200709770] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Palytoxin binds to Na+/K+ pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and 22Na+ efflux in voltage-clamped, internally dialyzed giant axons of the squid Loligo pealei. The conductance of single palytoxin-bound “pump-channels” in outside-out patches was ∼7 pS in symmetrical 500 mM [Na+], comparable to findings in other cells. In these high-[Na+], K+-free solutions, with 5 mM cytoplasmic [ATP], the K0.5 for palytoxin action was ∼70 pM. The pump-channels were ∼40–50 times less permeable to N-methyl-d-glucamine (NMG+) than to Na+. The reversal potential of palytoxin-elicited current under biionic conditions, with the same concentration of a different permeant cation on each side of the membrane, was independent of the concentration of those ions over the range 55–550 mM. In giant axons, the Ussing flux ratio exponent (n') for Na+ movements through palytoxin-bound pump-channels, over a 100–400 mM range of external [Na+] and 0 to −40 mV range of membrane potentials, averaged 1.05 ± 0.02 (n = 28). These findings are consistent with occupancy of palytoxin-bound Na+/K+ pump-channels either by a single Na+ ion or by two Na+ ions as might be anticipated from other work; idiosyncratic constraints are needed if the two Na+ ions occupy a single-file pore, but not if they occupy side-by-side binding sites, as observed in related structures, and if only one of the sites is readily accessible from both sides of the membrane.
Collapse
Affiliation(s)
- R F Rakowski
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Vale-Gonzalez C, Pazos MJ, Alfonso A, Vieytes MR, Botana LM. Study of the neuronal effects of ouabain and palytoxin and their binding to Na,K-ATPases using an optical biosensor. Toxicon 2007; 50:541-52. [PMID: 17548099 DOI: 10.1016/j.toxicon.2007.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The phycotoxin palytoxin (PTX) binds to Na,K-ATPase, inhibiting its activity and converting the pump into a channel. These mechanisms are poorly understood. We examined the effect of PTX on membrane potential (E(m)), intracellular calcium concentration ([Ca2+]i) and intracellular pH (pH(i)) in primary cultures of cerebellar granule cells (CGC) and compared PTX and ouabain actions in the same cellular parameters. In this system, PTX caused depolarization, intracellular calcium increase and acidification. This is similar to the effect of ouabain. Preincubation of the cells with ouabain, before addition of PTX, altered E(m), [Ca2+]i, and pH(i) in a fashion similar to that of ouabain alone. This suggest a direct interaction of PTX with the Na,K-ATPase. Therefore, we used a resonant mirror biosensor to evaluate the binding of PTX and ouabain to immobilized Na,K-ATPase. Ouabain binding to immobilized Na,K-ATPase was concentration-dependent. No binding of PTX to Na,K-ATPase was observed with up to 10 microM, or with PTX addition in the presence of ATP. The fact that ouabain binds to the pump in an immobilized conformation whereas not binding of PTX was observed indicates that PTX and ouabain do not share the same binding site, and PTX binding may require the tridimensional pump structure.
Collapse
Affiliation(s)
- C Vale-Gonzalez
- Departamento de Farmacología, Universidad de Santiago de Compostela, Campus Universitario s/n 27002 Lugo, Spain
| | | | | | | | | |
Collapse
|
19
|
Vale-González C, Gómez-Limia B, Vieytes MR, Botana LM. Effects of the marine phycotoxin palytoxin on neuronal pH in primary cultures of cerebellar granule cells. J Neurosci Res 2007; 85:90-8. [PMID: 17075922 DOI: 10.1002/jnr.21095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Palytoxin (PTX) is a potent marine phycotoxin that binds to the Na,K-ATPase, converting this pump into an open channel. We have recently shown (Vale et al., 2006) that PTX causes an irreversible increase in the cytosolic calcium concentration ([Ca(2+)](c)) in primary cultures of cerebellar granule cells (CGC). In this work, we investigated the effect of PTX on the intracellular pH (pH(i)) in the same cellular model. PTX-induced changes in pH(i) were studied in CGC by using the fluorescent probe 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM). PTX caused an irreversible intracellular acidification of CGC. This acidification was due to an influx of extracellular calcium, inasmuch as it was completely abolished by the use of Ca(2+)-free medium. Different mechanisms that could be involved in the PTX-induced pH(i) decrease such as displacement of H(+) by Ca(2+) from a common intracellular binding site, PTX-induced alteration of pH(i) regulation mechanisms, and a possible acidification caused by an increase of mitochondrial Ca(2+) uptake by PTX were excluded. PTX-induced intracellular acidification was completely prevented by several inhibitors of the plasma membrane calcium ATPase (PMCA), including orthovanadate, lanthanum, high extracellular pH, and caloxin 2A1. Our results indicate that the PMCA is involved in the PTX-induced intracellular acidification in primary cultures of CGC. The PTX-evoked increase in [Ca(2+)](c) will activate the calcium extrusion mechanisms through the PMCA, which, in turn, will decrease pH(i) by countertransport of H(+) ions. The effect of PTX on neuronal pH could be a potential factor to contribute to the high cytotoxicity of this toxin in cultured cerebellar neurons.
Collapse
Affiliation(s)
- Carmen Vale-González
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | |
Collapse
|
20
|
Louzao MC, Ares IR, Vieytes MR, Valverde I, Vieites JM, Yasumoto T, Botana LM. The cytoskeleton, a structure that is susceptible to the toxic mechanism activated by palytoxins in human excitable cells. FEBS J 2007; 274:1991-2004. [PMID: 17371505 DOI: 10.1111/j.1742-4658.2007.05743.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Palytoxin is a marine toxin responsible for a fatal type of poisoning in humans named clupeotoxism, with symptoms such as neurologic disturbances. It is believed that it binds to the Na(+)/K(+)-ATPase from the extracellular side and modifies cytosolic ions; nevertheless, its effects on internal cell structures, such as the cytoskeleton, which might be affected by these initial events, have not been fully elucidated. Likewise, ostreocin-D, an analog of palytoxin, has been only recently found, and its action on excitable cells is therefore unknown. Therefore, our aim was to investigate the modifications of ion fluxes associated with palytoxin and ostreocin-D activities, and their effects on an essential cytoskeletal component, the actin system. We used human neuroblastoma cells and fluorescent dyes to detect changes in membrane potential, intracellular Ca(2+) concentration, cell detachment, and actin filaments. Fluorescence values were obtained with spectrofluorymetry, laser-scanning cytometry, and confocal microscopy; the last of these was also used for recording images. Palytoxin and ostreocin-D modified membrane permeability as a first step, triggering depolarization and increasing Ca(2+) influx. The substantial loss of filamentous actin, and the morphologic alterations elicited by both toxins, are possibly secondary to their action on ion channels. The decrease in polymerized actin seemed to be Ca(2+)-independent; however, this ion could be related to actin cytoskeletal organization. Palytoxin and ostreocin-D alter the ion fluxes, targeting pathways that involve the cytoskeletal dynamics of human excitable cells.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The interaction of palytoxin with the Na,K-ATPase was studied by the electrochromic styryl dye RH421, which monitors the amount of ions in the membrane domain of the pump. The toxin affected the pump function in the state P-E2, independently of the type of phosphorylation (ATP or inorganic phosphate). The palytoxin-induced modification of the protein consisted of two steps: toxin binding and a subsequent conformational change into a transmembrane ion channel. At 20 degrees C, the rate-limiting reaction had a forward rate constant of 10(5) M(-1)s(-1) and a backward rate constant of about 10(-3) s(-1). In the palytoxin-modified state, the binding affinity for Na+ and H+ was increased and reached values between those obtained in the E1 and P-E2 conformation under physiological conditions. Even under saturating palytoxin concentrations, the ATPase activity was not completely inhibited. In the Na/K mode, approximately 50% of the enzyme remained active in the average, and in the Na-only mode 25%. The experimental findings indicate that an additional exit from the inhibited state exists. An obvious reaction pathway is a slow dephosphorylation of the palytoxin-inhibited state with a time constant of approximately 100 s. Analysis of the effect of blockers of the extracellular and cytoplasmic access channels, TPA+ and Br2-Titu3+, respectively, showed that both access channels are part of the ion pathway in the palytoxin-modified protein. All experiments can be explained by an extension of the Post-Albers cycle, in which three additional states were added that branch off in the P-E2 state and lead to states in which the open-channel conformation is introduced and returns into the pump cycle in the occluded E2 state. The previously suggested molecular model for the channel state of the Na,K-ATPase as a conformation in which both gates between binding sites and aqueous phases are simultaneously in their open state is supported by this study.
Collapse
Affiliation(s)
- Nadine Harmel
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
22
|
Nguitragool W, Miller C. Uncoupling of a CLC Cl−/H+ Exchange Transporter by Polyatomic Anions. J Mol Biol 2006; 362:682-90. [PMID: 16905147 DOI: 10.1016/j.jmb.2006.07.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/28/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
CLC-ec1 is a bacterial archetype of CLC transporters, a ubiquitous class of proteins that catalyze transmembrane exchange of Cl- and H+ necessary for pH regulation of numerous physiological processes. Despite a profusion of high-resolution structures, the molecular mechanism of exchange remains unknown. Here, we rigorously demonstrate strict exchange stoichiometry of 2 Cl-/1 H+. In addition to Cl- and Br-, two non-halide ions, NO3- and SCN-, are shown to be transported by CLC-ec1, but with reduced H+ counter-transport. The loss of proton coupling to these anions is accompanied by an absence of bound anions in the central and external Cl- binding sites in the protein's anion selectivity region, as revealed by crystallographic comparison of Br- and SeCN- bound to this region.
Collapse
Affiliation(s)
- Wang Nguitragool
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
23
|
Schilling WP, Snyder D, Sinkins WG, Estacion M. Palytoxin-induced cell death cascade in bovine aortic endothelial cells. Am J Physiol Cell Physiol 2006; 291:C657-67. [PMID: 16672692 DOI: 10.1152/ajpcell.00063.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasmalemmal Na(+)-K(+)-ATPase (NKA) pump is the receptor for the potent marine toxin palytoxin (PTX). PTX binds to the NKA and converts the pump into a monovalent cation channel that exhibits a slight permeability to Ca(2+). However, the ability of PTX to directly increase cytosolic free Ca(2+) concentration ([Ca(2+)](i)) via Na(+) pump channels and to initiate Ca(2+) overload-induced oncotic cell death has not been examined. Thus the purpose of this study was to determine the effect of PTX on [Ca(2+)](i) and the downstream events associated with cell death in bovine aortic endothelial cells. PTX (3-100 nM) produced a graded increase in [Ca(2+)](i) that was dependent on extracellular Ca(2+). The increase in [Ca(2+)](i) initiated by 100 nM PTX was blocked by pretreatment with ouabain with an IC(50) < 1 microM. The elevation in [Ca(2+)](i) could be reversed by addition of ouabain at various times after PTX, but this required much higher concentrations of ouabain (0.5 mM). These results suggest that the PTX-induced rise in [Ca(2+)](i) occurs via the Na(+) pump. Subsequent to the rise in [Ca(2+)](i), PTX also caused a concentration-dependent increase in uptake of the vital dye ethidium bromide (EB) but not YO-PRO-1. EB uptake was also blocked by ouabain added either before or after PTX. Time-lapse video microscopy showed that PTX ultimately caused cell lysis as indicated by release of transiently expressed green fluorescent protein (molecular mass 27 kDa) and rapid uptake of propidium iodide. Cell lysis was 1) greatly delayed by removing extracellular Ca(2+) or by adding ouabain after PTX, 2) blocked by the cytoprotective amino acid glycine, and 3) accompanied by dramatic membrane blebbing. These results demonstrate that PTX initiates a cell death cascade characteristic of Ca(2+) overload.
Collapse
Affiliation(s)
- William P Schilling
- Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, OH 44109-1998, USA.
| | | | | | | |
Collapse
|
24
|
Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 2005; 102:3495-500. [PMID: 15728379 PMCID: PMC549289 DOI: 10.1073/pnas.0407737102] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 01/21/2005] [Indexed: 11/18/2022] Open
Abstract
Drugs of abuse, including cocaine, amphetamine (AMPH), and heroin, elevate extracellular dopamine (DA) levels in the brain, thereby altering the activity/plasticity of reward circuits and precipitating addiction. The physiological release of DA occurs through the calcium-dependent fusion of a synaptic vesicle with the plasma membrane. Extracellular DA is cleared by uptake through the Na+/Cl- -dependent DA transporter (DAT). In contrast, the substrate AMPH induces nonvesicular release of DA mediated by DAT. Extracellular AMPH is generally believed to trigger DA efflux through DAT by facilitating exchange for cytosolic DA. Here, in outside-out patches from heterologous cells stably expressing DAT or from dopaminergic neurons, by using ionic conditions in the patch pipette that mimic those produced by AMPH stimulation, we report that AMPH causes DAT-mediated DA efflux by two independent mechanisms: (i) a slow process consistent with an exchange mechanism and (ii) a process that results in rapid (millisecond) bursts of DA efflux through a channel-like mode of DAT. Because channel-like release of DA induced by AMPH is rapid and contains a large number of DA molecules, with a single burst of DA on par with a quantum of DA from exocytotic release of a vesicle, this burst mode of release may play a role in the synaptic actions and psychostimulant properties of AMPH and related compounds. Unlike AMPH, the endogenous substrate DA, when present on both sides of the plasma membrane, inhibits this channel-like activity, thereby suggesting that the DAT channel-like mode cannot accumulate DA against a concentration gradient.
Collapse
Affiliation(s)
- Kristopher M Kahlig
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232-8548, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Artigas P, Gadsby DC. Large diameter of palytoxin-induced Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. ACTA ACUST UNITED AC 2004; 123:357-76. [PMID: 15024043 PMCID: PMC2217460 DOI: 10.1085/jgp.200308964] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palytoxin binds to Na/K pumps to generate nonselective cation channels whose pore likely comprises at least part of the pump's ion translocation pathway. We systematically analyzed palytoxin's interactions with native human Na/K pumps in outside-out patches from HEK293 cells over a broad range of ionic and nucleotide conditions, and with or without cardiotonic steroids. With 5 mM internal (pipette) [MgATP], palytoxin activated the conductance with an apparent affinity that was highest for Na+-containing (K+-free) external and internal solutions, lowest for K+-containing (Na+-free) external and internal solutions, and intermediate for the mixed external Na+/internal K+, and external K+/internal Na+ conditions; with Na+ solutions and MgATP, the mean dwell time of palytoxin on the Na/K pump was about one day. With Na+ solutions, the apparent affinity for palytoxin action was low after equilibration of patches with nucleotide-free pipette solution. That apparent affinity was increased in two phases as the equilibrating [MgATP] was raised over the submicromolar, and submillimolar, ranges, but was increased by pipette MgAMPPNP in a single phase, over the submillimolar range; the apparent affinity at saturating [MgAMPPNP] remained ∼30-fold lower than at saturating [MgATP]. After palytoxin washout, the conductance decay that reflects palytoxin unbinding was accelerated by cardiotonic steroid. When Na/K pumps were preincubated with cardiotonic steroid, subsequent activation of palytoxin-induced conductance was greatly slowed, even after washout of the cardiotonic steroid, but activation could still be accelerated by increasing palytoxin concentration. These results indicate that palytoxin and a cardiotonic steroid can simultaneously occupy the same Na/K pump, each destabilizing the other. The palytoxin-induced channels were permeable to several large organic cations, including N-methyl-d-glucamine+, suggesting that the narrowest section of the pore must be ∼7.5 Å wide. Enhanced understanding of palytoxin action now allows its use for examining the structures and mechanisms of the gates that occlude/deocclude transported ions during the normal Na/K pump cycle.
Collapse
Affiliation(s)
- Pablo Artigas
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY 10021-6399, USA
| | | |
Collapse
|
26
|
Larsson HP, Tzingounis AV, Koch HP, Kavanaugh MP. Fluorometric measurements of conformational changes in glutamate transporters. Proc Natl Acad Sci U S A 2004; 101:3951-6. [PMID: 15001707 PMCID: PMC374350 DOI: 10.1073/pnas.0306737101] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamate transporters remove glutamate from the synaptic cleft to maintain efficient synaptic communication between neurons and to prevent extracellular glutamate concentrations from reaching neurotoxic levels (1). It is thought that glutamate transporters mediate glutamate transport through a reaction cycle with conformational changes between the two major access states that alternatively expose glutamate-binding sites to the extracellular or to the intracellular solution. However, there is no direct real-time evidence for the conformational changes predicted to occur during the transport cycle. In the present study, we used voltage-clamp fluorometry to measure conformational changes in the neuronal excitatory amino acid transporter (EAAT) 3 glutamate transporter covalently labeled with a fluorescent reporter group. Alterations in glutamate and cotransported ion concentrations or in the membrane voltage induced changes in the fluorescence that allowed detection of conformational rearrangements occurring during forward and reverse transport. In addition to the transition between the two major access states, our results show that there are significant Na(+)-dependent conformational changes preceding glutamate binding. We furthermore show that Na(+) and H(+) are cotransported with glutamate in the forward part of the transport cycle. The data further suggest that an increase in proton concentrations slows the reverse transport of glutamate, which may play a neuro-protective role during ischemia.
Collapse
Affiliation(s)
- H Peter Larsson
- Neurological Sciences Institute, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|