1
|
Wang F, Cai B, Li KC, Hu XY, Lu YJ, Wang Q, Bao L, Zhang X. FXYD2, a γ subunit of Na⁺, K⁺-ATPase, maintains persistent mechanical allodynia induced by inflammation. Cell Res 2015; 25:318-34. [PMID: 25633594 DOI: 10.1038/cr.2015.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/09/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Na⁺, K⁺-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and β subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with α1NKA and negatively regulated the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deficient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/α1NKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Cai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xu-Ye Hu
- Shanghai Clinical Center, Chinese Academy of Sciences/XuHui Central Hospital, Shanghai, China
| | - Ying-Jin Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Bao
- 1] State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xu Zhang
- 1] Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China [2] School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
2
|
Sweadner KJ, Pascoa JL, Salazar CA, Arystarkhova E. Post-transcriptional control of Na,K-ATPase activity and cell growth by a splice variant of FXYD2 protein with modified mRNA. J Biol Chem 2011; 286:18290-300. [PMID: 21460224 DOI: 10.1074/jbc.m111.241901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In kidney, FXYD proteins regulate Na,K-ATPase in a nephron segment-specific way. FXYD2 is the most abundant renal FXYD but is not expressed in most renal cell lines unless induced by hypertonicity. Expression by transfection of FXYD2a or FXYD2b splice variants in NRK-52E cells reduces the apparent Na(+) affinity of the Na,K-ATPase and slows the cell proliferation rate. Based on RT-PCR, mRNAs for both splice variants were expressed in wild type NRK-52E cells as low abundance species. DNA sequencing of the PCR products revealed a base alteration from C to T in FXYD2b but not FXYD2a from both untreated and hypertonicity-treated NRK-52E cells. The 172C→T sequence change exposed a cryptic KKXX endoplasmic reticulum retrieval signal via a premature stop codon. The truncation affected trafficking of FXYD2b and its association with Na,K-ATPase and blocked its effect on enzyme kinetics and cell growth. The data may be explained by altered splicing or selective RNA editing of FXYD2b, a supplementary process that would ensure that it was inactive even if transcribed and translated, in these cells that normally express only FXYD2a. 172C→T mutation was also identified after mutagenesis of FXYD2b by error-prone PCR coupled with a selection for cell proliferation. Furthermore, the error-prone PCR alone introduced the mutation with high frequency, implying a structural peculiarity. The data confirm truncation of FXYD2b as a potential mechanism to regulate the amount of FXYD2 at the cell surface to control activity of Na,K-ATPase and cell growth.
Collapse
Affiliation(s)
- Kathleen J Sweadner
- Laboratory of Membrane Biology, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
3
|
Pondugula SR, Raveendran NN, Ergonul Z, Deng Y, Chen J, Sanneman JD, Palmer LG, Marcus DC. Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat. Physiol Genomics 2006; 24:114-23. [PMID: 16263802 DOI: 10.1152/physiolgenomics.00006.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lumen of the inner ear has an unusually low concentration of endolymphatic Na+, which is important for transduction processes. We have recently shown that glucocorticoid receptors (GR) stimulate absorption of Na+by semicircular canal duct (SCCD) epithelia. In the present study, we sought to determine the presence of genes involved in the control of the amiloride-sensitive Na+transport pathway in rat SCCD epithelia and whether their level of expression was regulated by glucocorticoids using quantitative real-time RT-PCR. Transcripts were present for α-, β-, and γ-subunits of the epithelial sodium channel (ENaC); the α1-, α3-, β1-, and β3-isoforms of Na+-K+-ATPase; inwardly rectifying potassium channels [IC50of short circuit current ( Isc) for Ba2+: 210 μM] Kir2.1, Kir2.2, Kir2.3, Kir2.4, Kir3.1, Kir3.3, Kir4.1, Kir4.2, Kir5.1, and Kir7.1; sulfonyl urea receptor 1 (SUR1); GR; mineralocorticoid receptor (MR); 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2; serum- and glucocorticoid-regulated kinase 1 (Sgk1); and neural precursor cell-expressed developmentally downregulated 4-2 (Nedd4-2). On the other hand, transcripts for the α4-subunit of Na+-K+-ATPase, Kir1.1, Kir3.2, Kir3.4, Kir6.1, Kir6.2, and SUR2 were found to be absent, and Iscwas not inhibited by glibenclamide. Dexamethasone (100 nM for 24 h) not only upregulated the transcript expression of α-ENaC (∼4-fold), β2-subunit (∼2-fold) and β3-subunit (∼8-fold) of Na+-K+-ATPase, Kir2.1 (∼5-fold), Kir2.2 (∼9-fold), Kir2.4 (∼3-fold), Kir3.1 (∼ 3- fold), Kir3.3 (∼2-fold), Kir4.2 (∼3-fold ), Kir7.1 (∼2-fold), Sgk1 (∼4-fold), and Nedd4-2 (∼2-fold) but also downregulated GR (∼3-fold) and 11β-HSD1 (∼2-fold). Expression of GR and 11β-HSD1 was higher than MR and 11β-HSD2 in the absence of dexamethasone. Dexamethasone altered transcript expression levels (α-ENaC and Sgk1) by activation of GR but not MR. Proteins were present for the α-, β-, and γ-subunits of ENaC and Sgk1, and expression of α- and γ-ENaC was upregulated by dexamethasone. These findings are consistent with the genomic stimulation by glucocorticoids of Na+absorption by SCCD and provide an understanding of the therapeutic action of glucocorticoids in the treatment of Meniere's disease.
Collapse
|
4
|
Jones DH, Li TY, Arystarkhova E, Barr KJ, Wetzel RK, Peng J, Markham K, Sweadner KJ, Fong GH, Kidder GM. Na,K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem 2005; 280:19003-11. [PMID: 15755730 DOI: 10.1074/jbc.m500697200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma subunit of the Na,K-ATPase, a 7-kDa single-span membrane protein, is a member of the FXYD gene family. Several FXYD proteins have been shown to bind to Na,K-ATPase and modulate its properties, and each FXYD protein appears to alter enzyme kinetics differently. Different results have sometimes been obtained with different experimental systems, however. To test for effects of gamma in a native tissue environment, mice lacking a functional gamma subunit gene (Fxyd2) were generated. These mice were viable and without observable pathology. Prior work in the mouse embryo showed that gamma is expressed at the blastocyst stage. However, there was no delay in blastocele formation, and the expected Mendelian ratios of offspring were obtained even with Fxyd2-/- dams. In adult Fxyd2-/- mouse kidney, splice variants of gamma that have different nephron segment-specific expression patterns were absent. Purified gamma-deficient renal Na,K-ATPase displayed higher apparent affinity for Na+ without significant change in apparent affinity for K+. Affinity for ATP, which was expected to be decreased, was instead slightly increased. The results suggest that regulation of Na+ sensitivity is a major functional role for this protein, whereas regulation of ATP affinity may be context-specific. Most importantly, this implies that gamma and other FXYD proteins have their effects by local and not global conformation change. Na,K-ATPase lacking the gamma subunit had increased thermal lability. Combined with other evidence that gamma participates in an early step of thermal denaturation, this indicates that FXYD proteins may play an important structural role in the enzyme complex.
Collapse
Affiliation(s)
- D Holstead Jones
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wetzel RK, Pascoa JL, Arystarkhova E. Stress-induced expression of the gamma subunit (FXYD2) modulates Na,K-ATPase activity and cell growth. J Biol Chem 2004; 279:41750-7. [PMID: 15280368 DOI: 10.1074/jbc.m405622200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In kidney, the Na,K-ATPase is associated with a single span protein, the gamma subunit (FXYD2). Two splice variants are differentially expressed along the nephron and have a differential influence on Na,K-ATPase when stably expressed in mammalian cells in culture. Here we used a combination of gene induction and gene silencing techniques to test the functional impact of gamma by means other than transfection. NRK-52E cells (of proximal tubule origin) do not express gamma as a protein under regular tissue culture conditions. However, when they were exposed to hyperosmotic medium, induction of only the gammaa splice variant was observed, which was accompanied by a reduction in the rate of cell division. Kinetic analysis of stable enzyme properties from control (alpha1beta1) and hypertonicity-treated cultures (alpha1beta1gammaa) revealed a significant reduction (up to 60%) of Na,K-ATPase activity measured under V(max) conditions with little or no change in the amounts of alpha1beta1. This effect as well as the reduction in cell growth rate was practically abolished when gamma expression was knocked down using specific small interfering RNA duplexes. Surprisingly, a similar induction of endogenous gammaa because of hypertonicity was seen in rat cell lines of other than renal origin: C6 (glioma), PC12 (pheochromocytoma), and L6 (myoblasts). Furthermore, exposure of NRK-52E cells to other stress inducers such as heat shock, exogenous oxidation, and chemical stress also resulted in a selective induction of gammaa. Taken together, the data imply that induction of gammaa may have adaptive value by being a part of a general cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Randall K Wetzel
- Laboratory of Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|